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Abstract. Applied research and prototypes constitute an important part of the initiative around Stream Reasoning (SR) research.
From Social Media analytics to the monitoring of IoT streams, the SR community worked hard on designing working prototypes,
query languages, and benchmarks. Applied work that uses stream reasoners in practice often requires a data modeling effort.
For this purpose, RDF Stream Processing (RSP) engines often rely on OWL 2 ontologies. Although the literature on Knowledge
Representation (KR) of Time-varying data is extensive, a survey investigating KR for Streaming Linked Data is still missing.

In this paper, we describe an overview of the most prominent ontologies used within RSP applications and compare their data
modeling and KR capabilities for Streaming Linked Data. We discuss these ontologies using three complementary KR views,
i.e. viewing the streams as Web resources, a view on the structure of the stream, and a view on the modeling of the events in the
streams themselves. For each view, we propose an analysis framework to facilitate fair comparison and in-depth analysis of the
survey ontologies.

Keywords: Stream Reasoning, RDF Stream Processing, Web Stream Processing, Knowledge Representation

Fig. 1. The paper’s contributions. A Three-folded perspective
on the Knowledge Representation efforts for RDF Stream Pro-
cessing respectively based on the FAIR Principles, a Meta
[C]o[NC]e[PT]ualization, and the [C]ommon [E]vent [M]odel.

1. Introduction

In recent years, the Semantic Web community has
witnessed a growing interest in streaming data for ap-
plication domains that combine the presence of Data
Variety (i.e., highly heterogeneous data sources) with
the need to process data as soon as possible and before
they are no longer useful (Data Velocity). Examples of
such application domains include Smart Cities, Indus-
try 4.0, and Social Media Analytics. Stream Reasoning
(SR) [69] is a research initiative that combines Seman-
tic Web with Stream Processing technologies to the ex-
tent of addressing the aforementioned challenges at the
same time. SR counts several research outcomes that
span across Continuous Querying, Incremental Rea-
soning, and Complex Event Recognition [32]. RDF
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Stream Processing (RSP) is a subarea of SR that fo-
cuses on the processing of RDF Streams [64]. In par-
ticular, the research activities around RSP, include a
growing number of applied research works due to the
availability of working prototypes, benchmarks, and li-
braries [48] that, in turn, spawn research on Streaming
Linked Data (SLD) [66, 71].

While data streams become more available on the
Web, the community started discussing best practices
to publish data streams in an interoperable manner. To
this extent, the FAIR data initiative is promising. In-
deed, Tommasini et al. reinterpreted some of the steps
of the linked data lifecycle to answer the question "how
can we make (streaming) data Findable, Accessible,
Interoperable, and Reusable (FAIR) [66]?.

Tommasini et al. consider several resources pub-
lished under the SR umbrella. A number of works
emerged that show how to access and process data
streams on the Web [48]. Even though a number of
domain-specific ontologies have been used in SLD ap-
plications, little has been done regarding the data mod-
eling and knowledge representation efforts that SLD
applications entail.

In this paper, we dig deeper into this claim by sur-
veying the related literature and isolating such efforts.
In particular, we investigated research papers that ap-
ply RSP, i.e. a subset of SR, as a solution. Like in sim-
ilar works, we systematically select the papers, defin-
ing inclusion criteria and filtering methods. We ex-
tracted the used ontologies from these selected papers
to model the data streams. We study such ontologies
from three perspectives: (i) A Thirty-Thousand Foot
View, which observes streams as Web resources anal-
ogous to dataset yet characterized by the velocity of
changes; such view surveys existing practices for data
modeling and KR for data streams. This view follows
a top-down approach and starts from the FAIR princi-
ples [74] and verifies the compliance of several ontolo-
gies under survey. (ii) A Ten-Thousand Foot View,
which gets closer to the streams and investigates its
content; the result is a meta-conceptualization that em-
pirically describes the structure of SLD vocabularies
and ontologies. The definition of such a framework
is guided by a review of existing stream processing
conceptualizations [1, 4, 22]. (iii) A Thousand Foot
View that narrows down even more until observing
the internals of the items that populate a data stream,
i.e., events. Thus, such a view leverages the Common
Event Model [73] to study and explain how structurally
SLD are presented. Our analysis shows how such a

view complies with the inner parts of the stream repre-
sentation.

Figure 1 summarizes our three-folded perspective,
designed to highlight different aspects concerning
knowledge representation for SLD by progressively
zooming in. Indeed, higher levels offer a broader anal-
ysis than the ones below, encouraging a holistic view
of the central concepts, i.e., Data Streams and their in-
terrelations (30k), the classes and properties character-
izing the content of data streams (10k), and the struc-
ture of the event as the unit of information that popu-
late the streams (1k).
Outline: Section 2 introduces the necessary back-
ground to understand the paper’s content. In Section 3
we introduce the ontologies that are being investigated.
Sections 4, 5, and 6 present the three views from higher
to lower. Section 7 details the related work, and Sec-
tion 8 concludes the paper.

2. Preliminaries

This section presents the fundamental notions needed
to understand the paper’s content. In particular, we of-
fer the survey methodology and the Streaming Linked
Data lifecycle.

2.1. Survey Methodology

Our survey follows the guidelines of the system-
atic mapping research method [23], which has already
been used successfully for surveys in the Semantic
Web [55]. In particular, our investigation aims at an-
swering the following research question (RQ):

RQ1 What characterizes the knowledge representation
efforts for managing heterogeneous data that are
streaming or highly dynamic?

The integration of heterogeneous data is a signifi-
cant part of Semantic Web Research. In addition, RQ1
includes two main components, i.e., Streaming/Highly
Dynamic Data and knowledge representation. The for-
mer relates to application domains like the Internet of
Things or Social Media Analytics (but also financial
analysis, Smart Cities, and cluster management). The
latter is central in applications that deal with complex
information needs. Together, they point to contribu-
tions from the Stream Reasoning community and, in
particular, to SLD. Indeed, under the SR initiative sev-
eral engines, query languages, and benchmarks were
proposed to address SLD use cases.
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To collect relevant studies, we initially conducted
a keyword-based search on Google Scholar, the IEEE
Xplore, and the ScienceDirect and investigated their
citations to retrieve further interesting studies. We used
the following keywords to retrieve 620 papers:

– Stream Reasoning
– RDF Stream Processing
– Streaming Linked Data
– Linked Stream Data
– Incremental Reasoning
– Ontology AND Streaming/Dynamic
– Ontology AND Event
– Observation AND Ontology

The next steps of our collection apply a number of
filters to reduce the number of papers and narrow the
analysis. To this extent, we identified different inclu-
sion criteria (IC) indicated below. Notably, IC1-4 are
based on the papers’ metadata, while IC5 and IC6 are
content-based.

IC1 papers should be written in English
IC2 papers should be peer-reviewed
IC3 papers should be published in the last 10 years,
IC4 papers should have at least 10 citations.
IC5 papers should apply a SR/RSP solution to process

data streams,
IC6 papers should present/reuse a domain-specific on-

tology to model the data in the processed streams,

Like in [55], we apply Metadata-based filtering to
the papers, screening their title, abstract, and publica-
tion venue and, then, we apply the Content-based fil-
tering step drilling down to the papers introduction,
conclusion and if needed, the full text. Finally, we
proceeded with an enrichment step (aka snowballing)
which aims at expanding the relevant papers based on
investigating their citations and related work. Espe-
cially for papers proposing SLD engines, it was very
beneficial to investigate their citations as it revealed
many use case papers.

Our analysis identified 32 papers from which we
extracted 10 ontologies. The extracted ontologies are
commonly used in one or more of the identified papers.
The last step of our analysis was dividing the ontolo-
gies into two groups. The first group addresses SLD
from a publication/discovery standpoint. Given the ab-
stract view, we name such group Thirty-Thousand Foot
View. The second group looks at SLD from a process-
ing standpoint, which is a lower level of abstraction.
Therefore, we name this group the Ten-Thousand-Feet
View. We also notice that within the latter group, there

Fig. 2. Collection and Filtering methodology visualized.

is an even lower abstraction point of view which we
name the Thousand Foot View and concerns the rep-
resentation of data points within the streams. Figure 2
visualizes the selection process, while Table 1 lists
the selected ontologies, their prefixes, each view they
cover, and the papers they originated from.

2.2. Time(liness) and Events

In this section, we present some essential concepts
that will recur alongside the remainder of the paper.

Time has always been under the scope of research
in knowledge representation. Despite the number of
proposals, there is still little agreement across commu-
nities, given the cascading consequences of temporal
modeling. Directly related to the notion of time is the
concept of change. Indeed, datasets are always sub-
ject to updates, ontologies are amended and revised,
and sometimes, the answer to a given question changes
too. Indeed, variability is an essential property of many
concepts and, thus, represents a concern for knowledge
representation and reasoning. Either way, temporality
is represented with an (partially) ordered, discrete, and
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monotonic domain, e.g., natural numbers. Partial order
allows the representation of simultaneous data items
by assigning the same integer, a.k.a. the same times-
tamp. Discreteness and monotonicity are leveraged by
the operator semantics to cope with the unbounded na-
ture of input streams [68].

This paper also focuses on research works that lever-
age time as a measure of timelines, i.e., the need for
processing data as soon as they are produced and be-
fore they are no longer useful. Later in section 3.1, we
discuss foundational ontologies that are often imported
to represent such concepts, below we provide a brief
overview of the necessary notions.

Such works focus on abstractions such as streams or
events. The former represents unbounded yet ordered
data using temporal ordering, which is non-strict and is
leveraged to define the processing semantics. In these
regards, we say time plays the role of punctuation, i.e.,
it is used in stream processing systems to manage and
control the flow of data and handle time-related tasks.

The latter, i.e., events are occurrent, i.e., they re-
fer to the most general type of thing that happens in
time (occurrence). Events are leveraged to describe the
presence of change in a time-varying domain where
facts are discovered/forgotten while time progresses.
In this paper, we focus on works that operate using in-
stantaneous events, which have an associated times-
tamp. Although interval-based time semantics is also
possible [5], it is often limited at ontological level or
represented by means of a duration statement.

Last but not least, it is worth mentioning endurants
(aka continuants) that oppose to occurrent as they re-
fer to things that happen through time (endurance), and
whose identity is not implied by the time domain it-
self. In this paper, we focus on endurants in the context
of query answering. Indeed, continuous queries are a
family of queries in SLD that consume and produce
streams and, thus, their evaluation is endless unless ex-
plicitly terminated.

2.3. Streaming Linked Data

RDF Stream Processing. Over the last decade, the
Semantic Web community has made various propos-
als for languages to query RDF data in real time. The
majority of these proposals involved extending RDF
by adding timestamps or time intervals to each triple
or graph. Notable languages in this category include
C-SPARQL [14], Streaming SPARQL [75], CQELS-
QL [52], and even more [31]. These languages ex-
panded upon the SPARQL syntax to incorporate vari-

ations of sliding windows and, in some cases, intro-
duced additional query functions. However, the seman-
tics governing the behavior of these windows were not
consistent, leading to varying operational behaviors.
Consequently, these languages exhibited different syn-
tax, semantics, and disagreements over the correctness
of query results [30].

To address this issue, a unified formalization of con-
tinuous query processing over RDF streams was in-
troduced in [30], known as RSP-QL, and a library
RSP4J [64]. The former successfully integrates con-
tinuous query over RDF streams evaluation semantics
and operational semantics of windows, enabling the
characterization of existing SPARQL extensions for
continuous querying. The latter aims at unifying exist-
ing RSP systems via a unique API inspired by RSP-QL
primitives. Together, they contributed to pushing the
state-of-the-art via the formalisation and prototyping
of new languages [61] and systems [57]
Lifecycle. The Streaming Linked Data Lifecycle [18,
63] proposes several guidelines for managing data
streams on the Web. Figure 3 depicts the whole life-
cycle and highlights the Model and Describe steps,
which both require a knowledge representation effort.
The Model step takes care of modeling the content
of the stream using a specific ontology-based knowl-
edge representation. In contrast, the Describe step fo-
cuses on describing the stream itself as a Web resource.
The latter aligns with the Thirty-Thousand Foot View,
while the former aligns with the Ten-thousand and
Thousand Foot View. Each of these steps requires
stream-specific ontologies and (rich) metadata. While
the other steps are out of scope for this paper, it is
worth mentioning that Step (0) is about naming Web
Streams using appropriate URIs; Step (2) is about
structuring of stream data events; Step (3) focuses on
converting streaming data into a machine-readable for-
mat; Step (5) is about serving data using protocols that
enable continuous data access (e.g., WebSockets), and
Step (6) relates to Web Stream Processing.

3. Selected Works

This section details the selected SR ontologies
that will be investigated using the proposed Thirty-
Thousand, Ten-Thousand, or Thousand Foot View.

3.1. Foundational Ontologies

We first describe four general ontologies that are fre-
quently imported into the SR ontologies we will dis-
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Fig. 3. Streaming Linked Data Life-Cycle from [18]

Ontology Prefix 30kft 10kft 1kft Projects

VoCALS vocals ✓ ✓− [26, 50, 66]
LDES ldes ✓ [70, 72]

SSN/SOSA ssn/sosa ✓ ✓−

[39, 50, 54]
[3, 33, 46, 47]
[25, 40–42, 45]
[2, 56, 58]

SAREF saref ✓ ✓− [27–29]
IoT Stream iots ✓ ✓ ✓− [3, 38]
SIOC sioc ✓ ✓ [8–10, 44]
LODE lode ✓ ✓− [13, 49]
ActS acts ✓ ✓ [7, 11]
Frappe frp ✓ ✓ [9]
SAO/CES sao/ces ✓ ✓ ✓ [39, 54]

Table 1
Ontologies for Streaming Linked Data: Summary. (✓: supported,
✓−: partly supported)

cuss later. Moreover, we highlight parts of their con-
ceptualizations that are relevant to understand the con-
tent of the paper.

OWL Time1 is an ontology that captures temporal
concepts. It is extensively used to describe the tempo-
ral properties of Web resources. OWL Time models
both temporal intervals and instants. Its conceptual-
ization includes, but is not limited to, dates, temporal
entities, and Allen’s Algebra Relations.
PROV-O2 captures the PROV data model using
OWL2. The ontology aims at enabling provenance
information exchange across systems.
DCAT3 is an RDF vocabulary designed to foster in-
teroperability among data web-published catalogs. It
focuses on describing how data catalogs and datasets
are accessible and distributed.
Event Ontology4 is an OWL ontology originally de-
signed in the context of the Music Ontology by the
Centre for Digital Music. The ontology was intended
to describe performances, compositions, recordings,

1https://www.w3.org/TR/owl-time/
2https://www.w3.org/TR/prov-o/
3https://www.w3.org/TR/vocab-dcat-2/
4http://motools.sourceforge.net/event/event.html

or sound generation. Nevertheless, its generality fos-
tered its adoption making EO the most used event on-
tology in the Linked Data community [59].

3.2. SLD-Specific Ontologies

When surveying the literature, we found that the fol-
lowing ontologies are being used for the description
and modeling of streaming data as Web resources:

The Vocabulary for Cataloging Linked Streams
(VoCaLS) is an ontology [67] that aims at fostering
the interoperability between data streams and stream-
ing services on the web [67]. It consists of three mod-
ules for 1) publishing of streaming data following the
Linked Data principles, 2) description of the stream-
ing services that process the streams, and 3) tracking
the provenance of stream processing [67].
The Stream Annotation Ontology (SAO) allows
publishing derived data about IoT streams. It is de-
signed to represent both raw and aggregated data. The
vocabulary allows to describe the aggregation trans-
formations in depth. SAO relies on PROV-O to track
the aggregation provenance and OWL-Time for the
temporal annotations [43].
The Complex Event Ontology (CES)5 extends OWL-
S to support automated discovery and integration of
sensor streams. It was designed to describe event ser-
vices and requests, therefore it can be used to an-
notate streaming services. However, there is no dis-
tinction between streams publisher and consumers.
Provenance tracking is possible at the level of trans-
formation by distinguishing primitive and complex
event services. Notably, CES was designed to be used
in combination with SAO and, thus, we consider them
together in our analysis [36].
Linked Data Event Stream (LDES)6 defines a
collection of immutable objects that evolves over
time, describing both historical and real-time updates.
LDES uses the TREE specification7 for the model-

5http://citypulse.insight-centre.org/ontology/ces/
6https://w3id.org/ldes/specification
7https://w3id.org/tree/specification
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Ontology Prefix Relevant Classes Relevant Properties

OWL-Time time TemporalEntity, TimeInstant, TimeInterval inXSDDateTimeStamp, hasTime
PROV-O prov Activity, Event atTime

DCAT dcat Dataset

Event Ontology eo Event
Table 2

Summary of Foundational Ontologies

ing of the collections and data fragmentation pur-
poses when the size of the collections becomes too
big for a single HTTP response. TREE defines a col-
lection of objects that adhere to a certain SHACL
shape, and how these collections can be fragmented
and interlinked using multi-dimensional HTTP pagi-
nation [71].
IoT Stream a vocabulary for the annotation of (IoT)
streams. It extends the SOSA ontology (see below)
with the notion of Streams, Events and Analytics that
can be extracted from the streams [34].

Furthermore, we additionally identified the follow-
ing prominent ontologies used in RSP applied research
and will investigate their structure and internals when
used as a knowledge representation in stream reason-
ing applications:

The Semantic Sensor Network (SSN)8 is the W3C
recommendation to describe sensors, platforms, de-
vices, and observations [62].
The Sensor Observation Sampling Actuator9 (SOSA)
ontology is the result of the community attempt to
rewrite SSN to the extent of making the ontology
more usable. The ontology integrates many rewrit-
ing proposals and ultimately reduces the ontological
commitment of SSN by selecting a core module rele-
vant for most IoT applications. It is a modular ontol-
ogy design, where SSN can be seen as an extension
of SOSA.
The Smart Applications REFerence ontology10

(SAREF) aims at enabling interoperability between
different IoT providers. It is similar to SOSA/SSN but
provides specific classes for sensors and observations
(called Devices and Measurements), in comparison
with SSN, which is very generic. SAREF thus has
various extensions tailored for specific domains.
The Linked Open Descriptions of Events (LODE)
is an RDFS vocabulary that aims at unifying existing

8https://www.w3.org/TR/vocab-ssn/
9https://www.w3.org/2015/spatial/wiki/SOSA_Ontology
10https://saref.etsi.org/core/v3.1.1/

event ontologies, such as the Event Ontology. LODE
represents only facts using the 4W framework, i.e.,
What, When, Where and Who [59].
Frappe is a vocabulary for spatio-temporal stream-
ing data analytics. Frappe borrows its conceptualiza-
tion from the domain of photography. It represents the
world as a sequence of frames. Events occur within a
spatio-temporal context. To represent the spatial con-
text Frappe uses three classes, i.e., Grid, Cell, and
Place, and models time using the OWL Time ontol-
ogy [12].
The Semantically-Interlinked Online Communi-
ties (SIOC) describes the information that online
communities (e.g., wikis, weblogs, social networks,
etc.) have about their structure and online community
content [24].
The Activity Streams 2.0 (ActS)11 vocabulary in-
cludes classes and properties to describe past, present
and future activities. The vocabulary consists of (i) a
core that generalizes the structure of an activity, and
(ii) an extended module that includes properties that
cover specific types of activities common to many so-
cial Web application systems.

All surveyed ontologies, their prefixes and which
views they cover are summarized in Table 1. Figure 4
visualizes the dependencies between the various se-
lected SLD ontologies and the imported concepts or
complete ontologies that they share. Certain SLD on-
tologies do not import a whole ontology, but rather im-
port a limited subset of concepts of a certain ontology,
this is visualized with the full dependency arrow in
Figure 4, while complete imports of ontologies are vi-
sualized with dashed arrows. Note that the figure only
depicts overlapping imports, i.e. imported ontologies
that at least two ontologies share. Ontologies imported
by a single SLD ontology are not depicted in order to
keep a visual overview.

11https://www.w3.org/TR/activitystreams-vocabulary/
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Fig. 4. Overview of depenencies between the selected SLD ontologies and the imported concepts/ontologies they share.

4. Thirty-Thousand Foot View: Web Streams

The thirty-Thousand-Foot View for SLD observes
data streams as Web resources, i.e., the fundamental
building blocks of the World Wide Web, and focuses
on their metadata, governance, and provenance. There-
fore, we reformulate our research question as follows:

RQ30K What characterizes the knowledge representation
efforts for managing streaming (or highly dy-
namic) heterogeneous data, when the modeling
focuses on streams and their content as referen-
tiable Web resources

Only four of the ten selected ontologies have the no-
tion of data streams as Web resources, the others are
not included in this discussion. These four ontologies
include VoCALS, SAO/CES, LDES, and IoTStream.

4.1. Analysis Framework

Our analysis builds upon the preliminary adaptation
of the FAIR principles proposed in [66]. The original
FAIR Principles [74] are reported below:

Findable. (F1) Data should be assigned unique and
persistent identifiers, e.g., DOI or URIs. (F2) Data
should be assigned metadata that includes descriptive
information, data quality, and context. (F3) Metadata
should explicitly name the persistent identifier since
they often come in a separate file. (F4) Identifiers and
metadata should be indexed or searchable.

Accessible. (A1) Data and metadata should be ac-
cessible via (a) free, (b) open-sourced, and (c) stan-
dard communication protocols, e.g., HTTP or FTP.
Nonetheless, authorization and authentication are
possible. (A2) Metadata should be accessible even
when data is no longer available.
Interoperable. (I1) Data and metadata must be writ-
ten using formal languages and shared vocabularies
that are accessible to a broad audience. (I2) Such vo-
cabularies should also fulfill FAIR principles. (I3) Data
and metadata should use qualified references to other
(meta-)data.
Reusable. (R1) Data should adopt an explicit license
for access and usage. (R2) Data provenance should be
documented and accessible. (R3) Data and metadata
should comply with community standards.

Notably, the Thirty-Thousand Foot View does not
aim at assessing whether existing ontologies follow the
FAIR principles themselves (as similar effort has been
done in previous research [53]). Instead, the analysis
investigates if existing ontologies allow to share FAIR
streaming data on the Web. The analysis focuses on the
ontological level and its (potential) applications. Defi-
nition 1 introduces the notion of Web Stream, which is
a prerequisite for identifying streams on the Web.

Definition 1. A Web Stream is an unbounded ordered
collection of pairs (o, i), where o is a Web resource,
and i is event-wide metadata selected to establish a
form of punctuation such as a timestamp.
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Definition 1 captures the double nature of Web
Streams, which are both a resource (indeed they are
identifiable) but also “contain”, i.e., refer to other
resources on the Web. Such a two-fold nature ex-
tends to the data and metadata levels. Therefore, we
can distinguish between stream-wide and event-wide
(meta)data, which relate to the stream resource and
its content, respectively [65]. Stream-wide (meta)data
contains information about the whole stream, for in-
stance, who is the publisher, or a list of known con-
sumers; on the metadata level, we find the date when
the stream was first issued, descriptive statistics about
the data or the formats in which the stream is avail-
able. Event-wide (meta)data concern each Web re-
source within the stream. For instance, a resource can
refer to a domain-specific entity, which in turn depends
on where the stream is originally from (e.g., for an IoT
stream monitoring the location of people, an entity can
be a given Point of Interest or a person). The role of
Event-wide metadata relates to the event order, dura-
tion, or location. Notably, a punctuation mechanism
that is needed to enable continuous processing is usu-
ally based on time. However, it can be generalised to
any Boolean predicate related to order that leverages
event-wide metadata [68].

4.2. Discussion

We now analyze the selected ontologies, w.r.t. the
FAIR data principles. While Table 3 summarise the an-
swers to the individual principles, we organize the dis-
cussion along the following dimensions by answering
the related questions:

D.1 Identity (F1, F3, A2): Is it possible to use IRIs
or DOIs to identify the Web Stream and/or the referred
resources in ontology X?

VoCaS, LDES, and IoTStream, introduce very sim-
ilar concepts that lead to instantiating referencable
Web Streams. More specifically, VoCaLS includes
the notion of voc:Stream specifically to repre-
sent an unbounded dataset on the Web; LDES in-
troduces the notion of ldes:EventStream as an
append-only collection of immutable elements, and
assigns to it a retention policy; Elsaleh et al. in-
clude in their IoT Stream ontology the notion of
iot:IoTStream. SAO goes one step further, allow-
ing its users to identify the resources within the stream
as sao:StreamData or sao:StreamEvent; the
two classes distinguish the raw elements from those
produced by some analysis. The class sioc:Thread

and the more generic sioc:Container refer to a
collection of elements. However, they do not explicitly
mention an ordering relation between them. Similarly,
ActS includes the concept of OrderedCollection
that aligns with the Web Stream Conceptualisation,
while individual activities represent elements in the
collection. Finally, LODE allows only the instantia-
tion of individual events without conceptualizing the
Web Stream. Although the presence of a class that
aligns with the conceptualization in Definition 1 does
not prevent instantiating the stream anonymously (with
blank nodes), it allows the FAIR usage with transpar-
ent IRIs/DOIs (F1).
D.2 (Meta)Data Semantics (F2, I1, R1): Can the on-
tology X capture the (meta)data semantics at stream
and event level? What formalism was used for the mod-
eling efforts?

Among the selected ontologies, only five have a
conceptualization that can be coherently aligned with
Web Streams and, thus, allow representing stream-
level data. VoCaLS and LDES allow specializing RDF
Streams, but they do not specify anything regarding the
event-level semantics. On the other hand, SAO/CES,
IoTStream, SAREF, and SSN/SOSA focus only on rep-
resenting data only at the event level, following a com-
monly accepted ontology design pattern for modeling
sensor measurement in RDF based on observations.
Also LODE, and Frappe neglect the stream level (as
seen before) and focus only on the event-level dimen-
sion for data and metadata. Finally, SIOC, ActS are the
only two ontologies that can possibly define data at
both stream and event level, nonetheless, with some
limitations wrt. the conceptualisation of Definition 1.

Regarding metadata, VoCALS supports to descrip-
tive information about the resources, e.g., name and
owner, and contextual information, e.g., the vocabu-
lary used to annotate the stream content, as well as
stress on the specification of a license (R1). Instead,
LDES explicitly supports only contextual metadata as
it relies on the TREE specification, which also includes
a license (R1). Notably, also SAO/CEO supports li-
censing via the imported ontology QOI. Although not
explicitly declared, the same approach would be pos-
sible in SIOC and ActS, as both have a concept that
can be aligned to Web Streams. Finally, neither SIOC
and ActS, nor SAO/CES, IoTStream, SAREF, and SS-
N/SOSA do explicitly define event level metadata.

Finally, all the selected ontologies use OWL (Frappe,
VoCals, SAREF, SAO/CES, IoTStream, SSN/SOSA)
or RDFS (Activity Streams, SIOC) as ontological lan-
guages to implement their formalization.



P. Bonte et al. / Ontologies for Streaming Linked Data 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

FAIR Dimension VoCaLS SAO/CES LDES IoTStream SAREF SIOC LODE ActS Frappe SSN/SOSA

F1
Identity (S) ✓ ✓ ✓ ✓U ✓
Identity (E) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F2

Quality (G) ✓ ✓ ✓
Quality (D) ✓ ✓ ✓ ✓ ✓ ✓
Quality (C) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Semantics (S) ✓ ✓ ✓ ✓ ✓
Semantics (E) ✓ ✓ ✓ ✓ ✓ ✓ ✓

F3
Identity ✓ ✓ ✓ ⋄U ⋄
Data Model ✓S ✓ ✓S ✓ ✓ ✓ ✓ ✓ ✓

F4
Quality (S-I) ✓ ✓ ✓ ✓ ✓
Quality (E-I) ✓ ✓ ✓ ✓ ✓ ✓

A1 Protocols ✓ ✓ ≈ ✓ ≈ ✓

A2
Identity ✓ ✓ ✓ ⋄ ⋄
Protocols ✓ ✓ ✓ ✓ ✓

I1
Semantics (S) ✓ ✓ ✓ ✓ ✓
Semantics (E) ✓ ✓ ✓ ✓ ✓ ✓ ✓

I2 Referencing ≈ ✓ ✓ ✓
I3 Referencing NA NA NA NA NA NA NA NA NA NA

R1 Semantics ✓ ✓ ✓
R2 Quality (P) ✓ ✓ ✓ ✓ ✓ ✓
R3 Data Model ✓ ≈ ✓ ≈ ≈ ≈

Table 3
Summary of the thirty-thousand-foot view, i.e., compliance of the Selected ontologies (top) with FAIR Principles (left) and our analysis dimen-
sions (left) (Terminological Level Only) Legend: ⋄=possible; ✓=supported; ≈=partially supported; [S]tream; [E]vent; [G]general; [D]escriptive;
[C]ontext; [P]rovenance; [I]indexing; [U]nordered; [N]ot [A]pplicable.

D.3 Data Models (F3, R3) and Adequate Protocols
(A1, A2): Can adequate access protocols for stream-
ing (meta)data be defined using ontology X? Are the
(meta)data appropriately licensed, and is the licens-
ing specific to the stream? Can (meta) data stream be
represented using the RDF data model in ontology X?

All the selected ontologies support and encourage
using RDF (Streams) to represent data and metadata
(F3). However, not all focus on the stream and event
levels. VoCaLS and LDES even explicitly include an
RDF Stream specialization of the generic data stream.
Although choosing an adequate protocol for sharing
(meta)data on the Web usually means HTTP, it does
not directly apply to streaming data. Regarding shar-
ing, VoCALS and LDES adopt the convention, in-
troduced initially by Barbieri et al. [15], who sug-
gested sharing the stream metadata in a separate doc-
ument accessible via HTTP while adopting a more
suitable protocol for the stream content (F3, A2). No-
tably, the same approach would be possible with the
SIOC and ActS given that we could find an align-
ment with the concept of a Web Stream. Finally, ex-
cept LDES, which inherits the HTTP access assump-
tion from TREE, the other ontologies include a spe-

cific abstraction that aims at generalizing access to the
streaming data. Still, they do not recommend explicitly
any protocols except IoTStream (e.g. RESTful, NGSI-
9, MQTT, CoAP etc.), i.e., voc:StreamEndpoint,
sioc:Space (is a place where data resides, e.g. on
a website, desktop, fileshare, etc. ) iots:Service,
saref:Service, ces:EventService.

D.4 Data Quality (F2, F4, R2): What dimensions of
data quality does ontology X consider?

Among the selected ontologies, only SSN, SAO/CES,
and IotStream explicitly focus on data quality by in-
cluding specific classes and properties. Their model-
ing is thorough, and it includes all the traditional data
quality dimensions like Accuracy, Volatility, and Com-
pleteness. For the sake of the analysis, we discuss them
as part of a General definition [51], distinguish them
from other aspects related to Descriptive and contex-
tual metadata, or traceability, which is another essen-
tial dimension of data quality that is explicitly named
by FAIR principles (R2) as Provenance.
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SSN System Capabilities Module12 includes several
dimensions, e.g., ssn-system:ResponseTime,
ssn-system:Frequency, or the conceptualisa-
tion of ssn-system:Drift. SAO/CES and Iot-
Stream import many dimensions from the Data Qual-
ity Ontology QOI 13, for example qoi:Accuracy,
or qoi:Completeness, or qoi:Jitter.

Moreover, VoCALS, LDES, IoTStream, as well as
SIOC, SSN, and ActS (although implicitly), includes
classes and properties for describing the streams and
linking to contextual resources, e.g., services that can
contribute to the quantification of the quality level.

Regarding provenance (R2), all the ontologies, ex-
cept for LDES, which is not focused on processing, in-
clude dedicated classes and properties for tracking the
provenance of streaming analysis, i.e., vocals:Task
and vocals:Operator for representing queries,
ces:StreamAnalysis and ces:EventPattern
for aggregations and complex event recognition, for
spatio-temporal analyses frappe:Synthetize and
frappe:Capture, and saref:Function and
iots:Analytics or ssn:Procedure for con-
tinuous processing over the observation streams.

Finally, LODE does not support any data quality di-
mension. At the same time, all the ontologies that al-
low the usage of explicit identifiers support indexing
and searching for URIs.

D.5 FAIR Referencing (I2, I3): Does ontology X
provide explicit mechanisms for referencing external
(FAIR) resources, such as connecting the stream and
its items?

Linking across resources is essential to the Seman-
tic Web and, more generally, interoperability. Also, the
FAIR principle encourages this, translating at the on-
tological level with the explicit possibility of linking
to external resources (outside the (meta)data seman-
tics). Not all the ontologies support it explicitly, but
only VoCALS allows to connect a given Web Stream
with vocabularies, mapping files, and/or ontologies;
LDES via the tree:member inherited from TREE,
which allows connecting any referentiable resources to
the stream or its elements; ActS, with the class Link
that is meant to be an indirect reference to another re-
source, and finally LODE, which includes two proper-
ties: involved and involvedAgent, that aimed
at representing any physical, social, mental object or
an agent involved in an event.

12https://www.w3.org/TR/vocab-ssn/#System-capabilities
13https://mobcom.ecs.hs-osnabrueck.de/cp_quality/.

1 :CadornaTrafficStream a ssn:Output, vocals:Stream .
2 :TrafficFlowSensing a sosa:Procedure, sao:StreamEvent;
3 prov:used :CadornaTrafficFlow ;
4 ssn:hasOutput :CadornaTrafficStream.
5 :CadornaTrafficSensor a sosa:Sensor ;
6 sosa:observes :TrafficFlow ;
7 ssn:implements :TrafficFlowSensing .
8 :CadornaTrafficFlow a sosa:Result, sao:StreamData ;
9 prov:wasDerivedFrom :CTObservation .

10 :CTObservation a sosa:Observation;
11 vsd:TimeVaryingGraph, event:Event;
12 ssn:observedProperty :TrafficFlow ;
13 sosa:hasResult :CTSensorOutput ;
14 event:time [a time:Instant ;
15 time:inXSDDateTime "2023-01-01T00:00:00"̂ ^

xsd:dateTime ] .

Listing 1 Combination of VoCALS with SAO and SSN Ontologies
to increase FAIR coverage. Prefixes omitted.

Unfortunately, there is no way to verify whether the
linked resources follow the FAIR principles by only
looking at the ontological level. However, if we only
limit our indirect assessment to the selected ontologies,
any interlinked Stream that reuses a combination of the
selected one would be FAIR.

It is important to note that every ontology does not
need to cover all aspects. It is possible to combine on-
tologies with different capabilities to obtain complete
coverage. A combination of VoCALS with SAO and
SSN was already explored in the original VoCaLS pa-
per [67] and is reintroduced in Listing 1. We utilized
the SOSA/SSN vocabularies to represent the source
device and the observation data it produces, and SOA
to describe information about the output of a stream
observation, in addition to capturing the stream and
streaming services metadata. The listing reflects an in-
terpretation of Table 3, which shows that the combina-
tion of VoCaLS with complementary ontologies such
as SOA or IoTStream can increase the FAIRness of the
streams.

4.3. Best Practices

From our discussion emerges a clear need for
greater emphasis on adhering to the FAIR principles
and addressing the challenges specific to stream rea-
soning, ensuring that data streams are not only ana-
lyzed in real-time but are also readily discoverable, ac-
cessible, interoperable, and reusable for both current
and future research and applications.
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Fig. 5. Streaming Linked Data Abstractions

When modeling an ontology for SLD, the primary
goal should be to maximize FAIR coverage. The rapid
development of SLD technologies has led to overlook
these aspects. Indeed, it’s not uncommon for a single
ontology in this domain to fall short of meeting all
the FAIR principles comprehensively (see Table 3). In
such cases, it’s advisable to pursue a strategy of com-
bining multiple ontologies to bridge these gaps and
maximize FAIR coverage collectively, thereby enhanc-
ing the effectiveness of stream reasoning systems.

BP30k
1 Maximize FAIR coverage in new design;

BP30k
2 Combine ontologies to maximize FAIR coverage

not just for domain modeling compliance;

5. Ten-Thousand Foot View: Streams’ Structure

The Ten-thousand Foot View focuses on the onto-
logical level and analyses the nature and nurture of the
conceptualization of the selected ontologies used for
representing streaming data within a given domain.

RQ10k What characterizes the knowledge representation
efforts for managing streaming (or highly dy-
namic) heterogeneous data, when the modeling
efforts are tailored for a given application domain
and must consider domain-specific entities?

According to our Thirty-Thousand Foot View anal-
ysis (see Table 3), only eight of the ten selected on-
tologies describe concepts to represent the streaming
data at the event level. These eight ontologies include
SSN/SOSA, SAREF, IoTStream, SIOC, LODE, ActS,
Frappe, and SAO/CES. The other ontologies are not
included in this discussion.

5.1. Analysis Framework

In the related literature [4, 31, 48], dynamic data are
typically divided into two kinds of abstractions, i.e.,
unbounded time-ordered data a.k.a. streams and Time-
varying ones. Arasu et al. [4] introduced such data di-

chotomy to the extent of formalizing relational Con-
tinuous Queries. Dell’Aglio et al. [30] extended it later
on for RSP. In this work, we focus on SLD and, thus,
RDF Streams (see Definition 2).

Definition 2. An RDF Stream is a Web Stream such
that o is an RDF object, i.e., an RDF graph, a quad, or
a triple, and τ ∈ T is a timestamp. An element (o,τ) is
said to be instantaneous, to highlight its validity at a
precise point in time τ.

SLD focuses on query answering over RDF Streams,
i.e., Continuous Computations (see Definition 3) that
assume the form of Continuous Queries (CQ), which
are a special class of queries that listen to updates and
allow interested users to receive new results as soon as
data becomes available.

Definition 3. Continuous Computations proceed un-
der continuous semantics, i.e., they output an infinite
stream while consuming one or more infinite streams
as inputs.

On the other hand, Time-varying abstractions repre-
sent the result of Continuous Computations and, as the
term suggests, capture the changes that occur to data as
a function of time. Definition 4 formalizes the notion
and specializes the definition.

Definition 4. Time-varying Abstractions (TVA) are
functions that map the temporal domain to finite entity
sets that relate to a given abstraction T → A.

In particular, a Time-varying RDF Graph is a func-
tion T → G, where T is the time domain and G is the
set of possible RDF graphs.

Many extensions of SPARQL exist [32] to perform
Continuous Queries over RDF Streams, and the RSP-
QL [30] reference model aims at unifying the for-
mal semantics of existing SPARQL extensions. Its ab-
straction can be found in Figure 5. A common as-
pect of these languages is the notion of windowing,
which allows to perform stateful computation over a
stream. Window Operators, a.k.a. Stream-to-Relation
(S2R) operators, chunk the stream into finite portions
where computations can terminate. Once windows are
applied, operators that involve Time-varying abstrac-
tions can be traced back to their original version that
is applicable to static data (R2R). Finally, an opera-
tor’s class that transform back Time-varying data into
streams is called Relation-to-Stream (R2S). According
to RSP-QL, a Time-varying RDF Graph results from
applying a window operator over a stream.
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Last but not least, static data co-exist with both
streaming and Time-varying ones. Indeed, stream en-
richment with contextual static knowledge is a popular
task in SR/RSP [48].

5.2. Discussion

In this section, we elicit the data dichotomy ex-
plained above to study the meta-conceptualization of
the selected ontologies that model concepts that align
with the meta-conceptualization described above. For
this reason, LDES is not taken into account in this dis-
cussion.

An ontology used for SR typically consists of five
levels, i.e., L1 the instantaneous level identifies the part
of the ontology directly associated with a temporal an-
notation. Entities of this kind occur in the stream. L2
the static level of the ontology identifies those concepts
that may have a temporal annotation, but that are as-
sumed to not change while the Continuous Computa-
tion occurs. This level is relevant for the stream en-
richment task [48]. For the sake of completeness, we
also include a time-agnostic level L3, which identifies
those ground terms independent of time. L4 the Time-
varying level includes entities whose state evolves. En-
tities of this kind are typically the result of a Contin-
uous Computation, e.g., an aggregation. Last but not
least, we include the continuous level L5 to identify
those terms that combine other terms and return Time-
varying entities as a result of processing. Entities of
this kind typically include continuous transformations
or queries. Notably, we leave a deeper investigation of
L5 as future work due to the lack of space.

The detailed analysis of the selected ontologies is
presented below and summarized in Table 4.

The decision diagram in Figure 6 is structured to
guide knowledge workers operating within the SLD
context at the Ten-Thousand Foot View. The diagram
helps determining the classification of ontology con-
cepts based on time. For instance, if one is determin-
ing if "time is part of the conceptualization," and the
answer is "no," then the concept is "Time Agnostic." If
the answer is "yes," further decisions based on "occur-
rence", "endurance," and "change" lead to the classifi-
cation of the concept into one of the other levels. The
diagram provides a structured approach to categoriz-
ing ontology concepts by their relationship with time,
which aligns with Definitions 2,3,4, and the general
notion of time presented in Section 2.

Instantaneous (L1). There is a clear agreement be-
tween the IoT ontologies (SSN, SOSA, and IoT-

Stream) which identify the sosa:Observation
on their instantaneous level. SAREF’s conceptualiza-
tion is slightly different as srf:Measurement al-
ready includes the unit of measure. On the other hand,
SAO/CES adopt a generic data item using the classes
sao:StreamData and sao:Point. SIOC and
ActS present a small hierarchy of concepts, i.e.,
sioc:Post, sioc:Item, and as:Activity
that capture the interaction with social networks (or
general Web interactions). Frappe and LODE adopt
the concept of Event, which both align with the
Event Ontology.
Static (L2). Also for the static level, the IoT ontolo-
gies share a similar conceptualization, i.e., Device,
Sensors, and Platforms are entities that are as-
sumed to be static when the analysis occurs. Frappe’s
static part includes concepts for representing spa-
tial information. ActS’ static part is limited to the
as:Actor class and its sub-classes. SIOC’s static
part relates to Users and Spaces that represent on-
line communities’ population and logical location.
LODE does not include concepts at L2. VoCaLS in-
cludes Stream and RDFStream as static concepts.
They are meant to represent streams as resources (to
be continuously consumed).
Time Agnostic (L3). Neither Frappe nor SAO/CEO,
initially designed for SR/RSP applications, directly
include L3 concepts. On the other hand, IoT on-
tologies include concepts that do not directly have
a temporal dimension. Such entities are related to
the properties observed from the sensors and the
unit of measurement. While LODE does not include
concepts at L3, SIOC and ActS respectively have
only one, i.e., sioc:Role that represent the role of
a sioc:User on a sioc:Space and as:Link
that represent a generic connection between two re-
sources.
Time Varying (L4) and Continuous (L5). Except
for LODE all the selected ontologies present a Time-
varying part. On the other hand, L5 remains uncov-
ered by LODE, SIOC, and ActS.
Interestingly, L4 is where the selected ontologies dif-
fer the most. SSN/SOSA distinguish between the
ssn:Result of a ssn:Procedure, and the ac-
tion taken after processing, i.e. a ssn:Actuation.
SAREF represents Continuous Computations as Func-
tions that aggregates :Measurements to modify
a srf:Device’s srf:State. IoTStream’s con-
tinuous part is called an iots:Analytics and
produces iots:Events as Time-varying entities.



P. Bonte et al. / Ontologies for Streaming Linked Data 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ontology Instantaneous (L1) Static (L2) Time Agnostic (L3) Time-varying (L4) Continuous (L5)

SSN/SOSA
Observation,
Result

Sensor,
Platform,

ObservableProp.,
Measure

Actuation,
Result

Procedure

SAREF Measurement Device
Property,
UnitOfMeasure

State Function

IoT Stream Observation
Sensor,
Service,
Platform

Quality,
Unit,
QuantityKind

Event Analytics

SIOC Item,Post User,Space Role Container

LODE Event

ActS Activity Actor Link Collection

Frappe Event
Cell,Grid,
Place

Pixel,
Frame

Capture,
Synthetize

SAO/CES
StreamData,
Point

Service,
Sensor

Segment,
StreamEvent

Stream
Analysis

VoCaLS
Stream,
RDF Stream

SDS,
TimeVaryingGraph

Task
Operator

Table 4
Summary of the Ten-thousand foot view analysis.

Fig. 6. Decision Diagram for assigning the meta-structure in the Ten-Thousand Foot View. Red Arrow is "no", Green Arros is "yes".

SAO/CES include the class sao:StreamAnalysis
too. However, the result can be either a sao:Stream-
Event or a sao:Segment, which is just a portion
of the stream. Frappe includes a Time-varying corre-
sponding entity for both the static entities frp:Grid
and frp:Cell, i.e., frp:Frame and frp:Pixel.
As briefly mentioned, it also represents continuous
entities, i.e., frp:Capture and frp:Synthesize.
Last but not least, VoCaLS includes two entities in-
spired by RSP-QL [30], i.e., TimeVaryingGraph
that represents the Time-varying equivalent of an
RDF Graph, and SDS, which is a collection of
TimeVaryingGraphs. Moreover, VoCaLs explicitly
mentions continuous transformations, i.e., Task and
Operator. The former is meant to generalize Con-
tinuous Queries, while the latter helps tracking prove-
nance by representing the task internals.

We can see that most ontologies distribute their
complexity across different temporal levels, facilitat-
ing the alignment with SR applications.

5.3. Reasoning Capabilities

The selected ontologies include complex concepts
requiring definition consisting of expressive language
constructs. Such constructs have, in turn, an impact
on the expressivity of the including ontology. In the
following, we discuss these nuances focusing on how
they related to our meta-structure (see Figure 6). More-
over, we discuss opportunities for reasoning optimiza-
tions. Table 5 summarises the expressivity of each on-
tology in terms of minimum OWL2 Profile and De-
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Ontology OWL2 Profile Description Logic

SOSA OWL2 RL, QL ALI(D)
SSN OWL2 DL ALRIN(D)
SAREF OWL2 DL ALCIQ(D)
IoT Stream OWL2 DL ALCHI(D)
SIOC OWL2 DL SHI(D)
LODE OWL2 DL ALHF
ActS OWL2 DL ALCHN(D)
Frappe OWL2 DL SROIN(D)
Frappenoimports OWL2 QL ALI(D)
SAO OWL2 RL ALH(D)
CES OWL2 RL ALH(D)
VoCALS OWL2 DL SRIN(D)
VoCALSnoimports OWL2 EL, QL, RL ALH

Table 5
Ontology expressivity in terms of OWL2 Profile and Description
Logic

scription Logic (DL)14. Notably, most ontologies re-
quires very expressive languages, i.e. OWL2 DL Pro-
file, to be fully interpreted. The mismatch between
the high complexity of the reasoning algorithms re-
quired to interpret these ontologies and the frequency
at which data is updated in SR applications [21], makes
these ontologies ill-suited for SR applications at first
glance. For the ontologies with import statements, i.e.,
Frappe and VoCALS, we distinguish between the core
ontology’s expressivity with and without its imported
ontologies. We can see that both ontologies owe their
high expressivity to their imported ontologies, as their
concept definitions are much lower in expressivity.

We now zoom deeper into various complex defini-
tions and their structural relation to SR tasks. As the
goal in SR applications is to reason upon the events
in the stream and combine them with other contextual
data, we investigate complex concept definitions that
span across levels (L1-L5), stressing in particular on
L1. We define complex concept definition in DL nota-
tion, i.e. B ⊑ H, which informally could be interpreted
as ‘if B then H’. In turn, B and H can be complex
definitions constructed from conjunctions (⊓), disjunc-
tions (⊔), existential (∃), or universal (∀) quantifiers.

We focus on reasoning on instance level (ABox),
through definitions defined across the five ontol-
ogy meta-structures. We differentiate between com-
plex definitions using either existential in the sub-
class definition (i.e. B) or universal quantification
in the superclass definition (i.e. H). For example,

14We refer the reader to Baader et al. [6] for a complete introduc-
tion to DLs, as it is out-of-scope for this paper.

∃observes.Temperature ⊑ TemperatureS ensor de-
scribes a existential value restriction, i.e., an individual
that observes the property Temperature can be
inferred as a TemperatureSensor; while Observation ⊑
∀madeByS ensor.S ensor describes a universal value
restriction, i.e., any individual that has assigned the
Observation class can only be made by a Sensor,
and otherwise the ABox would result inconsistent.

We identified four interesting reasoning perspec-
tives based on the position of L1 in the complex defi-
nitions, i.e. either in B or H. With Other we denote all
other levels, except L1. Table 6 summarizes the iden-
tified reasoning perspectives for each ontology.

Perspective 1 (L1 ∈ B,Other ∈ H): concepts of L1
are present in B, while H contains concepts outside of
L1. This means that the event in the stream needs to be
enriched with data outside of L1.

– Existential: This kind of definition implies that the
events in the stream influence the classification of
the data defined outside of L1. None of the on-
tologies have predefined definitions in this perspec-
tive, except for object property domain and range
definitions. For example, SAREF defines Device
(L2) as the domain of the property (makesMeasure-
ment), which has Measurement (L1) as a range
(∃makesMeasurement.T ⊑ Device). We typically
find definitions of this kind in application-specific
ontologies. For example, in [27], the authors extend
SSN with FaultyTemperatureSensor (L2),
which is a Sensor (L2) that made an Observation
(L1) which has a certain Symptom that is a Temperature
ValueDeviation15 (S ensor⊓∃madeObservation.
(Observation⊓∃hasS ymptom.TemperatureValue−
Deviation) ⊑ FaultyTemperatureS ensor).

– Universal: many ontologies use universal quan-
tification to define restrictions that span L1 into
either L2 or L3. For example, SSN restricts an
Observation (L1) as something that can only
be made by a Sensor (L2). (Observation ⊑
∀madeByS ensor.S ensor)

– Efficiency: Reasoning about the existential defini-
tions in this perspective is non-trivial as the reason-
ing task requires reclassifying the more static data
based on the content of the stream. Reasoning on the
universal restrictions is more efficient as it can be
optimised by materializing the more static data, such
that the restrictions on the events in the streams can

15Both Symptom and Temperature ValueDeviation are
application specific and not part of the SSN ontology.
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be computed by linking the event to the materialized
static data and computing the consistency only of the
instances defined in the event itself. This is similar
to the idea of SubSet Reasoning [17] where a subset
of the materialized data is extracted to reason upon
the data in the stream.

Perspective 2 (L1 ∈ H,Other ∈ B): concepts of L1
are defined in H, while B contains concepts outside of
L1. This also means that the event in the stream needs
to be enriched with data outside of L1.

– Existential: None of the ontologies have defini-
tions in this perspective, except for object prop-
erty domain and range definitions. For example,
SAREF defines Measurement (L1) as the do-
main of the property measurementMadeBy,
which has Device (L2) as a range. However,
we see that most of this perspective is defined
directly in the application logic that builds on
these ontologies. For example, the CityPulse
project [54] defines ASP rules in this perspec-
tive, while [21] defines a CO2Observation as
an Observation (L1) that is observed By a
Sensor (L2) that observes the Property (L3)
CO2. (Observation⊓∃madeBy.∃observes.CO2 ⊑
CO2Observation)

– Universal: Mostly the IoT ontologies use uni-
versal quantifications to define restrictions in
this perspective. For example, SSN defines that
a Sensor (L2) can only make observations
of the type Observation (L1) (S ensor ⊑
∀madeObservation.Observation).

– Efficiency: the existential quantifiers in this per-
spective allow to materialize the more static data
and perform the reasoning on a restricted set of
data around what is defined in the event [17] or
try to cache the reasoning steps that are needed to
reasoning on the event data [21].

Perspective 3 (Other /∈ H,Other /∈ B): This per-
spective of definitions is defined solely on L1, allow-
ing reasoning to be performed without any enrichment
of the more static data in the other levels.

– Existential: None of the ontologies have defini-
tions with existential quantifiers in this perspec-
tive, however, as an example, we could imag-
ine an application extension of SIOC that defines
AcademicPosts as Posts (L1) that describes
a certain topic as the literal "academic".

Ontology Reasoning Perspective
1 2 3 4

SOSA - - - -
SSN U U U U
SAUEF U, ED U, ED U U, ED

EoT Stream U, ED U, ED - U, ED

SEOC ED ED - ED

LODE - - - -
ActS ED ED U U
Frappe ED ED - -
SAO/CES U, ED ED - ED

VoCALS - - - ED
Table 6

Various reasoning classes that influence an ontologies SR abilities.
(U = Universal, E = Existential, ED = Domain/range Existential

– Universal: Most of the IoT ontologies have again
definitions in this perspective, e.g. SSN defines
a Observation (L1) as something that only
has instances of the type Results (L1) as result
(Observation ⊑ ∀hasResult.Result).

– Efficiency: This perspective is efficient in terms
of reasoning as it does not require any interaction
with the more static data defined outside of L1.

Perspective 4 (L1 /∈ H, L1 /∈ B): This perspective
of definition are all defined outside of L1. Allowing
the reasoning the be done independent of the content
of the stream.

– Existential: Again none of the ontologies have
predefined definitions in this perspective. How-
ever, we can again find examples in the appli-
cation logic of certain projects. [28] defines a
TemperatureSensor (L2) as a Sensor (L2)
that observes the Property Temperature (L3)
(S ensor ⊔ ∃observes.Temperature ⊑
TemperatureS ensor).

– Universal: Similar to Perspective 3, many of the
IoT ontologies use universal quantifiers to de-
fine restrictions for this perspective. For example,
SSN defines a Sensor (L2) as something that
can only observe Observable- Properies
(L3)
(S ensor ⊑ ∀observes.ObservableProperty).

– Efficiency: This perspective can be precomputed
as reasoning can happen independent of the
events in the stream.

So even though most ontologies were very expres-
sive at first glance, they mainly use this expressivity to
define restrictions on the various concepts, while the
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inference tasks are typically reserved for application
specific logic.

5.4. Best Practice

At this level of analysis, we recommend to follow
four valuable lessons to enhance the effectiveness of
data processing. Firstly, practitioners shall carefully
examine the expressivity of imported ontologies and
striving to limit their complexity, ensuring that the on-
tologies utilized align closely with the specific require-
ments of their applications. Indeed, we observed that
despite the attempt of keeping the ontology profile
down to OWL 2 QL, resolving all the imports causes
the overall profile to be much more complex (OWL 2
DL). Secondly, it is advisable to maintain a low reason-
ing expressivity when defining the concepts related to
events. Recent results on hierarchical reasoning show
how SLD applications could benefit by limiting to such
modeling practice [20], which also helps streamline
the processing of streaming data by avoiding unnec-
essary complexity in stream reasoning tasks. Further-
more, it’s essential to avoid Reasoning Perspective 1,
where event data significantly influence the classifica-
tion of more static data. This approach can be chal-
lenging to optimize and may lead to inefficiencies in
data handling [17]. When selecting ontologies for inte-
gration in the stream reasoning context, aim for those
that exhibit clear differentiation in their meta-structure
(see Figure 6), as identifying the change frequency of
instances based on their assigned concepts allows to
optimize the processing. Indeed, differentiation allows
to avoid redundancy and promote effective knowledge
representation and data integration within this dynamic
and evolving domain [40].

By heeding these lessons, the field of SLD can bet-
ter manage the intricacies that occur when modeling
a domain that presents streaming data and continuous
information needs.

BP10k
3 Check the expressivity of the imported ontologies

and try to limit the imported expressivity.
BP10k

4 Keep the reasoning expressivity of the concepts
that define the event as low as possible.

BP10k
5 Avoid Reasoning Perspective 1 in which the event

data influence the classification of the more static
data, as it is not trivial to optimize.

BP10k
6 Aim for a clear differentiation in the ontology

meta-structure.

6. Thousand Foot View: Streams’ Content

The Thousand Foot View of SLD focuses on the
stream’s internals. In particular, we study the notion of
Ontology Kernel (see Definition 5), and how the se-
lected ontologies implement it. We reuse the ontolo-
gies introduced in the Ten-Thousand Foot View. Only
eight of the ten selected ontologies describe concepts
to represent the stream’s internals. These eight ontolo-
gies include SSN/SOSA, SAREF, IoTStream, SIOC,
LODE, ActS, Frappe, and SAO/CES. The other on-
tologies are not included in this discussion.

RQ1k What characterizes the knowledge representation
efforts for managing streaming heterogeneous
data when the modeling efforts are limited to the
event level?

6.1. Analysis Framework

The Common Event Model (CEM) was initially pro-
posed by Westermann and Jain for multimedia appli-
cations [73]. CEM is designed for historical event an-
alytics. Thus, it does not relate to L4 and L5. When
porting CEM to SR/RSP, we must reinterpret some as-
pects. Traditionally, data streams are characterized by
a form of punctuation that allows streaming operators
to iterate over an unbounded sequence of data [68]. In
SR/RSP, punctuation relates to the stream shapes, e.g.,
Graph, Triple, Predicate, as well as with the notion of
Event Types [32]. At the ontological level, this reflects
on the levels of conceptualization, especially L1. Thus,
we introduce the following notion:

Fig. 7. Kernel Structure.
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Fig. 8. Overview of the RDF Event Shapes.

Definition 5. An Ontology Kernel is the minimal set
of classes and properties of a certain ontology used to
represent the instantaneous level.

Our analysis highlights the relation between the
Kernel and the meta-conceptualisation levels (cf. Sec-
tion 5). Figure 7 depicts such relation enumerating the
levels across the CEM dimensions, which are:

Informational: the data and metadata that describe
the event, e.g. the event type and other entities in-
volved in the event.
Experiential: the data and metadata that link the
event with the transporting media, e.g., images, sen-
sor measurements, or audio snippets.
Spatial: data and metadata that describes where the
event occurred. Spatial metadata are further organized
in conceptual (e.g., a building), logical (e.g. an ad-
dress), and physical definitions (e.g. coordinates).
Temporal: metadata that describe when the events
occurred. Like the spatial dimension, the conceptual
(e.g., time instants), logical (e.g., relative time), and
physical (e.g. a UNIX timestamp) distinction applies.
Moreover, CEM distinguishes between point-based
and interval-based time semantics.
Structural: data and metadata about the event’s struc-
ture, e.g., how they are aggregated and linked to each
other. As RDF is being used to model the event, we
identify four event structures based on query shapes,
i.e., Stars, Cycles, Chains, and Trees, as visualized in
Figure 8. Note that ontologies allow to model events
using multiple shapes.
Composition: Allows the event model to compose
the events into a larger whole, e.g. a smoke and high
temperature observation observed in the same room
could be composed into a fire observation. We do not
consider the composition or aggregation of events at
the event modeling level, as SR allows to define com-
positions or aggregations at higher levels of abstrac-
tion [63].
Causal: data and metadata that describe what caused
the event and how. Notably, causality is a form of
provenance that in SR is typically described at query
level. Coherently with the assumption to leave pro-

cessing as future work, we do not include it in the
analysis.

6.2. Discussion

We now align each of the ontologies with the CEM:
We distinguish the Informational and Experiential dis-
cussion over the two levels L1 and L2. The higher the
level, the further away from the core. L1 is one prop-
erty link away from the core, e.g. a type assertion and
linked entities, while L2 requires two hops, e.g. types
of the linked entities of L2 or additional entities) We
provide a summary of the analysis for the Informa-
tional and Experiential discussion in Table 7 and for
the Spatial and Temporal discussion in Table 8.

Informational. On L1, the ontologies describe the
types of the events. For the sensor ontologies (SSN,
SOSA, and IoTStream) the types of the events are
sosa:Observations, with the extension of iots:-
StreamObservation for IoTStream. These on-
tologies are very generic, it is the responsibility of
the user to further specify the Observation types,
e.g. to add specific Observations such as a Tem-
peratureObservation to the ontology. SAREF de-
scribes srf:Measurements instead of sosa:-
Observations and already provides a number of
specific types in a form of a hierarchy. Both SSN
and SAREF specify a number of ontological restric-
tions that can be enforced by the reasoners, e.g.
each sosa:Observation should be made by ex-
actly one sosa:Sensor. SOSA is more lightweight
as it does not contain any restrictions. SIOC de-
scribes sioc:Items and sioc:Posts as the event
types, a shallow hierarchy, and no type restrictions
are defined. In LODE, lode:Event is the cen-
tral event type, no event hierarchies or type restric-
tions are included. as:Activities represent the
main types in the ActS ontology. It defines a hier-
archy of as:Activities and a small number of
restrictions for some activity subtypes. Frappe im-
ports eo:Event from the Event Ontology as event
types with neither hierarchies nor restrictions. We
see that L1 Informational type definitions are mostly
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Level 1 Level 2
Ontology Informational Experiential Informational Experiential

SSN
Observation
+ restrictions

Sensor values

Sensors,
Systems,
Properties.
+ restrictions.

None

SOSA Observation Sensor values Same as SSN None

IoT Stream
(Stream)Observation,
Event

Sensor values
Same as SOSA,
+ IotStreams

None

SAREF core
Measurement
+ hierarchy
+ restrictions

Sensor values

Device,
Property
+ hierarchy
+ restrictions

Device: model
and manufacturer

SIOC
Item/Post
+ hierarchy(flat)

Post content: literal,
attached file: URI.

User,
UserGroup
+ hierarchy (flat)

Containers: size;
Users: name and avatar

LODE Event None
Objects,
Agents.

None

ActS
Activity
+ hierarchy

Name,
content,
summary

Objects,
Links
+ hierarchy

Objects: name, content
and summary.

Frappe Event event metadata
Place,
Grid-Cell

Place: location metadata

SAO
Observation,
StreamEvent

Sensor values,
Stream analysis

Same as SSN,
+ StreamAnalysis

Stream Analysis:
model parameters

Table 7
Overview of Ontology Kernel analysis for Informational and Experiential information.

very simple, except for SSN and SAREF. SSN has its
lightweight version SOSA to make the modeling of
the events more simple. The fact that the event de-
scription is rather simple in ontological complexity
is in line with the Cascading Reasoning principle in
SR that states that high-velocity streams should be
processed with simple processing techniques, while
once the streams have been filtered, more advanced
processing can be performed using more expressive
reasoning techniques [19]. Next to the event Types,
L1 also links to the Entities that are involved in the
event.
On L2, informational data include the types of the
L1 linked Entities which describe the Static level
of the ontology. In particular, the IoT ontologies
(SSN, SOSA, IoTStream, and SAO) link the sosa:
Observations to sosa:Sensors that made the
observations and sosa:ObservableProperties
that have been observed. IotStream has the ad-
ditional iots:IotStream concept that iots:
StreamObservations can belong to, while SAO
links to the specific sao:Stream Analysis that

was executed to extract the iots:StreamEvent
from the sosa:Observations. SAREF links its
srf:Measurements to srf:Devices (instead
of Sensors) and the observed Properties. In SIOC, on
an Informational L2, sioc:Items and sioc:Posts
are linked to to the involved sioc:Users or sioc:
UserGroups. In LODE, the lode:Events are
linked to the involved lode:Objects and lode:
Actors in a very generic way. as:Activities
in ActS can be linked on an Informational L2 to the
involved as:Objects and as:Links. In Frappe,
the eo:Events are linked to frp:Places they are
happening in. The ontological complexity of L2 is in
line with L1, i.e., SSN and SAREF define restrictions,
while SAREF, SIOC, and ActS define hierarchies of
concepts.
Note that many of the classes of Informational L1
align with the Instantaneous level of the Ten-Thousand
Foot View even though these are two different ways
of looking at the classes of the ontologies. In the pre-
vious, view we looked at the classes that had a tem-
poral annotation, while in this view we look at the
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classes used for modeling the events. They align as
the events themselves are what change over time.
Experiential. On L1, experiential data are the event
payload. The sensor ontologies (SSN, SOSA, IoT-
Stream, SAO, and SAREF) describe sensor values.
SIOC describes the post content and ActS describes
the name, summary, and content (as HTML) of the
activity. Frappe and LODE do not support experien-
tial properties. On L2, experiential data are the static
entities’ metadata. SAREF allows its srf:Devices
to have properties that can uniquely characterize
it, namely its model and manufacturer. In SIOC
sioc:Users and sioc:UserGroups can main-
tain metadata about their size, while users can have
a name and avatar. In ActS, as:Objects can have
all sorts of metadata such as name, content, and sum-
mary. All other ontologies do not support experiential
L2 properties out of the box.
Temporal. SSN/SOSA defines two temporal con-
cepts, i.e. sosa:resultTime and sosa:phenom-
enonTime. The data property sosa:resultTime
has xsd:dateTime as range and provides point-
semantics. The object property sosa:phenomenon-
Time is more expressive and allows to model both in-
terval and point semantics through the use of time:
TemporalEntity. In IotStream, the class iots:
StreamObservation defines the interval of the
window it belongs to using the data properties iots:
windowStart and iots:windowEnd (with range
xsd:dateTimeStamp). SAO allows the use of
the TimeLine Ontology for both interval and point
semantics for the extracted soa:StreamEvents.
In SAREF, srf:Measurements can have point-
semantics using the data property srf:hasTime-
stamp (with range xsd: dateTime), while srf:
Properties can have both point and interval se-
mantics using the object property srf:hasTime
(with range time:TemporalEntity). In SIOC,
sioc:Posts can be annotated using point-semantics
using dcterms:created and dcterms:modified
with a literal using ISO-8601 formatted date val-
ues. In LODE, the lode:Events can be time-
stamped both with point as interval semantics with the
lode:atTime object property with time:Temporal-
Entity as domain that can model both point and in-
terval semantics. In ActS, interval-based time seman-
tics are supported using data properties as:start-
Time and as:endTime ( with xsd:dateTime
as range). In Frappe, eo:Events have point-based
time semantics using the property frp:time with
time:Instant as range.

Interestingly, we see that most ontology models rely
on xsd:dateTime for point-semantics, while for
interval-semantics, there does not seem to be a con-
sensus. Some vocabularies chose to model their own
intervals, e.g. startTime & endTime, while oth-
ers rely on time:TemporalEntity.
Spatial. For the spatial definition, we make a distinc-
tion between physical, conceptual, and logical def-
initions. SSN, SOSA, and SAREF have no out-of-
the-box support for spatial definitions. In IoTStream,
the iots:IotStreams have physical locations de-
fined through geo:location (with geo:Point
as range). SOA allows modeling the location of
Features of Interest that are being observed using
geo:SpatialThing. In SIOC, logical locations
are supported, i.e. sioc:Sites can be the loca-
tion of an online community and a sioc:Space
is defined as being a place where data resides. In
LODE, lode:Events can have conceptual loca-
tions using lode:atPlace (with dul:Place as
range) or physical locations using lode:inSpace
(with geo:SpatialThing as a range). In ActS,
as:Activities can have both physical and logi-
cal definitions through the definition of the as:Place
object. In Frappe, eo:Events can have both phys-
ical and conceptual locations defined through loca-
tion (with frp:Place as range, which is a sub-
class of geosparql:SpatialObject). Note
that geosparql:SpatialObject can define
both physical and conceptual locations. We saw that
physical spatial definitions typically rely on the geo
and geosparql imported ontologies, while concep-
tual locations on DUL and geosparql.
Structural. Figure 9 shows an example of the SOSA
ontology, where both Chain, Stars, Cycles, and Trees
can be used. However, we saw in the literature that
the Star is most often used. The same holds for SSN,
IoTStream, and SAREF. Other ontologies model both
Chain, Stars, and Trees. However, the Star seems to be
the best suited for streaming purposes. Indeed, when
going up in ontology structure levels (e.g. Informa-
tional L2) data becomes more static, and as the event
itself is typically kept limited in size, the more static
data is not described in the event itself but linked
through informational L1 (Entities).
Chains are not particularly useful as they only al-
low to move from the core of the kernel to the outer
level through Informational Entity relations. At the
end of the chain, there can optionally be only Infor-
mational Type or Experiential data, as these data end
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Ontology Spatial Temporal

SSN No support
Point (xsd:dateTime);
Interval (time:TemporalEntity)

SOSA Same as SSN Same as SSN

IoT Stream Physical locations (geo:Point).
Same as SSN
Self defined Interval (xsd:dateTimeStamp)

SAREF core No support
Point (xsd:dateTime)
Interval (time:TemporalEntity)

SIOC Logical Point

LODE
Conceptual (dul:Place)
Physical (geo:SpatialThing)

Point and interval (time:TemporalEntity).

ActS
Physical (lode:Place)
Logical (lode:Place)

Self defined Interval (xsd:dateTime)

Frappe
Pyshical (geosparql:SpatialObject)
Conceptual (geosparql:SpatialObject)

Point-semantics (time:Instant);
Self defined Interval (xsd:dateTime).

SAO
Physical (geo:SpatialThing)
Conceptual (geo:SpatialThing)

Same as SSN
+ Point and Interval (TimeLine Ontology)

Table 8
Overview of Ontology Kernel analysis for Spatial and Temporal information.

Fig. 9. Mapping of the RDF structures on the Event Kernel using the SOSA ontology.

Ontology Star Snowflake Chain Tree Cycle

SSN ✓ ✓ ✓ ✓ ✓
SOSA ✓ ✓ ✓
IoT Stream ✓ ✓ ✓ ✓ ✓
SAREF core ✓ ✓ ✓ ✓ ✓
SIOC ✓ ✓ ✓
LODE ✓ ✓ ✓
ActS ✓ ✓ ✓
Frappe ✓ ✓ ✓
SAO ✓ ✓ ✓ ✓ ✓

Table 9
Structural Analysis vs Query Shapes

the chain. Cycles share the same faith, as they only
allow to cycle through Informational Entity relations,

Chain Star Cycle Tree
L1: Informational(Type) ✓ ✓
L1: Informational(Entity) ✓ ✓ ✓ ✓
L1: Experiential ✓ ✓
L2: Informational(Type) ✓ ✓
L2: Informational(Entity) ✓ ✓
L2: Experiential ✓ ✓

Table 10
RDF shapes alignment with the kernel and ontology levels.

without any Experiential or Type data, as these data
end the cycle. Trees can model all data, but tend to
describe unnecessary static data. Stars can model In-
formational L1, both the type of the event itself and
the linked Entities, while describing the data in the
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Experiential L1, making it ideal for event modeling.
Table 9 and 10 summarize the analysis.
Understanding the structure of the events is important
as it opens many opportunities for optimizations, as
it allows to clarify how a query can optimally inter-
act with the events. For example, Stars could be rep-
resented as a table (instead of an RDF graph) allow-
ing part of the querying to be offloaded to lower-level
processing techniques that operate before the conver-
sion to RDF which can improve performance [11].
Fernandez et al. [35] showed that identifying regular-
ities in the structure of the data in the stream allows
to improve transmission by structure-tailored com-
pression techniques. Furthermore, Bonte et al. [16]
showed that understanding the structure of the events
in the stream allows to optimize the continuous query
evaluation process. These kinds of optimizations then
on their own can lead to better modeling guidelines
for SLD ontologies.
Composition. Most ontologies allow some sort of
composition through logical reasoning between the
kernel and data that is modeled outside of the ker-
nel, as discussed in Section 5.3. However, it is worth
noting that some ontologies allow to define compo-
sitions that go beyond traditional logical reasoning.
SOA/CES allows to define temporal patterns through
the Complex Event Processing (CEP) definitions sup-
ported by the CES ontology. These CEP definitions
allow defining the composition of various events that
have a temporal dependency. Frappe allows compo-
sitions by defining aggregations on the captured data
through statistical inference. Similarly, IoTStream al-
lows to define how different Analytics have been com-
puted on the data stream that also allows some sort of
statistical inference to perform composition over var-
ious events. SAO has similar functionality through its
StreamAnalysis concept, and even predefines a num-
ber of analyses, among others KMeans, MovingAver-
age and DiscreteCosineTransform.

6.3. Best Practices

Finally, at the lowest level of our analysis, we share
several key lessons that have emerged. To promote
streamlined processing in real-time environments, it
is advised to keep the core kernel of the data model
as concise as possible or at least limit the expres-
siveness of the ontological fragment that it uses. In-
deed, the more properties constitute the kernel, the
higher the risk for encountering unexpected dependen-

cies with static knowledge (see Perspectives in Section
5.3). Additionally, the adoption of event structures that
can be easily translated into simpler representations,
such as the Star model, can be optimised for match-
ing independently from the window [52]. When in-
corporating temporal information, adhering to widely
accepted temporal concepts like time:TemporalEntity
fosters uniformity and bolsters interoperability. Like-
wise, for spatial information, the reuse of established
concepts from ontologies like "geo" or "geosparql"
is favored over introducing custom location-specific
terms, contributing to more standardized and compat-
ible data representations. Indeed, we notice high di-
versity across the adopted spatio-temporal concepts.
However, having a shared and agreed-upon conceptu-
alisation of space and time is an essential aspect of
SLD applications.

These lessons collectively advance the field of SLD,
enabling more effective management and utilization of
dynamic and evolving datasets.

BP1k
7 Keep the kernel as small as possible.

BP1k
8 Rely on an event structure that can easily be trans-

lated to simpler representations, such as the Star.
BP1k

9 When modeling temporal information, regard-
less of the need for point or time semantics, use
widely accepted existing temporal concepts such
as time:TemporalEntity in order to pertain unifor-
mity and improve interoperability.

BP1k
10 For spatial information, refrain from introducing

custom location-specific concepts and reuse con-
cepts from the geo or geosparql ontologies.

7. Related Surveys

Dell’Aglio et al. [32] recently surveyed the state-
of-the-art of stream reasoning research. They initially
identified 9 requirements for a stream reasoning sys-
tem to satisfy, then they analyzed the compliance of
existing works to them. Although the authors dis-
cuss streaming annotation, which is comparable to
our Thirty-Thousand Foot View, they do not explicitly
compare ontologies themselves.

Margara et al. [48] also surveyed solutions for
stream reasoning and RDF stream processing. The fo-
cus of this survey was on comparing system capabili-
ties and identifying limitations in terms of RDF stream
processing. Although related to potential future work,
we did not include processing in this current work.
Thus, this survey can be seen as complementary.
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In the context of the Semantic Web for the Internet
of Things, the work of Szilagy et al. [60] is related. The
authors discuss the advantages of semantic annotation
for solving interoperability issues in the IoT domain.
Then, they propose a specialized version of the Seman-
tic Web stack for IoT. Although Szilagy et al. propose
to compare four ontologies, including SSN, the com-
parison is not the main focus of their work. Moreover,
the analysis’s scope is limited to IoT and does not in-
clude ontologies like SIOC and LODE.

Finally, Gyrard et al. [37] describe a Linked Open
Vocabulary (LOV) for IoT projects (LOV4IoT). LOV4-
IoT identified existing IoT ontologies, re-engineered
the vocabularies to make them interoperable, and cata-
loged them. However, they did not investigate each of
the ontologies’ capabilities for modeling data streams
and LOV4IoT is limited to IoT applications.

8. Conclusion

In this paper, we surveyed the work on KR for SLD.
In particular, we presented 1) a Thirty-Thousand Foot
View observing streams as Web resources, 2) a Ten-
Thousand Foot View that observes the nature and nur-
ture of the ontologies for streaming data starting from
a bottom-up approach, and 3) a Thousand Foot View,
which zooms further in and discusses how different on-
tologies model the events in the stream. Our analysis
can be summarised as follows:

From thirty-thousand foot, most Stream descrip-
tion ontologies do not completely adhere to the FAIR
principle. However, a combination of VoCALS and
SAO/IoTStream fulfills most of the requirements.
From Ten-thousand foot, ontologies distributed their
complexity alongside five time-related dimensions,
i.e., Instantaneous (L1), Static (L2), Time Agnostic
(L3), Time-varying (L4), and Continuous (L5). The L4
is where most differences can be spotted. Most inter-
estingly, ontologies explicitly designed for SLD ignore
L3 and elaborate on L5. Finally, from a thousand foot
we noticed that a little semantic goes a long fast way.
Ontologies keep their kernel small under the assump-
tion that the further away from the kernel, the more
static the data. Additionally, while there is no consen-
sus on how time is represented, a star-shaped event is
the most prominent one.

As not all ontologies cover all aspects and different
views, to be compliant with the SLD principles, a com-
bination of SR ontologies is recommended.

As future work, we plan to extend the analysis
to include a Five-Hundred Foot View and a Hun-

dred Foot View that respectively observe how (RDF)
streams are serialized (data formats) and served (pro-
tocols). Furthermore, we aim to zoom in further on the
processing part, i.e. L5 of the Ten-Thousand Foot View
and the Causal dimension of the Thousand Foot View.

Our analysis introduced a number of reasoning per-
spectives, which opens opportunities to design an on-
tology profile that opens the possibilities for various
reasoning optimization that can be identified by the
different perspectives. Our analysis frameworks also
open various directions in terms of optimized process-
ing. For example, the Ten-Thousand-Foot View opens
optimizations by explicitly defining the interaction be-
tween the data in the stream (instantaneous level) and
more slowly changing data. Similarly, the Thousand
Foot View opens optimizations by identifying the dif-
ferent shapes of events. In terms of knowledge rep-
resentation, we have identified opportunities to define
ontology metrics for SLD ontologies, starting from our
analysis frameworks.

Most importantly, our analysis frameworks can aid
to evaluate future ontologies for SLD and serve as a
guideline for high-quality knowledge representation.
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