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Abstract. The quality of ontologies in terms of their correctness and completeness is crucial for developing high-quality
ontology-based applications. Traditional debugging techniques repair ontologies by removing unwanted axioms, but may thereby
remove consequences that are correct in the domain of the ontology. In this paper we propose an interactive approach to mitigate
this for EL⊥ ontologies by axiom weakening and completing. We present the first approach for repairing that takes into account
debugging, removing, weakening and completing. We show different combination strategies, discuss the influence on the final
ontologies and show experimental results. We show that previous work has only considered special cases, and that there is a
trade-off, and how to deal with it, involving the amount of validation work for a domain expert and the quality of the ontology in
terms of correctness and completeness. We also present new algorithms for weakening and completing. 1

Keywords: Ontology engineering, Ontology repair, Ontology debugging

1. Introduction

Debugging ontologies aims to remove unwanted knowledge in the ontology. This can be knowledge that leads to
logical problems such as inconsistency or incoherence (semantic defects) or statements that are not correct in the
domain of the ontology (modeling defects) (e.g., [2]).

The workflow for dealing with unwanted axioms in ontologies or networks consists of several steps including
the detection and localization of the defects and the repairing. There are many kinds of approaches to detect and
localize defects in ontologies and many of these are complementary to each other, i.e., they detect different kinds of
defects. For a short overview we refer to [3]. In this paper we assume we have detected defects and we now need to
repair the ontologies. In the classical approaches (e.g., [2, 4–18]) the end result is a set of axioms to remove from the
ontology that is obtained after detection and localization, and the repairing consists solely of removing the suggested
axioms. However, first, these approaches are usually purely logic-based and therefore may remove correct axioms
(e.g., [19]). Therefore, it is argued that a domain expert should validate the results of such systems. Furthermore,

*Corresponding author. E-mail: patrick.lambrix@liu.se.
1This paper is an extended version of [1]. In this paper we deal with ontologies represented in EL⊥ while EL was used in [1]. We have added

full debugging (in contrast to removing in [1]), and the input can be wrong axioms, whereas in [1] the input needed to be wrong asserted axioms.
Further, we added theory and implementation regarding the combination of debugging, weakening and completing as well as new experiments.
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removing an axiom may remove more knowledge than necessary. Correct knowledge that is derivable with the help
of the wrong axioms may not be derivable in the new ontology. In this paper we mitigate these effects of removing
wrong axioms by, in addition to removing those axioms, also adding correct knowledge. Two approaches could be
used. A first approach is to replace a wrong axiom with a weakened version of the axiom (e.g., [20–24]). Another
approach is to complete2 an ontology (e.g., [31–34]) which adds previously unknown correct axioms that allow to
derive existing axioms, and that could be used on the results of weakening. These approaches have, however, not
been studied together.

In this paper we focus on EL⊥ ontologies. EL⊥ is a fragment of the description logic EL++, which extends
the description logic EL with bottom (⊥). EL and its extension EL++ are used by well-known ontologies such as
SNOMED or Gene Ontology [35], for which the subsumption checking remains tractable.

Our main contribution (i) is about choices that are to be made when using and combining basic operations such
as debugging, weakening and completing to repair ontologies, and about the fact that these choices influence the
quality of the repaired ontologies in terms of correctness and completeness. We define a framework for repairing
ontologies that allows us to investigate these choices. It is the first work that combines debugging and removing
with weakening and completing. For this framework we give a formal definition of the repairing problem (Section
3), introduce basic operations (Section 4), and introduce different operations for combining debugging, removing,
weakening and completing approaches, and their relationships (Section 5). Using the relationships between these
operations, we show that different solutions to the repairing problem exist even using the same basic weakening
and completing algorithms (an insight that no other work has discussed). We show that there is a trade-off involv-
ing completeness and correctness of the resulting ontologies, and the validation effort of a domain expert (another
insight that no other work has discussed). Further, we show how basic algorithms can be combined according to
a preference for the level of completeness and correctness. Earlier work on weakening and earlier work on com-
pleting can be represented using our operators and their particular weakening and completing algorithms. Using the
framework we can show that different approaches for debugging made different choices. Earlier work on weakening
used one particular combination strategy (although with different weakening algorithms by different authors). Sim-
ilarly, work on completing used one particular combination strategy. Our work shows thus that there are actually
different variants of the earlier work by combining their basic algorithms in different ways, with trade-offs involv-
ing completeness, correctness and validation work. By using our framework together with existing algorithms for
debugging, weakening and completing, we essentially provide a blueprint for extending previous work and systems.

In addition to the formal framework there are also other contributions. (ii) We show the trade-offs for different
combination strategies for 6 ontologies in experiments (Section 6). Further, in Section 4 (iii) we develop a new
algorithm for weakening and a new algorithm for completing. For efficiency reasons, weakening algorithms restrict
the search space, and we propose a new heuristic for this restriction. Our algorithm for completing is an extension of
the approach in [31]. Finally, (iv) we provide two implemented systems, a Protégé plugin and a stand-alone system
(Section 7).

We introduce preliminaries for our work in Section 2 and related work in Section 8. The paper concludes in
Section 9.

2. Preliminaries

In this paper we assume that ontologies are represented using a description logic TBox. Description logics [36]
are knowledge representation languages where concept descriptions are constructed inductively from a set NC of
atomic concepts and a set NR of atomic roles and (possibly) a set NI of individual names. Different description logics
allow for different constructors for defining complex concepts and roles. An interpretation I consists of a non-empty

2The term ’completing’ has been used with different meanings. In this paper we refer to completing as the dual task of weakening. The term
has been used with other meanings. For instance, in [25, 26] a knowledge base is complete if, for a given set of "interesting" concepts, it contains
the relevant knowledge about implications between these concepts, and if a knowledge base is not complete in this sense, completing means
extending the knowledge to make it so. Related terms are, e.g., ontology extension [27], ontology learning [28], ontology enrichment [29], and
ontology revision [30].



1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

set ∆I and an interpretation function ·I which assigns to each atomic concept P ∈ NC a subset PI ⊆ ∆I , to each
atomic role r ∈ NR a relation rI ⊆ ∆I × ∆I , and to each individual name3 i ∈ NI an element iI ∈ ∆I . The
interpretation function is straightforwardly extended to complex concepts. A TBox is a finite set of axioms which
in EL⊥ are general concept inclusions (GCIs). The syntax and semantics for EL⊥ are shown in Table 2.

Table 1
EL⊥ syntax and semantics. (Note that P and Q are arbitrary concepts. In the remainder we often use P and Q for atomic concepts.)

Name Syntax Semantics

top ⊤ ∆I

bottom ⊥ ∅
conjunction P ⊓ Q PI ∩ QI

existential restriction ∃r.P {x ∈ ∆I | ∃y ∈ ∆I :

(x, y) ∈ rI ∧ y ∈ PI}

GCI P ⊑ Q PI ⊆ QI

An interpretation I is a model of a TBox T if for each GCI in T , the semantic conditions are satisfied. We say
that a TBox T is inconsistent if there is no model for T . Further, a concept P in a TBox T is unsatisfiable if for all
models I of T : PI = ∅. We say that a TBox is incoherent if it contains an unsatisfiable concept.

One of the main reasoning tasks for description logics is subsumption checking4 in which the problem is to decide
for a TBox T and concepts P and Q whether T |= P ⊑ Q, i.e., whether PI ⊆ QI for every model I of TBox T .
In this paper we update the TBox during the repairing and we always use subsumption with respect to the current
TBox.

3. Problem Formulation

We can now formally define the repairing problem that we want to solve (Definition 1). We are given an ontology
represented by a TBox T and a set of wrong axioms W. Further, to guarantee a high level of quality of the ontology
(i.e., the aim is that as few correct information as possible is removed and as few incorrect information as possible is
added), domain expert validation is a necessity (e.g., [19]). Therefore, we assume an oracle (representing a domain
expert) that, when given an axiom, can answer whether this axiom is correct or wrong in the domain of interest of
the ontology. We have not required specific properties regarding the performance of the oracle. For instance, we did
not require that an oracle always answers correctly or that the oracle gives consistent answers. As a first step we have
chosen this way as it reflects reality. According to our long experience working with domain experts in ontology
engineering, domain experts make mistakes. However, this does not necessarily mean that domain expert validation
is not useful. In experiments in ontology alignment, it was shown that oracles making up to 30% mistakes were still
beneficial (e.g., [37]). Further, requiring consistent answers seems to be a tough requirement for domain experts.
This would require the ability to reason with long proof chains, while humans usually do well for chains of limited
length. It is also not clear how to check that a particular domain expert would fulfil the required properties. Therefore,
in this work we do not require such properties, but provide user support in our systems by providing warnings when
incompatible validations are made and then allow the domain expert to revise the validations. We do acknowledge,
however, that requiring such properties and thereby classifying types of domain experts (e.g., [3, 38]), may allow us
to guarantee certain properties regarding correctness and completeness and allow us to reduce the search space of
possible repairs.

A repair (A, D) for the ontology given the TBox T , oracle Or, and a set of wrong axioms W, is a tuple containing
two sets: a set A of axioms that are correct according to the oracle and should be added to the TBox, and a set D

3As we do not deal with individuals in this paper, we do not use individuals in the later sections.
4Note that unsatisfiability checking in EL⊥ can be be performed using subsumption checking. A concept P is unsatisfiable if P ⊑⊥. Further,

we can express that two concepts P and Q are disjoint by requiring that P ⊓ Q ⊑⊥.
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of asserted axioms that are not correct according to the oracle and should be removed from the TBox. We require
that when the axioms in D are removed and the axioms in A are added, the wrong axioms in W cannot be derived
anymore.

Definition 1. (Repair)5 Let T be a TBox. Let Or be an oracle that given a TBox axiom returns true or false. Let W
be a finite set of TBox axioms in T such that ∀ ψ ∈ W: Or(ψ) = false.

Then, a repair for Debug-Problem DP(T ,Or,W) is a tuple (A, D) where A and D are finite sets of TBox axioms
such that
(i) ∀ ψ ∈ A: Or(ψ) = true;
(ii) D is a finite set of asserted axioms in T ;
(iii) ∀ ψ ∈ D: Or(ψ) = false;
(iv) ∀ ψ ∈ W: (T ∪ A) \ D ̸|= ψ.

Our aim is to find repairs that remove as much wrong knowledge and add as much correct knowledge to our
ontology as possible. Therefore, we introduce the preference relations less incorrect and more complete between
ontologies (Definitions 2 and 3) that formalize these intuitions, respectively.

Definition 2. (less incorrect - ontologies) Let O1 and O2 be two ontologies represented by TBoxes T1 and T2
respectively.
Then, O1 is less incorrect than O2 (O2 is more incorrect than O1) iff (∀ψ : (T1 |= ψ ∧ Or(ψ) = f alse) → T2 |=
ψ)) ∧ (∃ψ : Or(ψ) = f alse ∧ T1 ̸|= ψ ∧ T2 |= ψ).
O1 and O2 are equally incorrect iff ∀ψ : Or(ψ) = f alse→ (T1 |= ψ↔ T2 |= ψ).

Definition 3. (more complete - ontologies) Let O1 and O2 be two ontologies represented by TBoxes T1 and T2
respectively.
Then, O1 is more complete than O2 (or O2 is less complete than O1) iff (∀ψ : (T2 |= ψ ∧ Or(ψ) = true)→ T1 |=
ψ)) ∧ (∃ψ : Or(ψ) = true ∧ T1 |= ψ ∧ T2 ̸|= ψ).
O1 and O2 are equally complete iff ∀ψ : Or(ψ) = true→ (T1 |= ψ↔ T2 |= ψ).

4. Basic operations - debugging, removing, weakening and completing

Our main contribution is a framework that combines debugging, removing, weakening and completing. In this
section we describe these basic operations. Further, different algorithms can be used for each of these different
operations. We describe the algorithms for debugging, removing, weakening and completing that we use in our
experiments in Section 6. Our results in Section 5 regarding the combinations of algorithms also hold when other
algorithms are used.

4.1. Preliminaries for the algorithms

For our algorithms we assume that ontologies are represented by normalized EL⊥ TBoxes. A normalized EL⊥
TBox T contains only axioms of the forms P ⊑ Q, P ⊓ Q ⊑ R, ∃r.P ⊑ Q and P ⊑ ∃r.Q where P, Q, R ∈ NC and r
∈ NR. Every EL⊥ TBox can in linear time be transformed into a normalized TBox that is a conservative extension,
i.e., every model of the normalized TBox is also a model of the original TBox and every model of the original TBox
can be extended to a model of the normalized TBox [35]. An algorithm for normalizing EL⊥ TBoxes is given in the
appendix.

Further, we define the simple complex concept set for a TBox T , which contains all atomic concepts in the
ontology as well as the concepts that can be constructed by using one constructor (⊓ or ∃) and only atomic concepts
and roles in the ontology (Definition 4). Note that ⊤ and ⊥ are not in SCC(T ).6 Further, if the number of concepts
in NT

C is n and the number of roles in NT
R is t, then the number of concepts in SCC(T ) is (n2 + n)/2 + tn.7

5This is a simplified version of the definition of repair in [3] where, in addition to a set W of wrong axioms to remove, also a set M of correct
axioms to add is given as input.

6We discuss the consequences of this choice when we introduce the basic algorithms in sections 4.4 and 4.5.
7n atomic concepts, (n2 − n)/2 concepts of the form P ⊓ Q, and tn concepts of the form ∃r.P.
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Definition 4. For a normalized EL⊥ TBox T with NT
C the set of atomic concepts occurring in T and NT

R the set
of atomic roles occurring in T , we define the simple complex concept set for T , denoted by SCC(T ), as the set
containing all the concepts of the forms P, P ⊓ Q, and ∃r.P where P, Q ∈ NT

C and r ∈ NT
R .

In our algorithms we use two basic operations which remove and add axioms to a TBox. The result of Remove-
axioms(T ,D) for a TBox T and a set of axioms D is the TBox T \ D. If D contains only wrong axioms (such as
W), then the ontology represented by Remove-axioms(T ,D) is less (if at least one of the removed axioms cannot be
derived anymore) or equally incorrect (if all removed axioms can still be derived), as well as less (if some correct
axioms cannot be derived anymore by removing the wrong ones) or equally complete (if all correct axioms can still
be derived), than the ontology represented by T . The result of Add-axioms(T ,A) for a TBox T and a set of axioms A
is the TBox T ∪ A. If A contains only correct axioms then the ontology represented by Add-axioms(T ,A) is more (if
some added axioms were not derivable from the ontology) or equally complete (if all added axioms were derivable
from the ontology), as well as more (if some wrong axioms can now be derived by adding the new ones) or equally
incorrect (if no new wrong axioms can now be derived by adding the new ones), than the ontology represented by
T .

We also need to compute sub-concepts and super-concepts of concepts. However, to reduce the infinite search
space of possible axioms to add during weakening and completing, we limit the use of nesting operators while
computing sub- and super-concepts.8 This we do by only considering sub- and super-concepts in the SCC of a TBox
(Definition 5). As subsumption checking in EL⊥ is tractable9, finding these sub- and super-concepts is tractable.

Definition 5. (super- and sub-concepts in SCC)
sup(P, T ) = { sp ∈ SCC(T ) | T |= P ⊑ sp }
sub(P, T ) = { sb ∈ SCC(T ) | T |= sb ⊑ P }

Finally, as we work on normalized EL⊥ TBoxes, we need to make sure that when adding axioms, these are of
one of the forms P ⊑ Q, P ⊓ Q ⊑ R, ∃r.P ⊑ Q and P ⊑ ∃r.Q where P, Q, R ∈ NT

C and r ∈ NT
R . We note that new

atomic concepts, not originally in the ontology, may be introduced.

4.2. Debugging

Operation. Given a set of wrong axioms W, debugging aims to find a set of wrong asserted axioms D that when
the axioms in D are removed from the ontologies, the axioms in W cannot be derived anymore. As an example, in
Figure 1 derived wrong axiom A ⊑ C needs to be removed. This can be done by removing asserted axiom A ⊑ B or
asserted axiom B ⊑ C. Many approaches have been proposed (e.g., [2, 4–18], overview in [3])10. A basic approach
is based on the computation of justifications for the wrong axioms and then computing a Hitting set over the set of
justifications. A justification for axiom ψ in T is a set of axioms T ′ ⊆ T such that T ′ |= ψ and ∀T ′′ ⊊ T ′ : T ′′ ̸|= ψ.
A Hitting set for a collection of sets S is a set H ⊆ ∪S∈SS such that ∀S ∈ S : H ∩ S ̸= ∅.

Algorithm in the experiments. Algorithm 1 shows a debugging algorithm for EL⊥ TBoxes. The function Gen-
erateJustifications is used for computing the justifications of the wrong axiom α ⊑ β. It is based on the black-box
algorithm in [9], which uses the reasoner as an entailment checking oracle when computing justifications. Further,
the function Validate_axiom asks the domain expert to validate the asserted axioms from the generated justifications.

4.3. Removing

Operation. In this paper we call Removing the operation of deleting asserted axioms from the TBox.
Algorithm in the experiments. Removing axioms in D from the TBox T is performed by applying Remove-

axioms(T ,D) as defined in Section 4.1.

8Weaker limitations are possible, but the weaker the restriction, the larger the solution search space and the higher the probability of a less
usable practical system.

9Subsumption checking in EL++ is tractable [35].
10There are other approaches that take ABoxes into account.
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Figure 1. Examples. Debugging: Derived wrong axiom A ⊑ C needs to be removed. This can be done by removing asserted axiom A ⊑ B or
asserted axiom B ⊑ C. Weakening: unwanted axiom α1 ⊑ β1 is replaced by correct axiom sb1 ⊑ sp1. Completion: wanted axiom α2 ⊑ β2 is
replaced by correct axiom sp2 ⊑ sb2; α2 ⊑ β2 is still derivable and additional correct axiom sp2 ⊑ sb2 is in the repaired ontology.

Algorithm 1 Generate the justifications of the wrong axioms and validate all the asserted axioms from the generated
justifications

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: set of asserted wrong axioms D

1: D← ∅
2: for each α ⊑ β ∈ W do
3: Jus(α ⊑ β)← GenerateJusti f ications(α ⊑ β)
4: for each J ∈ Jus(α ⊑ β) do
5: for each axiom ∈ J do
6: if Validate_axiom(axiom,Or) = f alse then
7: D← D ∪ {axiom}
8: end if
9: end for

10: end for
11: end for
12: return D

4.4. Weakening

Operation. Given an axiom, weakening aims to find other axioms that are weaker than the given axiom, i.e., the
given axiom logically implies the other axioms in the TBox. For an axiom α ⊑ β, this is often done by replacing
α by a more specific concept or replacing β by a more general concept. For the repairing this means that a wrong
axiom α⊑ β can be replaced by a correct weaker axiom, thereby mitigating the effect of removing the wrong axiom
(Figure 1).

Algorithm in the experiments. Algorithm 2 presents a tractable weakening algorithm for normalized EL⊥
TBoxes. For a given axiom α ⊑ β, it finds correct axioms sb ⊑ sp such that sb is a sub-concept in SCC(T ) of
α and sp is a super-concept in SCC(T ) of β.11 Further, there should not be another correct axiom under these con-
ditions that would add more correct knowledge to the ontology than sb ⊑ sp. As we work with normalized EL⊥
TBoxes, the new axioms are normalized. The existence of such weaker axioms is not guaranteed.

4.5. Completing

Operation. Completing aims to find correct axioms that are not derivable from the ontology yet and that would
make a given axiom derivable. It was introduced to aid domain experts when adding axioms to the ontology to find
additional knowledge to add. While weakening is usually performed on unwanted axioms, completing is usually

11Note that if ⊤ would be allowed in SCC(T ) then, as it is a super-concept of any other concept, and thus a super-concept of β, we would
generate a number of trivial candidates sb ⊑ ⊤ for weakening. Further, if ⊥ would be allowed in SCC(T ) then, as it is a sub-concept of any
other concept, it is a sub-concept of α and thus there would always be a (trivial) weakened axiom ⊥ ⊑ β.
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Algorithm 2 Weakened axiom set
Input: TBox T , Oracle Or, unwanted axiom α ⊑ β
Output: Weakened axiom set of α ⊑ β

1: wtα⊑β ←{sb ⊑ sp | sb ∈ sub(α, T ) ∧ sp ∈ sup(β, T ) ∧ Or(sb ⊑ sp) = True ∧ ¬∃ sb′ ∈ sub(α, T ), sp′ ∈
sup(β, T ): (Or(sb′ ⊑ sp′) = True ∧ ((sb ⊑ sb′ ∧ sp′ ⊏ sp) ∨ (sb ⊏ sb′ ∧ sp′ ⊑ sp)))}

2: wα⊑β ← ∅
3: for each sb ⊑ sp ∈ wtα⊑β do
4: wα⊑β ← wα⊑β∪ Normalize(sb ⊑ sp)
5: end for
6: return wα⊑β

performed on wanted axioms (and in this paper on the axioms resulting from the weakening). For an axiom α ⊑ β,
this can be done by replacing α by a more general concept or replacing β by a more specific concept. The axiom α

⊑ β can be replaced by a correct stronger axiom, thereby adding additional knowledge to the ontology (Figure 1).
Algorithm in the experiments. Algorithm 3 presents a tractable completion algorithm for normalized EL⊥

TBoxes. For a given axiom α ⊑ β, it finds correct axioms sp ⊑ sb such that sp is a super-concept in SCC(T ) of
α and sb is a sub-concept in SCC(T ) of β (Figure 1).12 This means that if sp ⊑ sb is added to T , then α ⊑ β

would be derivable. Further, there should not be another correct axiom under these conditions that would add more
correct knowledge to the ontology than sp ⊑ sb. Similarly as for weakening, the new axioms are normalized. The
completed axiom set is guaranteed to be not empty for a correct axiom α⊑ β. It contains α⊑ β or other axioms that
lead to the derivation of α ⊑ β.

Algorithm 3 Completed axiom set
Input: TBox T , Oracle Or, a wanted axiom α ⊑ β
Output: Completed axiom set of α ⊑ β

1: ctα⊑β ←{sp ⊑ sb | sp ∈ sup(α, T ) ∧ sb ∈ sub(β, T ) ∧ Or(sp ⊑ sb) = True ∧ ¬∃ sp′ ∈ sup(α), sb′ ∈ sub(β):
(Or(sp′ ⊑ sb′) = True ∧ (sp ⊑ sp′ ∧ sb′ ⊏ sb) ∨ (sp ⊏ sp′ ∧ sb′ ⊑ sb)}

2: cα⊑β ← ∅
3: for each sb ⊑ sp ∈ ctα⊑β do
4: cα⊑β ← cα⊑β∪ Normalize(sb ⊑ sp)
5: end for
6: return cα⊑β

When the completion is added, we can reduce the amounts of concepts in the completed axiom sets by only
showing combinations that would not introduce equivalence between concepts in the ontology. This means that in
the implemented version of the completing algorithm, sp should belong to sup(α, T ) \ sup(β, T ) (sup(α, T ) in the
original algorithm) and sb to sub(β, T ) \ sub(α, T ) (sub(β, T ) in the original algorithm). These new sets of super-
and sub-concepts are called source and target.

Note that weakening and completing are dual operations where the former finds weaker axioms and the latter
stronger axioms. This is reflected in the mirroring of the sub- and super-concepts of α and β in Algorithms 2 and 3.

12Note that if ⊤ would be allowed in SCC(T ) then, as it is a super-concept of any other concept and thus a super-concept of α, we would
generate candidate axioms of the form ⊤ ⊑ sb, which are unlikely desired as they would make sb equivalent to ⊤. Further, if ⊥ would be
allowed in SCC(T ) then, as it is a sub-concept of any other concept and thus a sub-concept of β, α ⊑⊥ is a candidate for completing. If the
oracle would validate this as correct, then it would mean we would introduce in the ontology that α is an incoherent concept.
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5. Combination strategies

In the previous section we defined quality-improving operations for repairing ontologies. Debugging with remov-
ing leads to less incorrect (but possibly less complete13) ontologies, while weakening and completing lead to more
complete (but possibly more incorrect14) ontologies. In this section we show different ways to combine these basic
operations. Choices need to be made regarding, e.g., processing axioms all at once or one at the time, when to vali-
date generated solutions, and when to update the ontology. We provide building blocks for combination algorithms
that show these choices, and show the influence of using different choices on the completeness and correctness of
the final ontology.

5.1. Building blocks

To show the trade-off between the choices for different combination strategies regarding completeness, correct-
ness and validation effort, we define operators in Table 2 that can be used as building blocks in the design of
algorithms. For each of the basic operations (debugging, removing, weakening and completing) we show choices.

Table 2
Debugging, removing, weakening and completing - operations.

Operations Description

S-one Compute the justifications for one wrong axiom at the time.
S-all Compute the justifications for all wrong axioms at once.

D-one-v Generate one Hitting set from the justifications, then validate
the asserted axioms in the generated Hitting set.

D-v-one Validate one valid Hitting set in the justifications.
D-all-v/D-v-all Validate all asserted axioms from the justifications.

R-all Remove all the wrong axioms at once.
R-one Remove the wrong axioms one at a time.
R-none Remove nothing.

W-all Weaken all wrong axioms at once.
W-one Weaken the wrong axioms one at a time

C-all Complete all weakened axioms at once.
C-one Complete the weakened axioms one at a time.

AB-one Add one wrong axiom back.
AB-all Add all wrong axioms back.
AB-none Add nothing back.

U-now Update the changes immediately.
U-end_one Update the changes after the iteration of each wrong axiom.
U-end_all Update the changes after iterations of all wrong axioms.

During the debugging phase, the justifications of the wrong axioms in W are computed. There are different
choices to be made regarding generating the justifications of the wrong axioms all at once or one at a time, as well
as regarding validating all the axioms in the justifications or just a valid Hitting set, and when to validate. Therefore,
we introduce different combination operators. S-one and S-all represent the choice to calculate the justifications for
one wrong axiom at the time or for all at once. The operations with a name starting with D concern choices regarding
using the justifications to generate asserted wrong axioms to remove from the ontology, where the one/all choice
concerns whether to validate one Hitting set or all axioms in the justifications. The validation of these axioms can

13if some correct axioms cannot be derived anymore after removing the wrong axioms.
14if wrong axioms in the ontology are used to derive new wrong axioms together with the newly added correct axioms.
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be done during (such that we always have a Hitting set with wrong asserted axioms) or after (which may lead to not
repairing) the generation of the Hitting set, represented by the order of v (for validation) and one (while for the all
the order does not matter)15.

After the debugging phase, given a set of asserted wrong axioms, there are different ways to repair the ontology
using the removing, weakening and completing operations. These different ways take into account the different
choices that can be made in terms of, e.g., the order in which the operations are performed, the order in which the
axioms are processed, whether one axiom is dealt with at a time or all at once, and when the TBox is updated. In all
cases we need to remove the wrong asserted axioms at the end such that the final ontology does not allow deriving
the initially given wrong axioms. However, it is possible to remove them immediately after the debugging phase
(R-all), one at the time (R-one), or only at the end (R-none). When not removing the wrong asserted axioms imme-
diately, they can still be used during the weakening and completing to produce possibly more candidate weakened
or completed axioms, thereby influencing the completeness of the final ontology. Similarly, after having removed
axioms, they may or may not be added back during the computations (AB-all, AB-one, AB-none). Added back ax-
ioms (which will be removed again at the end of the process) can be used during the weakening and completing,
thereby influencing the completeness of the final ontology.

For each of the asserted wrong axioms to remove, we want to find weakened axioms. There is a choice to weaken
all axioms at once (W-all) or one at a time (W-one). Once a weakened axiom set is computed, we may choose to
add it to the ontology as soon as one is computed (U-now)16, or when all weakened axioms for all wrong axioms
are computed (U-end_all).17 When choosing U-now, the weakened axioms for one wrong axiom may influence the
computation of the weakened axioms for other wrong axioms.

Finally, we can perform completing on the weakened axioms. There is a choice to complete all weakened axioms
at once (C-all) or one at a time (C-one). Similarly as for weakening, once completed axiom sets are computed,
we may choose to add these to the ontology as soon as one is computed for one particular weakened axiom (U-
now), when all completed axioms for the weakened axioms of a particular wrong axiom are computed (U-end_one),
or when all completed axioms for all weakened axioms are computed (U-end_all). When choosing U-now or U-
end_one, the completed axioms for one wrong axiom may influence the computation of the completed axioms for
other wrong axioms.

As we have already hinted, the different choices influence the completeness, correctness and validation work
by a domain expert. We can represent the choices and their influence in Hasse diagrams (Figure 2)18. In general,
operations higher up in the diagrams use more (but also more possibly wrong) information during the computations
and lead to more (or equally) complete ontologies, more (or equally) incorrect ontologies as well as more validation
work for the domain expert.19 For instance, Figure 2b shows that weakening one axiom at a time and immediately
updating the TBox (W-one, U-now) leads to a more complete ontology (and more validation effort) than the other
choices. Figure 2c, shows that ontologies repaired by algorithms using one axiom at a time completing and immedi-
ate updates (C-one, U-now) are more complete than ontologies repaired using one axiom at a time completing and
updating the ontology after each weakened axiom set for a wrong axiom (C-one, U-end_one). These ontologies are
in turn more complete than for the other choices. In Section 5.2 we prove these statements.

15D-v-all: the system outputs the axioms from the justifications one by one and asks the domain expert to validate. D-all-v: the system outputs
a list with all axioms from the justifications and then asks the domain expert to validate all axioms in the list. These two options will lead to the
same result, i.e., all axioms in the justifications will be validated and the output is the list of all wrong asserted axioms in the justifications.

16U-end_one represents that a weakened axiom set for a particular wrong axiom is computed and for weakening this is the same operation as
U-now.

17In our combination algorithms, the choice in updating is represented by the use of T (the original TBox) or Tr (the current TBox) as TBox.
18In the Hasse diagram (Figure 2(a)), D* means the final output is a valid Hitting set.
19We note that adding more correct knowledge to an ontology makes the ontology more (or equally) complete, but also more (or equally)

incorrect. The latter is because the newly added correct knowledge may, together with existing incorrect knowledge in the ontology, allow the
derivation of new incorrect knowledge. However, the root cause is the existing incorrect knowledge and once that knowledge would be removed,
also the newly derived incorrect knowledge would be removed. Therefore, this should not be a reason for not adding correct knowledge to the
ontology.
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(a) Debugging (b) Removing (c) Weakening (d) Completing

Figure 2. Hasse diagrams. (a) selecting and debugging; (b) removing and adding back wrong axioms; (c) weakening and updating; (d) completing
and updating.

5.2. Derivation of the Hasse diagrams

We first state general observations that help us in the explanation of the derivation of the Hasse diagrams.
For a given TBox T , let Der(T ) denote the set of derivable axioms from T . Then, for TBoxes T1 and T2, if

T1 ⊑ T2, then we know that Der(T1) ⊑ Der(T2). This means that if an axiom is derivable from TBox T1, it is also
derivable from TBox T2, but not necessarily the other way around. This also means that the ontologyO1 represented
by TBox T1 is less or equally incorrect than the ontologyO2 represented by TBox T2. Further,O2 is more or equally
complete than O1.

Given a TBox T and two sets of wrong asserted axioms D1 and D2 such that D1 ⊑ T , D2 ⊑ T , and D1 ⊑ D2,
then T \ D2 ⊑ T \ D1. Given the reasoning above, the ontology where the wrong axioms in D2 have been removed
(represented by T \ D2) is less or equally incorrect than the ontology where the wrong axioms in D1 have been
removed (represented by T \ D1). The latter is more or equally complete than the former.

We also know that, if T1 ⊑ T2, as the sub- and super-concepts of a concept are computed using subsumption
axioms, the set of sub-concepts for a concept in T1 is a subset of the set of sub-concepts for that concept in T2, and
the set of super-concepts for a concept in T1 is a subset of the set of super-concepts for that concept in T2. When
computing weakened axiom sets and completed axiom sets, the algorithms compute sets of sub-concepts and sets
of super-concepts to generate candidate axioms for these weakened and completed axiom sets. Therefore, if T1 ⊑
T2, the sets of candidate axioms for the weakened and completed axiom sets computed for T1 are subsets of those
computed for T2. This means more validation work for T2, but also possibly a more complete final ontology.

The Hasse diagrams are based on these observations.

5.2.1. Debugging
When choosing the operations which contain D-all-v or D-v-all, all wrong asserted axioms in the justifications

of the given wrong axioms are retained after validation (WS−all,D−all−v/D−v−all = WS−one,D−all−v/D−v−all).20 For the
other choices, not all axioms in the justifications are validated and used and thus the set of asserted wrong axioms
to remove for each of those choices is a subset of WS−all,D−all−v/D−v−all. Note that the Hitting sets computed by the
different choices may be different and thus they are siblings in the Hasse diagram.

20We consider here the debugging phase separate from the weakening and completing. In the case we would interleave the operations, it is not
clear how to compare the incorrectness of the original ontology and the repaired ontology. For instance, if we use S-one, then when removing
the axioms in the justifications of a selected wrong axiom from the original ontology (version 1) we obtain a less incorrect ontology (version 2).
Then during the weakening and completing steps, new axioms are added making the new version of the ontology (version 3) more complete, but
possibly also more incorrect than version 2 (as new wrong axioms may be derivable using wrong axioms still in the ontology in combination with
the added axioms). These new axioms may then influence the justifications for the next selected wrong axiom to process, finding more wrong
asserted axioms to remove and thus find a less incorrect ontology (version 4) than version 3. Thus, when combining debugging with weakening
and completing for S-one, for each original wrong axiom we would make the ontology less incorrect in one way and then more incorrect in
another way, but also producing opportunities for additional removal of asserted wrong axioms that may not appear when using S-all.
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5.2.2. Removing
In general, when removing all axioms at once, the TBox is a subset of the TBox with one axiom removed, which

in turn is a subset of the TBox where no axioms are removed. When adding no axioms back, the TBox is a subset
of the TBox with one axiom added back, which in turn is a subset of the TBox where all axioms are added back. If
no wrong axioms are removed, then nothing needs to be added back and thus AB-one, AB-all and AB-none have
the same result (TR−none,AB−all = TR−none,AB−one = TR−none,AB−none). The TBox for these strategies is larger during
computation (of weakened or completed axiom sets) than the TBoxes where one or all wrong axioms are removed.
If one wrong axiom at the time is removed, the adding back all (AB-all) or one (AB-one) give the same result
(TR−one,AB−all = TR−one,AB−one) as both strategies add the same one axiom back. The TBox for these strategies is
larger than when no wrong axiom is added back (TR−one,AB−none ⊑ TR−one,AB−all = TR−one,AB−one). When all wrong
axioms are removed at once, then they will be added back at the end or not.21 However, this does not influence the
TBox during the computation. Therefore, the add back strategy does not matter and the TBox during computation
is smaller than when wrong axioms were removed one at a time (TR−all,AB−all = TR−all,AB−one = TR−all,AB−none ⊑
TR−one,AB−none).

5.2.3. Weakening
First, we note that updating immediately or updating after each wrong axiom is the same operation for weak-

ening, as a complete weakened axiom set for a wrong axiom is computed. Thus, the TBox for (TW−one,U−now) is
the same as for (TW−one,U−end_one), and the TBox for (TW−all,U−now) is the same as for (TW−all,U−end_one). Further,
when weakening one axiom at a time and updating the TBox (i.e., adding the axioms of the weakened axiom set
for a wrong axiom) immediately, results in a larger TBox for the next computations of weakened axiom sets for
wrong axioms, than if we would not update immediately (TW−one,U−end_all ⊑ TW−one,U−now). When not immediately
updating, the TBox for generating the weakened axiom sets, stays the same for all wrong axioms and thus gives the
same result as weakening all wrong axioms at once. Thus, TW−all,U−now = TW−all,U−end_all = TW−one,U−end_all.

5.2.4. Completing
When completing one axiom at a time and updating the TBox (i.e., adding the axioms of the completed ax-

iom set for a weakened axiom) immediately, results in a larger TBox for the next computations of completed ax-
iom sets for weakened axioms than not updating immediately (TC−one,U−end_one ⊑ TC−one,U−now, TC−one,U−end_all ⊑
TC−one,U−now,). When not updating immediately, there is the choice between updating after all weakened axioms for
a particular wrong axiom have been processed or waiting until all weakened axioms for all wrong axioms are pro-
cessed. The TBox for the former case is larger than the one for the latter case (TC−one,U−end_all ⊑ TC−one,U−end_one).
Waiting to update the TBox until all weakened axioms for all wrong axioms are processed, means the TBox stays
the same during the computation of the completed axioms sets and thus gives the same result as completing all
weakened axioms at once (TC−one,U−end_all = TC−all,U−end_all = TC−all,U−end_one = TC−all,U−now).

5.3. Using the building blocks to compare combination algorithms

The combination algorithms can be defined by which of the building blocks are used and in which order. In this
section we exemplify how the building blocks can be used to compare different combination algorithms in terms of
correctness and completeness of the repaired ontology. In general, if the sequence of building block operators for
one algorithm can be transformed into the sequence of operators of a second algorithm, by replacing some operators
of the first algorithm using operators higher up in the Hasse diagrams in Figure 2, then the ontologies repaired
using the second algorithm are more or equally complete and incorrect than the ontologies repaired using the first
algorithm.

We use 4 representative algorithms (while more algorithms are discussed in our experiments in Section 6) to
exemplify this. We note that all proposed algorithms are tractable and find repairs as defined in Definition 1.

As an example of the influence of the choices in the debugging part, Algorithm C14 and Algorithm C15 perform
the same weakening and completing operations (and thus use the same building blocks for these operations), but

21After completing they should be removed, but after weakening they could be added back for the completion step.
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Algorithm C14 uses (S-all,D-v-all) and Algorithm C15 uses (S-one,D-v-one). Given that the algorithms are the same
except for the debugging part, we can use the Hasse diagram in Figure 2(a), and conclude that the ontology repaired
by Algorithm C14 is less incorrect (and possibly less complete) than the ontology repaired by Algorithm C15.

As an example using weakening and completing, Algorithm C9 uses weaken one at a time, remove all wrong,
complete one at a time, then add completed axiom sets at the end, while Algorithm C10 uses weaken one at a time,
remove all wrong, add completed axiom sets one at a time. We can then compare the algorithms using the Hasse
diagrams. The sequence of building blocks in Algorithm C9 can be rewritten into the sequence of Algorithm C10 by
replacing the completion operator (C-one,U-end_all) with the completion operator (C-one,U-now), which is higher
up in the Hasse diagram in Figure 2(d). Thus, repairing an ontology using Algorithm C10 leads to a more or equally
complete (and possibly more incorrect) ontology than repairing using Algorithm C9.

Algorithm C14 Generate the justifications of each wrong axiom and validate all the asserted axioms in the justifi-
cations, weaken all wrong asserted axioms, remove all wrong asserted axioms, complete/add completed axiom set
one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: for each α ⊑ β ∈ D do
12: Tr ← Remove-axioms(T , {α ⊑ β})
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: end for
15: Tr ← Remove-axioms(Tr, D)
16: for each α ⊑ β ∈ D do
17: for each sb ⊑ sp ∈ wα⊑β do
18: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
19: Tr ← Add-axioms(Tr,csb⊑sp)
20: end for
21: end for
22: return Tr
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Algorithm C15 Generate the justifications of each wrong axiom and validate one Hitting set from the generated
justifications, weaken all wrong asserted axioms, remove all wrong asserted axioms, complete/add completed axiom
set one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: break
8: end if
9: end for

10: end for
11: end for
12: for each α ⊑ β ∈ D do
13: Tr ← Remove-axioms(T , {α ⊑ β})
14: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
15: end for
16: Tr ← Remove-axioms(Tr,D)
17: for each α ⊑ β ∈ D do
18: for each sb ⊑ sp ∈ wα⊑β do
19: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
20: Tr ← Add-axioms(Tr,csb⊑sp)
21: end for
22: end for
23: return Tr

Algorithm C9 Weaken all wrong, remove all wrong, complete all weakened axioms and add completed axiom sets
at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: Tr ← Remove-axioms(Tr,W)
6: for each α ⊑ β ∈ W do
7: cα⊑β ← ∅
8: for each sb ⊑ sp ∈ wα⊑β do
9: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)

10: cα⊑β ← cα⊑β ∪ csb⊑sp

11: end for
12: end for
13: Tr ← Add-axioms(Tr,

⋃
α⊑β cα⊑β)

14: return Tr
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Algorithm C10 Weaken all wrong, remove all wrong, complete/add completed axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: Tr ← Remove-axioms(T , W)
6: for each α ⊑ β ∈ W do
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
9: Tr ← Add-axioms(Tr,csb⊑sp)

10: end for
11: end for
12: return Tr

Algorithm C11 Weaken all wrong, remove/complete/add the wrong/completed axiom sets one at a time, remove all
wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: for each α ⊑ β ∈ W do
6: Tr ← Remove-axioms(T , {α ⊑ β})
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
9: T ← Add-axioms(T ,csb⊑sp)

10: end for
11: end for
12: return Remove-axioms(T ,W)

Algorithm C12 Remove all wrong, weaken all wrong, complete all weakened axioms and add completed axiom
sets at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: for each α ⊑ β ∈ W do
6: cα⊑β ← ∅
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
9: cα⊑β ← cα⊑β ∪ csb⊑sp

10: end for
11: end for
12: return Add-axioms(Tr,

⋃
α⊑β cα⊑β)
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Algorithm C13 Remove all wrong, weaken/complete/add completed axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: for each sb ⊑ sp ∈ wα⊑β do
5: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
6: Tr ← Add-axioms(Tr,csb⊑sp)
7: end for
8: end for
9: return Tr
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6. Experiments

In addition to the theoretical conclusions about the influence of the different choices in the combination strategies
in Section 5, we study the influence by performing practical experiments on several ontologies: Mini-GALEN (used
as the running example, Figure 3 and Figure 4), PACO, NCI, OFSMR, EKAW and Pizza ontology. An overview of
the numbers of concepts, roles and axioms in these ontologies is given in Table 3. We have used the parts of these
ontologies that are expressible in EL⊥ in the sense that we removed the parts of axioms that used constructors not
in EL⊥. We introduced new axioms in the ontologies by replacing existing axioms with axioms where the left-hand
or right-hand side concepts of the existing axioms were changed. Further, we also flagged axioms as wrong in our
full experiment set (e.g., in PACO). In the appendix we provide all the wrong axioms as well as the asserted wrong
axioms used in the examples for each ontology after debugging.

NC = {GPr (GranulomaProcess), NPr (NonNormalProcess),
PPh (PathologicalPhenomenon), F(Fracture), E (Endocarditis),
IPr (InflammationProcess), PPr (PathologicalProcess),
C (Carditis), CVD (CardioVascularDisease)};
NR = { hAPr (hasAssociatedProcess) }
T = { CVD ⊑ PPh, F ⊑ PPh, ∃hAPr.PPr ⊑ PPh, E ⊑ C,
E ⊑ ∃hAPr.IPr, GPr ⊑ NPr, PPr ⊑ IPr, IPr ⊑ GPr, PPr ⊑ GPr, E ⊑ PPr };
W = { E ⊑ PPr, PPr ⊑ IPr, IPr ⊑ GPr, PPr ⊑ GPr }
Or returns true for:
GPr ⊑ IPr, GPr ⊑ PPr, GPr ⊑ NPr, IPr ⊑ PPr, IPr ⊑ NPr,
PPr ⊑ NPr, CVD ⊑ PPh, F ⊑ PPh, E ⊑ PPh, E ⊑ C,
E ⊑ CVD, C ⊑ PPh, C ⊑ CVD, ∃hAPr.PPr ⊑ PPh,
∃hAPr.IPr ⊑ PPh, E ⊑ ∃hAPr.IPr, E ⊑ ∃hAPr.PPh.
Note that for an oracle that does not make mistakes,
if Or(P ⊑ Q) = true, then also Or(∃r.P ⊑ ∃r.Q)=true and
Or(P ⊓ O ⊑ Q)=true.
For other axioms P ⊑ Q with P, Q ∈ NC , Or(P ⊑ Q) = false.

Figure 3. Mini-GALEN. (Visualized in Figure4.)

Figure 4. Visualization of the Mini-GALEN ontology in Figure 3. The axioms in the TBox are represented with black arrows except for the
wrong axioms which are represented in red. The oracle’s knowledge about the axioms in the ontology is marked with T (true) or F (false) at the
arrows. Wrong asserted axioms: 1⃝PPr⊑IPr 2⃝IPr⊑GPr 3⃝E⊑PPr 4⃝PPr⊑GPr (can also be derived from 1⃝ and 2⃝).

We use the OWL Explanation API22 to generate the justifications of the wrong axioms in the debugging phase.
OWL Explanation is a software library that is part of the OWL Explanation Workbench23 [39], which is for working
with justification-based explanations of entailments in OWL ontologies. Further, for subsumption checking in the

22https://mvnrepository.com/artifact/net.sourceforge.owlapi/owlexplanation
23https://github.com/matthewhorridge/owlexplanation
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Table 3
Ontologies

Mini- Pizza EKAW OFSMR PACO NCI
GALEN

Concepts 9 74 100 159 224 3304

Roles 1 33 8 2 23 1

Axioms 20 341 801 1517 1153 30364

algorithms we used HermiT24. Here, we give results for Mini-GALEN (Figure 3) which are representative for all
experiments (see Tables 4 - 7). Results for the other ontologies are given in the appendix.

6.1. Influence of the strategies on correctness and completeness

As an example of the influence of using different strategies in the debugging step, Table 4 shows how the choices
of selecting wrong axioms, when to compute Hitting sets and when to validate axioms, influence which asserted
axioms are retained for weakening and completing. As discussed earlier, algorithms C14 and C15 perform the same
weakening and completing operations, but Algorithm C14 uses (S-all,D-v-all) (with as result for the debugging
step the D-v-all column of Table 4) and Algorithm C15 uses (S-one,D-v-one) (with as result for the debugging step
one of the D-v-one columns of Table 4). Thus, as it should be according to the Hasse diagram for debugging, the
ontology after the debugging step of Algorithm C14 is a less (or equally) incorrect ontology than the ontology after
the debugging step of Algorithm C15. Indeed, as shown in Table 4, each asserted wrong axiom to be removed for a
D-v-one choice is also to be removed for D-v-all, but for D-v-all there is always an additional asserted wrong axiom
that is removed.

The influence of the different choices of the removing operation is exemplified by Algorithms C10 and C11. They
use the same weakening and completing operations, but Algorithm C10 uses (R-all,AB-none) while Algorithm C11
uses the higher-level (R-one,AB-one). According to the Hasse diagram (Figure 2b), the final ontology repaired by
Algorithm C11 is expected to be more (or equally) complete than the one repaired by Algorithm C10. Indeed, in
Table 6, the completed axiom set generated by Algorithm C11 is a super-set of the one generated by Algorithm C10.

The influence of different choices regarding weakening operation can be exemplified by comparing Algorithm
C12 and C13. These two algorithms both remove all the wrong asserted axioms before the weakening step. Al-
gorithm C12 uses the operator at (W-all,U-end_all) in Figure 2c. Algorithm C13 uses the higher-level operator
(W-one,U-now). Therefore, the ontology after weakening using Algorithm C13 is more or equally complete than
the ontology after weakening using Algorithm C12. As it shown in Table 5, when using Algorithm C13, the domain
expert needs to validate 6 candidate weakened axioms for Algorithm C12 and 12 for Algorithm C13. The resulting
weakened axioms are the same for both algorithms. However, axiom PPr⊑ NPr appears twice for Algorithm C13,
and depending on the combinations used for the completing step, this may influence the final ontology.

The influence regarding the different options for completion operator can be exemplified by comparing Algo-
rithms C9 and C10. The sequence of the building block operators in Algorithm C9 can be rewritten into the sequence
of Algorithm C10 by replacing the completion operator (C-one,U-end_all) to the higher-level (C-one,U-now). Thus,
repairing an ontology using Algorithm C10, should, according to the Hasse diagram in Figure 2d, lead to a more
(or equally) complete ontology than repairing using Algorithm C9. In Table 6, after the completing step, IPr ⊑ PPr
generated by C10 is a stronger axiom than IPr ⊑ NPr generated by C9.

In Table 7 we show the results for different algorithms when, during the completion step, removing from the
sub and sup sets, the concepts that would introduce equivalence relations in the target ontology. By comparing
the results in Tables 6 and 7, we note that using sub/sup sets leads to a more (equally) complete ontology than
using source/target sets. However, it requires more validation work from the domain expert and possibly undesired
equivalences between concepts may be introduced.

24http://www.hermit-reasoner.com/
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Table 4
Debugging for Mini-GALEN, For D-v-one there are different solutions based on the chosen Hitting set. (Same results for S-one and S-all.)

D-v-all D-v-one (1) D-v-one (2) D-v-one (3)

Wrong
Axioms

PPr ⊑ GPr,
E ⊑ GPr

PPr ⊑ GPr,
E ⊑ GPr

PPr ⊑ GPr,
E ⊑ GPr

PPr ⊑ GPr,
E ⊑ GPr

Asserted
Wrong
Axioms

IPr ⊑ GPr,
PPr ⊑ IPr,
PPr ⊑ GPr,
E ⊑ PPr

IPr ⊑ GPr,
PPr ⊑ IPr,
PPr ⊑ GPr

PPr ⊑ IPr,
PPr ⊑ GPr,
E ⊑ PPr

IPr ⊑ GPr,
PPr ⊑ GPr,
E ⊑ PPr

Table 5
Weakening for Mini-GALEN using Algorithms C10-C15. Four wrong asserted axioms give 4 sup/sub-sets respectively per algorithm. The wrong
asserted axioms are IPr ⊑ GPr, PPr ⊑ IPr, E ⊑PPr, PPr ⊑ GPr. Note: when a weakened axiom was generated several times, we list it that many
times ( PPr ⊑ NPr is listed twice for C10, C11, and C13).

C10 C11 C12 C13

Wrong asserted
axioms

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

Sub(α,T ) 2 3 2 1 2 3 2 1 1 1 1 1 1 1 2 1
Sup(β,T ) 2 2 3 4 2 2 3 4 2 2 1 1 2 2 3 2

Weakened PPr ⊑ NPr, IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr, IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ NPr, PPr ⊑ NPr PPr ⊑ NPr, IPr ⊑ NPr,
PPr ⊑ NPr

Table 6
Completing the Mini-GALEN ontology using Algorithms C8-C13.

C8 C9 C10 C11 C12 C13

Weakened PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

Sup(α,T ) 4 3 4 1 1 1 1 1 2 4 3 3 1 1 1 1 2
Sub(β,T ) 5 5 5 2 2 2 2 3 4 5 4 5 2 2 2 3 3

Completed GPr ⊑ IPr,
PPr ⊑ NPr,
IPr ⊑ PPr

PPr ⊑ NPr,
IPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ PPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ PPr,
PPr ⊑ NPr

Table 7
Completing the Mini-GALEN ontology using Algorithms C8-C13 by excluding concepts that would introduce equivalence relations in the
ontology.

C8 C9 C10 C11 C12 C13

Weakened PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

Source 3 2 3 1 1 1 1 1 1 3 1 2 1 1 1 1 1
Target 3 2 3 2 2 2 2 3 2 3 1 3 2 2 2 3 2

Completed PPr ⊑ NPr,
IPr ⊑ NPr
GPr ⊑ IPr

PPr ⊑ NPr,
IPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ PPr

PPr ⊑ NPr,
IPr ⊑ NPr,
GPr ⊑ IPr

IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ PPr,
PPr ⊑ NPr
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6.2. Validation work

For an unwanted axiom α ⊑ β, the domain experts need to validate the asserted axioms in the justifications of α ⊑
β. Given a wrong asserted axiom αa ⊑ βa, during the weakening step, the maximum number of candidate weakened
axioms that need to be validated is |sub(αa, T )| * |sup(βa, T )|. During the completion step, the maximum number
of generated candidate completed axioms is |sup(wα, T )| * |sub(wβ, T )| for a given weakened axiom wα ⊑ wβ.

There is a trade-off between validation effort and the level of completeness. In general, a more complete ontology
usually requires more validation work. The amount of the validation work may vary. In our experiments using the
Mini-GALEN ontology, for instance, in the completion step, the amount of validation work required for Algorithm
C13 was 3 times higher than the effort required by Algorithm C12, but repairing the Mini-Galen using Algorithm
C13 leads to a more complete ontology than repairing using Algorithm C12.
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7. Implemented systems

We implemented two systems. As Protégé is a well-known ontology development tool, we implemented a plugin
for repairing based on Algorithm C9. Using this algorithm the user can repair all wrong axioms at once. However,
by iteratively invoking this plugin the user can also repair the wrong axioms one at a time. Further, we extended the
EL version of the RepOSE system [31, 40] with full debugging, weakening and completing. We allow the user to
choose different combinations, thereby giving a choice in the trade-off between validation work and completeness.

These two implemented systems use an interactive way to repair the ontology. When the domain experts do the
validation in different phases, the system supports this by showing lists of the asserted wrong/weakened/completed
axioms or through a visualization whereby related axioms are shown together with the sub/sup sets of the left/right-
hand concepts of the given axioms during the weakening and source(sup)/target(sub) sets of the left/right-hand
concepts of the given axioms during the completing. The latter means that these axioms will be validated with their
context in the domain of the ontology (showing the partial ontology through visualization).

In this paper, we use the Mini-GALEN ontology (Figs. 3 and 4) as the running example for the use of the systems.

7.1. Extension of RepOSE

We extended the EL version of the RepOSE system that focused on completing [31, 40]. The new system deals
with EL⊥, handles full debugging, weakening and completing, and allows for different combinations of the basic
operators. In this section, we use some examples with screenshots to show these different combinations.

To be able to use both the original ontology as well as partially repaired ontologies in different steps, the system
allows loading an ontology before each step and save the (partially) repaired ontology after each step. This is done
by using the buttons shown in Figure 5.

Figure 5. Loading, saving and exporting ontologies.

Example. Figure 6a shows the debugging panel of the extended RepOSE system. After loading the ontology, the
user can click the Find Unsatisfiable Concepts button to check the incoherence of the ontology or click the Input
wrong axioms button to specify the wrong axioms to remove from the ontology directly. If there are unsatisfiable
concepts in this ontology, these concepts will be listed in the Incorrectness panel.

For these unsatisfiable concepts, by selecting each of them and clicking the Generate justifications button, the
system computes the justifications and lists them in the Justifications panel. Then the user can validate the axioms
in the justifications. Axioms deemed to be wrong can be added to the wrong axiom set by selecting them and
clicking Validate as wrong button. In Figure 6a, the Incorrectness panel shows the unsatisfiable concepts in the
EKAW ontology and the Justifications panel lists the asserted axioms in the justifications of axiom Tutorial ⊑ ⊥.

Figure 6b shows the pop-up window when clicking the Input wrong axioms button to specify the wrong axioms.
The user can either choose the wrong asserted axiom from the axioms list directly or type the left/right hand-side
concepts of a wrong axiom. For the latter case, after typing the wrong axiom, the user can also click the Generate
justifications button to ask the system to compute the justifications of the input wrong axiom and then validate the
asserted axioms from the justification list by selecting the wrong ones and clicking the Validate as wrong button
to add them into the set of wrong axioms to be removed from the ontology at the end. After the justifications are
computed, the user can also click the Generate a possible HS button to ask the system to compute a Hitting set
based on the generated justifications. So, instead of validating all the wrong asserted axioms (D-v-all), the system
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(a) Debugging panel. (b) Justifications of the wrong axiom Endocarditis ⊑ Granu-
lomaProcess.

Figure 6. Debugging

also provides another option that allows the user to only validate a Hitting set which refers to the operation D-v-one
in Figure2a .

Example. Figure 6b shows the computed justifications of the wrong axiom Endocarditis ⊑ GranulomaProcess
from the Mini-GALEN ontology. There are 3 wrong asserted axioms in the justifications: PathologicalProcess ⊑
InflammationProcess, InflammationProcess⊑GranulomaProcess and Endocarditis⊑ PathologicalProcess. The user
can select these wrong asserted axioms one by one and then click Validate as wrong button to add these axioms into
the wrong axioms set.

When finishing the validation of the axioms by clicking the Debugging done button, the user can click the Save
wrong axioms button from the file menu to save the validated wrong axioms. Then, the user can start the weakening
step by clicking the Load the ontology for Weakening in the file menu to load the target ontology for weakening.

Figure 7. Different combinations of weakening and removing.

After loading the ontology for the weakening step, the user can choose different combinations of removing and
weakening by clicking the different buttons in the weakening panel (Figure 7).

Weaken All Remove All refers to the combination (R-none,AB-none/W-all,U-end_all). It does not remove wrong
axioms during the computation, weakens all axioms at once and updates at the end. Remove All Weaken All refers
to the combination (R-all,AB-none/W-all,U-end_all). It removes all wrong axioms before the computation, weakens
all axioms at once and updates at the end. Remove One Weaken One refers to the combination (R-one,AB-one/W-
one,U-end_all). It removes wrong axioms one at a time during the computation and puts them back before dealing
with the next wrong axiom. It weakens axioms one at a time and updates at the end. For this step Remove All Weaken
All produces the least validation work and least complete ontologies of the three strategies. Remove One Weaken
One produces less validation work and less complete ontologies than Weaken All Remove All.

During the weakening step, after choosing the preferred combination strategy, the system generates the candidate
weakened axioms for each axiom α ⊑ β in the wrong asserted axioms set by clicking the Generate weaker axioms
button. The system computes the set of sub-concepts of α (sub) and the set of super-concepts of β (sup), thereby
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(a) Sub and sup of InflammationProcess ⊑ GranulomaProcess. (b) The candidate weakened axioms list of InflammationProcess
⊑ GranulomaProcess.

Figure 8. Weakening.

representing the possible choices for weakened axioms. These weakened axioms can be visualized in two ways: (i)
as a list of axioms and (ii) by the sub and sup sets. In the former case weakened axioms are chosen by clicking the
Validate weakened axioms button in the Weaken Wrong Axioms panel, selecting the axioms in the list and clicking
the Validate button. In the latter case the user can choose weakened axioms by clicking on a concept in the sub set
and a concept in the sup set and select the axiom as a weakened axiom by clicking the Validate button. When the
validation of the candidate weakened axioms is finished, the weakening step can be ended by clicking the Weakening
done button. Then, the user can click the Save weakened axioms in the file menu to save these weakened axioms.

Example. Figure 8a shows the sub and sup of the wrong axiom InflammationProcess ⊑ GranulomaProcess. The
weakened axiom InflammationProcess ⊑ NonNormalProcess is correct and can thus be selected by choosing the
InflammationProcess from sub and NonNormalProcess from sup (visualization) or by choosing from the axiom list
as in Figure 8b.

For the completion step, we also implemented two combination strategies that the user can choose by clicking the
buttons Complete All or Complete One by One (Figure 9). Complete All refers to the combination (C-all,U-end_all).
It completes all weakened axioms at once and updates at the end. Complete One by One refers to the combination
(C-one,U-end_one). It completes the weakened axioms one at a time and updates the ontology after the weakened
axiom set is handled for each wrong axiom. According to the Hasse diagrams in Figure2c, Complete One by One
leads to more validation work and more complete ontologies than Complete All.

For the ontology used for completion, we also implemented the function that the user can remove the specified
wrong asserted axioms from the target ontology by checking/unchecking the ContainWrongInfo checkbox as shown
in Figure 9a.

During the completing step, after loading the target ontology and choosing the preferred completing combination
strategy, the system generates the candidate completed axioms by clicking the Generate repairs button for each
axiom in the validated weakened axioms set. The system computes two sets, source(sup) and target(sub) for each
weakened axiom. These sets represent the possible choices for completing axioms. These axioms are visualized in
two ways: (i) as a list of axioms and (ii) by the source(sup) and target(sub) sets. In the former case completed axioms
are chosen by clicking the Validate complete axioms button, selecting the axioms in the list and clicking the Validate
button. In the latter case the user can choose completed axioms by clicking on a concept in the source(sup) set and
a concept in the target(sub) set and then validate the axiom by clicking the Validate button. When the validation is
finished, the user can click Completion done to end the completing step.

Example. After the weakening step, we obtained the weakened axioms set {PathologicalProcess ⊑ NonNormal-
Process, InflammationProcess⊑ NonNormalProcess}. Figure 9b shows the sup and sub sets of PathologicalProcess
⊑ NonNormalProcess. The axiom InflammationProcess ⊑ PathologicalProcess is a correct axiom and was not
derivable from the ontology yet. Adding this axiom (by using the visualization or by using the axiom list) makes the
ontology more complete. Similar operations can be performed for the other axioms in the weakened axioms set.
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(a) Completion panel. (b) Sup and Sub of PathlogicalProcess ⊑ NonNormalProcess.

Figure 9. Completing.

7.2. Protégé plugin

The Protégé plugin implements a simplified version of the RepOSE extension. As there exist several Protégé
plugins for interactive debugging, e.g., OntoDebug25, and the OWL Explanation Workbench26, these tools can be
used for computing explanations and providing justifications of a specific axiom or entailment during the debugging
phase and then the domain expert can validate the axioms in the justifications and specify the unwanted axioms
based on these explanations. We decided, therefore, that Protégé users can use these plugins and we implemented a
Protégé plugin version of the RepOSE system that starts from the weakening step.

The loading and specifying of wrong axioms (Figure 10a), and the validations in the weakening (Figure 11a)
and completing steps (Figure 11b) are similar to the RepOSE system. The combinations that are implemented are
(R-one,AB-one/W-one,U-end_all) (i.e., same as Remove One Weaken One in RepOSE) for the weakening step, and
(C-all,U-end_all) (i.e., same as Complete all in RepOSE) for the completing step. As adding completed axioms adds
new knowledge to the ontology that was not earlier derivable, the system allows to find additional correct axioms
by invoking the completion process again27.

When all the desired axioms are added, clicking the Finish button closes this wizard and the new ontology is
updated automatically. A summary panel is shown (Figure 10b), displaying the original wrong axioms, the computed
weakened axioms and the completed axioms. The final ontology is created by removing the wrong axioms and
adding the completed axioms. The weakened axioms will be derivable from the final ontology.

8. Related work

We discuss previous work on the combinations of debugging, removing, weakening and completing. As it is
not the core topic of the paper, we do not review the techniques used for these basic steps, but only discuss what
combination operators are used by the current approaches and for an overview of the techniques we refer to the
recent overview article [3].

We are not aware of previous work that combines all of these basic operators.
Debugging systems often deal with semantic defects such as incoherence and inconsistency. For incoherence, for

instance, they would compute the set of unsatisfiable concepts. The aim is then to remove the unsatisfiability. In our

25http://isbi.aau.at/ontodebug/
26http://owl.cs.manchester.ac.uk/research/explanation/
27The possibility of multiple iterations of the completing phase is an extension of the method in [1]. This can be done by clicking the Next

iteration button.
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(a) Input the whole wrong axioms set. (b) The summary info panel.

Figure 10.

(a) Sub and sup of PathologicalProcess ⊑InflammationProcess. (b) Source and target of InflammationProcess ⊑ NonNor-
malProcess.

Figure 11.

framework this would be a way to compute the set of wrong axioms, i.e., an unsatisfiable concept P contributes a
wrong axiom P ⊑ ⊥. The input set W contains then these axioms.

Much of the work on debugging algorithms and systems mainly focuses on the computation of justifications
for one or more unsatisfiable concepts or wrong axioms [2, 4–12, 14]. Several systems take a set of unsatisfiable
concepts and try to find the root concepts, i.e., unsatisfiable concepts for which a contradiction in its definition does
not depend on the unsatisfiability of another concept, e.g., [2, 10, 12]. The systems work with one unsatisfiable
concept or wrong axiom at the time (S-one, e.g., [10, 11, 18]) or all at once (S-all, e.g., [6, 15]). Some of the systems
have a user interface. The older systems usually visualize the justifications of wrong axioms, but it is not clear how
the actual repairing is done. When validation of axioms is enabled, then often D-all is used, e.g., [10].

Weakening is always used in combination with debugging or removing. In these approaches, justifications for
wrong axioms and a hitting set are computed. Then, weakened axioms are computed. In our approach we assume that
when removing axioms from the ontology, the wrong axioms cannot be derived anymore. When this assumption is
not made then, as pointed out in [22] (and ignored by older approaches) the weakening needs to be iterated to obtain
a repair. We also note that none of the approaches explicitly state the use of a domain expert/oracle and they are
purely logic-based. In practice, however, a domain expert/oracle is needed as otherwise axioms that are wrong in the
domain of the ontology could be added. Regarding the weakening algorithm, in contrast to our approach, the other
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approaches work on non-normalized TBoxes. This means that they may find better solutions for the weakening, but
the search space for solutions also becomes infinite. In [23] algorithms for weakening for EL and ALC are given
with tractable and exponential complexity, respectively. They are based on refinement operators that are applied on
the concepts of GCIs. The approach is extended in [24] for SROIQ TBoxes with an algorithm with almost-sure
termination. Also in [21] an approach based on refinement operators is presented forALC. The nesting of operators
is restricted based on the size of a concept. In [22] the right-hand side of axioms is generalized, but the left-hand
side is not specialized to obtain a well-founded weakening relation (i.e., there is no infinite chain of weakenings).
Essentially, our use of sup(P, T ) and sub(P, T ) in the weakening is a similar approach. As we have restricted the
sup(P, T ) and sub(P, T ) to contain only concepts in SCC(T ), we only have a finite number of possible axioms.
Regarding the strategy to combine removing or debugging with weakening, in all these other approaches usually
one-at-a-time removing (R-one, AB-none) and weakening (W-one, U-now) is used. From our Hasse diagrams we
can see that this means the most complete ontologies and most validation work for weakening, but neither the most
nor the least complete ontologies for removing. We note that using our Hasse diagrams, new variants of these other
approaches can be created with another trade-off involving correctness and completeness. Further, the issue of the
influence of the order is not addressed.

Regarding completing, previous work with validation by a domain expert (e.g., [31] for the EL family, [32] for
ALC) allowed only axioms of the form P⊑ Q where P and Q are atomic concepts in the completed axioms set while
Algorithm 3 allows P and Q to be in SCC(T ) (and then normalizes). That work used one particular combination
strategy, i.e., (C-one, U-end-all). Other approaches, e.g., [33, 34], are non-interactive and deal with one axiom to be
completed.

Debugging, removing and completing were combined in [41]. As input, in addition to a set of wrong axioms W,
a set of missing axioms M should be given. Debugging is mainly used on W (with S-one, D-all) and completing on M
(C-one, U-end-all). There is a restriction that axioms validated as correct in any step cannot be removed and axioms
validated as wrong during any step cannot be added to the ontology. The steps can be interleaved. If the approach
is used without a set of missing axioms, i.e. M = ∅, then the approach is a traditional debugging approach. Another
approach that can be seen as combining these operations is the interactive test-driven debugging approach proposed
in [13, 17] and implemented in the OntoDebug system. In this approach a user can input both wrong axioms and
axioms that are considered to be correct. The system uses debugging algorithms to obtain diagnoses (which reflect
different solutions for D as a part of a repair in Definition 1) and then generates queries about entailments, asks a
domain expert to answer these queries (i.e., validation), and uses these answers to guide the identification of the
target diagnosis.

9. Conclusion

In this paper we proposed an interactive approach using weakening and completing to mitigate the negative effects
of removing wrong axioms in EL⊥ ontologies. We presented a framework (and the first approach) for combining
debugging, removing with weakening and completing. We showed that there are different combination strategies
and that there is a trade-off involving correctness and completeness. We also introduced a way to compare combi-
nation strategies and showed that earlier work covered one type of combination strategy. Further, we presented new
algorithms for weakening and completion and using these, showed the influence of different combination strategies
on the completeness for 6 ontologies in experiments.

For future work we will investigate the problem for more expressive description logics (e.g.ALC ). It is clear that,
when applying this repairing framework to a more expressive language, we may need to look into other strategies
for limiting and reducing the search space while still maintaining a practically feasible validation work for the
domain expert during weakening and completing phase. Another direction for future work is to deal with ontology
networks where the owners of the ontologies and alignments in the ontology network may have different policies
regarding allowing others to change or propose changes to their ontologies and alignments. Also, computation time
and validation resources may be a bigger issue for ontology networks than for single ontologies.
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Appendix
In this appendix, we give more details about algorithms and experiments.

A. Normalization algorithm
B. Algorithms for combination strategies
C. Experiments - data
D. Experiments - results

A. Normalization algorithm

Algorithm 11 rewrites an axiom into one of the allowed forms.

Algorithm 11 Normalize(sb ⊑ sp)
Input: Axiom sb ⊑ sp
Output: A set of axioms in normalized form

1: if sp ∈ Nc then
2: return { sb ⊑ sp }
3: else if sp is of the form P ⊓ Q then
4: return { sb ⊑ P, sb ⊑ Q }
5: else if sp is of the form ∃r.P then
6: if sb ∈ Nc then
7: return { sb ⊑ sp }
8: else if sb is of the form ∃r.Q then
9: Introduce new concept Z

10: return { ∃r.Q ⊑ Z, Z ⊑ ∃r.Q, Z ⊑ sp}
11: else if sb is of the form ∃s.Q then
12: Introduce new concept Z
13: return { ∃s.Q ⊑ Z, Z ⊑ ∃s.Q, Z ⊑ sp}
14: else if sb is of the form Q ⊓ R then
15: Introduce new concept Z
16: return { Q ⊓ R ⊑ Z, Z ⊑ Q, Z ⊑ R, Z ⊑ sp }
17: end if
18: end if
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B. Algorithms for combination strategies

In this part, we give more details about the different algorithms used in the experiments. We show all our algo-
rithms for combining different removing, weakening and completing strategies including the ones that were pre-
sented in the paper earlier. A brief description of each algorithm is shown in Table 8.

Table 8
Algorithms.

Algorithm Description

C1 Weaken one at a time, add weakened axiom sets and remove all wrong at end
C2 Remove/weaken/add weakened axiom sets one at a time
C3 Remove all wrong, weaken one at a time, add weakened axiom sets at end
C4 Remove all wrong, weaken/add weakened axiom sets one at a time
C5 Weaken all wrong, complete all weakened axioms, add completed axiom sets and remove all

wrong at end
C6 Weaken/complete/add completed axiom sets one at a time, remove all wrong at end
C7 Remove/weaken/complete/add completed axiom sets one at a time
C8 Weaken/complete one at a time, add completed axiom sets and remove all wrong at end
C9 Weaken all wrong, remove all wrong, complete all weakened axioms and then add

completed axiom sets at end
C10 Weaken all wrong, remove all wrong, complete/add completed axiom sets one at a time
C11 Weaken all wrong, remove/complete/add the wrong/completed axiom sets one at a time,

remove all wrong at end
C12 Remove all wrong, weaken all wrong, complete all weakened axioms and add completed

axiom sets at end
C13 Remove all wrong, weaken/complete/add completed axiom sets one at a time
C14 Generate the justifications of each wrong axiom and validate all the asserted axioms,

weaken all wrong , remove all wrong, complete/add completed axiom set one at a time
C15 Generate the justifications of each wrong axiom and validate one hitting set for each wrong

axiom, weaken all wrong, remove all wrong, complete/add completed axiom set one at a time
C16 Generate the justifications of each wrong axiom and validate all the asserted axioms, weaken

one at a time, complete all, add all completed axioms and remove all wrong at the end
C17 Generate the justifications of each wrong axiom and validate all the asserted axioms, remove all

wrong, weaken all wrong, add all completed axioms together in the end
C18 Generate the justifications of each wrong axiom and validate all the asserted axioms, remove all

wrong, weaken all wrong, complete/add completed axiom set one at a time
C19 Generate the justifications of each wrong axiom and validate all the asserted axioms, remove all

wrong, weaken/complete/add completed axiom sets one at a time
C20 Generate the justifications of each wrong axiom and validate all the asserted axioms,

weaken/complete/add completed axiom sets one at a time, and remove all wrong in the end
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Algorithm C1 Weaken one at a time, add weakened axiom sets and remove all wrong at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: Tr ← Add-axioms(T ,

⋃
α⊑β wα⊑β)

6: return Remove-axioms(Tr,W)

Algorithm C2 Remove/weaken/add weakened axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← T
2: for each α ⊑ β ∈ W do
3: Tr ← Remove-axioms(Tr, {α ⊑ β})
4: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
5: Tr ← Add-axioms(Tr,wα⊑β)
6: end for
7: return Tr

Algorithm C3 Remove all wrong, weaken all and add weakened axiom sets at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: return Add-axioms(Tr,

⋃
α⊑β wα⊑β)

Algorithm C4 Remove all wrong, weaken/add weakened axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: Tr ← Add-axioms(Tr,wα⊑β)
5: end for
6: return Tr
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Algorithm C5 Weaken all, complete one at a time, add completed axiom set and remove all wrong at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: for each α ⊑ β ∈ W do
6: cα⊑β ← ∅
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, T ,Or)
9: cα⊑β ← cα⊑β ∪ csb⊑sp

10: end for
11: end for
12: Tr ← Add-axioms(T ,

⋃
α⊑β cα⊑β)

13: return Remove-axioms(Tr,W)

Algorithm C6 Weaken/complete/add completed axiom sets one at a time, remove all wrong at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: cα⊑β ← ∅
5: for each sb ⊑ sp ∈ wα⊑β do
6: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
7: T ← Add-axioms(T , csb⊑sp)
8: end for
9: end for

10: return Remove-axioms(T ,W)

Algorithm C7 Remove/weaken/complete/add completed axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← T
2: for each α ⊑ β ∈ W do
3: Tr ← Remove-axioms(Tr, {α ⊑ β})
4: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
5: cα⊑β ← ∅
6: for each sb ⊑ sp ∈ wα⊑β do
7: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
8: Tr ← Add-axioms(Tr, csb⊑sp)
9: end for

10: end for
11: return Tr
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Algorithm C8 Weaken/complete one at a time, add completed axiom sets and remove all wrong axioms at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: cα⊑β ← ∅
5: for each sb ⊑ sp ∈ wα⊑β do
6: csb⊑sp ← completed-axiom-set(sb ⊑ sp, T ,Or)
7: cα⊑β ← cα⊑β ∪ csb⊑sp

8: end for
9: end for

10: Tr ← Add-axioms(T ,
⋃
α⊑β cα⊑β)

11: return Remove-axioms(Tr,W)

Algorithm C9 Weaken all wrong, remove all wrong, complete one at a time, then add completed axiom sets at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: Tr ← Remove-axioms(Tr,W)
6: for each α ⊑ β ∈ W do
7: cα⊑β ← ∅
8: for each sb ⊑ sp ∈ wα⊑β do
9: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)

10: cα⊑β ← cα⊑β ∪ csb⊑sp

11: end for
12: end for
13: Tr ← Add-axioms(Tr,

⋃
α⊑β cα⊑β)

14: return Tr

Algorithm C10 Weaken all wrong, remove all wrong, complete/add completed axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: Tr ← Remove-axioms(T , W)
6: for each α ⊑ β ∈ W do
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
9: Tr ← Add-axioms(Tr,csb⊑sp)

10: end for
11: end for
12: return Tr
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Algorithm C11 Weaken all wrong, remove/complete/add the wrong/completed axiom sets one at a time, remove all
wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: for each α ⊑ β ∈ W do
2: Tr ← Remove-axioms(T , {α ⊑ β})
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: for each α ⊑ β ∈ W do
6: Tr ← Remove-axioms(T , {α ⊑ β})
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
9: T ← Add-axioms(T ,csb⊑sp)

10: end for
11: end for
12: return Remove-axioms(T ,W)

Algorithm C12 Remove all wrong, weaken all, complete all, add completed axiom sets at end
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: end for
5: for each α ⊑ β ∈ W do
6: cα⊑β ← ∅
7: for each sb ⊑ sp ∈ wα⊑β do
8: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
9: cα⊑β ← cα⊑β ∪ csb⊑sp

10: end for
11: end for
12: return Add-axioms(Tr,

⋃
α⊑β cα⊑β)

Algorithm C13 Remove all wrong, weaken/complete/add completed axiom sets one at a time
Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: Tr ← Remove-axioms(T , W)
2: for each α ⊑ β ∈ W do
3: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
4: for each sb ⊑ sp ∈ wα⊑β do
5: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
6: Tr ← Add-axioms(Tr,csb⊑sp)
7: end for
8: end for
9: return Tr
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Algorithm C14 Generate the justifications of each wrong axiom and validate all the asserted axioms from the gen-
erated justifications, weaken all wrong asserted axioms, remove all wrong asserted axioms, complete/add completed
axiom set one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: for each α ⊑ β ∈ D do
12: Tr ← Remove-axioms(T , {α ⊑ β})
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: end for
15: Tr ← Remove-axioms(Tr, D)
16: for each α ⊑ β ∈ D do
17: for each sb ⊑ sp ∈ wα⊑β do
18: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
19: Tr ← Add-axioms(Tr,csb⊑sp)
20: end for
21: end for
22: return Tr
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Algorithm C15 Generate the justifications of each wrong axiom and validate one hitting set from the generated
justifications, weaken all wrong asserted axioms, remove all wrong asserted axioms, complete/add completed axiom
set one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: break
8: end if
9: end for

10: end for
11: end for
12: for each α ⊑ β ∈ D do
13: Tr ← Remove-axioms(T , {α ⊑ β})
14: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
15: end for
16: Tr ← Remove-axioms(Tr,D)
17: for each α ⊑ β ∈ D do
18: for each sb ⊑ sp ∈ wα⊑β do
19: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
20: Tr ← Add-axioms(Tr,csb⊑sp)
21: end for
22: end for
23: return Tr
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Algorithm C16 Generate the justifications of each wrong axiom and validate one hitting set from the generated
justifications, weaken all wrong asserted axioms, complete all weakened axioms, add completed axiom sets and
remove all wrong asserted axioms at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: break
8: end if
9: end for

10: end for
11: end for
12: for each α ⊑ β ∈ D do
13: wα⊑β ← weakened-axiom-set(α ⊑ β, T ,Or)
14: end for
15: cα⊑β ← ∅
16: for each α ⊑ β ∈ D do
17: for each sb ⊑ sp ∈ wα⊑β do
18: csb⊑sp ← completed-axiom-set(sb ⊑ sp,T ,Or)
19: cα⊑β ← cα⊑β ∪ csb⊑sp

20: end for
21: end for
22: Tr ← Add-axioms(T ,

⋃
α⊑β cα⊑β)

23: Tr ← Remove-axioms(Tr,D)
24: return Tr
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Algorithm C17 Generate the justifications of each wrong axiom and validate all the asserted axioms from the
generated justifications, remove all wrong asserted axioms, weaken all wrong asserted axioms, complete all the
weakened axioms, then add completed axiom sets at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: Tr ← Remove-axioms(Tr, D)
12: for each α ⊑ β ∈ D do
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: end for
15: cα⊑β ← ∅
16: for each α ⊑ β ∈ D do
17: for each sb ⊑ sp ∈ wα⊑β do
18: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
19: cα⊑β ← cα⊑β ∪ csb⊑sp

20: end for
21: end for
22: Tr ← Add-axioms(Tr,

⋃
α⊑β cα⊑β)

23: return Tr
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Algorithm C18 Generate the justifications of each wrong axiom and validate all the asserted axioms from the gen-
erated justifications, remove all wrong asserted axioms, weaken all wrong asserted axioms, complete/add completed
axiom sets one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: Tr ← Remove-axioms(Tr, D)
12: for each α ⊑ β ∈ D do
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: end for
15: for each α ⊑ β ∈ D do
16: cα⊑β ← ∅
17: for each sb ⊑ sp ∈ wα⊑β do
18: csb⊑sp ← completed-axiom-set(sb ⊑ sp,Tr,Or)
19: Tr ← Add-axioms(Tr,csb⊑sp)
20: end for
21: end for
22: return Tr
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Algorithm C19 Generate the justifications of each wrong axiom and validate all the asserted axioms from the
generated justifications, remove all wrong, weaken/complete/add completed axiom sets one at a time

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: Tr ← Remove-axioms(T , D)
12: for each α ⊑ β ∈ D do
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: for each sb ⊑ sp ∈ wα⊑β do
15: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
16: Tr ← Add-axioms(Tr,csb⊑sp)
17: end for
18: end for
19: return Tr

Algorithm C20 Generate the justifications of each wrong axiom and validate all the asserted axioms from the
generated justifications, weaken/complete/add completed axiom sets one at a time, remove all wrong at end

Input: TBox T , Oracle Or, set of unwanted axioms W
Output: A repaired TBox

1: D← ∅
2: for each α ⊑ β ∈ W do
3: for each J ∈ Justifications(α ⊑ β) do
4: for each axiom ∈ J do
5: if Validate_axiom(axiom,Or) = f alse then
6: D← D ∪ {axiom}
7: end if
8: end for
9: end for

10: end for
11: for each α ⊑ β ∈ D do
12: Tr ← Remove-axioms(T , {α ⊑ β})
13: wα⊑β ← weakened-axiom-set(α ⊑ β, Tr,Or)
14: for each sb ⊑ sp ∈ wα⊑β do
15: csb⊑sp ← completed-axiom-set(sb ⊑ sp, Tr,Or)
16: Tr ← Add-axioms(Tr,csb⊑sp)
17: end for
18: end for
19: Tr ← Remove-axioms(T , D)
20: return Tr
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C. Experiments - data

In order to compare the use of the different combinations of strategies, we run experiments on several ontologies:
Mini-GALEN, PACO, NCI, EKAW, OFSMR and Pizza ontology. Mini-GALEN is an example inspired by the
GALEN (from https://bioportal.bioontology.org/) ontology and is presented in the paper; PACO, NCI, OFSMR are
available at https://bioportal.bioontology.org/, EKAW from the conference track of http://oaei.ontologymatching.
org/ and the Pizza ontology is available at https://github.com/owlcs/pizza-ontology. We made the versions of the
ontologies that we used available at https://figshare.com/s/f3b9472a7e5dd69237dc. We have used the parts of these
ontologies that are expressible in EL⊥ in the sense that we removed the parts of axioms that used constructors not
in EL⊥.

An overview of the numbers of concepts, roles and axioms in these ontologies is given in Table 9.

Table 9
Ontologies

Mini- Pizza EKAW OFSMR PACO NCI
GALEN

Concepts 9 74 100 159 224 3304

Roles 1 33 8 2 23 1

Axioms 20 341 801 1517 1153 30364

https://bioportal.bioontology.org/
https://bioportal.bioontology.org/
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/
https://github.com/owlcs/pizza-ontology
 https://figshare.com/s/f3b9472a7e5dd69237dc
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D. Experiments - results

In this part, we give the full results of the comparative experiments run in different ontologies (Tables 11-38).
Table 10 lists the wrong asserted axioms we introduced in each test ontology for the experiments. These wrong
axioms were generated by replacing existing axioms with axioms where their left/right-hand side concepts were
changed.

Table 11 shows the influence of using different combinations in the debugging step for the EKAW ontology.
Tables 12-14 show the influence of using different combinations on the weakening results for Mini-GALEN using

Algorithms C1-C13.
Tables 15-18 show the influence of removing wrong axioms one at a time in different orders on the sizes of the

sub-and super-concepts sets for weakening. We used Mini-GALEN and Algorithm C2.
Tables 19-23 show the sizes of the super- and sub-concepts sets for weakening the PACO, EKAW, NCI, Pizza

and OFSMR ontologies using Algorithms C1-C4.
Tables 24-29 show the differences between using source/target sets (not introducing equivalences in the ontolo-

gies) and using sup/sub sets for completing. We present the sizes of these sets as well as the results of completing for
Mini-GALEN and Algorithms C5-C7 in Tables 24-25. Further, the sizes of these sets are listed in Tables 26-29 for
the NCI ontology and Algorithms C5-C13. For the remaining ontologies, we list the sizes of the source and target
sets to generate the completed axioms using Algorithms C5-C13 in Tables 30-37.

Table 38 shows the results of using debugging, removing, weakening and completing when repairing Mini-
GALEN using Algorithms C14-C20.
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Table 10
Wrong axioms in each ontology.

Ontology Wrong axioms(W) Wrong asserted axioms used in the examples

Mini-
GALEN

PathologicalProcess⊑GranulomaProcess,
Endocarditis⊑GranulomaProcess

PathologicalProcess⊑InflammationProcess,
InflammationProcess⊑GranulomaProcess,
PathologicalProcess⊑GranulomaProcess,
Endocarditis⊑PathologicalProcess

PACO clearing walking⊑⊥,
Polish_car⊑Home_improvement_maintenance,
Washing_windows⊑ Home_improvement_maintenance,
Moderate⊑Speed Per_week⊑By_duration,
Washing_car⊑ Home_improvement_maintenance

Polish_car⊑Home_improvement_maintenance,
Washing_windows ⊑ Home_improvement_maintenance,
Moderate⊑Speed,
Per_week⊑By_duration,
Washing_car⊑ Home_improvement_maintenance,
Walking⊑Daily_living_activity

EKAW Tutorial ⊑⊥,
Camera_Ready_Paper⊑∃writtenBy.Student,
Invited_Talk_Abstract⊑Paper,
Programme_Brochure⊑⊥

Camera_Ready_Paper⊑∃writtenBy.Student,
Tutorial⊑Conference,
Tutorial⊑Conference_session,
Invited_Talk_Abstract⊑Paper,
Programme_Brochure⊑Flyer

NCI Inner_Enamel_Epithelium ⊑⊥, Tooth_tissue⊑Tooth,
Foramen_Apicis_Dentis ⊑⊥, Red_fiber⊑Connective_tissue_fiber,
Stratum_Intermedium ⊑⊥, Eye_lid⊑Cheek
Enamel ⊑⊥,
Secretory-stage_Ameloblast ⊑⊥,
Canalis_Radicis_Dentis ⊑⊥,
Stellate_Reticulum ⊑⊥,
Ameloblast ⊑⊥,
Cementum ⊑⊥,
Cementocyte ⊑⊥,
Odontoblast ⊑⊥,
Dental_Pulp ⊑⊥, Outer_Enamel_Epithelium ⊑⊥,
Tooth_Cell ⊑⊥,
Dentin ⊑⊥,
Tooth_Tissue ⊑⊥,
Maturation-stage_Ameloblast ⊑⊥,
Cementoblast ⊑⊥,
Red_fiber⊑Connective_tissue_fiber,
Eye_lid⊑Cheek

Pizza Ice cream⊑⊥,
PineKernels⊑VegetableTopping,
PeperoniSausageTopping⊑ PeperonataTopping,
RosemaryTopping⊑VegetableTopping

PineKernels⊑VegetableTopping,
PeperoniSausageTopping⊑PeperonataTopping,
RosemaryTopping⊑VegetableTopping
IceCream⊑ ∃hasTopping.FruitTopping,
RosemaryTopping⊑VegetableTopping

OFSMR Beverage ⊑⊥,
Bread⊑Procesed_fruit_and_vegetables,
Pasta⊑Procesed_fruit_and_vegetables

Beverage⊑Food, Bread⊑Procesed_fruit_and_vegetables,
Pasta⊑Procesed_fruit_and_vegetables
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Table 11
Debugging for EKAW, W = {Tutorial ⊑⊥, Camera_Ready_Paper ⊑∃writtenBy.Student, Invited_Talk_Abstract ⊑ Paper, Programme_Brochure
⊑ ⊥ }. For D-one-v there are different solutions based on the generated Hitting set (but one may not always be able to find a repair after
validation).

D-v-all D-one-v(1) D-one-v(2)

Asserted
Wrong
Axioms

Tutorial⊑Conference,
Tutorial⊑Conference_Session,
Programme_Brochure⊑Flyer,
Camera_Ready_Paper⊑
∃writtenBy.Student,
Invited_Talk_Abstract⊑Paper

Tutorial⊑Conference_Session,
Programme_Brochure⊑Flyer,
Camera_Ready_Paper⊑
∃writtenBy.Student,
Invited_Talk_Abstract⊑Paper

Programme_Brochure⊑Flyer,
Camera_Ready_Paper⊑
∃writtenBy.Student,
Invited_Talk_Abstract⊑Paper,
Tutorial⊑Conference

Table 12
Weakening for Mini-GALEN using Algorithms C1-C4. Four wrong asserted axioms give 4 sup/sub-sets respectively per algorithm. The wrong
axioms set W={PPr ⊑ GPr, E ⊑ GPr}.

C1 C2 C3 C4

Wrong asserted
axioms

PPr ⊑ IPr, IPr ⊑ GPr,
E ⊑PPr, PPr ⊑ GPr

PPr ⊑ IPr, IPr ⊑ GPr,
E ⊑PPr, PPr ⊑ GPr

PPr ⊑ IPr, IPr ⊑ GPr,
E ⊑PPr, PPr ⊑ GPr

PPr ⊑ IPr, IPr ⊑ GPr,
E ⊑PPr, PPr ⊑ GPr

Sup(β,T ) 3 2 4 2 2 2 4 2 1 2 1 2 2 2 1 2
Sub(α,T ) 2 3 1 2 1 2 1 1 1 1 1 1 1 1 1 1

Weakened IPr ⊑ NPr, PPr ⊑
NPr, PPr ⊑ NPr

IPr ⊑ NPr, PPr ⊑
NPr, PPr ⊑ NPr

IPr ⊑ NPr, PPr ⊑
NPr

IPr ⊑ NPr, PPr ⊑
NPr, PPr ⊑ NPr

Table 13
Weakening for Mini-GALEN using Algorithms C5-C9. Four wrong asserted axioms give 4 sup/sub-sets respectively per algorithm. The wrong
axioms set W={PPr ⊑ GPr, E ⊑ GPr}.

C5 C6 C7 C8 C9

Wrong asserted
axioms

PPr ⊑ GPr, IPr ⊑
GPr, PPr ⊑ IPr, E ⊑
PPr

PPr ⊑ GPr, IPr ⊑
GPr, PPr ⊑ IPr, E ⊑
PPr

PPr ⊑ GPr, IPr ⊑
GPr, PPr ⊑ IPr, E ⊑
PPr

PPr ⊑ GPr, IPr ⊑
GPr, PPr ⊑ IPr, E ⊑
PPr

PPr ⊑ GPr, IPr ⊑
GPr, PPr ⊑ IPr, E ⊑
PPr

Sub(α,T ) 2 3 2 1 2 4 4 1 2 4 4 1 2 3 2 1 2 3 2 1
Sup(β,T ) 2 2 3 4 2 3 4 4 2 3 3 2 2 2 3 4 2 2 3 4

Weakened PPr ⊑ NPr, IPr ⊑
NPr, PPr ⊑ NPr

PPr ⊑ NPr, IPr ⊑
NPr, PPr ⊑ NPr

IPr ⊑ NPr, PPr ⊑
NPr, PPr ⊑ NPr

PPr ⊑ NPr, IPr ⊑
NPr, PPr ⊑ NPr

IPr ⊑ NPr, PPr ⊑
NPr, PPr ⊑ NPr

Table 14
Weakening for Mini-GALEN using Algorithms C10-C13. Four wrong asserted axioms give 4 sup/sub-sets respectively per algorithm. The wrong
axioms set W={PPr ⊑ GPr, E ⊑ GPr}.

C10 C11 C12 C13

Wrong asserted
axioms

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

PPr ⊑ GPr, IPr ⊑ GPr,
PPr ⊑ IPr, E ⊑ PPr

Sub(α,T ) 2 3 2 1 2 3 2 1 1 1 1 1 1 1 2 1
Sup(β,T ) 2 2 3 4 2 2 3 4 2 2 1 1 2 2 3 2

Weakened PPr ⊑ NPr, IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr, IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr, IPr ⊑ NPr IPr ⊑ NPr, PPr ⊑ NPr,
PPr ⊑ NPr
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Table 15
Removing wrong axioms: 1⃝PPr⊆IPr 2⃝IPr⊆GPr 3⃝PPr⊆GPr 4⃝E⊆PPr in different order for Mini-GALEN by Algorithm C2 (Removing 4⃝
first).

Wrong Axiom 1⃝→ 2⃝→ 3⃝ 2⃝→ 1⃝→ 3⃝ 2⃝→ 3⃝→ 1⃝ 1⃝→ 3⃝→ 2⃝ 3⃝→ 1⃝→ 2⃝ 3⃝→ 2⃝→ 1⃝
Sub(α,T ) 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sup(β,T ) 4 3 2 2 4 2 1 2 4 2 2 2 4 3 2 2 4 2 3 2 4 2 2 2

Table 16
Removing wrong axioms: 1⃝PPr⊆IPr 2⃝IPr⊆GPr 3⃝PPr⊆GPr 4⃝E⊆PPr in different order for Mini-GALEN by Algorithm C2 (Removing 3⃝
first).

Wrong Axiom 4⃝→ 1⃝→ 2⃝ 4⃝→ 2⃝→ 1⃝ 2⃝→ 4⃝→ 1⃝ 1⃝→ 4⃝→ 2⃝ 2⃝→ 1⃝→ 4⃝ 1⃝→ 2⃝→ 4⃝
Sub(α,T ) 2 1 1 1 2 1 2 1 2 3 1 1 2 2 1 1 2 3 2 1 2 2 1 1
Sup(β,T ) 2 4 3 2 2 4 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2

Table 17
Removing wrong axioms: 1⃝PPr⊆IPr 2⃝IPr⊆GPr 3⃝PPr⊆GPr 4⃝E⊆PPr in different order for Mini-GALEN by Algorithm C2 (Removing 2⃝
first).

Wrong Axiom 4⃝→ 3⃝→ 1⃝ 4⃝→ 1⃝→ 3⃝ 3⃝→ 4⃝→ 1⃝ 1⃝→ 4⃝→ 3⃝ 3⃝→ 1⃝→ 4⃝ 1⃝→ 3⃝→ 4⃝
Sub(α,T ) 3 1 1 1 3 1 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1
Sup(β,T ) 2 3 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

Table 18
Removing wrong axioms: 1⃝PPr⊆IPr 2⃝IPr⊆GPr 3⃝PPr⊆GPr 4⃝E⊆PPr in different order for Mini-GALEN by Algorithm C2 (Removing 1⃝
first).

Wrong Axiom 4⃝→ 3⃝→ 2⃝ 4⃝→ 2⃝→ 3⃝ 2⃝→ 4⃝→ 3⃝ 3⃝→ 4⃝→ 2⃝ 2⃝→ 3⃝→ 4⃝ 3⃝→ 2⃝→ 4⃝
Sub(α,T ) 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 2 1 2 2 1 1
Sup(β,T ) 3 3 2 2 3 3 2 2 3 2 3 2 3 2 2 2 3 2 2 2 3 2 2 2

Table 19
Weakening the PACO ontology using Algorithms C1-C4. Six wrong axioms give 6 sup/sub-sets per algorithm.

C1 C2 C3 C4

Sup(β,T ) 4 4 4 3 4 3 4 4 4 3 4 3 4 4 4 3 4 3 4 4 4 3 4 3
Sub(α,T ) 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1 1 1 1 6 1 1

Table 20
Weakening the EKAW ontology using Algorithms C1-C4. Four wrong axioms give 4 sup/sub-sets per algorithm.

C1 C2 C3 C4

Sup(β,T ) 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3
Sub(α,T ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 21
Weakening the NCI ontology using Algorithms C1-C4. Three wrong axioms give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4

Sup(β,T ) 13 15 8 13 15 8 13 15 8 13 15 8
Sub(α,T ) 7 1 3 7 1 3 7 1 3 7 1 3
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Table 22
Weakening the Pizza ontology using Algorithms C1-C4. Four wrong axioms give 4 sup/sub-sets per algorithm.

C1 C2 C3 C4

Sup(β,T ) 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8
Sub(α,T ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 23
Weakening the OFSMR ontology using Algorithms C1-C4. Three wrong axioms give 3 sup/sub-sets per algorithm.

C1 C2 C3 C4

Sup(β,T ) 2 4 4 2 4 4 2 4 4 2 4 4

Sub(α,T ) 2 1 1 2 1 1 2 1 1 2 1 1

Table 24
Completing the Mini-GALEN ontology using Algorithms C5-C7 by excluding concepts that would introduce equivalence relations in the
ontology

.

C5 C6 C7

Weakened PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

Source(α,T ) 3 2 3 3 1 1 3 1 1
Target(β,T ) 3 2 3 3 1 3 3 1 3

Completed PPr ⊑ NPr,
IPr ⊑ NPr,
GPr ⊑ IPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

Table 25
Completing the Mini-GALEN ontology using Algorithms C5-C7.

C5 C6 C7

Weakened PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

Sup(α,T ) 4 3 4 4 1 4 4 1 4
Sub(β,T ) 5 5 5 5 4 5 5 4 5

Completed PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

Table 26
Completing the NCI ontology using Algorithms C5-C9.

C5 C6 C7 C8 C9

Sup(α,T ) 3 1 1 3 1 1 3 1 1 15 16 9 3 1 1
Sub(β,T ) 41 2143 83 41 2143 83 41 2136 76 66 2144 86 41 2133 76

Table 27
Completing the NCI ontology using Algorithms C10-C13.

C10 C11 C12 C13

Sup(α,T ) 3 1 1 3 1 1 3 1 1 3 1 1
Sub(β,T ) 41 2136 76 41 2143 83 41 2133 76 41 2133 76
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Table 28
Completing the NCI ontology using Algorithms C5-C9 by excluding concepts that would introduce equivalence relations in the ontology.

C5 C6 C7 C8 C9

Source 3 1 1 3 1 1 3 1 1 6 14 6 3 1 1
Target 40 2143 83 40 2143 83 40 2136 76 59 2143 83 40 2133 76

Table 29
Completing the NCI ontology using Algorithms C10-C13 by excluding concepts that would introduce equivalence relations in the ontology.

C10 C11 C12 C13

Source 3 1 1 3 1 1 3 1 1 3 1 1
Target 40 2136 76 40 2143 83 40 2133 76 40 2133 76

Table 30
Completing the PACO ontology using Algorithms C5-C9 by excluding concepts that would introduce equivalence relations in the ontology.

C5 C6 C7 C8 C9

Source 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 1 1 1 1 1 1
Target 59 59 59 171 40 40 59 59 59 171 40 40 59 59 59 171 40 40 59 59 59 171 40 40 51 51 51 168 39 39

Table 31
Completing the PACO ontology using Algorithms C10-C13 by excluding concepts that would introduce equivalence relations in the ontology.

C10 C11 C12 C13

Source 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Target 51 52 53 170 39 40 59 59 59 171 40 40 51 51 51 168 39 39 51 52 53 170 39 40

Table 32
Completing of the EKAW ontology using Algorithms C5-C9 by excluding concepts that would introduce equivalence relations in the ontology.

C5 C6 C7 C8 C9

Source 9 1 1 1 9 1 1 1 9 1 1 1 10 2 2 2 9 1 1 1
Target 23 17 34 34 23 17 34 34 23 17 34 34 23 17 34 34 23 17 33 33

Table 33
Completing of the EKAW ontology using Algorithms C10-C13 by excluding concepts that would introduce equivalence relations in the ontology.

C10 C11 C12 C13

Source 9 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1
Target 23 17 33 34 23 17 34 34 23 17 33 33 23 17 33 34

Table 34
Completing by the Pizza ontology using Algorithms C5-C9 by excluding concepts that would introduce equivalence relations in the ontology.

C5 C6 C7 C8 C9

Source 1 1 3 3 1 1 3 3 1 1 3 3 2 7 4 6 1 1 3 3
Target 50 147 50 50 50 147 50 50 50 147 50 50 50 147 50 50 50 144 48 48
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Table 35
Completing the Pizza ontology using Algorithms C10-C13 by excluding concepts that would introduce equivalence relations in the ontology.

C10 C11 C12 C13

Source 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3
Target 49 147 48 50 50 147 50 50 18 144 48 48 48 145 49 50

Table 36
Completing the OFSMR ontology using Algorithms C5-C9 by excluding concepts that would introduce equivalence relations in the ontology.

C5 C6 C7 C8 C9

Source 1 1 1 1 1 1 1 1 1 2 3 3 1 1 1
Target 125 125 125 125 125 125 125 125 125 125 125 125 123 122 122

Table 37
Completing the OFSMR ontology using Algorithms C10-C13 by excluding concepts that would introduce equivalence relations in the ontology.

C10 C11 C12 C13

Source 1 1 1 1 1 1 1 1 1 1 1 1
Target 123 122 123 125 125 125 123 122 122 123 122 123

Table 38
The result when applying Algorithms C14-C20 on Mini-GALEN. The wrong axioms set W={PPr ⊑ GPr, E ⊑ GPr}.

C14 C15 C16 C17 C18 C19 C20

Wrong
asserted
axioms

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

PPr ⊑ GPr,
IPr ⊑ GPr,
E ⊑ GPr

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

PPr ⊑ GPr,
IPr ⊑ GPr,
PPr ⊑ IPr,
E ⊑ PPr

Sub(α,T ) 2 3 2 1 2 3 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 4 4 1
Sup(β,T ) 2 2 3 4 2 2 4 2 2 3 4 2 2 1 1 2 2 1 1 2 2 3 2 2 3 4 4

Weakened PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ NPr,
PPr ⊑ NPr

Sup(α,T ) 1 1 2 1 1 4 3 4 1 1 1 1 1 1 2 4 1 4
Sub(β,T ) 2 3 4 2 3 5 5 5 2 2 2 3 2 3 4 5 4 5

Completed IPr ⊑ PPr,
PPr ⊑ NPr

IPr ⊑ PPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr

IPr ⊑ NPr,
PPr ⊑ NPr

IPr ⊑ PPr,
PPr ⊑ NPr

PPr ⊑ NPr,
IPr ⊑ PPr

PPr ⊑ NPr,
IPr ⊑ PPr,
GPr ⊑ IPr
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