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End-to-End Trainable Soft Retriever for
Low-resource Relation Extraction
Kohei Makino, Makoto Miwa and Yutaka Sasaki *

Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, Japan

Abstract. This study addresses a crucial challenge in instance-based relation extraction using text generation models: end-to-end
training in target relation extraction task is not applicable to retrievers due to the non-differentiable nature of instance selection.
We propose a novel End-to-end TRAinable Soft K-nearest neighbor retriever (ETRASK) by the neural prompting method that
utilizes a soft, differentiable selection of the k nearest instances. This approach enables the end-to-end training of retrievers in
target tasks. On the TACRED benchmark dataset with a low-resource setting where the training data was reduced to 10%, our
method achieved a state-of-the-art F1 score of 71.5%. Moreover, ETRASK consistently improved the baseline model by adding
instances for all settings. These results highlight the efficacy of our approach in enhancing relation extraction performance,
especially in resource-constrained environments. Our findings offer a promising direction for future research with extraction and
the broader application of text generation in natural language processing.

Keywords: Low-resource Relation extraction, Soft Retriever, Instance-based model

1. Introduction

Relation extraction is a fundamental task in Natural Language Processing (NLP). It involves identifying and clas-
sifying semantic relationships between entity mentions within text. This task plays a crucial role in understanding
and interpreting the underlying meaning of sentences by analyzing how different entities, such as people, organiza-
tions, and locations, are interrelated [1–3].

The significance of relation extraction extends beyond theoretical interests; it has practical applications in several
domains. For instance, in knowledge graph construction, relation extraction aids in transforming unstructured text
into structured data, which can then be used to populate and enrich knowledge graphs [4]. In domain-specific
scenarios, such as biomedical text mining [5], it can extract relationships between genes, diseases, and drugs, which
are helpful for advanced research and discovery such as search systems [6] and prediction of novel things [7].

Developing relation extractors has been an ongoing endeavor in NLP. Relation extractors are designed to accu-
rately identify and classify relationships from text, which requires understanding the nuanced and often complex
language structures. Advances in machine learning and NLP methodologies have shaped the evolution of these
extractors. Most recent extractors are based on deep learning models to obtain high-performance [8, 9], while tradi-
tional extractors are rule-based models [10] and feature-based models [11].

The Pretrained Language Models (PLMs) [12–14] have become a de-facto standard in NLP, fundamentally
changing the field landscape. PLMs are models pretrained on a general task, such as masked language model-
ing, and are used by fine-tuning it to fit a target task. A lot of studies on relation extraction with PLM have been
conducted because of the high performance. [15, 16]
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With the advent of PLM, well-trained text generation models are attracting attention [12, 17, 18], including Large
Language Model (LLM) [19, 20], which are trained on a larger corpus with larger-scale parameters than PLMs.
Concerning relation extraction, text generation model-based relation extractors have been used innovatively [21–23].
These models have been adapted to treat relation extraction as a question answering task [21], a text summarization
task [24], or a prompt-based generation task [22], leveraging their knowledge and understanding of natural language.

Relation extraction instance utilization pushes up the performance of relation extraction with text generation.
For the relation extraction with PLM encoder that embeds text into feature representations, which can adapt to the
task with fine-tuning, the relation extraction with inference process of the k-nearest neighbor (kNN) algorithm [25],
which is the model to find the top-k similar instances on the encoding space of PLM and predicts the class of
the instance, enhances the performance for relation labels without enough training data. However, the inference
with simple voting is weak in terms of the overall performance compared to other models with devised prediction
methods [25].

Combining text generation models with instance utilization has been particularly effective with In-Context Learn-
ing (ICL) [19] and Retrieval-Augmented Generation (RAG) [26]. In relation extraction via ICL, instructions and
instances for extracting relations are used as prompts to supervise text generation models from context and output
the results by predicting the following context convertible to relation labels [22]. A typical way to create prompts
in ICL is by adjusting instructions and using pre-defined instances. However, standard ICL methods cannot utilize
instances adaptable to input because the prompt and the model parameters are fixed.

To solve these problems, relation extraction via RAG introduces the instances relevant to the input into the text
prompt [27]. Generally, this is done by embedding the inputs and instances into dense feature space by a separate
model from the base text generation model and selecting the nearest neighbors. The chosen instances are then
introduced into the text prompt, allowing for prediction while adding new perspectives in ICL. It is necessary to train
a separate model for retrieval to introduce desired instances. However, text prompts disconnect the differentiability
essential for deep learning training, making training a retrieval model for the relation extraction task difficult. This
non-differentiability poses significant limitations for end-to-end optimization, as it prevents the direct optimization
of instance selection within the learning process of the target relation extraction task.

Thus, instance utilization can boost performance, where ICL and RAG use fixed and adjustably-selected instances
via text generation models. kNN relation extractor enhances relation extraction performance for long-tail labels.
However, the inference capability of the kNN algorithm is insufficient. In addition, when the instances are used
with RAG, another model is required to use adaptive instances for the input, and its training is done separately
from relation extraction. To realize a relation extractor using instances with reasoning capability, it is necessary to
make two processes differentiable: the retrieval process for selecting relation extraction instances and the embedding
process for prompt creation.

To overcome the non-differentiable processes, our study introduces an innovative approach that renders the se-
lection of the k nearest instances differentiable for the retrieval process and employs soft prompt obtained from
the retrieval process like neural prompting [28] for the embedding process. The differentiable k instance selection
selects instances softly inspired by neural nearest neighbor networks [29]. This allows the kNN retriever to utilize k
instances as differentiable soft prompts in neural prompting, thereby enabling, for the first time, the end-to-end opti-
mization of the retriever in generation-based relation extraction, where the retriever is named ETRASK (End-to-end
TRAinable Soft KNN retriever).

This study addresses these challenges by introducing the retrieval process composed of a differentiable opera-
tion and the embedding process via neural prompting. By incorporating techniques from neural nearest-neighbor
networks, our method enables using selected instances as soft prompts, facilitating end-to-end optimization in
generation-based relation extraction systems. Evaluation of the extraction performance confirms the improved per-
formance in the relation extraction for the low-resource settings, with state-of-the-art performance obtained for
the setting of 10% training data in the TACRED dataset. A comparison with the baseline without using instances
obtained by ETRASK shows that the performance is consistently improved in all settings. Analysis of instances
acquired with trained retriever confirms that instances with the same relation labels as the target of extraction and
instances where the sentence contains entities are selected as relevant for relation extraction.

The remainder of this paper is organized as follows: Section 2 presents related work, further elaborating on the
evolution and current state of PLM (Section 2.1), instance-based methods (Section 2.2, and relation extraction (Sec-



K. Makino et al. / End-to-End Trainable Soft Retriever for Low-resource Relation Extraction 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tion 2.3). Section 3 describes our methodology and consists of a description of relation extraction (Section 3.1) and
kNN retriever with a text generation model (Section 3.2) for preparation, and a description of the proposed method
ETRASK (Section 3.3), which consists of differentiable kNN (Section 3.3.1), neural prompting (Section 3.3.2) and
training methods (Section 3.3.3). The evaluations are performed in Section 4 for the extraction performance and
Section 5 for the retriever analysis. Finally, Section 6 concludes this study and describes future directions.

2. Related Work

2.1. Pretrained Language Models

PLMs are large-scale models trained on a large corpus with NLP tasks. PLMs are often used for various models
for target NLP tasks with fine-tuning. Pretraining tasks are extensive such as language modeling (LM) [17], bidirec-
tional language modeling (biLM) [12], sequence-to-sequence language modeling (Seq2Seq LM) [18], and masked
language modeling (MLM) [13]. PLMs employ appropriate neural network structures such as ELMo [12] for the
bidirectional language modeling task with LSTMs [30], and Transformer [31] is mainly used these days including
BERT [13] for masked language modeling, T5 [18] for sequence-to-sequence language modeling, and GPT-2 [17]
for language modeling. LLMs are extended PLMs to be larger scale and use a larger corpus such as Flan-T5 [32] in
Seq2Seq LM and GPT-3 in LM [19].

Such PLMs are stochastic models to estimate the likelihood of text sequence based on the pretraining tasks. Since
LM is a task to predict the following text from a given input, the model trained on LM can estimate the likelihood
of input text sequence, formulated as P(x) with input x. On the other hand, the model trained on Seq2Seq LM
can assign a likelihood to input-output pairs used in pretraining, formulated as P(y|x) with input x and output y.
Collectively, these are text generation models.

PLMs are computationally challenging to utilize by tuning the entire parameter when adapted to the target task and
are rarely used outside the text generation framework. Thus, they can be tuned by controlling the generated text with
text prompts or by parameter-efficient training. Low-Rank Adaptation (LoRA) [33] inserts low-rank parameters into
the base model to learn the difference between the target task. Prompt tuning [34] injects soft prompts to embedded
text sequence and trains the soft prompts. The prompt tuning is extended to neural prompting [28] to soft prompts
based on the instances. We utilize the LoRA in our experiment to update PLM and the neural prompting in our
method to introduce instances.

2.2. Instance-based Methods

Instance-based methods, as typified by nearest neighbor method [35], have been used for various NLP tasks,
such as POS tagging [36], named entity recognition [37], dependency parsing [38], and relation extraction [39]. The
methods are used to mitigate a training data scarcity situation. This paper replaces the non-differentiable operations
in the kNN algorithm with differentiable ones in order to relax to a soft operation.

Recently, PLMs are often used following the pretraining task to use instances by ICL [19], which predicts the
following context from the given prompt. Since ICL is characterized by the prompt design, the instance selection
performs a vital role. Since fixed prompts are usually used, the instances are also typically fixed. However, the
demand to select the most appropriate instances for input has led to using RAG [26], which retrains a retriever in
advance and uses the instances obtained by the retriever. Since the instance selection operation is not differentiable,
the general retriever is trained separately to target the task [27]. This study tackles this separate training of the target
task model and the retriever so that it can be trained end-to-end with the target task.

2.3. Relation Extraction

The fundamental relation extraction task is sentence-level relation extraction [40, 41], where only the entity
pairs contained in a sentence are targets for extraction. Since sentence-level relation extraction ignores relations
across sentences, it is extended to document-level relation extraction [42, 43], which also targets these relations for
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extraction. Since this paper focuses on retriever and a single relation, which is supposed to be a retriever query, is
included in a single instance, we develop an extractor primarily on sentence-level relation extraction for simplicity.

Historically, relation extractors have evolved from traditional approaches to modern deep learning techniques.
Initially, rule-based systems relied on hand-crafted rules to identify relationships [10]. Kernel-based models and
feature-based approaches later emerged, offering more flexibility and better handling linguistic variations [11, 44].
Deep learning revolutionized the field, introducing models that could learn complex patterns and relationships di-
rectly from data [45].

PLMs and LLMs also become standard in the relation extraction task. PLMs are often treated as feature extrac-
tors in relation extractors and are used for direct classification based on their features [46] or connected to relation
extraction-specific model [47]. On the other hand, LLMs are used as the text generation model with prompt en-
gineering [23] or fine-tuning [22]. For example, SuRE (Summarization as Relation Extraction) [24] extracts the
relation by summarization via LLM and mapping the output to relations. The SuRE measures the likelihood of a
pair of text prompts of input and verbalized relations into a summary form to predict the relation with the highest
likelihood.

Despite recent advancements with deep learning models, relation extraction remains challenging, primarily due
to the scarcity of annotated data. Deep learning models, in particular, require large amounts of labeled data for
training [48]. However, manually annotating data is expensive and time-consuming, making it a significant bottle-
neck in developing effective relation extraction systems [49]. This environment makes it difficult to classify with
high performance for the types of relations complex to collect diverse data. In this context, the relation extractor
via the nearest neighbor approach [25], where relation extractors leverage similar instances during inference, has
shown promise in efficiently utilizing limited data. This study reveals that using instances, or specific instances of
relations within texts, is crucial in relation extraction. By leveraging these instances, models can better generalize
from limited instances and improve their ability to extract and classify relations in varied contexts accurately.

3. Methodology

We propose the end-to-end trainable soft k-nearest neighbor retriever ETRASK that retrieves virtually selected
k-nearest instances composed of entirely differentiable operations, allowing end-to-end training. To make retriever
selection differentiable, we use a novel algorithm for the differentiable selection of k-nearest instances to enhance
neural prompting in relation extraction. The core of our method is detailed in Algorithm 1, which describes a
procedure for soft selection of instances based on their embeddings.

We will explain the method in the following sections: Before describing our proposal, we generalize relation
extraction models by text generation model in Section 3.1 and explain the kNN retriever in Section 3.2. Then Sec-
tion 3.3 describes ETRASK consisting of differentiable k-nearest instance selection (Section 3.3.1) and integration
of the instances drawn by it (Section 3.3.2). The end-to-end training and training techniques for ETRASK are shown
in Section 3.3.3.

3.1. Relation Extraction with Text Generation Model

This section defines the structure and function of relation extractors using text generation models and their en-
hancements via a retriever. Consider an input sentence x, with h and t representing the head and tail entities of a
target entity pair and r ∈ R denoting their relationship. The standard relation extractors represented as Equation (1)
formulate as a classification task using a stochastic model P.

r̂ = argmax
r∈R

P(r|x, h, t) (1)

Typically, for generation-based relation extraction, the input x, h, and t are reformulated into a text prompt using
a pre-defined template, and the text generation model subsequently processes this prompt, as shown in Equation (2).
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Relation
Extractor

Relation
Instance
Database

Retrieval process

… the Bolivarian Alternative for the Americas -- 
was founded by … Cuban leader Fidel Castro in 2004 …

org:alternate_names

The member countries of the Bolivarian Alternative for the Americas ( ALBA ) ratified …
per:siblings

Fidel Castro … handed power `` temporarily '' to his younger brother , Raul Castro …

…
Embedding process

org:founded_by

Fig. 1. Overview of relation extraction with a retriever

r̂ = argmax
r∈R

TextGenerationModel(r|x, h, t) (2)

The function TextGenerationModel indicates an estimation that computes the likelihood of the verbalized input,
e.g., if the PLM is pretrained on Seq2Seq LM, the PLM will compute the likelihood of the input-output pair text
structured by x, h, t, and r.

We further extend this model by incorporating a retriever, as depicted in Figure 1. The retriever selects relevant
instances from a database or external knowledge source D and constructs a prompt z from these instances for input
into the text generation model.

z = Retriever(x, h, t,D), (3)

r̂ = argmax
r∈R

TextGenerationModel(r|x, h, t, z) (4)

The retriever involves two processes: the retrieval process, which selects pertinent instances from database D, and
the embedding process, which transforms these instances into prompts compatible with the text generation model.
In the traditional RAG framework [26], the retriever identifies neighboring instances and directly utilizes the text of
these instances as prompts. Conversely, in neural prompting [28], instances are selected based on string matching
and processed through a neural network to use the output as soft prompts, offering a more nuanced and adaptable
approach to instance utilization.

3.2. k-Nearest Neighbor Retriever

Next, we define a kNN retriever, which selects k nearest instances for prompts in the embedding space. In the
retriever, each instance di in the database D is converted into L embeddings Ei = [e1i , e

2
i , . . . , e

L
i ] ∈ RL×Demb .

The retriever aims to select instances that are closely aligned with the input embedding Ein ∈ RL×Demb , which is
embedded similarly to Ei using x, h, and t. The method to embed instances and the input is usually engineered to
suit the purpose; for example, modern applications [50] often use PLMs such as BERT [13].Our method also uses
PLM to embed instances.

To obtain k nearest instances, the distance between input and each instance si is calculated with distance Dist as
in Equation (5).

si = Dist(Ein, Ei) (5)
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Algorithm 1 Differentiable Selection of k Nearest Instances
Input: k: Number of instances to select

E = [E1, E2, . . . , E|D|] ∈ R|D|×L×Demb : Embeddings of instances
Ein ∈ RL×Demb : Embedding of the input

Output: W ∈ RK×L×Demb : Selection weight
for i ∈ range(1, |D|) do

si ← Dist(Ein, Ei)
for j ∈ [1, k] do

wi ← exp(1−si)∑
l exp(1−sl)

si ← si + log(1− wi)
end for

end for

Since the kNN retriever objective is to emit instances within a distance of up to k-th, a set of target instances K
become Equation (6), where argTopK returns a set of top-k indices:

K = {di|i ∈ I, I = argTopK
j

−s j} (6)

After the retrieval, the instances are converted into a format that can be input into the model in the embedding
process. The traditional retriever writes down into text prompts for PLM [26].

3.3. End-to-End Trainable Soft kNN Retriever

Traditional kNN retrievers face a crucial limitation: the retrieval process, which selects instances explicitly by
the kNN algorithm, and the embedding process, which composes text-based prompts via applying templates, is
non-differentiable. To overcome this, inspired by existing work on nearest neighbor networks [29] and the neural
prompting [28], we introduce neural prompting which creates soft prompts using k nearest instances selected vir-
tually by differentiable operations. Our retriever ETRASK enables differentiable instance selection by utilizing the
weighted sum of embeddings derived using a softmax function over their distances. This advancement makes the
retriever end-to-end trainable and allows for end-to-end training from the base model to the retriever.

3.3.1. Differentiable k-nearest Instance Selection
The differentiable k-nearest instance selection is differentiable by weighted selection over multiple instances and

processing using the selection weights to construct the model, while the usual k-nearest instance selection is non-
differentiable because a single discrete instance is selected as shown in Equation (6). This process ensures that the
weights of the first to k-th instances are determined in order, as described in Algorithm 1. The algorithm calculates
the distance s between all the target instances in advance and obtains the selection weights for virtually selecting the
instances. Then, instances with heavy weights in previous steps are penalized, and the weights in subsequent steps
are computed based on them so that the instances once heavily weighted process almost exclusively. We assume
the distance Dist(A, B) is an average of cosine distance between A ∈ RL×Demb and B ∈ RL×Demb as defined in
Equation (7), where Dist is bounded from 0 to 1 (0 ⩽ |Dist| ⩽ 1).

Dist(A, B) = 1− 1

L

L∑
l=1

A⊤
l Bl

|Al||Bl|
(7)

This process provides k weights for each instance, indicating the selection of the first to k-th instances. The
weights Wk become a nearly one-hot vector since the softmax function computes the selection weight. When using
this k-nearest instance selection, the neural model is constructed using the weights to virtually select instances with
trainable settings.
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3.3.2. Neural Prompting with Trainable Instance Selection
We propose a neural prompting that creates soft prompts for the text generation model in a differentiable form

from the selection weights obtained via differentiable k-nearest instance selection, while the general retriever creates
prompts as text. We adopt differentiable k-nearest instance selection of Section 3.3.1 as a retrieval process. As an
embedding process, a soft prompt is created by weighted summing of the embeddings over the instances using the
selection weights. The retriever becomes differentiable by composing with these two processes.

For the detailed procedure, the selection weight W ∈ Rk×L is computed in the retrieval process as shown in
Section 3.3.1. The source of soft prompt P ∈ Rk×L×Demb for the k-th virtual instance is shown in Equation (8),
where flatten P become the soft prompt P′ ∈ RkL×Demb .

Pi =
∑

j

Wi jE j =

∑
j

Wi je1j ,
∑

j

Wi je2j , . . . ,
∑

j

Wi jeL
i

 (8)

The prompt and a text generation model can be connected by joining the prompt to the input series embeddings.
The length of the prompt kL is added to the length of the input series |x|, resulting in a new series with the length of
|x|+ kL.

3.3.3. Training
The training of the retriever proposed in Section 3.3.2 is simply a matter of optimizing the model created by the

retriever using the soft prompt with the objective function of the target task. Since the retriever consists entirely of
differentiable operations, the retriever model is end-to-end trainable. Therefore, when connected to a text generation
model and trained for the target task, it can be trained end-to-end, including retriever. Our method innovatively
transforms the kNN retriever into an end-to-end trainable model, enhancing its applicability and performance of
relation extractors.

The primary challenge in training the retriever is its computational intensity, which requires calculating dis-
tances for all instances in D. To mitigate this during training, we employ a strategy of random sampling a subset
of instances. This approach significantly reduces the computational burden while maintaining the efficacy of the
retriever.

Since the base model is subsequently connected from ETRASK, a method is needed to train both the retriever
and the base model stably. In particular, the performance of the retriever is easily affected by the training process of
the text generation model, as it is the first stage of the text generation model process. Therefore, a warm-up step in
which only the retriever is trained in advance enables stable training.

4. Evaluation of Relation Extraction Performance

This section evaluates the relation extraction performance and compares the ETRASK integrated model to exist-
ing relation extraction methods. Section 4.1 presents the settings of subsequent experiments about datasets, baseline
methods, model settings, and training parameters. Based on the settings, Section 4.2 shows the performance evalu-
ation of our proposal by comparing other methods. Section 4.3 is the ablation study to show the elements that affect
performance.

4.1. Experimental Settings

To assess the effectiveness of our relation extraction method, we utilized the TACRED dataset [51], a standard
benchmark in the sentence-level relation extraction, where each instance has an entity pair within a sentence and
a gold relation between the pair. To understand the impact of training data size, we experimented with reduced
training data scenarios for TACRED: 100%, 10%, 5%, and 1% of the entire dataset, following existing study [52].
The statistics for each scenario are shown in Table 1. Following the official evaluation settings, we evaluated the
micro-averaged F1 score treating the no_relation class as a negative example for TACRED. The mean values
are reported for three runs with different random seeds. We calculate the loss to development data for every 100
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Table 1
Statistics of the TACRED Dataset with Different Proportion.

Proportion Train Dev. Test
100% 68,125 22,631

15,509
10% 6,815 2,265

5% 3,407 1,133
1% 682 227

The head entity is ${head entity}. The tail entity is ${tail entity}. The type of ${head entity} is ${label of head entity} . The
type of ${tail entity} is ${label of tail entity} . ${input sentence} .

Fig. 2. The input template of SuRE

update steps and report the score obtained when training in early stopping with the early stopping patience of 3 for
the TACRED dataset.

We compared our method against state-of-the-art models like SuRE (based on Pegasus-large) [24], Deep-
Struct [15], kNN-RE [25], and NLI_DeBERTa [52]. SuRE is, as described in Section 2.3, the model extracting
relation with the text generation model by formulating the relation extraction task to the text summarization task
using Seq2Seq LM based PLM. DeepStruct is a PLM trained for structured prediction tasks, which include relation
extraction. kNN-RE performs kNN algorithm on the PLM embedding space of relation instances. NLI_DeBERTa
extracts relations with natural language inference task, which recognizes fact inclusion in hypothesis, by identifying
whether a verbalized relation is included in a target text.

We employed SuRE [24] as a generation-based relation extraction model. We introduced the ETRASK to SuRE by
adding soft prompts into the input sequence between the BOS token and the following prompt. The hyperparameters
of the SuRE were the same as those of the original research. The templates were the same as in the original paper:
the templates for the SuRE input were in the form of Figure 2, from which the summary templates defined for each
relation label are predicted. Templates for summarization were proposed in SuRE; for example, for the relation label
“org:founded_by”, “${head entity} were founded by ${tail entity}”. The search beam width, a parameter used
in SuRE classification, was set to 4, the same value as in the original paper of SuRE.

Our evaluation used the Flan-T5 large model [32] in the SuRE flame work with and without the addition of
ETRASK because the tuning before experiments showed the training of Pegasus-large [53] based SuRE with
ETRASK was unstable. Our method used two PLMs, the base relation extraction model and the embedding model
for the retriever, so the larger models were not acceptable for our computational resources. We conducted trials
introducing 10-neighbor instances as prompts, i.e., k = 10, pretraining the retriever for 300 steps before end-to-end
training as the warm-up step. Due to computational constraints, the database D was constructed from training data
relation instances, limited to randomly selected 5,000 instances. At the training time, 32 instances are randomly
sampled as the subset of D. For the embeddings E, we used the entity and relation representations of PLM by av-
eraging their spans, where the PLM input was created by concatenating the template in Figure 2 with the relation
template. The entity spans were underlined parts of Figure 2. The relation span was the relation template part when
the database was embedded and the EOS token when the prediction target was embedded. We applied Low-Rank
Adaptation (LoRA) [33] to Flan-T5 with rank r = 32 and dropout rate 0.1 to all kinds of layers of Transformer. The
dropout rate was set to 0.1. AdamW was used to optimize the models, with a learning rate of 5× 10−4 for Flan-T5
and 1 × 10−3 for the other parameters, and weights of 5 × 10−6 for the bias and layer normalization parameters.
The batch size was set to 64. The parameters used for evaluation were those used when early stopping completed
training with patience set to 5. A single NVIDIA A100 was used for each experiment.

4.2. Extraction Performance Comparison

The results in Table 2 indicate that ETRASK consistently improved performance from the model without
ETRASK for the TACRED dataset. The results confirm that ETRASK can enhance relations extraction by text
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Table 2
Comparison of Relation Extraction Performance [%]

100% 10% 5% 1%

DeepStruct [15] 76.8 – – –
SuRE (Pegasus) [24] 75.1 70.7 64.9 52.0
NLI_DeBERTa [52] 73.9 67.9 69.0 63.0
kNN-RE [25] 70.6 – – –

SuRE (Flan-T5) 71.4 ±1.6 68.5 ±1.5 65.0 ±3.1 53.5 ±1.4
+ ETRASK 73.3 ±0.5 71.5 ±0.5 68.3 ±2.0 54.6 ±1.1

Table 3
Ablation Study Results [%]

SuRE 68.5
SuRE + ETRASK 71.7

NO RETRIV. TRAINING 69.2
NO WARM-UP 70.7
RANDOM 71.0
CLS 68.8

generation. Additionally, ETRASK outperforms the existing models, SuRE and NLI_DeBERTa, in scenarios with
limited training data (10%). This is the new state-of-the-art result for the setting of the TACRED dataset under the
10% setting.

Comparing Pegasus-based and T5-based SuREs, the Pegasus-based SuREs performed better. This is because
Pegasus is a model created specifically for the summarization task, which matches SuRE’s objective. However,
when ETRASK was introduced, the training was not stable for the Pegasus-based model, the learning collapsed,
and the relation was not predicted well. Even in this situation, the addition of ETRASK boosted the performance of
the Flan-T5-based model and achieved the best performance on the 10% setting.

Compared to another instance-based method, kNN-RE, adding generation-based prediction of relations to neigh-
borhood method-based inference confirms the improved extraction performance. This proves that simple instance
utilization is insufficient and that inference capability is essential.

4.3. Ablation Study

This section delves into the factors influencing the extraction performance observed in Section 4.2 and investigates
the model’s behavior. We conducted an ablation study in the 10% training instance setting for the TACRED dataset,
where our method showed notable improvements.

Our ablation study aimed to pinpoint the elements critical to our method’s enhanced performance. We examined
various scenarios: employing k-nearest neighbor instances without retriever training (NO RETRIV. TRAINING),
omitting the warm-up phase in Retriever training (NO WARM-UP), using randomly chosen instances (RANDOM),
and utilizing CLS token representations (CLS).NO RETRIV. TRAINING aims to investigate the usefulness of the
end-to-end trainable retriever by using the initial parameter for the retriever and operations of ETRASK. NO WARM-
UP omits the warm-up step but trains the retriever, which checks the stability effect of the warm-up. RANDOM picks
up instances randomly and uses soft prompts in the same embedding process as ETRASK, where the experiment
checks retrieval process training effectiveness. CLS changes the embedding process not to use relation extraction-
specific representation by using the CLS token representations. The other settings of experiments are the same as
settings in Section 4.1 except for the number of runs for evaluation that changed from 3 runs to 1 run.

The results in Table 3 reveal that omitting any of these components results in lower F1 scores, underscoring
their collective importance. The NO RETRIV. TRAINING caused a performance loss of 2.2 percentage points, which
was not much different from the performance of SuRE without any retrievers. This indicates that in the relation
extraction with text generation model, the retriever needs to be trained for the relation extraction objective to improve
performance when relation instances are introduced with the retriever.
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Fig. 3. Change in Extraction Performance with the Number of Instances k Used in Prompts

In the NO WARM-UP case, performance was decreased by 1.0 percentage points; the decrease was relatively
smaller than those in the other cases, NO RETRIV. TRAINING and CLS. This may be due to the lack of treatment
for convergence stability, although similar processing and training of the model is carried out.

In the case of RANDOM, where random instances are used without training the retrieval process, the performance
drop is relatively small, around 0.7 percentage points. Compared to the case where no retrieval process is used (i.e.,
SuRE), performance improvement is observed by introducing randomly selected instances. This suggests that the
embedding process and the text generation model can pick and discard instances and obtain helpful information
from them.

For comparison of representations used in ETRASK, the performance with the representation of CLS degraded
by 2.9 percentage points from the representation engineered for relation extraction. Additionally, the performance
was almost the same as one of SuRE without a retriever. This confirms that engineering a representation specializing
in relation extraction is essential to using ETRASK.

Overall, this analysis highlights the factors that contribute to the performance of our proposed method, empha-
sizing the importance of instance selection and training in achieving optimal relation extraction outcomes.

5. Retriever Analysis

Section 4 showed the performance improvement by our proposed ETRASK that was integrated into the text gen-
eration model (Section 4.2). The ablation studies in Section 4.3 showed the factors that contributed to performance.
However, it is not yet clear what happened inside ETRASK that led to the improvements. Therefore, we also ana-
lyzed the retriever from the perspective of instances. Section 5.1 confirms the impact of the instances by changing
the number of virtual instances created by the retriever and checking their behavior at that time; Section 5.2 shows
what instances were retrieved and used after training by statistically analyzing the instances to analyze the actual
retrieved instances directly.

5.1. Performance Variation with Number of Instances

We investigated the sensitivity of the number of instances k by varying k from 0 to 20, where 0 instance means
ETRASK is not used. The results of k versus F1 score, Precision, and Recall are shown in Figure 3. Although the f1
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Table 4
What retrieved instances contain. Label means the relation label is the same. Entity means either head entity or tail entity is contained. Related
means either head entity, tail entity, or relation label is contained.

Label Head entity Tail entity Entity Related

top-1 72.2 7.1 3.4 10.0 73.6
top-3 67.9 8.3 4.4 12.0 77.4
top-5 61.8 10.9 6.3 15.7 78.9
top-10 60.4 18.6 10.9 25.8 82.1

score reached its maximum at k = 10, there was no significant change in the 1 ⩽ k ⩽ 15 interval. On the other hand,
the balance between precision and recall changed significantly. In the 0 ⩽ k ⩽ 5 interval, precision increased, and
recall decreased as overall performance improved. Conversely, recall gradually increased, and precision decreased
in the interval k > 5, except for k = 20. Since precision and recall were balanced at k = 10, the F1 score was
considered the largest, defined as the harmonic mean of the precision and recall.

This characteristic is useful in real-world applications and can be used to make performance trade-offs to suit the
situation. For example, an application that requires users to retrieve necessary relational information could use a
larger k for coverage.

5.2. Retrieved Instances

Since the characteristics of retrievers are most evident in retrieved instances, we investigate the retrieved instances
in ETRASK. However, because instances are virtually selected instead of selected in ETRASK, it is impossible to
indicate which instances were chosen explicitly. Therefore, we analyze k nearest instances specified by the actual
kNN algorithm on the feature space after training of ETRASK, which is similar to instances used in ETRASK.

Statistics are taken in association with the extraction target, the retrieval query, to analyze retrieved instances. The
targets for statistics are the relation labels, head entities, and tail entities, which are closely related to the relation
extraction. The relation labels are judged to determine whether the retrieved instances’ relation labels match the
extraction target’s correct relation label. For the entities, check whether the entity is included in the instance as a
string. The statistic is the proportion of the top-k instances containing the object.

The statistics in Table 4 show the ratio of the retrieved instances that contain objects related to relation extraction.
First, for the Label column, the percentage gradually decreases from top-1 to top-10. This indicates that the feature
space of the retrieval is structured based on the type of relation labels and that instances with the same relation
labels are placed close to each other. For the Entity column, the percentage gradually increases from top-1 to top-
10, indicating that the inclusion of entities is a second retrieval perspective, although the percentages are less than
those in the Label column. The results for the Head and Tail entity columns show that instances containing the
head entity are more intensive. From the results of the top-10 row in the Related column, more than 80% have been
selected that contain labels or entities relevant for relation extraction. This may be due to the use of relation and
entity features as the features used for retrieval. As a result of end-to-end training from these features, the distance
becomes smaller when the relation labels match or entities are included.

6. Conclusions

This study introduced a novel approach to relation extraction using the text generation model by implement-
ing an end-to-end trainable retriever through differentiable k-nearest neighbor selection. Existing retrievers cannot
train end-to-end due to the non-differentiable environments of the instance selection part and the integration part of
instances. Therefore, we propose a fully differentiable end-to-end trainable soft kNN retriever ETRASK by differen-
tiable k-nearest neighbor selection and integration as a soft prompt. Our method, centered around neural prompting,
significantly enhances the retriever’s capability to select instances for use in prompts.

Our experimental findings underscore this approach’s effectiveness, particularly in scenarios with limited train-
ing data. We evaluated the model with ETRASK and compared the model without ETRASK and existing methods
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with the TACRED dataset. Our experiment showed our proposal ETRASK consistently improved from the baseline
model without ETRASK. Moreover, the model reported outstanding performance in low-resource settings, espe-
cially the new state-of-the-art for the TACRED dataset in the 10% training data setting.

Our analysis confirms that the number of virtually composed instances introduced by ETRASK can balance the
precision-recall trade-off. We also confirmed that the end-to-end trained retriever referred to the instances involved
in relation extraction. However, our study also identified limitations in our method’s performance when dealing with
sufficient training instances.

Future work could focus on refining the retriever’s training process to adapt more effectively to varying sizes of
training datasets and exploring ways to optimize instance selection for a broader range of data scenarios.
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