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Abstract. Industrial maintenance activity data is typically stored in unstructured form within the databases of maintenance 
management systems. For this reason, effectively exploring the data and uncovering valuable patterns concealed within it is 
often highly challenging. Consequently, historical maintenance data is seldom analyzed or reused for purposes such as failure 
prevention, maintenance history reconstruction, or maintenance diagnostics. If the knowledge embedded in maintenance data is 
liberated and formalized, it can significantly improve the intelligence of maintenance management systems by enabling 
knowledge reuse.  This research aims to help advance the progression from data to information and knowledge through data-
driven creation of knowledge graphs built from the unstructured data available in maintenance work orders. A Simple 
Knowledge Organization System (SKOS) thesaurus is used to support automated entity extraction from text. The thesaurus is 
extended with the aid of a fine-tuned Large Language Model (LLM). A formal ontology provides the semantics of the knowledge 
graph. A software tool is developed to streamline the semi-automated text-to-graph translation process. The proposed framework 
was validated based on 100 work orders extracted from the computerized maintenance management system of a construction 
equipment manufacturer. The experimental validation proved that graph-based representation of work order data could effec-
tively enhance information retrieval, analysis, and pattern extraction particularly if it is supported by formal ontology and rule-
based reasoning methods. 
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1. Introduction 1 

Maintenance is defined as the actions intended to retain an asset or restore it to a state in which it can perform a 2 
required function [1]. In order to minimize machine downtime and maximize the availability of critical assets and 3 
equipment uptime, manufacturers use a variety of maintenance management tools and systems with varying levels 4 
of automation and data processing capabilities. In particular, Computerized Maintenance Management Systems 5 
(CMMS) are widely used in most industries as a centralized platform to manage, plan, and organize preventive and 6 
planned maintenance activities [2]. Despite the widespread adoption of maintenance automation solutions in the 7 
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industry, maintenance management is still a highly human-centric process since efficient acquisition, formalization, 1 
and reuse of maintenance knowledge is a major challenge [3].  2 

One of the key features of CMMS is Work Order Management which entails creating, assigning, and tracking 3 
work orders for maintenance tasks. A Maintenance Work Order (MWO) is a detailed document that contains infor-4 
mation about a specific maintenance task or job. Key elements typically included in a maintenance work order are 5 
asset information, problem description (observation), priority level, assigned personnel, and diagnosis and comple-6 
tion notes. Below is an example problem description in a typical MWO:  7 

 8 
“ .. the conveyor belt on equipment ID EQ-987654321 is misaligned, causing excessive fric-9 
tion and abnormal noise. The misalignment is near the drive pulley. There are visible signs 10 
of wear and tear on the belt surface”  11 

 12 
This example describes a failure (misalignment) for a conveyor belt, its associated effects (excessive friction, 13 

abnormal noise), and the potential cause (belt wear).  MWO records are often stored in the semi-structured data-14 
base of CMMS packages for archiving, reporting, or analysis purposes [4]. Enormous collections of historical 15 
maintenance logs, representing a wealth of diagnostic knowledge, can be found in most industries. The knowledge 16 
embedded in MWOs can be used to inform the maintenance diagnosis process. However, the data provided by 17 
MWOs are often under-used since it is not presented in a computable form [1]. Additionally, the data is often in-18 
complete and flooded with misspellings, specialized vocabulary, abbreviations, and contradictory statements since 19 
they are prepared by human technicians and reliability engineers with varying levels of experience and back-20 
ground knowledge.  There is a need to develop systematic methods and models for converting work order data 21 
into more formal representations to improve the reusability and findability of the knowledge embedded in MWOs. 22 
As the number of MWO records increases, manual search and analysis of those records becomes more cumber-23 
some and less efficient. Without proper tools and techniques for analyzing, mining, and contextualizing the data, 24 
the usefulness of maintenance logs is severely limited. 25 

Advanced techniques supported by Natural Language Processing (NLP) and Machine Learning (ML) can be 26 
applied to extract useful patterns and rules from the raw text that are otherwise hidden in the historical mainte-27 
nance work order data. These techniques are particularly useful for cleaning maintenance logs, extracting im-28 
portant terms, classifying, and clustering similar work orders, and identifying associativity relationships between 29 
the extracted terms. One difficulty in the effective analysis of MWO data using NLP is that the size of MWO data 30 
is often smaller than what is needed by most NLP tools [5].  31 

Current methods of representing historical maintenance data primarily involve traditional relational databases 32 
and spreadsheet-based systems. The traditional methods often fall short of capturing the complex relationships and 33 
interdependencies between different pieces of maintenance data and properly contextualizing the data. Converting 34 
the MWO data into a knowledge graph provides a formal and semantically rich representation of maintenance in-35 
formation. Knowledge graphs are quickly becoming popular models for data representation since they promise to 36 
bridge the gap between the data and its meaning, and they serve as the natural data model for data integration. 37 
Knowledge graphs help maintain data quality and consistency. Additionally, by structuring work order data into a 38 
knowledge graph, the contextual information associated with each maintenance task can be represented, thus provid-39 
ing a more comprehensive view of the maintenance landscape. If the knowledge graph is aligned with a formal 40 
ontology, then additional benefits such as automated reasoning and inference can be obtained.   41 

There have been some major efforts for automated generation of knowledge graphs from MWO data supported 42 
by deep learning and the NLP pipeline [6]. Such works are significant achievements in this field, but they still need 43 
to be further developed to address some shortcomings, including a lack of alignment with formal ontologies.     44 

The underlying research challenge that motivates this work is to generate a semantic knowledge graph, aligned 45 
with a formal ontology, from MWO text. This work proposes a hybrid approach that incorporates top-down methods 46 
for generation and curation of knowledge models by domain experts as well as bottom-up methods for data-driven 47 
extension and validation of those models.  The main contributions of this paper include: 48 

 49 
1. Introducing KnoWo, an open-source, Java-based tool designed for the human-assisted generation of RDF 50 

knowledge graphs from maintenance work order text. 51 



2. Development of formal and reusable thesaurus-based on Simple Knowledge Organization System (SKOS) 1 
for capturing the key concepts in maintenance work orders, supported by fine-tuning of Large Language 2 
Model (LLM).  3 

3. Developing a software tool for semi-automated generation of RDF knowledge graph from MWO text.  4 
4. Introducing Work Order Ontology (WOO), an OWL-based framework designed for semantically structur-5 

ing maintenance work order data, enabling inference and search capabilities through alignment with the 6 
Basic Formal Ontology (BFO).  7 

 8 
The remainder of this paper is structured as follows. Section 2 provides a review of the related work. The pro-9 

posed framework for text-to-KG conversion is introduced broadly in section 3. The thesaurus and ontology are 10 
introduced in sections 4 and 5 respectively.   Section 6 introduces KnoWo, a tool for the generation of knowledge 11 
graphs from MWO text. The paper ends with concluding remarks.   12 

2. Related Works  13 

This section provides an overview of the existing works related to creating knowledge graphs from maintenance 14 
work order text.  Also, some of the ontological efforts toward maintenance knowledge representation are reviewed.   15 

In the study by Wang et al. [7], a collaborative learning cascade binary tagging framework is introduced, aiming 16 
to extract essential insights from the unstructured maintenance records supplied by China Eastern Airlines. The 17 
authors successfully built a knowledge graph for diagnosing faults in the civil aircraft environmental control system, 18 
incorporating the acquired knowledge into the graph structure.  19 

Ding et al. [8] propose a semi-supervised approach to failure analysis knowledge graph construction. Their 20 
method utilizes a semantic module to extract contextual details and identify failure modes from maintenance records. 21 
Trained with unlabeled records, it incorporates hard pseudo-label acquisition and a novel self-training algorithm. A 22 
taxonomy induction module then extracts failure elements and interrelationships, aiding in decision-support 23 
knowledge graph creation. 24 

Moreover, Peng et al. [9] proposed an automatic knowledge graph framework for production line fault mainte-25 
nance. They construct a pattern layer of the production line fault maintenance knowledge graph, utilizing the BERT-26 
BILSTM-CRF algorithm to extract entities and a template-based method for relationships. The inclusion of an entity 27 
recognition dataset further strengthens their study.  28 

In a comprehensive study, Stewart et al.,  [10] introduced an innovative tool for extracting and visualizing tech-29 
nical information from maintenance work orders (MWOs). They highlighted the challenges of interpreting unstruc-30 
tured, jargon-rich short texts within MWOs and presented a solution through a technical language processing-based 31 
approach. The proposed system, consisting of Echidna, an intuitive query interface, and MWO2KG, a deep learning 32 
tool, automates the construction of knowledge graphs from both unstructured texts and structured fields of MWOs 33 
simultaneously. This advancement enables engineers to efficiently access and query historical asset data by func-34 
tional location or asset class, identify failure modes, validate maintenance strategies, and improve processes. More-35 
over, the open-source availability of these tools under the Apache 2.0 License facilitates their adoption and adapta-36 
tion in various industry contexts. The study also demonstrated the tools' effectiveness through industry-provided 37 
data, offering a leap toward leveraging unstructured technical texts for engineering knowledge and decision support. 38 

In recent decades, a variety of information science techniques have been developed to enhance knowledge man-39 
agement and dissemination across different disciplines. Ontologies have proven effective in tackling ambiguity and 40 
consistency issues specific to knowledge sharing and reuse in various domains. Essentially, ontologies enable effi-41 
cient dissemination and information exchange by explicitly defining concepts, attributes, and relationships. Their 42 
provision of consistent structures and semantics ensures the validity of the communicated information [11].  43 

Ebrahimipour and Yacout [12] present a methodology for knowledge representation using ontology concepts, 44 
overcoming heterogeneity and inconsistency in maintenance records. Their approach combines Bayesian Graphical 45 
Model (BGM), Web Ontology Language (OWL), RDF, and ISO standards, constructing transparent cause-effect 46 
knowledge for maximum shareability and accessibility.  47 

Ringsquandl et al. [13], however, tailored Ontology-Based Data Access (OBDA) to create an RDF knowledge 48 
graph for Siemens smart factories, focusing on optimizing maintenance operations. They illustrated the digital twin's 49 



role as an interface to the physical system, enabling optimization and self-organization without direct interaction. 1 
Their emphasis on improving system performance involved identifying missing information between instances of 2 
a class. The knowledge graph encompassed master, operational, and transactional data, augmenting the vector space 3 
of log files generated by manufacturing equipment. Following OBDA development, a machine learning approach 4 
was employed to detect missing entities in RDF triples. 5 

Xu et al.  [14] proposed an ontology-based fault diagnosis method for loaders, addressing complex fault diagnosis 6 
knowledge. The technique incorporates ontology, Case-Based Reasoning (CBR), and Rule-Based Reasoning (RBR) 7 
to achieve effective and accurate fault diagnoses, validated through a case study.  8 

Hossayni et al. [15] pioneered the development of the SemKoRe knowledge graph to collect and disseminate 9 
failure data among interconnected users. The SemKoRe maintenance process involves diagnostics to identify the 10 
causes and impacts of failures, facilitate accurate repairs, and enhance machine maintenance for future occurrences. 11 
Two critical limitations in traditional systems like CMMS and ERP, specifically issues related to sharing mainte-12 
nance data across different locations and the lack of semantics in user interactions, served as the primary motivation 13 
for their research. Through the creation of a flat ontology using two types of machine parts, the authors established 14 
a system where machines generate instances of the Failure Occurrence Class containing comprehensive information 15 
about each failure, contributing to the development of a robust knowledge graph.  16 

In coal mine equipment maintenance, Zhang et al. [16] introduced a knowledge graph system, utilizing the coal 17 
mine equipment maintenance ontology (CMEMO) to establish unified representation, integration, and sharing of 18 
knowledge. They propose a novel BERT-BiLSTM-CRF model for enhanced named entity recognition, seamlessly 19 
integrating it with the ontology through the Django application framework to build an efficient knowledge graph 20 
system. 21 

Pedro et al. [11], on the other hand, introduced a novel information-sharing system employing linked data, on-22 
tologies, and knowledge graph technologies. Their approach utilizes RDF and SPARQL (SPARQL Protocol and 23 
RDF Query Language) for effective processing and conversion of accident case data, showcasing improved infor-24 
mation access, retrieval, and reusability.  25 

In a more recent work, Papadakis et al. [17] proposed a knowledge acquisition pipeline utilizing XML transfor-26 
mations, pattern matching, and elastic search to populate a domain-specific ontology due to the importance of au-27 
tomating rolling stock maintenance to enhance train reliability. They address the challenge of unstructured infor-28 
mation in maintenance manuals, hindering computerized analysis. This results in a knowledge graph facilitating a 29 
comprehensive description of maintenance tasks, promoting operational efficiency in rail transport. 30 

With recent advances in the field of generative AI, and LLM in particular, researchers have begun adopting LLM-31 
based techniques for MWO data processing and classification.  Stewart et al. [18] conducted the first investigation 32 
into the effectiveness of Large Language Models for failure mode classification. They concluded that fine-tuning 33 
ChatGPT 3.5 with annotated datasets significantly improves the performance of the model (F1=0.8) compared to 34 
off-the-shelf GPT 3.5 (F1=0.6) and other text classification models such as Flair (F1=0.6). The annotated dataset in 35 
their work maps MWO observations to failure modes based on ISO 14224 classes, which is related to the collection 36 
and exchange of reliability and maintenance data for equipment in the petroleum, petrochemical, and natural gas 37 
industries. 38 

Based on the review of the current body of work, it is evident that significant progress has been made in lever-39 
aging various techniques and methodologies for constructing knowledge graphs from unstructured maintenance 40 
records. However, notable gaps remain, including the need for further exploration of semantic interoperability, 41 
scalability, and integration with emerging technologies such as generative AI as well as axiomatic ontologies. Future 42 
research should aim to bridge these gaps. 43 

3. Proposed Framework 44 

The proposed framework for the generation of a knowledge graph uses two semantic models, namely, a thesaurus 45 
and an ontology.  The thesaurus provides lexical semantics, whereas the ontology provides logical and structural 46 
semantics. The thesaurus is initially developed semi-automatically with the support of an NLP tool and then ex-47 
tended automatically through a fine-tuned LLM.  The thesaurus concepts are mapped to the ontology classes to 48 
enable semi-automated text translation into knowledge graphs. The generated knowledge graph, which uses 49 



Resource Description Framework (RDF) syntax and semantics, is more available computationally compared to 1 
natural language text and can be queried or reasoned over to detect latent or recurring patterns in the data. The 2 
proposed approach adopts a human-in-the-loop (HITL) strategy since some contextual and common-sense 3 
knowledge is needed for work order text disambiguation and decomposition into a set of interrelated concepts with 4 
well-defined semantics. The level of involvement of human experts gradually diminishes as the thesaurus and the 5 
ontology become more mature and stable.  6 

4. Maintenance Diagnostics Thesaurus  7 

The Maintenance Diagnostics Thesaurus (MDT) is a controlled vocabulary for maintenance terms that uses the 8 
Simple Knowledge Organization System (SKOS) [19] for its syntax and semantics. The thesaurus is used to facili-9 
tate automatic detection and extraction of key maintenance concepts from the work order text. SKOS is a standard 10 
published by World Wide Web Consortium (W3C) that provides a structured framework for building controlled 11 
vocabularies such as thesauri, concept schemes, and taxonomies to be used and understood by both human and 12 
machine agents. SKOS models are considered to be lightweight ontologies as they do not have the expressivity of 13 
heavyweight, axiomatic ontologies such as OWL models. For this reason, their development cost is relatively low, 14 
and they can be readily extended in a decentralized fashion by various user communities.  15 

The main class in a SKOS thesaurus is skos:Concept. In SKOS standard, a concept can be viewed as an idea, 16 
notion, or unit of thought. What constitutes a unit of thought can be subjective. However, this flexible, rather than 17 
restrictive definition of concept in SKOS standard is quite useful for building thesauri and classification schemes 18 
that are not necessarily supported by precise, logic-based semantic definitions. For example, in the domain of in-19 
dustrial maintenance, notions such as failure, defect, observation, maintenance action, failed state, and asset fit in 20 
the definition of skos:Concept. They may or may not point to real entities, but they represent some notions that are 21 
of significance in the maintenance domain.  22 

Each concept (entity with unique semantics within a specific domain) in SKOS has exactly one preferred label 23 
(skos:prefLabel) and may have several alternative labels (skos:altLabel) which are the synonym terms frequently 24 
used pointing to the same concept. skos:hiddenLabel is used for capturing the frequent typos and misspellings.  25 
Narrower labels (skos:narrower) indicate a more specific form of their broader labels (skos:broader) having a hier-26 
archical link, and the associative relationship is defined through related labels (skos:related). For example, Fatigue 27 
Breakage is a more specific (narrower) type of Breakage. Defect, for example, is the broader concept for Dent or 28 
Crack. Engine Stalling can be made skos:related to Engine since the former is a failure mode for the latter. The 29 
lexical labels (preferred, alternative, and hidden) of a concept are the primary tokens used for detecting the occur-30 
rence of a concept in a text.  31 

The MDT captures a set of vocabulary often used by technicians when documenting their observations during 32 
the diagnosis process. Although the work orders usually contain information about the corrective actions as well, 33 
the current scope of the MDT is limited to the problem (failure) descriptions only. MDT concepts are categorized 34 
under seven concept groups or schemes, namely, Action, Artifact, Condition, Event, Function, Material Substance, 35 
and Property. The lower-level concepts under each scheme are collected through tagging relevant terms in an ex-36 
perimental dataset. The experimental dataset is collected from the CMMS of a construction equipment manufacturer. 37 
The MDT can be exported in the RDF-JSON data interchange standard and shared across multiple platforms that 38 
are compatible with SKOS standards [8].  39 

Fig 1 shows examples of the concepts under the Condition concept scheme. These concepts are often used by 40 
maintenance technicians to describe the observed condition of an asset (machine or equipment). Insufficient Torque, 41 
for example, is a narrower concept for Degraded Functioning that itself is a narrower concept for Nonconforming 42 
Condition. Another utility of the MDT is capturing the alternative terms that are often used to refer to the same 43 
concept. For example, as shown in Figure 2,  hydraulic leak, lube leak, hyd leak, and oil leak are synonym terms 44 
that are used for labeling the same concept. Using SKOS properties preferedLabel and altLabel, it is possible to 45 
select one preferred label for a given concept and assign multiple alternative labels as needed.  46 

 47 
 48 



	 	
 1 

Fig 1. Examples of concepts under the “Condition” concept scheme. 2 
 3 

 4 

 5 
 6 

Fig 2. Broader and Related concepts for Leaking Oil along with its alternative labels 7 

 8 
The development and curation of the thesaurus is facilitated by two tools, namely, Nestor [20] and SKOS Tools 9 

[19]. Nestor is a tool that supports structured data extraction from Maintenance Work Orders (MWO). Nestor uses 10 
various NLP and text analytics methods in the background.  Nestor toolkit is used to automatically extract and 11 
manually classify the tokens within the text under a few broad categories such as item (component, equipment), 12 
problem, and solution. SKOS Tool is a web-based toolkit developed internally for creating and managing SKOS 13 
thesauri. One of the features of SKOS Tool is that it enables the user to upload the text (cut & paste or file upload), 14 
and then select the terms and phrases of interest and classify them under the appropriate broader concepts in an 15 
interactive fashion. In this way, the thesaurus is extended incrementally.  16 



4.1. Nestor for preliminary feature extraction from MWOs 1 

Nestor toolkit is a part of the Knowledge Extraction and Application for Smart Manufacturing (KEA) project, 2 
within the Systems Integration Division at the National Institute of Standards and Technology( NIST). Nestor was 3 
developed with the objective of contextualizing and adapting NLP models to technical text that often contains spe-4 
cialized vocabulary with overloaded meanings and jargon. Off-the-shelf NLP systems with limited context sensi-5 
tivity often fail to efficiently parse through technical texts such as maintenance work orders [21].  6 

Analyzing large amounts of MWOs manually can be a daunting task since the short texts provided in MWOs are 7 
usually full of technical terms and they are noisy and ambiguous. In this work, the Nestor toolkit is used for prelim-8 
inary analysis of work orders and extraction of the key features that can be later imported into the SKOS thesaurus. 9 
The main steps in the workflow of Nestor include importing data (in CSV format), cleaning data, tagging and 10 
classifying the extracted words using Nestor UI, and exporting an annotated CSV file that includes the key terms, 11 
their class code, their related tags. The Nestor UI is depicted in Fig 3. This interface shows single word (1–Gram) 12 
analysis but Nestor is capable of multi-word analysis as well.  13 

 14 

  15 
Fig 3. Partial View of Nestor Tool used for Data Tagging. 16 

Nestor receives the MWO raw text in CSV format as the input. The user has the option of selecting the columns 17 
that need to be analyzed. Nestor then automatically identifies the terms or phrases that might be of significance for 18 
further analysis within the selected columns. In the single-word analysis, Nestor uses three primary categories (Item: 19 
I, Problem: P, and Solution: S) and two auxiliary categories (Ambiguous: U and Irrelevant: X). In the multi-word 20 
analysis, the tool uses Problem Item (PI) and Solution Item  (SI) as the available categories. An example of these 21 
classifications is given below in Table 1. Once the words have been determined, the word is manually classified by 22 
the user under the appropriate category by selecting the respective code (I, P, S, U, and X) . Each word is also tagged 23 
by a preferred alias. For example, the word ‘removed’ is tagged by ‘remove’ as its preferred alias that reduces it to 24 
its root form. Nestor has the ability to find similar words that can be tagged and classified together. For example, 25 
the words leaks, leak, leaking are synonyms that are classified as a Problem (P) and tagged by ‘leaks’1 as the 26 
preferred alias. Once tagging is concluded, Nestor generates a CSV file with annotations that is used as the input 27 
for the SKOS Tool. The Entity Extractor module of the SKOS Tool uses the annotated file as the input and further 28 
classifies the words under Item (I), Problem (P), and Solution (S) categories under more refined and detailed clas-29 
sifications provided by MCT taxonomies.   30 

 31 
 32 
 33 
 34 
 35 



 1 
Table 1. Test Maintenance Raw Text Input and Subsequent Outputs Identified by Nestor 2 

Raw	Text	 HYDRAULIC	 GENERATOR	 IS	 LEAKING	 OUT	 SHAFT	 SEAL.	 SHAFT	 SEAL	 FAILURE.	 RE-

QUESTED	SERVICE.	P/N	89065GT.	REPLACED	SEAL	

Item	

(I)	

Problem	

(P)	

Solution	

(S)	

Problem	

Item	(PI)	

Solution	

Item	(SI)	

Ambiguous	 Irrelevant	

generator,	

seal,	shaft	

leaking,	 fail-

ure	

replaced	 generator	

leaking,	 seal	

failure	

replaced	

seal	

P/N	

89065GT	

Requested,	

service		

4.2. SKOS Tool for concept extraction and classification  3 

The output of Nestor is an annotated CSV file that contains terms that are classified under the broad categories 4 
of item, problem, solution, problem item, and solution item. However, the MDT contains more detailed taxonomies. 5 
For example, an item can be an Asset, a Component, or a Functional unit. A term that is classified as a problem by 6 
Nestor can be further classified under Degraded Functioning, Not Functioning, Undesirable Behavior, and so on.  7 
SKOS Tool can be used for a more granular classification of the concepts identified by Nestor. The Term Selector 8 
function of SKOS Tool enables the user to upload the output of Nestor and then place the detected concept under 9 
appropriate broader concepts in MDT. Alternatively, the user can also directly insert the MWO short text (problem 10 
description) into the provided text box and then select the concepts and add them to the thesaurus. Figure 4 shows 11 
the Term Selector user interface.  12 

 13 

 14 
 15 

Fig 4. SKOS Tool Term Selector. The user can select and classify concepts under appropriate top concepts. 16 



   After the MWO text is inserted, then the tool automatically detects the existing concepts in the thesaurus through 1 
either their preferred label (highlighted in green) or their alternative label (highlighted in pink). In the example text 2 
in Figure 4, the concept generator already exists in thesaurus. However, hydraulic generator is not an existing 3 
concept. The user can highlight hydraulic generator , as a new candidate concept,  identify the appropriate broader 4 
concept from the parent concept drop-down menu (generator in this case) manually, and add the new concept to 5 
the thesaurus. The top-level structure of the thesaurus is fairly stable, but extension and branching happen at the 6 
lower levels. Different companies can have their own MDT populated with concepts pertaining to their own assets 7 
and failure types and modes. The top-level concepts in MDT, however, are generic enough that can be applied to a 8 
wide range of assets and operations, but the lower-level concepts can be specialized to meet specific needs of dif-9 
ferent industries or companies.  10 

 11 

4.3. Thesaurus Extension Supported by LLM 12 

The extension of the thesaurus using Nestor and the SKOS Tool requires human supervision, particularly with 13 
respect to concept classification. As the size of the maintenance dataset grows, manual classification becomes tedi-14 
ous and time-consuming. To automate the concept classification process, a procedure supported by LLM is intro-15 
duced in this section. We employ the controlled vocabulary provided by MDT to fine-tune the GPT-3.5 Turbo 16 
models [22]. The process begins with extracting concepts and their parent concepts from the thesaurus to construct 17 
the MDT dataset. The alternative labels of the concepts are also included in the dataset. This dataset is then split 18 
following an 8:1:1 ratio into training, validation, and test sets to ensure a comprehensive evaluation framework. The 19 
GPT-3.5 Turbo models are fine-tuned using the training and validation data, focusing on adapting the models to the 20 
specific nuances and requirements of the MDT dataset. Evaluation of all models, including the base and fine-tuned 21 
versions, is conducted on the test data, employing Precision, Recall, F1 Score, and Accuracy as key metrics. Given 22 
the imbalanced nature of the classes within the dataset, both Macro and Weighted Averages are calculated for the 23 
first three metrics to provide a more nuanced understanding of model performance across diverse class distributions.  24 

In Table 2, the performance of fine-tuned models is compared with their base counterparts, as well as with BART-25 
large-mnli [23], a zero-shot text classification model. The comparison between the base and fine-tuned models of 26 
GPT-3.5 Turbo, alongside BART-large-mnli, on the MDT dataset reveals that fine-tuning significantly enhances 27 
model performance in text classification tasks. The fine-tuned GPT-3.5-turbo-1106 model, in particular, demon-28 
strates superior Precision, Recall, F1 Score, and Accuracy, highlighting the effectiveness of model customization 29 
to MWO data. The fine-tuned model can suggest the appropriate broader concept from the parent concept list. The 30 
fine-tuned model enhances the capability to accurately suggest the most relevant broader concept from the prede-31 
fined parent concept list, thereby contributing to the automatic expansion of the MDT.  32 

With the classification support provided by LLM, the output of Nestor can be directly used as the input to LLM 33 
where the detected terms can be classified under specific broader concept withing the thesaurus.  34 
 35 

Table 2. Comparison of Different Models for Text Classification on MWO Data 36 

Model Precision Recall F1 Accuracy 

Macro 

Avg 

Weighted 

Avg 

Macro 

Avg 

Weighted 

Avg 

Macro 

Avg 

Weighted 

Avg 

GPT-3.5-turbo-0613 0.3571 0.2353 0.3571 0.2353 0.3571 0.2353 0.2353 

GPT-3.5-turbo-1106 0.1905 0.3137 0.2000 0.1765 0.1531 0.1975 0.1765 

BART-large-mnli 0.2917 0.2353 0.2917 0.2353 0.2917 0.2353 0.2353 



Fine-tuned GPT-3.5-

turbo-0613 

0.7200 0.6235 0.8000 0.7647 0.7500 0.6765 0.7647 

Fine-tuned GPT-3.5-

turbo-1106 

0.8333 0.7647 0.8333 0.7647 0.8333 0.7647 0.7647 

5. Work Order Ontology (WOO) 1 

Work Order Ontology (WOO) is an OWL ontology that can be used for the formal representation of entities and 2 
their relationships in the maintenance domain. The main objective of WOO is to provide the main constructs (classes 3 
and properties) needed for generating RDF knowledge graphs from collections of maintenance work orders. Provid-4 
ing a set of primitive classes and relationships is the minimum requirement for construction of an RDF knowledge 5 
graph. However, the true value of a semantic knowledge graph  can be realized when it is aligned with a formal, 6 
axiomatic ontology. When an ontology is applied atop a graph, reasoners serve to validate the accuracy and com-7 
prehensiveness of the data, while also facilitating the inference of new facts from the explicit ones. Moreover, this 8 
structure enables more efficient traversal and search operations within the graph. 9 

 10 
The first step in developing ontologies is to identify a set of competency questions (CQ) [24].  Competency 11 

questions are often determined at the early stages of the ontology development process to serve as a set of require-12 
ments for the ontology and also determine the scope of the ontology. Some of the competency questions that moti-13 
vated the development of WOO ontology are listed below:  14 

 15 
● What are the causes of different undesirable behaviors of this compressor?  16 
● What are the observed maintenance states of this machine during the past four days?  17 
● What is the most frequent type of defect that has caused failure events on this asset?  18 
● Which artifacts (machine or equipment) have demonstrated degraded functioning caused by overheating?  19 
● What are the functional units that have been in a defunct state at some time within the past 24 hours?  20 

 21 
WOO uses Basic Formal Ontology (BFO) [25] as its top-level, or foundational, ontology. However, WOO only 22 

uses a subset of BFO terms and, therefore, it does not import BFO entirely. Using a top-level ontology facilitates 23 
ontology reuse and also provides a logical framework for ontology development that is consistent with established 24 
philosophical theories. WOO uses the ontology development method and procedure recommended by the Industrial 25 
Ontologies Foundry (IOF) [26]. Accordingly,  each class in WOO has a natural language and formal definition (in 26 
First-Order Logic or FOL) to enable unambiguous human-to-human and machine-to-machine communication. The 27 
semi-formal definition provides a bridge between natural language and formal definitions. Those definitions are 28 
provided below for Defective Artifact and Unit With Leak Failure classes as examples:  29 

 30 
Defective Artifact: 31 
Natural Language Definition: an artifact that is bearer of one or more defects 32 

 33 
Semi-formal Definition: every instance of  'defective artifact' is defined as exactly an instance of  34 
'artifact' that is 'bearer of' some defect 35 

 36 
First-Order Logic Definition: DefectiveArtifact(x) ↔ Artifact(x) ∧ ∃d(Defect(d) ∧ bearerOf (x,d)) 37 

 38 
Unit with Leak Failure: 39 
Natural Language Definition: an artifact that is bearer of one or more defects 40 

 41 



Semi-formal Natural Language Definition: every instance of 'unit with leak failure' is defined as exactly an in-1 
stance of 'machine' or 'functional unit' that 'participates in' some 'leaking' or 'has part' some 'component' or 'functional 2 
unit' that 'participate in' some 'leaking' 3 

 4 
First-Order Logic Definition: UnitWithLeakFailure(x) ↔ (Machine(x) ∨ FunctionalUnit(x)) ∧ 5 
(∃p1(Leaking(p1) ∧ participatesIn(x,p1)) ∨ ∃y(Component(y) ∨ FunctionalUnit(y)) ∧ has-6 
Part(x,y) ∧ ∃p2(Leaking(p2) ∧ participatesIn(y,p2))) 7 

 8 
Both Defective Artifact and Unit with Leak Failure are examples of defined classes. A defined class is a class 9 

that can be fully restricted through a set of necessary and sufficient conditions (or axioms). If necessary and suffi-10 
cient conditions cannot be provided for a given class, then the class is treated as a primitive class. A primitive class 11 
may have one or more necessary or sufficient axioms or can have none. Although it is preferred to fully define all 12 
classes in an ontology, in many cases it is not possible. One reason for keeping some terms as primitive terms in the 13 
ontology is that those terms (such as process or event) are so basic that it is not possible to fully define them in a 14 
non-cyclical fashion. In general, the desired level of formality of the ontology depends on its application. For some 15 
applications, over-restricting the semantics of terms will have adverse impacts on the useability and flexibility of 16 
the ontology and also it will make reasoning and inference processes more resource-intensive specially for larger 17 
knowledge graphs with millions of nodes.  An example of a primitive class in WOO is Functional Unit: 18 

 19 
Functional Unit:  20 
Natural Language Definition: an artifact that has one or more specific functions and is composed of multiple 21 
components and is intended to become, or already is, part of a larger machine or equipment 22 
 23 
Semi-formal Natural Language Axiom: if x is a 'functional unit' then x is an 'artifact' that has some 'components' 24 
and ‘has function’ some ‘function.  25 
 26 
First-Order Logic Axiom: FunctionalUnit(x) → Artifact(x) ∧  (∃y(Component(y) ∧ has-27 
Part(x,y)) ∧ (∃f(Function(f) ∧ hasFunction(x,f)) 28 

 29 
The axiom provided for Functional Unit makes it necessary for every functional unit to have at least one com-30 

ponent. Examples of functional units include, a motor, a pump, a cooling system of a CNC machine or a tool changer. 31 
Table 3 Shows natural language definitions for some of the key classes in WOO. It should be noted that the WOO 32 

is not intended to serve as a reference ontology for the entire maintenance domain. Rather, it is an application 33 
ontology designed for a specific task that is to provide a semantic layer on top of MWO data.  34 
Fig 5 shows some of the main WOO classes and their relationships.  35 

 36 
Table 3. Natural language definition for example WOO classes 37 

Class		 NL	Definition		

Maintenance	State	 A	state	that	holds	during	a	temporal	interval	when	the	realiza-

ble	 functions	and	capabilities	of	 the	participating	artifact,	or	 the	

grade	of	realization	of	those	functions	and	capabilities,	remain	un-

changed.	

Undesirable	Behavior	 An	Artifact	Unintended	Process	 that	causes	some	undesirable	

consequences.	

Defect	 An	attribute,	characteristics,	or	feature	inhered	in	some	Artifact	

that	does	not	conform	to	the	Design	Specifications	of	the	Artifact.	

Artifact	 With	 Degraded	 Func-

tionality	

An	 Artifact	 that	 realizes	 its	 primary	 functions	 at	 a	 degraded	

level.	
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Fig 5. Class diagram showing some of the core classes of WOO and their relations 5 
WOO is developed on Protégé and uses OWL as the ontology language. WOO currently contains 65 classes and 6 

42 object properties. Figure 6 shows some of the top-level classes and properties of WOO. With respect to annotat-7 
ing the ontology and its constructs (classes and properties), Industrial Ontologies Foundry (IOF) annotation rules 8 
are adopted.   9 

 10 

	 	
 11 

Figure 6. Top-level classes and properties of WOO 12 

5.1. Reasoning  13 

Reasoning is one of the key services enabled by OWL ontologies that can be conducted both at TBox (terminol-14 
ogy component) and ABox (assertion component) levels. Reasoning at TBox typically involves checking subsump-15 
tion relationships between classes and generating inferred classification based on an explicit classification and 16 



axiomatization. TBox reasoning is also often conducted to check the logical consistency of the ontology. Reasoning 1 
in ABox  (RDF Graph in this case) is the ability to calculate the set of triples that logically follow from an RDF 2 
graph and a set of rules. Although reasoning can be conducted on multiple platforms that use different reasoners 3 
and inference methods, in this work, RDFox1 is used as the platform for reasoning and querying over the RDF triples. 4 
One advantage of RDFox is that it supports rule-based reasoning.  Also, the focus of this work is primarily on ABox 5 
reasoning.  The objectives of ABox reasoning are to infer new triples and verifying the consistency of instance data 6 
with respect to the ontology.  7 

Two mechanisms are used for reasoning in this work: 1) rule-based reasoning and 2) axiomatic reasoning. RDFox 8 
uses Datalog language for formulating logical rules [27]. Datalog is a declarative rule language for logical inference, 9 
which means it states the desired results without prescribing the steps needed in order to achieve the results. The 10 
logical consequences of executing rules written in Datalog are materialized in RDFox as new triples in the graph. 11 
Datalog rules are essentially IF-THEN statements that add new data to the graph when certain conditions are met. 12 
The IF part of the rule is called the body (or antecedent) and the THEN part of the rule is called the head (or 13 
consequent) that is on the left side of the “:-“ operator.  14 

For example, the following rule states that if an entity (x) has a function (f) and x is in defunct state (s), 15 
then the function (f) is disabled:  16 

 17 
 18 
@prefix woo: <http://infoneer.txstate.edu/ontology/MWOO/>. 19 
[?s, woo:disables, ?f] , [?x, woo:hasDisabledFunction, ?f]:- 20 
    [?x, woo:hasFunction, ?f] , 21 
    [?x, woo:hasState, ?s] , 22 
    [?s, rdf:type, woo:DefunctState] . 23 
 24 
A Datalog rule instructs the reasoner to logically deduce some new triples from certain combinations of existing 25 

triples in the RDF graph. Rules can be executed one at a time and the inferred triples can be materialized incremen-26 
tally as new data is added to the RDF graph. By extending the graph and generating a more complete dataset, more 27 
informed business decisions can be made efficiently and accurately.  28 

The second mechanism for reasoning in RDFox is using the logic axioms that provide formal semantics of the 29 
terms within the ontology. Axioms are integral parts of a formal ontology. Once an ontology is added to the RDF 30 
data, then the ontology provides a semantic layer on top of the data. Reasoners then can use the logic axioms, in the 31 
form of necessary and/or sufficient conditions, to perform different types of reasoning including subsumption rea-32 
soning. RDFox uses the Functional Syntax for the OWL file. The following script shows the necessary and sufficient  33 
conditions for the Unit With Leak Failure class.  34 
 35 

EquivalentClasses(woo:UnitWithLeakFailure  36 
ObjectUnionOf(ObjectIntersectionOf(ObjectUnionOf(woo:FunctionalUnit woo:Machine)  37 
ObjectSomeValuesFrom(woo:participatesIn woo:Leaking))  38 
ObjectSomeValuesFrom(woo:hasPart ObjectIntersectionOf(ObjectUnionOf(woo:Component 39 
woo:FunctionalUnit) ObjectSomeValuesFrom(woo:participatesIn woo:Leaking))))) 40 
SubClassOf(woo:UnitWithLeakFailure woo:NonconformingArtifact) 41 

 42 
Examples of rule-based and axiomatic reasoning are provided in the next section.  43 

6. Work Order Knowledge Graph Generator Tool (KnoWo) 44 

One of the core contributions of this work is to present a new, open-source tool, called KnoWo, for creating RDF 45 
knowledge graphs from text. KnoWo is a java-based tool for the human-assisted creation of knowledge graphs from 46 
maintenance work orders.  47 

Before a work order can be analyzed, the user needs to upload the MD thesaurus (in RDF/JSON format) and the 48 
OWL file for the ontology.  The user then enters the text related to a maintenance problem described in a work 49 

 
1 https://www.oxfordsemantic.tech/rdfox 



order. The tool analyzes the text and automatically extracts the thesaurus concepts that appear in the text either 1 
through their preferred label or their alternative label (the first table in Fig 7- left). The tool automatically identifies 2 
the ontology classes related to the identified concepts. For example, fitting is an instance of Component in the 3 
provided text below.  The concept extractor also provides a list of the concepts that are related to the concepts 4 
directly detected in the text (the second table in Fig 7- left). In the current example, gasket is suggested by the tool 5 
as a related concept that can be used in constructing the knowledge graph associated with the described maintenance 6 
situation. The user has the option of introducing new concepts that are not available in the thesaurus, but they are 7 
needed to build a complete graph for the selected work order (the third table in Fig 7- left: user-defined concepts).  8 
All concepts in the thesaurus are mapped to ontological classes. Therefore, each detected, or user-defined concept 9 
represents an instantiation of a class in WOO ontology. For example, blown O-ring is an instance of Defective 10 
Artifact class, and leaking oil is an instance of Undesirable Behavior class.   The user can select the 11 
individuals that need to be transferred to the next step during which the selected individuals are linked together 12 
using ontological relationships.  13 

 14 

	 	
 15 

Fig 7. KnoWo interface for the first step: concept extraction and ontology instantiation (left), KnoWo interface for the second step: connecting 16 
the generated individuals using ontological classes (right) 17 

 18 
The Subject and Object drop-down menus are populated by the classes that are represented by at least one indi-19 

vidual. As can be seen in Fig 7 (right), the user can select the instances from the subject menu and connect them 20 
using the appropriate property to the instances under the object menu. For example, the user can specify that leaking 21 
oil is caused by blown O-ring based on the described observation. The permissible properties for the selected 22 
individual as the subject of the properties are highlighted and the rest are disabled to ensure triples are formed 23 
correctly. The triples are created one by one and added to the table at the bottom of the interface.  24 

Once all necessary triples are built, the tool exports the final set of triples in turtle (.ttl) format, a file format for 25 
expressing data in the Resource Description Framework (RDF) data model. The graphs generated for each work 26 
order can be integrated into a larger graph that represents multiple work orders.  27 

In this work we use the RDFox Console for visualizing RDF graphs and querying those graphs. Figure 8 shows 28 
the RDF graph related to the example work order as visualized in RDFox. In this figure, the green boxes represent 29 
classes, and the purple boxes represent individuals.  30 

 31 



 1 
 2 

Fig 8. The final knowledge graph generated automatically based on the exported triples 3 
 4 
Fig 9 shows the extended graph after two new triples were added to the graph automatically through reasoning. 5 

As can be seen in this figure, the reasoner has inferred that unit is also an instance of the class Malfunctioning 6 
Artifact. Also, blown o-ring is cause of leaks due since is cause of is the inverse property for the explicitly 7 
specified caused by edge.  8 

 9 

 10 
 11 

Fig 9. The extended graph after two new relationships were inferred  12 
 13 
A pilot knowledge graph based on 100 work orders extracted from the CMMS of a construction equipment man-14 

ufacturer was generated and  used during the validation step. The generated graph contained 2511 triples. A domain 15 
expert in the maintenance of construction equipment was trained with the KnoWo toolkit and created the appropriate 16 
triples for each work order. All competency questions were formulated as SPARQL queries and executed against 17 
the test graph, and it was confirmed by the expert that the graph could correctly resolve those queries. The SPARQL 18 
query shown in Fig 10 returns all functional units that were in a defunct state at some time. 19 

 20 
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 2 

Fig 10. The example SPARQL query that returns all Functional Units that have participated in some Defunct State at some time 3 

7. Conclusion  4 

In this paper, a human-assisted method for the creation of RDF knowledge graphs from MWO data was proposed. 5 
A java-based tool, called KnoWo, was developed to facilitate the knowledge graph generation process. The main 6 
functions of KnoWo include extracting key concepts from MWO text (based on a list of known terms provided by 7 
a SKOS thesaurus), instantiating ontology classes according to the extracted concepts, and enabling the used to 8 
relate the generated instances using appropriate ontological relationships.   One unique aspect of the proposed 9 
framework is to support the entity extraction process with a formal thesaurus that can be extended automatically 10 
using LLM.  11 

This work particularly focused on formalizing the data related to observed symptoms and probable causes at the 12 
time of failure. However, a major component of MWO data is related to the action taken to address the cause of 13 
failure and restore an asset. In the future, the ontology and thesaurus will be extended to capture the maintenance 14 
treatment and link them to the failures and symptoms. In this way, the graph can be queried and reasoned over to 15 
retrieve or suggest potential solutions for different types of failures. Future enhancements will broaden the ontology 16 
to include maintenance actions, enriching the Work Order knowledge graph to cover the full spectrum of mainte-17 
nance processes. 18 

The integration of LLMs with authoritative knowledge models such as semantic knowledge graphs offers a novel 19 
approach by combining the power of neural language models with the ability to retrieve and synthesize information 20 
from a vast database of historical maintenance records. This allows for the generation of more nuanced and contex-21 
tually relevant insights by querying the model with natural language, enhancing the analysis and decision-making 22 
processes.  One future direction is to simplify querying the graph by translating natural language into SPARQL, 23 
making it more user-friendly [28]. Scaling efforts will focus on accommodating more extensive MWO data, ensur-24 
ing the system's efficiency and responsiveness.    25 

 26 
 27 
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