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Abstract. When dealing with Knowledge Graphs (KGs) structure, content, and quality, the focus is generally on entities. We
show here that modelizing individual relationships, with their evolution, is also possible. This brings new opportunities for
conducting various analyses on KGs or for improving benchmarks. Relationships matter: we present KRELM, the first – simple
yet powerful – graph generative model able to (i) closely mimic a large set of crowdsourced KG relationships and (ii) simulate
well their evolution. In particular, for crowdsourced KGs, we show that the decentralized process of crowdsourcing is able to
produce distribution patterns that are reproducible using KRELM. In this model, the facts of a relationship are added one by one,
either by adding new entities or by describing existing ones, with asymmetric attachment between subjects and objects. The
theoretical analysis of KRELM enables us to understand the fundamental dynamics of a knowledge graph, where the distribution
of facts for each relationship follows an exponential law for subjects and a power law for objects. Our experiments show on
several major KGs that KRELM perfectly reproduces the structure of a large part of their relationships. Moreover, a longitudinal
study of Wikidata underlines our model’s relevance in predicting this structure’s evolution.

Keywords: knowledge graph, complex network model, growth, preferential attachment, crowdsourcing, Wikidata

1. Introduction

Crowdsourcing techniques are essential to combine the collective intelligence of contributors with various exper-
tise and opinions [41], resulting in knowledge graphs (KGs) that reconcile high quality and large size like DBnary
[42], DBpedia [4], Wikidata [47] or YAGO4 [35]. Hence, social editing dynamics received a lot of attention. In
particular, for Semantic Web, [44] describes how community-driven tools such as wikis have led to a consensus-
building process. [37] categorizes editor tasks and roles to examine the links between task categories, user roles,
and KG quality. To understand its social editing dynamics, [36] proposes a method to predict whether a user will
remain active on the platform. All these works are focused on social aspects, not on data (even if it has also been
noticed that the editor community may be unbalanced, introducing biases into the produced data, leading to cultural
or social biases [18]). Obviously, schemas guide (or constrain) the editors for inserting new entities and new facts
in each relationship (even if the schema itself is sometimes crowdsourced [48]). Moreover, schema formalization
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Fig. 1. Place of birth relationship.

and modeling have already been studied in depth in knowledge representation, with various works on Description
Logics and ontologies [46]. However this line of research does not explain how factual knowledge accumulates to
describe entities, raising our first research question:
RQ1: Do diverse and distributed contributions tend to produce a stable structure or an ever-changing chaotic
structure?

To better grasp the content of KGs, many works aim at extracting statistical information [10], summaries [14, 22],
schemas [28], constraints [39], and so on. For instance, Figure 1 (a) shows the distribution for place of birth

(denoted by wdt:P19 in Wikidata) present in DBpedia [4], YAGO4 [35] and Wikidata [47]. More precisely it
represents the number of places as a function of the number of births, for these three graphs. It shows that in all
three resources, there are on the order of 105 places in which only one person is declared to have been born (top
left), while there is a concentration of birth declarations in a few places (bottom right, between 100,000 and several
tens of millions for very few cities). These statistics show that the three distributions appear to follow exactly the
same structure, resembling a power law. We also observe that this structure remains the same in Wikidata over the
years in Figure 1 (b), again suggesting a form of stability.

More generally, studying statistics over time with numerous metrics is presented in [38] as an important issue
for better understanding the evolution of knowledge graphs. In this paper, we propose to go even further than an
accumulation of statistical observations, to obtain more knowledge than they can provide however complex they
may be: we want to reproduce the mechanisms underlying the construction of relationships in a crowdsourced
knowledge graph. Knowledge of these fundamental mechanisms would be invaluable for optimizing query engines,
making benchmarks more realistic, developing new analyses, and so on. This led us to our second research question:
RQ2: How to model the process of knowledge accumulation itself, for explaining the emergence of the structure we
observe?

To answer these two research questions, this paper explores a novel approach that has never yet been applied to
KGs: the modeling of complex network structure and dynamics [7]. This approach has gained momentum in fields
as diverse as computer networks and biology. In particular, it has contributed a significant body of knowledge on
the emergence of structures and their dynamics in Web artifacts: HTML page networks and social networks [7],
or folksonomies resulting of distributed collaborative annotation systems [25]. We will see in Section 2 that such
stochastic models are preferable to deep learning methods for generating graphs because the latter are black boxes
(in addition to having other limits with respect to KG topology). Similarly, Section 2 presents heuristic methods for
reproducing a target graph, but they require a lot of input parameters, including the degree distributions, whereas
we would like our model to explain these distributions by construction.

Studying the structure of KGs using stochastic models from network science is not straightforward, as they
contain relationships with a wide variety of semantics. To meet this challenge, our contributions are as follows:

– We present a model, named KRELM, for generating a bipartite graph representing a relationship between sub-
jects and objects, which mimics editors’ contributions, dealing with RQ2. This stochastic process relies on the
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Methods Scope Parameters Growth Attachment

Deep Learning methods

global [12, 17, 43] simplex training set no learned
sequential [23, 29, 30, 50] simplex training set yes learned

Heuristic methods

schema [45] multiplex schema+stat.+dist. no constrained
schema + data [24] multiplex schema+stat. no constrained
schema + data [5, 20, 31] multiplex schema+stat.+dist. no constrained

Stochastic models

[7] simplex stat. yes pref.
[13, 16, 21] simplex stat. yes asym. pref.
[11] duplex stat. yes pref.
[15, 34] simplex stat. no asym. rec.

Our model bipartite stat. yes unif./pref.
Table 1

Comparison of our model with related methods.

continuous arrival of new entities and on an asymmetric attachment (i.e., uniform for subjects and preferential
for objects).

– By analyzing this generative model, we prove that the degree distribution tends towards an exponential law
for subjects and a power law for objects. This important theoretical result answers RQ1 by demonstrating the
emergence of structure in knowledge graphs.

– We show experimentally on four real-world KGs that our model succeeds in reproducing most relationships and
outperforms baselines. A longitudinal study shows that our model is able to simulate the growth of Wikidata
over the years.

The rest of this paper is structured as follows: in Section 2 we analyze work related to graph generative mod-
els. Section 3 contains definitions, used in Section 4 to present the asymmetric bipartite graph generative model
for KGs (algorithm and theoretical analysis). Section 5 presents a synthesis of experimental results obtained with
the generative model. Section 6 discusses several practical applications of our model, concluding this work with
perspectives.

2. Related Work

The use of generative graph models for understanding knowledge-related data has already been widely studied
(as shown for instance in survey [19]), but not for KGs. The seminal paper [7] introduced the Barabasi-Albert
model, which is fundamental to the understanding of the Web or citation networks by proving that the distribution
of degrees follows a power law. Similarly, [27] models the organization of syntax as a scale-free network. This
generative model explains the structural similarities in syntax between different languages. [25] studied collaborative
tagging using a generative model with a tripartite graph (users/tags/documents). Although the final distribution is not
formally defined, the experiments also concluded that a stable structure emerges among tags, despite the diversity of
contributors. All these studies clearly show the importance of graph generative models in understanding the structure
of crowdsourced knowledge. They are useful for predicting the evolution of knowledge structure and evaluating its
stability. To the best of our knowledge, no work has proposed a similar approach for KGs. Even methods that
generate synthetic graphs similar to real ones like deep learning methods and heuristic methods have strong limits.
Table 1 provides a synthesis of the graph generative methods detailed below.

2.1. Deep Learning methods

With the deep learning craze, numerous approaches have been proposed for generating graphs [49] either by gen-
erating the whole graph at once (global approach) or by generating the links one by one (sequential approach). First,
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global approaches aim at reproducing graphs in one shot by benefiting from various architectures like autoencoder
[43] or generative adversarial networks [12, 17]. But, these methods do not reproduce the successive addition of
facts that is the main mechanism of crowdsourced knowledge graphs. More interestingly, sequential approaches
[23, 29, 30, 50] generate a graph by adding at each iteration nodes and links. Unfortunately, deep learning meth-
ods are well suited to small simplex networks (where all links are of the same type) such as molecules networks
[17, 23, 43]. In contrast, KGs are multiplex networks with millions of nodes and links of various types. Furthermore,
all these approaches require a set of graphs as a training set, which is very restrictive for reproducing a given KG
(necessarily unique). Finally, the learned model is a black box that does not enable us to understand and analyze the
evolution of a graph. Conversely, using simple statistics, we will see that KRELM accurately explains the distribution
of entities within a relationship.

2.2. Heuristic methods

Several heuristic methods have been proposed for generating synthetic KGs that can be used as benchmarks for
evaluating existing query engines. Their strength lies in their ability to take into account the specific features of KGs,
by considering several types of relationships (in the manner of multiplex networks) and integrating a schema part
(or T-box). Thereby, schema parameterization has become increasingly complex, from simple statistics [24] to rules
extracted from the KG to be reproduced [31]. However, the generation of the assertion part (or A-Box) has received
much less attention. For instance, [45] even ignores the generation of these assertions. Other heuristic methods
[5, 20, 24, 31] focus on ensuring that the assertions generated are consistent with the schema. However, one of
the earliest methods only uses unrealistic uniform draws [24]. More recent approaches allow to control the degree
distributions to be reproduced by adding constraints as input parameters (e.g., uniform or truncated exponential
distributions [31] or joint-distributions [20]).

All these heuristic methods have the disadvantage of being static and they do not allow a graph to be gradually
completed to simulate the continuous arrival of new knowledge. This explains why these methods take distributions
as input parameters, instead of reproducing these features by construction. As a result, they do not really model the
work of editors for understanding the structuring of KG relationships. For this reason, our work is complementary
to these approaches. By tackling only the reproduction of one relationship at a time, our model could be injected
into these methods so that we no longer need to specify the expected distributions.

2.3. Stochastic models

Introduced in [7], preferential attachment is one of the main mechanisms explaining the emergence of networks.
It consists in associating each new link with an existing node, favoring those with larger connectivity. More pre-
cisely, the probability of adding a new link connecting an existing node n will be proportional to its degree kn (its
connectivity). This mechanism has been extended to directed graphs [13] and non-linear preferential attachments
[16, 21]. Note that [15, 34] also devised a method for generating graph with complex distribution by performing
recursive operations on the adjacency matrix, but they do not consider a continuous growth. In all these existing
approaches (dedicated to the Web, citation network, and so on), all nodes have the same nature, and all links have
also the same nature. In contrast, a KG groups a wide variety of entities linked by different types of relationships,
distinguished by their name, each with its own semantics. There is a generative model for multiplex networks [11]
(also called multi-layer or multi-dimensional) where each layer could represent a relationship, but it is limited to
only two layers (duplex), with no distinction between nodes. Rather than having a coarse-grain model to represent
the whole graph at once, our proposal aims at a fine-grain model to represent one relationship at a time. We will see
in the next section that this means generating bipartite graphs, for which there is no existing method.

3. Preliminaries

Knowledge graph A knowledge graph of a set of edges R (representing relationships) and a set of vertices E
(representing entities) is a set of labeled edges K ⊆ E ×R× E (representing facts). It is important to note that this
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Fig. 2. Representing a relationship by a bipartite graph

work focuses on entity modeling while ignoring literals. We write the facts in the form ⟨s, r, o⟩ ∈ K, where r is the
relationship, s is the subject and o is the object. For instance, ⟨Fann Wong, place of birth, Singapore⟩ and
⟨Shanghai Knights, cast member, Fann Wong⟩ state respectively that Fann Wong is born in Singapore and she
starred in the movie “Shanghai Knights”. Given a relationship r, ⟨s, r−1, o⟩ ∈ K means that ⟨o, r, s⟩ ∈ K where r−1

is the inverse relationship of r. For instance, we have ⟨Singapore, place of birth−1, Fann Wong⟩.
Given a relationship r, Kr is the set of facts in K having r as relationship: Kr = {⟨o, r′, s⟩ ∈ K : r′ = r}.

Thereafter, we worked mostly on a single relationship r at a time (e.g., Kplace of birth selects all the facts
about birthplaces). Given this implicit relationship r, its number of facts in Kr is denoted by n, and its number of
subjects (resp. objects) in Kr is denoted by ns (resp. no). For formulas that work with both subjects and objects, we
use ne to denote the number of entities.

Bipartite graph It is possible to represent a relationship r by a bipartite graph (S ,O, F) by considering two sets of
vertices: one for subject entities S ⊆ E and one for object entities O ⊆ E . Typically for the birthplace relationship,
subjects and objects are people and cities respectively. Note that we do not require S and O to be disjoint, which is
useful for relationships such as part of where a same place can be both subject or object of this relationship.

As shown in Figure 2, each edge (si, o j) ∈ F represents a fact ⟨s, r, o⟩. We denote the probability that an entity
e has k facts at a time t by t: P(ke(t) = k), and the probability mass function by P(k). For knowledge graphs, the
degree k of an entity e is a key indicator, as it provides information about the amount of knowledge about the entity,
i.e. the number of facts involving it with other entities in the graph. In this way, the distribution of degrees P(k)
indicates the distribution of facts within the graph, highlighting entities that are poorly represented and those that
concentrate the majority of knowledge. In the case of the birthplace relationship, the outgoing degree will be 1 for
most subjects (i.e., people), while the incoming degree for objects (i.e., cities) will be very unbalanced as shown in
Figure 1.

Problem formulation The problem at hand is to identify a generative model that can accurately replicate a KG’s
structure for a given relationship r while conserving the number of facts associated with subject entities (i.e., outgo-
ing degree P(ks)) and object entities (i.e., incoming degree P(ko)).

4. KRELM: Knowledge Relationship Model

4.1. Key ingredients of the model

Our goal is to propose a model to generate a random bipartite graph simulating the crowdsourcing of a relation-
ship by its editors. One might think that subjects and objects would behave identically because of their definition
within a relationship which plays a dual role. However, this does not seem to be the case in practice, particularly in
crowdsourced knowledge graphs. Instead, relationships are oriented from a more recent subject entity to an older
object entity; from the more specific to the more general, and from the more concrete to the more abstract. Naturally,
when a person is added to a knowledge graph, he or she is linked to existing entities such as place of birth or gender.
Similarly, all the actors in a film already exist when we add it. We will see that this intuition about the importance of
adding new entities and their order of arrival leads to an asymmetrical model. More precisely, the addition of a new
fact by an editor can either lead to the addition of new entities or just complete the information of existing ones. For
example, Figure 3 shows the editing process that led to the complete bipartite graph of Figure 2 by adding each fact



6 Abdallah et al. / A Complex Network Model for Knowledge Graph’s Relationships

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

s1 o1

S O

s1
s2

o1

S O

s1
s2
s3

o1
o2

S O

s1
s2
s3

o1
o2

S O

. . .

s1
s2
s3

sns

. . .

o1
o2

ono

. . .

S O

Step 1 Step 2 Step 3 Step 4 Step n

Fig. 3. Dynamic process of the bipartite graph representing the editing of the relationship

one by one. It is easy to see that Steps 1 and 3 add both new subjects and new objects, but Step 4 with the addition
of (s3, o1) does not add a new entity. To simulate editors, we introduce two key ingredients: Growth probability and
Asymmetric attachment.

Growth probability With the addition of a new fact, editors regularly add new entities for both subjects and objects.
We propose to model this proportion of new entities by one probability for subjects ps and one probability for objects
po. Indeed, most relationships do not have the same behavior for subjects and objects. The choice of the probability
pe is obviously crucial to reproduce a relationship by controlling the proportion of entities that will be created
according to the number of facts. For instance, a probability of 1 associates each new fact with a new entity while
a probability close to 0 concentrates all facts on the same few existing entities. It is therefore possible to exploit
the number of expected facts and the number of expected entities to parameterize the model. If we wish to create
n facts with ne entities, we must choose the probability pe = ne/n. For instance, the application of this model to
reproduce the birthplace relationship requires1 ps ≈ 1 (whatever the KG) and po = 0.081 for Wikidata, po = 0.101
for DBpedia and po = 0.085 for YAGO4.

Asymmetric attachment When an editor does not create a new entity (i.e., with a probability 1 − pe), he has to
choose one among those that already exist. We propose to use a different type of attachment for subjects and objects.

– Uniform attachment for subjects: in practice, attachment is often weak for subjects as growth probability is
often close to one. Nevertheless, when there is an attachment, we choose one subject at random with a uniform
probability. The intuition is that all subjects have the same chance of being described by a new fact. For the cast
member relationship, for instance, movies have a similar number of actors, in other words, none concentrates
all the actors. In Figure 3, the subjects’ attachment is exploited only in Step 4, where the fact (s3, o1) links
back to the subject s3 that had already been added in Step 3. Since the subjects’ attachment is uniform, the
probability of drawing s3 was the same as drawing s1 or s2.

– Linear preferential attachment for objects: we choose one object at random with a probability proportional to
the number of facts already describing the objects. The key idea is that an object that has already received a lot
of facts will be more likely to receive others. For the birthplace relationship, it is clear that cities with many
births are more likely to have a new birth. In the same way, popular actors who have already played in many
films are more likely to be approached for a new film. In Figure 3, this means that in Step 4, the object o1 is
twice as likely to be selected than o2 because its in-degree is twice as large. After this step, the preferential
attachment of object o1 will be further reinforced with a probability 3 times greater than that of object o2.
Unlike above, where the uniform attachment distributes facts evenly between subjects, the linear preferential
attachment tends to concentrate them on the objects created first.

As mentioned in the state of the art, our generative model KRELM differs strongly from the heuristic methods
[5, 20, 31, 45] since we do not directly inject the expected shape of the final degree distribution. Furthermore,
KRELM simulates the dynamic evolution of the relationship by reproducing the successive additions of the different
entities and facts instead of directly producing the final structure.

1As observed in the KGs we considered: we calculate po by dividing the number of distinct objects (in this case, the cities) by the number of
facts (in this case, the stated births). For example, for Wikidata, po = 244455 / 3017563 = 0.081.
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Algorithm 1 KRELM: Knowledge Relationship Model

Require: A number of subjects ns, a number of objects no, a number of facts n
Ensure: A bipartite graph (S ,O, F)

1: S := ∅; O := ∅; F := ∅
2: while |F| < n do
3: F := F ∪ (DRAW(S , ns/n, unif ),DRAW(O, no/n,deg))
4: return the bipartite graph (S ,O, F)

5: function DRAW(E, pe, ae)
6: if unif (0, 1) ⩽ pe ∨ E = ∅ then

// Insert a new entity in E
7: e := e|E|+1

8: E := E ∪ {e}
9: else

// Draw an entity e ∈ E proportionally to ae(e)
10: e ∼ ae(E)
11: return e

4.2. Stochastic algorithm for asymmetric bipartite graph generation

Knowledge RELationship Model (KRELM in short, see Algorithm 1) generates a bipartite random graph containing
exactly n facts, ns subjects on average, and no objects on average. The main program (lines 1-4) generates n facts
separately by inserting them into the set F. To do this, it relies on the function DRAW to independently select
one subject entity from S and one object entity from O (line 3). This function also regularly adds new entities
to these two sets initialized with the empty set (line 1). More precisely, the function DRAW returns either a new
entity e with probability pe (or if E is empty) inserted in E (line 7-8), or an existing entity e in E drawn randomly
with a probability proportional to ae(e) (line 10)2. As explained previously, the draw is uniform for subjects and
proportional to a degree for objects, with respectively unif and deg as attachment function ae (line 3). The random
draw proportionally to the degree is implemented by uniformly drawing a fact (s, o) from F and returning o (see [9]
for more details).

Figure 4 shows the out-degree distribution of subjects and the in-degree distribution of objects resulting from
our asymmetric generative model KRELM applied on the birthplace and cast member relationships of Wikidata. For
instance, we use Algorithm 1 for reproducing the birthplace relationship with n = 3, 017, 563, ns = 3, 001, 229 and
no = 244, 455 as parameters (the numbers for the birthplace relationship in Wikidata). Interestingly, this distribution
of our model KRELM (in magenta) is close to the real-world distribution (in green) with a low Jensen–Shannon
Divergence between 0.006 and 0.143, showing the relevance of the bipartite graph generative model.

4.3. Theoretical analysis of KRELM

It is easy to see that Algorithm 1 reproduces the main characteristics of the targeted relationship specified with
the input parameters. Of course, the number of edges |F| corresponds exactly to n. The next property underlines that
the number of subjects and objects is also comparable to those provided as input parameters:

Property 1. Under the bipartite graph generative model KRELM, the expected number of entities is ne.

Property 1 follows from the fact that after n calls of the function DRAW, the set E contains n × pe entities on
average (because pe = ne/n). We therefore obtain ns subjects in S and no objects in O on average.

2Let Ω be a population and f : Ω → [0; 1] be a measure, the notation x ∼ f (Ω) means that the element x is drawn randomly from Ω with a
probability distribution π(x) = f (x)/Z where Z is a normalizing constant.
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(b) Place of birth for objects
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(c) Cast member for subjects
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(d) Cast member for objects
wikidata
KRELM (JSD = 0.142)

Fig. 4. Place of birth and Cast member relationships.

Beyond finding the main characteristics, the theoretical study of KRELM enables us to better characterize the
original relationship, especially its degree distribution. Remember that knowing the distribution of degrees is crucial
because it means knowing the distribution of knowledge on entities.

Intuitively, the attachment mechanism adds new facts to entities already described by many facts. Formally, the
degree ke(t) of the entity e increases over the time t with the following acquisition rate:

∂ke(t)
∂t

= (1− pe)×
ae(t)

t

where as(t) = 1/ps (uniform attachment) and ao(t) = ke(t) (linear preferential attachment). From this key equation
on an entity, the following theorems infer the asymmetric distribution of facts for subjects and objects:

Theorem 1 (Exponential law for subjects). Under the asymmetric bipartite graph generative model KRELM, the
out-degree distribution of subjects follows an exponential law with the rate parameter β such that:

β =
1

1− ns/n
− 1

Proof. To prove this result, we benefit from the mean-field theory already used in network analysis [8]. The out-
degree k of a subject increases over the time t with the following differential equation (when ps is not too close to
1):

∂k(t)
∂t

= (1− ps)×
1

pst
(1)
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where ps = ns/n and (1− ps) is the attachment probability for subjects and 1/(pst) reflects the uniform attachment
over the pst existing subjects. We rewrite the differential equation and we calculate the corresponding integrals:∫ ks

1

∂k =
1− ps

ps

∫ t

ts

1

t
∂t (2)

where ts is the time at which the subject s is added and ks is its out-degree. We integrate both sides leading to the
following equation: ks =

1−ps
ps

ln t
ts
+ 1. It is possible to rewrite this equation for isolating ts(t):

ts(t) = t exp
(

ps

1− ps
(1− ks)

)
(3)

The probability that a subject s has an out-degree smaller than k (i.e., its cumulative degree distribution) P[ks(t) <

k] can be rewritten as P[ts > t exp
(

ps
1−ps

(1− ks)
)
]. Assuming that we add the facts at equal time intervals, leading

to P[ts > t exp
(

ps
1−ps

(1− ks)
)
] = 1 − P[ts ⩽ t exp

(
ps

1−ps
(1− ks)

)
] = 1 − exp

(
ps

1−ps
(1− ks)

)
. The probability

mass function P(k) can then be obtained by derivation:

P(ks) =
∂P[ks(t) < k]

∂k
(4)

=
∂
[
1− exp

(
ps

1−ps
(1− ks)

)]
∂k

(5)

=
ps

1− ps
× exp

(
ps

1− ps
(1− ks)

)
(6)

This gives an exponential law with the rate parameter β = ns/n
1−ns/n

proving Theorem 1.

Theorem 2 (Power law for objects). Under the asymmetric bipartite graph generative model KRELM, the in-degree
distribution of objects follows a power law with the exponent γ such that:

γ = 1 +
1

1− no/n

Proof. We can apply the same proof scheme. The in-degree k of an object increases over the time t with the following
differential equation (when po is not too close to 1):

∂ko(t)
∂t

= (1− po)×
ko(t)

t
(7)

where po = no/n and (1−po) is the attachment probability for objects and ko(t)/t reflects the preferential attachment
over the objects. It leads to the following integrals (as proposed by Equation 2):∫ ko

1

∂k = (1− po)

∫ t

to

ko(t)
t
∂t (8)

We integrate both sides and rewrite this equation:

te(t) = t/k
1

1−po
e (9)
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The probability mass function P(k) can be obtained with the same reasoning:

P(k) =
1

(1− po)
× k−(1+

1
1−po ) (10)

This gives a power law with the exponent parameter γ = 1 + 1
1−no/n

proving Theorem 2.

These theorems are an important result since they qualify the structure of the relationships according to the
bipartite graph generative model KRELM. Figure 4-b, 4-c, and 4-d show the blue dashed lines generated through the
formulas of the above two theorems. These lines match very well with the distributions generated using KRELM,
which proves the validity of our theoretical proof. The line of Figure 4-a is not drawn because these theorems are
based on the hypothesis that facts come regularly and continuously to an entity over time. This hypothesis holds
when pe ⩽ 0.7. Otherwise, when pe is close to 1 (which is the case of the Place of birth relationship for subjects), in
most steps of the algorithm, new entities are added with only one associated fact per entity, which makes P(1) ≈ 1.
This brings us to a case where it is not really important to apply the model since the distribution is straightforward.

The asymmetry between subject and object is a truly surprising result. Yet experimental results show that our
model faithfully reproduces most relationships for both subjects and objects. This means that for a relationship,
the distribution of facts for subjects follows an exponential law, while the distribution of facts for objects follows
a power law (with an exponent γ > 2). This is a new result, as no previous work has studied the distribution of
facts with the fine granularity of relationships. In addition to injecting our stochastic algorithm to generate more
realistic knowledge graphs, these distributions are of interest for data analysis [33] and query optimization (instead
of resorting to heuristics [3]). To conclude this work in Section 6, we discuss such concrete applications of this new
theoretical result with several immediate use cases.

Let us come back to the birthplace relationship. Applying the exponent formula of Theorem 2 on the objects in
relationship birthPlace, we obtain γ = 2.088 for Wikidata, γ = 2.113 for DBpedia and γ = 2.092 for YAGO4.
These three exponents are really very close showing that the underlying structure is similar between different KGs.
Similarly, the structure of subjects in the cast member relationship in Wikidata remains approximately the same
over the time with β2015 = 0.197, β2017 = 0.236 and β2022 = 0.190. For this reason, we will see in the next section
that our model predicts Wikidata’s evolution relatively accurately.

5. Experiments

The aim of this experimental study is to evaluate our model performance and compare it with two baselines.
Firstly, we examine whether our model KRELM accurately reproduces the underlying structure of relationships
present in the data, by comparing the generated synthetic bipartite graph’s degree distribution with the real relation-
ship’s degree distribution (see Section 5.2). Secondly, we investigate the model’s ability to predict the evolution of
a KG (see Section 5.3). This entails analyzing how well our generated graphs align with the observed changes over
time in the real graph.

Note that KRELM has been implemented in Java. As it generates the relations containing the most facts in just a
few seconds on a personal computer, we do not present runtime results. The source code of the model, the description
of relationships for each dataset, and results are available: https://scm.univ-tours.fr/habdallah/KRELM/

5.1. Protocol

Processing of KGs We rely on four crowdsourced KGs: DBnary [42], DBpedia [4], Wikidata [47] and YAGO4
[35], that are available on the Web. We especially focus on Wikidata for the longitudinal study for which we have
a snapshot for each year. We filtered each dump to remove literals and external entities because our model aims
at understanding the internal topology of the entity belonging to a given KG. Literal values such as dates, strings
or images have therefore been removed. For focusing on the graph, we only consider the entities whose Uniform
Resource Identifier (URI) is prefixed by http://dbpedia.org/, http://www.wikidata.org/ or http://yago-knowledge.org

https://scm.univ-tours.fr/habdallah/KRELM/
http://dbpedia.org/
http://www.wikidata.org/
http://yago-knowledge.org
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KG DBnary DBpedia Wikidata YAGO4

#rel. |R| 52 15,100 1,484 85

#facts 198,355,239 1,082,635,010 2,404,397,928 282,056,110

#subjects 54,540,338 245,113,095 431,875,708 48,957,049

#objects 38,069,118 93,130,240 136,870,611 19,214,906

%r : ps ⩾0.7 78.84% 71.00% 75.94% 72.94%

%r : po ⩾0.7 21.15% 67.25% 36.52% 17.64%
Table 2

Main statistics of the four KGs

100 2 × 100 3 × 100 4 × 100 6 × 100

out-degree

10 6

10 5

10 4

10 3

10 2

10 1

100

(a) Place of birth for subjects
Without growth (JSD = 0.007)
Reverse Attach. (JSD = 0.005)
Wikidata
KRELM (JSD = 0.006)

100 101 102 103 104 105

in-degree

(b) Place of birth for objects
Without growth (JSD = 0.424)
Reverse Attach. (JSD = 0.424)
wikidata
KRELM (JSD = 0.060)

100 101 102 103 104 105

out-degree

10 5

10 4

10 3

10 2

10 1

(c) Cast member for subjects
Without growth (JSD = 0.465)
Reverse Attach. (JSD = 0.248)
Wikidata
KRELM (JSD = 0.143)

100 101 102 103 104 105

in-degree

(d) Cast member for objects
Without growth (JSD = 0.277)
Reverse Attach. (JSD = 0.278)
wikidata
KRELM (JSD = 0.142)

Fig. 5. Place of birth and Cast member relationships.

for DBpedia, Wikidata and YAGO4 respectively. Table 2 indicates the main statistics of these four crowdsourced
KGs after the preprocessing: number of relationships |R|, number of facts, number of distinct subjects and number
of distinct objects. The last two lines indicate the proportion of relationships having a growth probability pe = ne/n
greater than 0.7 for subjects and objects respectively. All statistics were computed by making ten passes on the
dumps (five passes for in-degrees and five passes for out-degrees) in order not to overload the memory. The first
pass consists in computing the number of entities and the number of facts reported in Table 2. The other four passes
are used to compute the in/out-degree ground truth distributions per relationship. More precisely, the relationships
are then divided into four groups (Ri)i∈{1,...,4}. For each group Ri, we repeated a pass on the data that computes the
number of entities mr and the number of facts lr for each relationship r ∈ Ri.

Notice that after loading and filtering the dumps, we stored all the relationships’ statistical features in a relational
database. In this way, all subsequent experimental calculations were based on SQL queries on a local RDBMS,
which is highly efficient and not harmful to the planet.
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Baselines As mentioned in related work, there are no methods in the literature specifically designed for generating
bipartite graphs from basic statistics (see Table 1). In particular, it is not possible to directly compare our method
with existing stochastic models dedicated to traditional simplex graphs. Other methods require different parameters
(more specific than simple statistics), making comparison impossible. On the one hand, deep learning methods
cannot be applied because they require a training set and are limited to small graphs. For instance, to reproduce
the birthplace relationship, we would need to retrieve equivalent relationships from many of knowledge graphs.
On the other hand, heuristic methods [5, 20, 31, 45] require the desired final distribution as an input parameter of
their algorithms. For instance, for the birthplace relationship, this would be equivalent to estimating the exponent
of the power law from real data, denoted as αo. Subsequently, entities and facts would be generated in a manner to
follow the exponent αo. Therefore, to evaluate our method, we have considered an ablation study to highlight the
importance of the main ingredients of the model that we propose. This was done by introducing two baselines, one
by eliminating continuous growth and the other by reversing the attachment functions. Here is how the baselines are
created:

– Reverse attachment: This baseline takes our model by reversing the method of attachment between subjects
and objects: linear preferential attachment for subjects and uniform attachment for objects. This baseline will
enable us to assess the need for asymmetrical attachment between subjects and objects. It will also assess the
gap between uniform attachment and linear preferential attachment. Growth in this baseline is applied as in our
model.

– Without growth: This baseline takes our model by removing the notion of growth, which means all entities are
initially generated with 1 fact (for instance, 281,253 towns for birthplace), the remaining facts (3,394,984 -
281,253 for birthplace) are generated one by one using preferential attachment. Like the heuristic methods of
Table 1, where they generate all entities and then directly use the final set to associate facts with them. In the
model that we propose, continuous arrival implies that preferential attachment does not depend on the final
distribution. Attachment in this baseline is applied as in our model (uniform for subjects and preferential for
objects).

Note that these two baselines are illustrated for Place of birth and Cast member relationships in Figure 5 (in red
for Reverse attach. and in blue for Without growth). Clearly, the two baselines do not reproduce real-world data
so well, except for the reverse attachment considering the subjects of the birthplace relationship. In this case, the
growth probability ns/n is close to 1 meaning that a subject is almost always added with a fact (i.e., the attachment
has no impact thus the baseline and KRELM perform almost the same). We will see in the rest of this section that the
performance of KRELM found for these two relationships is generalized to all relationships in different knowledge
graphs. More generally, the comparison with these two baselines aims to evaluate whether the two main components
of our model are crucial for achieving excellent results. This approach is common for validating a stochastic model
in network science [7].

Evaluation measures To assess the effectiveness of the different approaches, we employ the Jensen-Shannon Di-
vergence (DJS ) measure [32] to compare the degree distributions generated by a model with those obtained from real
knowledge graphs. DJS is a symmetrized and smoothed version of the Kullback-Leibler Divergence, which quanti-
fies the difference between two probability distributions. The Jensen-Shannon Divergence between two probability
distributions, P and Q, is calculated as follows:

DJS (P∥Q) =
1

2
· DKL(P∥M) +

1

2
· DKL(Q∥M)

where DKL(P||Q) represents the Kullback-Leibler Divergence between distributions P and Q: DKL(P||Q) =∑
i P(i) log P(i)

Q(i) , and the distribution M is the average of P and Q: M = (P + Q)/2. The JSD measure robustly
assesses the difference between degree distributions, providing a value between 0 and 1. This measure allows us to
quantitatively evaluate how accurately our model captures the distribution of degrees observed in real-world KGs.
We set a threshold of 0.2 for the Jensen-Shannon Divergence, which serves as a reference value of successful per-
formance. In other words, we consider that the degree distribution P generated by our model is similar to that of
real-world Q if DJS (P∥Q) ⩽ 0.2. The chosen threshold of 0.2 is deemed effective as it visually demonstrates a
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significant resemblance (see supplementary materials). Of course, varying this threshold modifies the numerical
results; nevertheless, the conclusions remain the same (in particular, the superiority of KRELM over baselines).

When the number of entities in a relationship is low, the distribution of facts P is unstable. Comparing the
distributions P and Q then becomes less meaningful as there are likely to be large discrepancies. To take this
phenomenon into account, we distinguish relationships with at least 500 entities from other relationships: R∗ =
{r ∈ R : ne ⩾ 500}. Thus, the precision of our model is the proportion of relationships in R∗ successfully
regenerated:

Prec(R) =
|{r ∈ R∗ : DJS (Pr̃∥Pr) ⩽ 0.2}|

|R∗|

where Pr̃ and Pr are the degree distribution of the generated relationship and the original relationship r respectively.
Nevertheless, it remains informative to know the coverage of our model that is the proportion of relationships
successfully regenerated among all the KG’s relationships:

Cov(R) =
|{r ∈ R : DJS (Pr̃∥Pr) ⩽ 0.2}|

|R|

Of course, the closer precision and coverage are to 1, the better the model performs.

5.2. KG regeneration

For each KG, we regenerate relationships in order to measure the precision and coverage of our model and com-
pare it to the two baselines. Tables 3 (a) and 3 (b) show the results of our model, Reverse attach. and Without growth
by distinguishing between the degree distribution of subjects and objects. For each row, the best approach for preci-
sion and coverage is marked in bold.

We first observe that our model KRELM is better than the two baselines for subjects in Table 3 (a) (except for
the precision in Wikidata and the coverage in DBpedia), with excellent coverage ranging between 0.734 and 0.929
and precision varying from 0.682 to 0.956. As expected, the baseline Without growth is really worse. Nonetheless,
the improvement of our model for subjects compared to the baseline Reverse attach. is less impressive. Indeed, for
subjects, the probability ps = ns/n is close to 1 for many relationships (see the proportion of relationships with
a growth probability ps larger than 0.7 in Table 2). Consequently, in such cases, our model and Reverse attach.
behave similarly by adding new subjects in most iterations, with the attachment functions playing a minimal role.
Nevertheless, in the case of YAGO4, there is a significant difference in precision/coverage (more than 5%), showing
the benefit of uniform attachment for the subjects. Additionally, Table 4 (a) divides the precision of the model
we propose and the two baselines into two categories. The first category represents precision calculated only for
relations with pe < 0.7, while the second category calculates precision only for relations with pe ⩾ 0.7. This
approach allows us to highlight the importance of the asymmetrical attachment function of the model. Indeed, for
relations belonging to the second category (where the attachment is ignored), our model is close to the two baselines,
with an average precision of 0.993 for subjects.

In contrast, when the attachment is really used (i.e., when pe < 0.7), our model KRELM performs significantly
better than both the Reverse attach. and the Without growth baselines, with an average precision of 0.634 for subjects
across the four knowledge graphs.

More impressively, our model significantly outperforms the baseline for objects (except for the coverage in DB-
pedia), with coverage varying between 0.365 and 0.708 depending on the KG, and a very good precision ranging
from 0.642 to 0.806. Also, for objects, our model outperformed the two baselines for relations with pe < 0.7, achiev-
ing an average precision of 0.617 across the four knowledge graphs, and 0.996 for relations with pe ⩾ 0.7. The
excellent precision of our model KRELM means that it works very well for a large proportion of relationships that
contain a sufficient number of entities. This means that it aids in understanding the behavior of the crowd when
adding elements to these relationships and helps to identify the resulting structure from this process.
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KRELM Reverse attach. Without growth

KG Prec. Cov. Prec. Cov. Prec. Cov.

DBnary 0.956 0.923 0.956 0.903 0.826 0.788

DBpedia 0.682 0.734 0.638 0.717 0.619 0.811
Wikidata 0.912 0.846 0.917 0.846 0.846 0.811

YAGO4 0.948 0.929 0.870 0.858 0.753 0.729

Average 0.874 0.858 0.845 0.831 0.761 0.785

(a) subjects

KRELM Reverse attach. Without growth

KG Prec. Cov. Prec. Cov. Prec. Cov.

DBnary 0.772 0.365 0.545 0.250 0.545 0.326

DBpedia 0.642 0.708 0.423 0.688 0.417 0.739
Wikidata 0.806 0.572 0.503 0.444 0.501 0.456

YAGO4 0.681 0.588 0.287 0.247 0.301 0.270

Average 0.725 0.558 0.439 0.407 0.441 0.447

(b) objects
Table 3

Precision and coverage for four crowdsourced KGs for KRELM and the two baselines, for subjects (a) and objects (b)

KRELM Reverse attach. Without growth

KG Prec: ns
n < 0.7 Prec: ns

n ⩾ 0.7 Prec: ns
n < 0.7 Prec: ns

n ⩾ 0.7 Prec: ns
n < 0.7 Prec: ns

n ⩾ 0.7

DBnary 0.777 1.0 0.777 1.0 0.222 0.973

DBpedia 0.372 0.981 0.276 0.988 0.264 0.962

Wikidata 0.609 0.993 0.621 0.996 0.308 0.990

YAGO4 0.777 1.0 0.444 1.0 0.055 0.966

Average 0.634 0.993 0.523 0.996 0.212 0.973

(a) subjects

KRELM Reverse attach. Without growth

KG Prec: no
n < 0.7 Prec: no

n ⩾ 0.7 Prec: no
n < 0.7 Prec: no

n ⩾ 0.7 Prec: no
n < 0.7 Prec: no

n ⩾ 0.7

DBnary 0.615 1.0 0.230 1.0 0.230 1.0
DBpedia 0.538 0.991 0.254 0.987 0.253 0.967

Wikidata 0.707 0.994 0.250 0.984 0.248 0.984

YAGO4 0.611 1.0 0.129 1.0 0.166 1.0

Average 0.617 0.996 0.216 0.993 0.224 0.988

(b) objects

Table 4
Precision considering properties that have ne

n < 0.7 or ⩾ 0.7 for four crowdsourced KGs for KRELM and the two baselines, for subjects (a) and
objects (b).
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(a) Subjects

KRELM Precision for subj.
KRELM Coverage for subj.
Reverse Attachment Precision for subj. 
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Without growth Precision for subj.
Without growth Coverage for subj.
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(b) Objects

KRELM Precision for obj.
KRELM Coverage for obj.
Reverse Attachment Precision for obj. 
Reverse Attachment Coverage for obj.
Without growth Precision for obj.
Without growth Coverage for obj.

Fig. 6. The evolution of precision and coverage metrics of KRELM and the two baselines in Wikidata over time.

5.3. Longitudinal study on Wikidata

Evolution of precision and coverage For each year, we reproduced the Wikidata KG to assess the quality of
our asymmetric bipartite graph generative model and compare it to the two baselines. Figure 6 plots the cover-
age and precision of our model (solid line) and the baselines (dashed line for Reverse attach. and dotted line for
Without growth) on Wikidata over the years, applying it to both the degree distribution of subjects (a) and the degree
distribution of objects (b). In Figure 6 (a), we can see that our model and the baseline Reverse attach. remain stable
over time for subjects with high and similar values for both precision and coverage – our model is even slightly
better. Again, this similarity can be explained by the fact that the probability of attachment is often close to 1,
making the two approaches identical. In contrast, the baseline Without growth deteriorates significantly over time.
It is known that this model is close to the model with growth at the beginning of the process but with time, the
Without growth model tends towards a Gaussian distribution [8]. Considering the case of objects in Figure 6 (b),
it is evident that our model outperforms the two baselines with better precision and coverage. Behind this stability,
precision improves on relationships containing many facts, but it is offset as new relationships arrive. Conversely,
we observe that Reverse attach. and Without growth deteriorate because they poorly reproduce relationships con-
taining a lot of facts. It is essential to highlight that knowledge in crowdsourced knowledge graphs is incomplete.
Nevertheless, our model significantly captures the structure of this knowledge, as evidenced by the high precision
over the years. In general, our model is the most robust one over time.
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Fig. 7. Simulating Wikidata evolution over time.

Predicting the evolution of Wikidata Now, we want to check whether our model is capable of reproducing the
dynamics of a KG by predicting the evolution of Wikidata. For each relationship r ∈ R∗, we parameterized our
model and the baseline Reverse attach. with probabilities p2015

e = n2015
e /n2015, and then we generated bipartite

graphs containing successively the number of facts for 2015 (i.e., n2015), then the number of facts for 2016 (i.e.,
n2016), and so on. For instance, for 2016, Algorithm 1 was applied with n2016 facts and p2015

e for both subjects
and objects. Note that the baseline Without growth has no year-related parameters like the growth probability p2015

e .
Figure 7 reports the sum of the divergences DJS of the relationships for each annual version generated against the
actual version for all entities (i.e., subjects and objects). Our model (solid line) has a significantly smaller sum of DJS

across all years than the two baselines. Surprisingly, Without growth (dotted line) behaves better than Reverse attach.
(dashed line) emphasizing the importance of uniform attachment for subjects and preferential attachment for objects.
It is clear that the divergence of our model increases slightly, indicating that the generated facts slowly diverge from
reality. Nevertheless, this sum, which significantly increases until 2018, then seems to stabilize despite Wikidata’s
strong evolution. This result is all the more impressive given that the number of subjects has risen from just 37M
in 2015 to 432M in 2022 (similarly, there were 3M objects in 2015 versus 137M in 2022). This means that it is
realistic to rely on our model and Wikidata’s current parameters to predict its evolution once the volume of facts has
increased in the future.

6. Conclusion

The experimental study in the previous section has validated the ability of our generative model to reproduce
real-world crowdsourced KGs at a given point in time, but also longitudinally. We can therefore confidently answer
Research Question 2: The accumulation of facts in knowledge graphs regularly adds entities (growth), distributing
facts evenly across subjects (uniform attachment) and, conversely, concentrating facts on certain objects (linear
preferential attachment). Furthermore, the theoretical study of our model in response to RQ2 has enabled us to
provide a precise answer to Research Question 1: The structure of relations is globally stable for both subjects (see
Theorem 1) and objects (see Theorem 2).

Now, we want to underline the importance of these fundamental results by discussing several practical use cases:

Benchmark improvement Our approach can improve methods aiming at generating synthetic graph data similar to
real knowledge graphs, making them simpler and more realistic. Despite the strengths of the existing methods, they
have limitations. Some methods [24] focus on creating benchmarks but overlook crucial aspects — the continuous
growth in knowledge graphs, and the asymmetrical attachment so they use only one type of attachment for graph
entities, whether they are subjects or objects. These aspects are important and removing them will alter the results
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as demonstrated in the experiment section. Some methods [5, 20, 31, 45] inject the desired distribution in the
parameters of the algorithm (for example a power law with an exponent calculated from real data) and then aim
to reproduce this distribution. Therefore, we believe that integrating our model into these existing methods will
significantly enhance their results and optimize their algorithms, so they no longer need to specify the expected
distributions and try to reproduce them.

Model-based computation At present, most approaches to knowledge graph analysis rely on data as an approxi-
mation to the actual distribution. This data is often costly to retrieve and manipulate. But above all the data itself
remains a sample of an underlying distribution (i.e., the power or exponential laws we have identified) that it is often
preferable to handle directly. For instance, the Gini coefficient is a measure of statistical dispersion (useful in many
applications including gap discovery [40]). When calculating the Gini coefficient for the distribution of facts related
to a relationship like birthplace, determining the number of births for each city can be challenging due to current
limitations in the Wikidata query service of time-out exceptions when a query needs high processing time. However,
leveraging Theorem 2 and Newman’s [33] formula, we can directly estimate the Gini coefficient for a relationship
by executing only simple SPARQL queries, which request the number of objects (cities) and the number of facts
(hasBirthPlace). This light approach simplifies the calculation process, especially for methods that need to calculate
the Gini coefficient for multiple relations.

Topological analysis Moreover, the knowledge about how the bipartite graph of a relation is growing brings in-
sights to many tasks performed on crowdsourced KGs. For instance, to the best of our knowledge, systems support-
ing Wikidata “patrollers” (who fight vandalism) are based on the topological characteristics of entities and do not
consider the topological characteristics of relations. In network science, complex network models serve to evaluate
the robustness of a network. In fields where they are applied, robustness is essentially about checking whether the
removal of nodes or links breaks the network’s connectedness [2, 26]. For example, removing central servers may
prevent some remote machines from communicating with each other. In the case of a KG, we think that connected-
ness itself is less meaningful. Corrupting a KG is more about deleting information or inserting a fake one. Intuitively,
information is less vulnerable if it is based on a large number of facts. For example in Wikidata, by deleting the fact
⟨Fann Wong, place of birth, Singapore⟩, the information about Fann Wong’ place of birth is permanently
lost, but the information that Singapore is a place of birth persists with its numerous other births. The robustness
of information about an entity is therefore proportional to its degree, and KRELM can be used to determine which
parts of the KG are robust and which ones need to be monitored more closely. Another area where the focus is
mostly on entities is data completion. For example, the RECOIN tool [6] only considers the entity’s description.
With the model that we propose, it might be possible to suggest relations that are particularly lacking/abundant in
facts or show an unexpected distribution.

To conclude, this paper introduces the first complex network model for simulating relationships in a crowdsourced
knowledge graph. It completes the results already established by works focused on social editing, knowledge en-
gineering, and KG profiling. With respect to deep learning and heuristic methods for generating synthetic KGs,
this new generative model includes continuous growth and asymmetrical attachment, which are more realistic for
replicating KGs. The model’s theoretical study leads to two major new results: facts are distributed on subjects ac-
cording to an exponential law, and they are distributed on objects according to a power law with an exponent greater
than 2. The extensive experimental study on four KGs, with a longitudinal study concerning Wikidata, also yields
clear lessons. The source code of the model, description of relationships, and experimental results are provided:
https://scm.univ-tours.fr/habdallah/KRELM/. They demonstrate the model’s generality in generating graphs very
similar to a large proportion of existing relationships, with excellent precision and coverage. They show as well that
it behaves better compared to two baselines, one without growth, and one with reverse attachments (evaluating the
two main ingredients of our model). This work provides a fundamental understanding of KGs that paves the way
for numerous research directions. For instance, KRELM could be used to generate benchmarks [5, 20, 24, 31, 45]
with more realistic characteristics and less parameters by injecting our model. In data analysis [33] applied to KGs,
having such a model makes it possible to analyze data evolution in greater detail, which is useful for anomaly de-
tection and prediction. These are not the only directions that may be studied, another application field could also be
in query engine optimization: our model could be useful for refining cost models often relying on heuristics [1, 3].

https://scm.univ-tours.fr/habdallah/KRELM/
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