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Abstract. The increasing complexity and volume of scientific and technological data necessitate advanced tools for effective
data-driven analysis. Knowledge Graphs, with their capacity to encapsulate complex relationships among interconnected enti-
ties, have emerged as pivotal structures for organizing this vast amount of information. They enable a deeper understanding and
exploration of data across various domains, notably in science and technology where the rapid proliferation of research outputs
presents both opportunities and challenges. This paper presents the ScienceON Knowledge Graph System, a comprehensive
framework designed to address integral challenges of integrating and analyzing scientific and technological data. We have de-
veloped the comprehensive infrastructure of ScienceON, a data ecosystem that harmonizes a wide spectrum of scientific and
technological information. This encompasses everything from national R&D projects, scholarly papers, and patents to reports,
author profiles, organizational details, keywords, and thematic categories. Our approach significantly advances the field not only
by streamlining the aggregation of data via an Extract, Transform, Load process but also by facilitating the creation of a so-
phisticated knowledge graph. This knowledge graph meticulously interlinks research data, incorporating extensive metadata to
accurately reflect the complex web of relationships within the science and technology domains. Our contributions are threefold:
Firstly, we detail the creation of the ScienceON data ecosystem, highlighting an automated pipeline that ensures ongoing updates
and expansion of data. Secondly, we describe the design of the ScienceON Knowledge Graph, which provides a detailed and in-
terconnected representation of scientific and technological data. Lastly, we explore the application of the ScienceON Knowledge
Graph in conducting graph-related experiments and in developing user-centric applications, demonstrating its versatility and util-
ity. By employing rigorous data curation practices and utilizing the Resource Description Framework for data representation, we
ensure the high quality and accessibility of our dataset, positioning the ScienceON Knowledge Graph as a gold standard in the
realm of science and technology knowledge management. This initiative not only augments data management practices but also
fosters the development of innovative applications and services, enhancing access to and understanding of the vast landscape of
science and technology.
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1. Introduction

Knowledge graphs (KGs) play a pivotal role in structuring vast amounts of interconnected data, enabling the
organization and accessibility of information across various scenarios. These advanced data structures enhance the
intelligent capabilities of numerous services by providing a foundation of structured, factual information [1, 2].
For instance, Google’s and Microsoft’s Knowledge Graphs enhance search capabilities through advanced question-
answering features, utilizing a broad spectrum of global knowledge. Similarly, Facebook’s vast social graph incorpo-
rates personal and global interests, while eBay’s Product Knowledge Graph aims to semantically link products with
their broader context [3]. These instances highlight how knowledge graphs are key in enriching user interactions
and understanding complex relationships.

Particularly in the science and technology domain, the publication of scientific papers and patents has rapidly
increased. Accordingly, various scholarly KGs such as Microsoft Academic Graph (MAG) [4], Aminer [5], Open
Academic Graph (OAG) [6], OpenCitations [7], PubMed Knowledge Graph [8] have been proposed. Scholarly
KGs have been used in various fields such as article retrieval, recommendation, and mining. For instance, methods
for recommending scientific papers have been proposed [9–11], methods for document retrieval have been pro-
posed [12–14], and community detection based approaches have been proposed to discover hidden relationships
among researchers in an academic network [15–17]. Similarly, KGs built from patent data are used for keyword-
based patent searches and for recommending patents to meet industry needs [18–20].

It is evident that information on the complex relationships between science, papers, patents, reports, and R&D
projects is needed to analyze an entire process of how individual research achievements permeate industry and ulti-
mately promote social development. These documents act as perfect channels for showcasing knowledge generated
within the science and technology fields. Hence, a joint analysis of such documents across both domains offers
significantly deeper insights than individual analysis. There have been numerous prior studies that have explored
the relationship between the fields of science and technology from various perspectives, integrating these fields to
investigate complex interrelations [21–27].

Previous research has highlighted two main challenges that KG systems face in accurately representing the sci-
ence and technology domain: (i) The Unexplored Potential of Knowledge Graphs in Existing Systems: The
National Technical Information Service (NTIS)1 allows for searching U.S. government-funded technical reports
but doesn’t support KG creation. Similarly, the NIH ExPORTER2 reveals healthcare-related research data without
forming a KG, and the European Research Information Ontology (EURIO)3 offers limited metadata for EU research
documents despite constructing a KG. These systems often fail to provide comprehensive coverage and integration
of heterogeneous data types, such as R&D projects and literature, limiting the systematic organization, access, and
in-depth analysis of data. This deficiency impairs the investigation of complex data relationships, limiting the in-
sights and discoveries that could be facilitated by a more structured and relational approach to data management and
analysis. (ii) The Limited Entity & Relation Types in Scientific and Technological Knowledge Graphs: Table 1
provides a comparison of existing KGs within this domain. Despite considerable efforts to model literature, projects,
authors, and other components as entities and to establish connections among them, the range of relationships used
to link these entities remains limited. The simplicity of KGs is often a limitation in capturing the complexity and
nuance of real-world relationships and data. This inherent simplicity can result in oversimplification of complex
ideas and relationships, hindering deeper understanding and analysis of the knowledge domain represented.

We propose a system, called ScienceON Knowledge Graph System, designed to construct a comprehensive and
systematic KG to address the challenges of data-driven analysis within the science and technology domains. This
paper has two primary goals: (i) Firstly, to introduce ScienceON, a data ecosystem that includes R&D projects,
papers, patents, and research reports from multiple sources. Notably, the data fueling this system is supported by
the government and curated by the Korea Institute of Science and Technology Information (KISTI), offering a
wealth of knowledge spanning all science and technology fields. ScienceON also features an automated pipeline
for the seamless update and expansion of science and technology data. (ii) Secondly, to detail how the ScienceON
Knowledge Graph leverages this infrastructure by connecting research project information with their outcomes and
incorporating comprehensive metadata for each (such as titles, abstracts, and references). This methodology enables
the creation of the ScienceON Knowledge Graph adept at mapping the intricate web of real-world relationships that
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Table 1
Comparison of knowledge graphs in the science and technology domain.

Graph Entity Type Relationship Type

Cora4[28] Paper(P) P-P

CiteSeer5[28] Paper(P) P-P

cit-Patents Graph (SNAP)6 Patent(P) P-P

Unified Database Management Systems(UDBMS)7 Patent(P), Inventor(I), Assignee(A), Class(C), Category(T) P-P, P-A, P-C, P-I, C-T

PubMed KG[8] Article(A), Author(Au), Affiliation(Af), Funding(F), Project(P) A-A, A-P, A-Au, Au-Af, Au-F, F-P

Open Academic Graph(OAG)8 Paper(P), Author(A), Affiliation(Af), Venue(V) P-P, P-A, P-Af, A-Af, P-V

AIDA[29]
Paper(P), Author(A), Affiliation(Af), industrialSector(S),
DBpediaCategory(C), Topic(T), Patent(Pt)

P-A, A-Af, P-Af, P-S, P-C, Af-S, Af-C,
P-T, Pt-T, Pt-S, Pt-C

ScienceON KG
Top-Project(T), Sub-Project(S), Author(A), Organization(O),
Paper(P), Journal(J), PaperCategory(PC), Patent(Pt), IPC(I),
Report(R), ReportCategory(RC), Keyword(K)

T-S, S-P, S-R, S-Pt, P-J, P-P, P-A, P-PC
R-P, R-R, R-RC, R-A, Pt-Pt, Pt-I, Pt-A
A-O, P-K, R-K

span the science and technology domains. The rigorously vetted data is highly accurate and publicly accessible,
establishing the ScienceON Knowledge Graph as the gold standard in the realm of science and technology.

To summarize, our key contributions are as follows:

– Development of a Data Ecosystem: We have developed ScienceON, a comprehensive data ecosystem that
aggregates science and technology-related data using an Extract, Transform, Load (ETL) process from various
legacy systems. This system features an automated pipeline designed for efficiently collating information on
papers, patents, reports, national R&D projects, and authors, and introduces a structured data management
system.

– Construction of the ScienceON Knowledge Graph: Leveraging collected science and technology data, we
have created the ScienceON Knowledge Graph. This KG integrates a wide spectrum of entities, attributes, and
relationships relevant to a variety of science and technology disciplines, and is encoded using the Resource
Description Framework (RDF), a standard endorsed by the World Wide Web Consortium (W3C).

– Utilization of the ScienceON Knowledge Graph: We harness the potential of the ScienceON Knowledge
Graph by engaging in graph-level experiments and employing knowledge representation learning models for
both comprehensive quantitative and qualitative analysis. Furthermore, by leveraging the collected data and
the ScienceON Knowledge Graph, we develop user-centric applications specifically tailored to science and
technology information. This initiative is distinguished by the introduction of an intuitive interface, which
significantly enhances the users’ ability to navigate and interact with the ScienceON Knowledge Graph, thereby
democratizing access to complex data for a wider audience.

The remainder of this paper is structured as follows: Section 2 presents the motivation and background of our
study. Section 3 reviews previous work related to KGs. In Section 4, we detail the ScienceON Knowledge Graph
System, encompassing the collection and management of science and technology data, as well as the development
of the ScienceON Knowledge Graph, which structures this data into a KG format. Section 5 discusses the results of
graph-related tasks utilizing the ScienceON Knowledge Graph. Section 6 presents various applications leveraging
the ScienceON Knowledge Graph. Finally, Section 7 concludes the paper.

1https://ntrl.ntis.gov/NTRL/
2https://report.nih.gov/exporter-data-dictionary
3https://cordis.europa.eu/
4https://relational.fit.cvut.cz/dataset/CORA
5https://relational.fit.cvut.cz/dataset/citeseer
6https://snap.stanford.edu/data/cit-Patents.html
7https://www.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/datasets/patent-dataset
8https://www.microsoft.com/en-us/research/project/open-academic-graph/

https://ntrl.ntis.gov/NTRL/
https://report.nih.gov/exporter-data-dictionary
https://cordis.europa.eu/
https://relational.fit.cvut.cz/dataset/CORA
https://relational.fit.cvut.cz/dataset/citeseer
https://snap.stanford.edu/data/cit-Patents.html
https://www.helsinki.fi/en/researchgroups/unified-database-management-systems-udbms/datasets/patent-dataset
https://www.microsoft.com/en-us/research/project/open-academic-graph/
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2. Motivation and Background

As the volume of science and technology information expands, the need to search and analyze this data intensi-
fies, accompanied by a growing diversity of infrastructures to access such knowledge. Data-driven analysis requires
multiple stages, including data discovery, acquisition, preparation, knowledge discovery and sharing [30]. Nonethe-
less, current datasets and infrastructures dedicated to science and technology information frequently fail to fully
support this comprehensive data-driven analysis. We outline the challenges faced by existing systems in the science
and technology domain from the standpoint of data-driven analysis, detailing the motivation and background for
tackling these issues.

From the perspective of data discovery, the scattered distribution of data across disparate systems and repositories
poses significant challenges. KISTI, under Article 40, CHAPTER V, of the Enforcement Decree of the Framework
Act on Science and Technology, plays a crucial role in the comprehensive collection of domestic and international
science and technology knowledge, supported by government funding. This enables the systematic construction of
a wide array of science and technology information and continuous efforts in data discovery. The scientific and
technological data utilized in this study are collected under national policies, forming the basis of our research.

Regarding data acquisition, KISTI collaborates extensively with both domestic and international institutions.
It collects academic information through partnerships with various academic institutions and patents information
in cooperation with the Korea Institute of Patent Information (KIPI). ScienceON serves as a data ecosystem for
integrating data collected by KISTI, employing an ETL process to continuously aggregate large volumes of data
from internal and external sources.

In the realm of data preparation, the science and technology data amassed necessitates a meticulous preparation
process for subsequent data analysis. At KISTI, the metadata collected from academic and R&D projects undergoes
a manual verification process. In addition, when service users submit feedback regarding any data issues, system
operators proceed to review the data. Most importantly, as these datasets are public data, they must adhere to gov-
ernment database standardization guidelines to ensure standardization across databases and are validated by external
independent audits. This verification process enables the data constructed by KISTI to serve as a gold standard in
the field of science and technology.

The data, collected from various fields and refined and verified, enables knowledge discovery in ways that exist-
ing systems in the science and technology domain could not. By employing ontology, we clearly identify complex
semantic relationships between data items, deriving knowledge not explicitly expressed and fostering a deeper un-
derstanding and discovery of new knowledge. In addition, leveraging graph representation techniques in the knowl-
edge graph enhances our ability to conduct graph-related tasks, including node classification and link prediction,
thereby discovering new significance.

Aiming for open science, ScienceON emphasizes data sharing. KISTI holds the rights to replicate, distribute,
and transmit the collected scientific and technological information, offering free copyright usage and providing the
information via REST APIs. Serving a diverse group of stakeholders, including students, researchers, and policy-
makers, ScienceON endeavors to supply scientific and technological information to various stakeholders and engage
in technological cooperation.

In summary, traditional systems and research institutions have faced policy and technical challenges in collect-
ing and analyzing scientific and technological data from a data-driven analysis perspective. This paper sets out
the background and motivation for addressing these long-standing issues, spanning from improved data discovery
mechanisms to enhanced data sharing capabilities. The proposed system represents a new initiative in the field of
science and technology information to address and bridge these critical gaps.
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3. Related Work

3.1. Knowledge graphs in science and technology domain

In 2012, Google announced a strategy to enhance the search engine, which emphasized utilization of KGs9.
Moreover, research on construction and refinement of KGs in a scientific domain has been active, and is currently
being applied to many real world applications. In a medical domain, KGs have been constructed from multiple
sources, notably during the COVID-19 pandemic, enabling development of treatments to combat the virus [31].
These KGs have played crucial roles in supporting clinical decision-making and detecting inaccurate health infor-
mation [32, 33]. In a education domain, KGs were built using pedagogical data to learn assessment data or to find
relationships between learning topics and basic concepts, helping personalized learning [34]. These KGs were used
to help students understand mathematical concepts [35]. In the field of Information and Communication Technology
(ICT), the KGs were built for preventing or detecting various types of cyber-attacks [36] or were used to efficiently
manage telecommunication networks [37, 38]. In an academic domain, scholarly communication accumulates data
generated from papers and other scholarly writings, and it is building scholarly infrastructures to provide this data.
Academic search engines provide scholarly literature search services using these infrastructures, and they define
entity and relation from metadata such as authors, venues, and affiliations and use them to build scholarly KG.

Microsoft has built the Microsoft Academic Graph (MAG) [4], a Web-scale academic graph for semantic search
engines. MAG consists of heterogeneous entities such as papers, patents, authors, affiliations, fields of study and
venues. Researchers have used MAG to augment an academic graph or combine it with other infrastructures to create
new scholarly KGs. M. Färber [39] proposed a large RDF dataset of over 8 billion triples based on MAG and linked
to data sources such as DBpedia, Wikidata, OpenCitations, and the Global Research Identifier Database. Aminer [5]
integrated researcher profiles and publications by collecting publications from online digital libraries such as DBLP
bibliography, ACM Digital library, and CiteSeer and automatically collecting researcher profiles from the web. This
was stored in MySQL and KGs were configured with a probability-based model to provide search services such
as expertise search and association search. Open Academic Graph (OAG) [6] integrated MAG and Aminer with a
LinKG framework to build a large-scale linked entity graph that integrates MAG and Aminer.

In addition, researchers have built scholarly KGs from various data sources. J. Xu et al. [8] built KGs by inte-
grating multi-source information obtained from infrastructure such as PubMed literature, ORCID, MapAffil, and
NIH ExPORTER project data. PubMed knowledge graph was defined to connect entities from multiple sources by
integrating bio-entities extracted from 29 million PubMed abstracts by applying BioBERT based a Named Entity
Recognition (NER) model, unique authors obtained from ORCID and MapAffil, and funding data obtained from
NIH ExPORTER. B. Yaman et al. [40] built a SciGraph of around 1.5 to 2 billion triples containing research entities
such as funders, research projects, affiliations and publications from Springer Nature. They also enhanced KGs by
linking entities from DBpedia infrastructure including structured information from Wikipedia by a crowd-sourced
community with entities generated by applying Named Entity Recognition(NER) to document abstracts, which are
unstructured data in SciGraph.

Some not-for-profit organizations utilize scholarly KGs to provide infrastructure. OpenCitations [7] provides
open scholarly information built using semantic web technologies. OpenCitations offers bibliographic metadata
to researchers and authors, bibliometricians, librarians, funders, academic administrators of research institutes and
universities, research managers, data repositories, publishers, and computer scientists and software providers to build
large-scale scholarly KGs. OpenAIRE [41] is an EU e-Infrastructure dedicated to Open Science, an infrastructure
that hosts not only research publications, but also scientific products generated by experiments, such as research
data, research software, and experiments. OpenAIRE Graph builds KGs by utilizing richer objects than existing
scholarly graphs such as publications, research data, research software, organizations, funding, etc.

Analyzing documents in the science and technology domains together can yield much deeper insights than eval-
uating them individually. Previous studies have explored these areas collectively, adopting various perspectives.
Anderson examined the insights and viewpoints on the knowledge regarding academy-industry relationships and

9https://blog.google/products/search/introducing-knowledge-graph-things-not/

https://blog.google/products/search/introducing-knowledge-graph-things-not/
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their influence on higher education [21]. Grimpe et al. analyzed that the complementary relationships between for-
mal and informal university knowledge and technology transfer [22]. Huang et al. investigated the contemporary
trend of collaboration between academia and industry in the field of fuel cells by analyzing papers and patents [23].
Larivière et al. revealed a global shift in basic research from industrial and governmental sectors to universities [24].
Bikard et al. found that academic scientists collaborating with industry partners generate more subsequent publica-
tions and fewer patents [25]. Salatino et al. presented ResearchFlow, a method that combines semantic technologies
with machine learning to quantify the trends of research topics within both academic and industrial spheres [26].
McManus et al. assessed the output and influence of scientific publications originating from non-academic and
industrial entities [27].

3.2. Knowledge Representation

Knowledge representation is the systematic structuring and organization of information. The goal of knowledge
representation is to convey real-world details in a way that enables computers to comprehend and utilize this knowl-
edge for solving complex problems, while encapsulating the richness of human knowledge within the limitations
of computer memory, processing speed, and comprehension. Knowledge representation learning adeptly navigates
the semantics of entities and relationships within a lower-dimensional space, effectively addressing the curse of
dimensionality challenge. This enhancement significantly improves the performance of tasks such as knowledge
acquisition and reasoning.

Many developments in learning knowledge graph representations depend on translating relations in the embed-
ding space, transforming KG representation learning into vector computations, and evaluating the plausibility of
facts based on the distance between two entities after translation by the relation. TransE [42] is an approach that
interprets relationships by modeling them as translations applied to the low-dimensional embeddings of entities.
TransR [43] addresses the challenge of a single space inadequacy for both entities and relations by introducing dis-
tinct spaces for entities and relations. TransH [44] characterizes a relation by utilizing a hyperplane in conjunction
with a translation operation. KG2E [45] incorporates Gaussian distribution to address the uncertainties associated
with entities and relations, drawing inspiration from Gaussian word embeddings. ManifoldE [46] expands embed-
ding into a manifold-based approach to overcome the limitations of overly strict geometric forms imposed by certain
methods using subspace projection. The traditional knowledge representation learning method simplifies design and
training by focusing on semantic associations within triplets, but the accuracy of learned entities and relationships
has limitations.

Graph Neural Networks(GNNs) have emerged for learning graph representations with the success of deep learn-
ing in various domains. They have broken the performance barrier of the existing knowledge representation learning
models. GNNs utilize a propagation module composed of aggregation and update to apply the deep learning frame-
work to graphs. GNNs learn representations of nodes, edges, and graphs by iteratively integrating and updating
feature vectors from neighbors. The goal of GNNs is to learn to convert a graph into a low-dimensional vector in or-
der to solve downstream tasks such as node-level tasks, edge-level tasks, and graph-level tasks [47]. The node-level
task includes classification, regression and clustering of nodes. The edge-level task includes link prediction and edge
classification. Finally, graph-level tasks aim to learn representations at the level of entire graphs or subgraphs, for
like classification or regression.

With the architecture of Convolutional Neural Networks(CNNs), there have been efforts to generalize CNNs to
graphs based on graph signal processing. GNNs with convolution operators are categorized into two main streams;
spectral-based methods and spatial-based methods [48]. First, spectral-based GNNs were developed, where the con-
volution operators are defined in the Fourier domain. Spectral GCNs [49] were the first spectral-based approaches to
receive attention, defining the filter as a learnable diagonal matrix. However, Spectral GCNs suffered from problems
caused by using a diagonal matrix: as the graph changes, the eigenvectors also change, so the eigendecomposition is
computationally inefficient. ChebNet [50] improved computational efficiency by defining filters as Chebyshev poly-
nomials instead of simple diagonal matrices. GCN [51] simplified ChebNet’s filters to a first-order approximation
to mitigate overfitting and applied a renormalization trick to solve a problem of exploding and vanishing gradients.
However, spectral-based GNNs required an entire graph and could not apply learned filters to graphs with different
structures, so they were applied only under transductive conditions.
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Fig. 1. The ScienceON Knowledge Graph System’s architecture, depicting the integration and processing of science and technology information.
From multiple data sources like KISTI Scholarly Database, AccessON, NTIS, KIPI and Web, to the utilization of an ETL pipeline for data
aggregation, and culminating in knowledge discovery via RDF, SPARQL, and AI models, this system facilitates the structured dissemination and
in-depth analysis of scientific data.

On the other hand, spatial-based GNNs solved the problem of spectral-based methods by defining convolution
operators to aggregate features of neighboring nodes in the graph domain. GraphSAGE [52] was a framework for
inductive node embedding, which used multiple aggregator functions to aggregate feature information from local
neighborhood of a sampled node instead of using a full neighbor set. Also, with the success of the attention mech-
anism and transformer [53], several models employed the attention mechanism. GAT [54] applied self-attention
into an aggregator function, allowing neighborhoods to be assigned different weights. GaAN [55] applied GRU to a
multi-head attention mechanism to reflect importance of the attention head.

However, these GNNs are methods for homogeneous graphs, which cannot reflect different types of nodes and
edges in the real world. Therefore, a GNN framework for heterogeneous graphs has emerged to model complex
relationships between entities in the real world by defining node and edge types. HAN [56] was inspired by GAT to
reflect the importance between nodes and meta-path based neighbors. To overcome the drawback of requiring do-
main knowledge to design meta-paths, HGT [57] designed heterogeneous mutual attention, heterogeneous message
passing and target-specific aggregation to learn node- and edge-type dependent representations.
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4. ScienceON Knowledge Graph System

In this section, we present the ScienceON Knowledge Graph System, a comprehensive data ecosystem designed
to integrate science and technology data from a variety of legacy systems. The ScienceON Knowledge Graph Sys-
tem encompasses essential components for data-driven analysis such as data discovery, acquisition, preparation,
knowledge discovery and sharing. As depicted in Figure 1, the ScienceON Knowledge Graph System architecture
facilitates the progression from diverse data sources to the extraction of actionable knowledge.

4.1. Data Discovery

ScienceON has the capability to collect a wide array of scientific and technological data, including papers, jour-
nals, authors, organizations, patents, research reports, and R&D projects. It aggregates extensive science and tech-
nology data from four legacy systems and one web source. The status of the collected data is as presented in Table 2.
This comprehensive approach allows ScienceON to serve as a pivotal resource, enabling researchers and practition-
ers to access a rich repository of scientific and technological information, thereby facilitating advanced research and
development activities across various domains.

Table 2
Summary of Science and Technology Data

Data Type Number Source
Paper 112,515,346 KISTI Data Center
Journal 412,482 KISTI Data Center
National R&D Report 343,756 KISTI Data Center
Author 947,860 KISTI Data Center
Organization 43,329 KISTI Data Center
OA(Open Access) Paper 47,841,476 AccessON
Patent 45,260,490 KIPRIS
National R&D Project 1,081,266 NTIS
Journal, Patent Category - Web

Scholarly-related data from KISTI Data Center. KISTI provides data files including paper, journal, R&D re-
port, author, affiliation and more. Paper data is assigned a unique ID and includes attributes like title, author(s),
affiliation(s), associated journal, publication date, DOI, and abstract. Moreover, there are a citation relationship
between a referencing paper and a referenced paper. Since all collected papers are identified by unique IDs, a refer-
encing paper can be linked exactly to a referenced paper. Journal data has a unique ID and includes attributes such
as the journal title, subject term(s). R&D report is a document that describes outcomes of a national R&D project.
It includes attributes such as a unique ID, report title, author(s), author’s affiliated organization(s), publication data
and abstract. Also, our collected R&D reports are assigned to hierarchical category, called Korea National Science
and Technology Standards Classification Codes by Korea Institute of Science & Technology Evaluation and Plan-
ning (KISTEP)10. While this categorization system is divided into three levels, we utilize only the first and second
levels to classify our data. We find that the third level categories are overly granular, making it difficult to appropri-
ately group and represent the nodes. Author & Organization indicates the author and affiliation of papers, patents,
and reports. Identifying authors and affiliations suffers from the problem of homonyms. Seol et al. [58] proposed
a method to identify authors and affiliations. Each author and affiliation has a unique ID and the attribute becomes
the name. Additionally, author data are mapped to recognized identifiers such as ISNI (International Standard Name
Identifier) and ORCID (Open Researcher and Contributor ID), ensuring excellent extensibility. As a result, we can
capture relationships between paper(s), patent(s) and report(s) published by the authors. The data inventory includes
112,515,346 papers, 412,482 journals, 343,756 national R&D reports, 947,860 authors, and 43,329 organizations.

10https://www.kistep.re.kr/

https://www.kistep.re.kr/
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Fig. 2. Parent-child relationships of national R&D Project. The Top-Project is an object that represents a research project, and the Sub-Project is
an object that belongs to the Top-Project and represents the research projects that are conducted each year.

Open Access scholarly-related data from AccessON11. AccessON facilitates free access to Open Access (OA)
papers globally, encompassing a comprehensive array of all versions of OA papers, including published, post-print,
and pre-print editions. This service ensures the provision of timely academic information through a systematic
process. Each OA paper is uniquely identified and cataloged with details such as the paper title, author(s), affiliations,
the journal of publication, publication date, DOI, abstract, and the type of OA. AccessON boasts a repository of
approximately 47 million OA papers, significantly contributing to the democratization of knowledge by making
scholarly work freely available to researchers worldwide.

Patent-related data from KIPRIS12. KIPRIS provided by the Korea Institute of Patent Information (KIPI)
includes extensive patent records. Each patent record is uniquely identified and detailed with information such as the
patent title, inventor(s), affiliations, and abstract. Additionally, patents are categorized according to the International
Patent Classification (IPC) system, allowing for the organization of patents into specific fields of invention. With an
approximate count of 47 million patents, KIPRIS serves as a vital resource for accessing a wide range of patents
filed or registered worldwide, thereby supporting innovation and research by offering insights into existing patents
and their classifications.

National R&D project-related data from NTIS13. National R&D projects cataloged by NTIS feature attributes
such as the project title, abstract, and duration. Typically, these projects span several years, and for representational
clarity, a node that encapsulates the project’s entire timeline can be designated as a parent node. Subsequently, indi-
vidual yearly projects are considered as child nodes linked in a chronological sequence. For instance, as illustrated
in Figure 2, a multi-year R&D project running from 2015 to 2020 could be structured with the entire project as
the parent node and each annual segment as a child node. Crucially, the metadata concerning R&D projects from
NTIS forms the backbone of the ScienceON knowledge graph, enabling the interconnection of disparate science
and technology data. Researchers produce various R&D deliverables, including papers, patents, and reports. These
deliverables, submitted by the researchers, are manually correlated by operators with the unique IDs of scientific
literature previously assigned by KISTI, ensuring accurate mapping with the corresponding research projects. This
hands-on approach guarantees that each output is meticulously linked to its relevant project, enhancing the integrity
and utility of the ScienceON knowledge graph. This methodology allows for the creation of links between a project
entity and other entities such as papers, patents, and reports. The projects are methodically organized and depicted
using parent-child relationships, enhancing the knowledge graph’s ability to represent complex project timelines
and associated research outputs.

Journal’s category from web. The paper data compiled in ScienceON are invariably linked to a journal. How-
ever, these journals lack a taxonomy of scientific concepts. To address this, we perform web crawling on Google
Scholar’s journal categories14. The categories adopt a structure as depicted in Figure 3, where a journal may cor-

11https://accesson.kisti.re.kr/
12http://www.kipris.or.kr/
13https://www.ntis.go.kr/
14https://scholar.google.com/citations?view_op=top_venues&hl=en

https://accesson.kisti.re.kr/
http://www.kipris.or.kr/
https://www.ntis.go.kr/
https://scholar.google.com/citations?view_op=top_venues&hl=en
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Fig. 3. An example of hierarchical classification in the paper domain. The taxonomy of papers is represented by a tree that expresses a hierarchical
structure.

respond to multiple categories, allowing for a one-to-many (1:n) mapping. Additionally, the categories exhibit a
two-level hierarchical structure.

International Patent Classification (IPC) from web. While the patent information acquired from KIPRIS is
mapped to the IPC, it lacks the descriptive information about IPC itself. To remedy this, we obtain the necessary
explanatory details of IPC through web crawling from the World Intellectual Property Organization (WIPO)15. The
IPC is elaborately divided into four hierarchical levels for detailed patent categorization: section, class, subclass, and
group. We use the class and subclass levels to categorize patents and the IPC’s descriptive information to provide
context and clarity to the classifications.

4.2. Data Acquisition

To construct a comprehensive database from various systems, our ETL process plays a crucial role. It involves
systematically extracting data from authoritative sources such as the KISTI Scholarly Database, AccessON, NTIS,
and KIPRIS. This information, once extracted, undergoes transformation to align with uniform standards for codes,
terms, domains, and metadata, in adherence to the government’s guidelines for database standardization. This en-
sures that the data integrated into the ScienceON system is consistent and maintains integrity.

A pivotal aspect of the ETL process is the assignment of unique identifiers to each document within ScienceON,
which is essential for eliminating duplicates and establishing explicit relationships between different entities like
papers, authors, and institutions. This is particularly important when reconciling datasets from various origins,
where DOIs are instrumental in ensuring the uniqueness and authenticity of each record. Papers from KISTI and
AccessON, for instance, are cross-referenced by their DOIs to filter out duplicates, with unique IDs bestowed upon
the remaining distinct AccessON papers.

The process is also expanded to include web-crawled data, such as IPC and journal categories, which enrich the
structural data from existing databases. By mapping this supplemental information to the established datasets, we
enhance the database’s depth, providing a richer context for analysis and knowledge discovery. Algorithm 1 is es-
sential for categorizing journals within ScienceON, especially since these journals do not inherently have unique
identifiers within our system. By employing a text pattern comparison methodology [59], as outlined in the algo-
rithm, we can effectively categorize journals based on the correlation of titles collected from Google with those
in the ScienceON database. This categorization process significantly augments the ScienceON knowledge graph,
enabling it to support complex queries and facilitate advanced research initiatives.

4.3. Data Preparation

In the process thus far, there have been limitations in conducting knowledge discovery using the data collected.
Therefore, to address these deficiencies and support data analysis based on machine learning, we augment the
ScienceON Knowledge Graph with language models. Large language models (LLMs) such as BERT [60], GPT [61],
and Llama [62], pre-trained on extensive corpus, have demonstrated exceptional performance across various natural

15https://www.wipo.int/classifications/ipc/en/

https://www.wipo.int/classifications/ipc/en/
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Algorithm 1: Assign journal’s category from Google Scholar to ScienceON.

1 Input: P = T1,T2, · · · TK ; Paper’s title set of one journal from google by web crawling, C ; Category of one
journal from google by web crawling, Q ; Query for searching paper’s title on ScienceON, S ; paper’s title
list from ScienceON, F ; Sequence match function, J ; List of candidate journal’s unique ID

2 Output: Journal set for k = 1 · · ·K do
3 S = Q(Tk); for l = 1 · · · L do
4 if F(Tk, S l) > 0.9 then
5 J ← S l’s unique ID of the journal;

6 H ← Select the item with the highest count from J;
7 return {H,C}

language processing (NLP) tasks. LLMs enhance KGs by leveraging their advantages [63]. Traditional KGs are
frequently incomplete, and existing methods for KG construction often neglect to consider textual information. To
tackle these challenges, LLMs contribute to enhancing KGs by incorporating textual information.

We leverage LLMs to enhance the ScienceON Knowledge Graph in two ways. Firstly, we extract keywords
from scientific and technical articles to generate additional nodes. The paper node, patent node, and report node,
as collected, include the title and abstract as attributes. We leverage the abstract data prepending with their article
title, utilizing LLMs to extract keywords and incorporate them as additional nodes to augment the knowledge graph.
Specifically, OpenAI’s GPT-3.516, one of the LLMs, is employed for keyword extraction, outperforming existing
models for document keyphrases in scientific domain [64]. We extract top 5 keywords from the title and abstract of
paper nodes, patent nodes, and report nodes, defining them as nodes within the ScienceON Knowledge Graph.

Secondly, we employ node attributes to define the node feature vector for knowledge representation learning. The
attributes of specific nodes consist of text extracted from titles or abstracts. To represent this textual information as
vectors, we utilize Sentence-BERT [65, 66]. Sentence-BERT is a variant of the BERT model tailored to produce
semantic embeddings for sentences. These embeddings capture the semantic similarities between pairs of sentences,
enabling tasks such as semantic text similarity. Each node for papers, patents, reports, and projects possesses a
feature vector created by embedding text that combines the title and abstract. Similarly, journals and categories are
represented as vectors derived from their titles. For paper, journal, and keyword, which have long input lengths and
require rich textual representation, we utilized the all-mpnet-base-v2 model, which has a large dimension size and is
the most widely used. For report and patent, which contain a mix of English and Korean, we employed the distiluse-
base-multilingual-cased-v1 model, which supports multilingualism. As for categories, compared to other entities,
the text is less diverse and more limited. Therefore, to reduce computational complexity, we used a model with
a smaller dimension size. For nodes lacking textual information, such as authors and organizations, we arbitrarily
assign 10-dimensional random vectors. In this case, the dimension size does not hold much significance. Table 3
provides an overview of the dimensions of the node feature vectors and the models used for their vectorization.
Through this rigorous data preparation, we are setting the stage for a more insightful and comprehensive knowledge
discovery, ensuring that our Knowledge Graph remains an accurate and current reflection of scientific advancements.

4.4. Knowledge Discovery

4.4.1. Methodical Development and Structuring of ScienceON Knowledge Graph
We have aggregated data from a variety array of sources into a consolidated relational database format, estab-

lishing a robust foundation for the development of a comprehensive knowledge graph. This process begins with the
careful identification of entities, relationships, and attributes within the ScienceON database, chosen to represent
the intricacies of the science and technology domain accurately. This selected data then serves as the cornerstone
for our ontology development, outlining the conceptual and relational structure of our domain of interest.

16https://platform.openai.com/

https://platform.openai.com/
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Table 3
Feature vectors of the ScienceON Knowledge Graph entities.

Entity Type Dimension Feature Extraction Model
Paper 768 Sentence-BERT (all-mpnet-base-v2)
Journal 768 Sentence-BERT (all-mpnet-base-v2)
Report 512 Sentence-BERT (distiluse-base-multilingual-cased-v1)
Author 10 Random vector
Organization 10 Random vector
Patent 512 Sentence-BERT (distiluse-base-multilingual-cased-v1)
Project 10 Sentence-BERT (distiluse-base-multilingual-cased-v1)
Categories 384 Sentence-BERT (all-MiniLM-L12-v2)
Keyword 768 Sentence-BERT (all-mpnet-base-v2)

To aid in the construction of this ontology, we utilize Protégé17, a premier tool for ontology modeling, known
for its effectiveness in facilitating complex ontology designs. Based upon the developed ontology, we adopt the
Resource Description Framework (RDF), a World Wide Web Consortium (W3C) standard, to model the knowl-
edge graph’s structure explicitly. To further bolster the data’s integrity and reliability, we apply the W3C Shapes
Constraint Language (SHACL)18 to validate the RDF data, significantly enhancing the credibility of the included
information. A pivotal addition to our methodology involves the transformation of relational database content into
RDF format, leveraging R2RML mappings to ensure precise alignment with the ontology. This step is crucial for
converting structured relational data into the RDF triples that populate the knowledge graph. Upon successful RDF
validation using SHACL, the ScienceON Knowledge Graph is stored in a triple store, enabling sophisticated query
capabilities via SPARQL19. We selected GraphDB for its exemplary performance as both a SPARQL engine and
triple store.

This cohesive and standardized approach not only streamlines the representation and exploration of complex
scientific datasets but also establishes a benchmark for future endeavors in knowledge graph construction and ap-
plication. By adhering to W3C standards and employing rigorous data transformation and validation processes, we
ensure that the ScienceON Knowledge Graph stands as a testament to the potential of semantic web technologies in
facilitating advanced knowledge discovery.

4.4.2. Structuring ScienceON Knowledge Graph Ontology
The ScienceON Knowledge Graph is meticulously engineered to elucidate the complex interconnections amongst

a multitude of scientific and technological datasets. It achieves this by defining a comprehensive network of entities
and their interrelations, which are depicted in Figure 4. The figure showcases the full data model of the ScienceON
Knowledge Graph, where the entities are not merely standalone points of data but are intricately connected to
represent a rich tapestry of knowledge within the realms of science and technology. The ontology is robust, en-
compassing a variety of entities such as R&D projects, papers, journals, patents, reports, authors, institutions, key-
words, and categories. Each entity is represented by a colored box, with the color-coding indicating the provenance
of data—differentiating between data sourced internally within ScienceON and those aggregated from external
databases and repositories. The incorporation of external schemas such as RDFS, XSD, and OWL enriches the on-
tology with a globally recognized standard, ensuring compatibility and interoperability across different knowledge
systems. This alignment with international standards not only enhances the SKG’s credibility but also facilitates its
expansion and integration with other knowledge graphs and databases.

In the ScienceON Knowledge Graph ontology, entities such as "skg:TopProject", "skg:SubProject", "skg:Paper",
"skg:Patent", and "skg:Report" serve as the basis to articulate the complex web of scientific and technological rela-
tions. These entities are intrinsically linked to descriptive metadata—titles, abstracts, and publication years—which
are instrumental for semantic analysis and interpretation. "Skg:TopProject" signifies a high-level R&D initiative,

17https://protege.stanford.edu/
18https://www.w3.org/TR/shacl/
19https://www.w3.org/TR/sparql11-query/

https://protege.stanford.edu/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/sparql11-query/
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Fig. 4. The ScienceON Knowledge Graph ontology illustrating the intricate network of entities and their interrelationships representing scientific
and technological data. This schema provides a comprehensive structure that mirrors the complex interconnections within the real-world science
and technology domain.
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which can encompass several "skg:SubProject" entities, illustrating the nested nature of extensive research endeav-
ors. These subprojects are temporally ordered, with properties like "skg:projectYr" marking the commencement of
each phase, thus mapping the project’s timeline.

The entities "skg:Paper", "skg:Patent" and "skg:Report", which emerge as tangible outputs of "skg:SubProject",
are detailed with comprehensive metadata, enriching the knowledge graph with actionable insights. Interlinked with
these entities are authors, represented by "skg:Author", who are affiliated with institutions ("skg:Organization"),
thus forming a network of intellectual contributions. And the "skg:Paper" entity, published within a "skg:Journal",
carries unique identifiers such as ISSN and ISBN, facilitating its distinction and retrieval. This relational structure
is further enriched by keywords ("skg:Keyword"), which are extracted from documents to semantically bridge the
content within the knowledge graph. Categorization plays a crucial role, with "skg:cate1stOf" and "skg:cate2ndOf"
denoting primary and secondary hierarchical levels, respectively. These categories provide a multi-layered classifi-
cation system that enhances the discoverability and analytical potential of the documents within the graph.

We have incorporated a variety of relationships to support complex queries between classes. Each relationship
carries the following meanings:

– "skg:include" connects the phases of an R&D project over several years.
– "skg:paperOutcome", "skg:patentOutcome", "skg:reportOutcome" link the papers, patents, and reports that are

outcomes of R&D projects.
– "skg:cite" denotes the citation relationships among papers, patents, and reports.
– "skg:isPublishedIn" indicates that a paper has been submitted to a journal.
– "skg:isRepresentedBy" signifies that keywords extracted from the text data of papers and patents represent the

respective documents.
– "skg:isWrittenBy" denotes the authors of papers, patents and reports.
– "skg:isAffiliatedWith" associates authors with specific institutions.
– "skg:cate1stOf" and ’skg:cate2ndOf" classify papers, patents, and reports into hierarchical categories.

By implementing such an extensive ontology, the ScienceON Knowledge Graph provides a foundational frame-
work for representing and querying a wide range of scientific and technological data. Through the ScienceON
Knowledge Graph, data is not only stored but also semantically linked, allowing for advanced queries and analyses
that can uncover patterns, trends, and associations that are otherwise not apparent. This ontology-driven approach
empowers researchers, data scientists, and technologists to delve deeper into the intricacies of scientific data, un-
locking new insights and fostering innovation.

4.5. Data Sharing from ScienceON API Gateway

The ScienceON API Gateway20, designed on a REST API, significantly enhances user interaction by providing
streamlined access to a wealth of science and technology information as well as to processed knowledge through
open API services. The RESTful architecture ensures scalability, simplicity, and flexibility, enabling seamless inte-
gration with a wide range of applications. By facilitating data retrieval in XML format, the ScienceON Web Service
ensures that both raw data and value-added knowledge are structured and readily accessible to end-users. This ap-
proach, leveraging the REST API framework, underscores our commitment to fostering a user-centric ecosystem
for sophisticated knowledge discovery and application, offering both raw data and processed knowledge products
via API services.

This robust infrastructure is instrumental in empowering users with the tools to transform extensive datasets into
actionable insights, thereby enriching the research landscape. ScienceON’s integrated system simplifies the intri-
cacies of managing and utilizing complex data, markedly increasing its value for a wide array of stakeholders,
including researchers, developers, and policymakers. The open API service not only guarantees data accessibil-
ity and reliability but also ensures that the data is optimized for in-depth analysis, driving forward the pursuit of
knowledge and innovation.

20https://scienceon.kisti.re.kr/apigateway/

https://scienceon.kisti.re.kr/apigateway/
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5. Measuring Quantitative and Qualitative Aspects Based on Graph-Related Tasks

5.1. Quantitative Analysis of Graph-Related Tasks

5.1.1. Knowledge Representation
We experiment on several knowledge representation learning tasks such as node classification and link prediction

in the science and technology domain. These tasks enable the performance of applications such as citation analysis,
conference analysis, and trend analysis. [67] We employ the GNNs framework, which has recently demonstrated
superior performance among various knowledge representation learning models, to learn the ScienceON Knowledge
Graph. A graph, denoted as G = (V , E), consists of a set of nodes V and a set of edges E with node feature vector Xv

for v ∈ V . A general GNN framework composes two operations of the aggregation function and the update function
to learn a node representation vector, denoted as hv.

Aggregation : a(ℓ)v = Aggregate(ℓ)(h(ℓ−1)
u ,∀u ∈ Nv), (1)

U pdate : h(ℓ)v = Updateℓ(h(ℓ−1)
v , aℓv), (2)

where Nv is the neighborhood of the node v, h(ℓ−1)
u is the feature vector of node v at the ℓ−th layer of a GNN.

We emphasize various GNN frameworks to address tasks such as node classification, link prediction, and cluster-
ing within the scope of the the ScienceON Knowledge Graph. However, since most existing GNN frameworks use
loss functions for single-label problems, we need to define a loss function to solve multi-class and multi-label prob-
lems. For graph representation learning with multi-class, multi-label, we can optimize the GNN model by binary
cross entropy loss with combing a sigmoid layer.

L(x) = − 1

N

N∑
i=1

yi logσ(hi) + (1− yi) log(1− σ(hi)), (3)

where N is the number of training nodes, h is an embedding vector of training nodes, σ is a sigmoid function and y
is a label vector of training nodes.

5.1.2. Experimental Setup
Dataset. In our investigation of the ScienceON Knowledge Graph, we have engaged in a selective extraction of

data to train graph representation models and conduct experiments on various tasks. Given the extensive size of
the entire knowledge graph, we faced computational constraints that necessitated the extraction of a representative
subset of data. Our extraction criteria focused on R&D projects conducted from 2011 to 2020, from which we
meticulously selected entities and relations that were central to our study.

The count of the primary entities extracted for this exercise is as follows:

– Top-Projects: 36,230
– Sub-Projects: 64,883
– Papers: 360,612
– Patents: 102,703
– Reports: 21,487

In addition to these entities, we have categorized our papers, patents, and reports into primary and secondary
categories to enable a nuanced classification that aligns with the intricate structure of scientific research. The status
of these categories is as outlined:

– Paper 1st Level Category: 8
– Paper 2nd Level Category: 100
– Patent 1st Level Category: 54
– Patent 2nd Level Category: 139
– Report 1st Level Category: 17



16 C. Lim et al. / ScienceON Knowledge Graph System: Exploring New Frontiers in Science and Technology Information Integration System

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Report 2nd Level Category: 88

Tasks and Evaluation. We evaluate several baseline models on the ScienceON Knowledge Graph. For node
classification, we predict classes such as paper 1st level category, paper 2nd level category, patent 1st level category,
patent 2nd level category, report 1st level category, and report 2nd level category. We measure F1-scores for both 1st
level and 2nd level category node classification. For link prediction, we predict links between papers. After learning
baseline models for node representations of papers, the models are used to compute a probability of each pair of
papers to be linked. We evaluate link prediction with the Area Under the ROC Curve (AUC) and Average Precision
(AP).

Baselines. We apply various state-of-the-art GNN approaches to the ScienceON Knowledge Graph. All baselines
are implemented using the PyTorch Geometric (PyG) package [68]. The first group of baselines is designed for
homogeneous graphs, which includes the following approaches:

– GCN [51] is a semi-supervised graph convolutional network for homogeneous graphs, which aggregates em-
beddings of neighboring nodes through average and subsequent linear projection.

– GraphSAGE [52] is an inductive approach that generates node embeddings for unseen data by employing node
features and learning a function that samples and aggregates features from a node’s local neighborhood.

– GAT [54] is a semi-supervised homogeneous GNN that incorporates an attention mechanism in graph spatial
domain convolutions.

The second group of baselines is models for heterogeneous graphs, including:

– Metapath2vec [69] is a traditional heterogeneous graph embedding model that utilizes metapath-based random
walks for skip-gram embeddings.

– HAN [56] utilizes hierarchical attentions to aggregate neighbor information from diverse metapaths, forming
a heterogeneous graph neural network that simultaneously employs node-level and semantic-level attention.

– HGT [57] defines meta relations as the types of two adjacent nodes and their link, assigning diverse attention
weight matrices to these meta relations, enabling the model to incorporate type information.

For metapath2vec, we set the window size to 7, the walk length to 100, the walks per node to 500, the number of
negative samples to 7 and the size of each embedding vector to 128. For all GNNs including GCN, GraphSAGE,
GAT, HAN and HGT, we initialize parameters randomly and leverage the Adam [70] with the learning rate set to
0.001, the weight decay set to 0.001. We set the dropout rate to 0.5 and use early stopping with a patience of 50. We
set the hidden dimension to 256 for all baselines. We set the number of heads to 6 for all multi-head attention-based
models.

5.1.3. Node Classification
To assess the ScienceON Knowledge Graph’s contribution to machine learning tasks, we evaluated its impact on

document classification efficacy. The comparison of classification performance, with and without the integration of
the ScienceON Knowledge Graph, is illustrated in Figure 5. We employed two distinct models for this experiment:
the baseline sentenceBERT [65, 66] and the enhanced sentenceBERT + Graph Embedding. Both models were
trained on paper nodes, leveraging the ’abstract’ attribute with a train-to-test data ratio of 80:20. The baseline sen-
tenceBERT model utilizes only the abstract text for embedding and employs logistic regression for classification.
Conversely, sentenceBERT + Graph Embedding enriches this approach by incorporating graph-structured data as
an additional feature set alongside the textual information.

The evaluation, as depicted in Figure 5, benchmarks the weighted F1 score against the number of training iter-
ations for both models. The graph indicates that while sentenceBERT achieves a quicker initial convergence, the
sentenceBERT + Graph Embedding model ultimately attains a superior F1 score. When utilizing both textual
information and graph information together, there is an improvement in the f1-score of over 10% compared to not
using them in combination. This demonstrates that the integration of graph information provides a significant per-
formance advantage, underscoring the value of including the ScienceON Knowledge Graph in the model. Hence,
the evidence suggests that sentenceBERT + Graph Embedding, by leveraging the interconnected structure of the
knowledge graph, enhances the model’s predictive accuracy compared to the text-only baseline.
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Fig. 5. Comparision of document classification performance both with and without the incorporation of the ScienceON Knowledge Graph.

We continue to report averaged Micro-F1 and Macro-F1 scores of repeating the process 10 runs for all classifi-
cation tasks. The results, detailed in Table 4, present the node classification performance when categorizing paper
nodes into their 1st level category, noting that a paper may be classified into multiple categories. We only present
experimental results for the rest of the tasks with HAN and HGT in Table 5, since the F1-scores of metapath2vec,
GCN, GAT and GraphSAGE converge to 0 in the rest of node classification tasks.

As shown in Table 4, HGT outperforms other baselines in terms of both metrics on the node classification for
the 1st level category of the paper. HGT also outperforms other baselines beyond comparison on all of node clas-
sification tasks in Table 5. However, it does not necessarily mean that heterogeneous methods always outperform
homogeneous methods. In certain scenarios, such as when comparing against the HAN model, homogeneous meth-
ods like GCN, GAT, and GraphSAGE show superior performance. Additionally, metapath2vec, the traditional graph
embedding model, has been shown to be empirically better than GNNs in Table 4. This highlights the nuanced na-
ture of model performance, where the choice of model should be contextually driven, accounting for the specific
characteristics of the dataset and task at hand.

In Table 5, to validate our model to properly learn representation by aggregating information from the neighbor-
hood, we further evaluate HAN and HGT on subgraphs in which some node types are eliminated. In other words, if
the model learns representation vectors by effectively aggregating information from neighboring nodes in the Sci-
enceON Knowledge Graph, it is expected to outperform the model trained on its subgraph. To illustrate, for paper
node classification, we extract and examine a subgraph containing paper nodes, project nodes, author nodes, orga-
nization nodes, and their interlinking relationships. Similarly, for patent and report node classifications, we consider
corresponding subgraphs populated with relevant nodes and their connections.

From Table 5, let HGT represents the model that learns the entire ScienceON Knowledge Graph, and HGT-
Subgraph represents the model that learns a subgraph of the ScienceON Knowledge Graph. We expected that HGT
to be better than HGT-Subgraph, but HGT has shown similar performance to HGT-Subgraph and in some cases
or HGT-Subgraph has shown even better performance. That said, HGT model, has the restriction of aggregating
information from the neighborhood. This suggests that HGT model is limited in scaling up model, as there are
obstacles related to oversmoothing and expensive computation.

5.1.4. Link Prediction
In the realm of network analysis, the link prediction task serves as a crucial benchmark for assessing the predictive

power of GNN models. In our study, we define a positive node pair as two papers connected by a link, signifying a
relationship such as citation or thematic similarity. On the other hand, a negative node pair consists of two papers
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Table 4
Quantitative results on the node classification task of 1st level category of the paper.

Baseline Metapath2Vec GCN GAT GraphSAGE HAN HGT
Classfication Case Test Size Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Paper 1st Category 20% 0.6219 0.4414 0.6550 0.4280 0.6733 0.4161 0.7063 0.4471 0.5276 0.3649 0.7217 0.6151
40% 0.6098 0.4304 0.6558 0.4247 0.6736 0.4170 0.7070 0.4494 0.4155 0.2644 0.7149 0.5997
60% 0.5900 0.4035 0.6524 0.4230 0.6715 0.4160 0.6951 0.4469 0.4146 0.2628 0.7048 0.5806
80% 0.5546 0.3558 0.6579 0.4245 0.6724 0.4153 0.6965 0.4436 0.5156 0.3551 0.6983 0.5410

Table 5
Quantitative results on the node classification task of all category with HAN and HGT. HGT is a measurement of node classification on the
ScienceON Knowledge Graph, and HGT-Subgraph is the results on its subgraph. Bold numbers represent the highest performance in each row.

Baseline HAN HGT HGT-Subgraph
Classification Case Test Size Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Paper 1st Level Category 20% 0.5276 0.3649 0.7217 0.6151 0.7339 0.6212
40% 0.4155 0.2644 0.7149 0.5997 0.7217 0.6036
60% 0.4146 0.2628 0.7048 0.5806 0.7073 0.5903
80% 0.5156 0.3551 0.6983 0.5410 0.7024 0.5609

Paper 2nd Level Category 20% 0.2329 0.2037 0.4245 0.4201 0.4254 0.4232
40% 0.2305 0.2034 0.4065 0.3952 0.4192 0.4106
60% 0.2618 0.2359 0.3962 0.3850 0.3993 0.3873
80% 0.2145 0.1884 0.3580 0.3336 0.3681 0.3460

Patent 1st Level Category 20% 0.0491 0.0106 0.6005 0.4188 0.6015 0.4130
40% 0.1566 0.0866 0.5870 0.3978 0.5828 0.3797
60% 0.1407 0.0778 0.5708 0.3625 0.5680 0.3543
80% 0.1423 0.0782 0.5287 0.2991 0.5204 0.2949

Patent 2nd Level Category 20% 0.0415 0.0208 0.4814 0.3435 0.4819 0.3284
40% 0.0480 0.0257 0.4642 0.3256 0.4617 0.3114
60% 0.0528 0.0316 0.4409 0.2931 0.4335 0.2783
80% 0.0522 0.0298 0.3879 0.2369 0.3806 0.2328

Report 1st Level Category 20% 0.0033 0.0033 0.5158 0.4345 0.5143 0.4591
40% 0.0030 0.0030 0.4806 0.3993 0.4727 0.3991
60% 0.0296 0.0296 0.4497 0.3673 0.4222 0.3496
80% 0.0086 0.0086 0.4110 0.3242 0.3649 0.2799

Report 2nd Level Category 20% 0.0032 0.0032 0.2835 0.2678 0.2432 0.1740
40% 0.0029 0.0029 0.2562 0.2415 0.2322 0.1765
60% 0.0026 0.0026 0.2172 0.1928 0.2014 0.1554
80% 0.0024 0.0024 0.1777 0.1557 0.1571 0.1111

with no connection between them, indicating that no direct relationship is known. Through this binary classification
framework, we aim to gauge the models’ ability to infer hidden or potential connections within the knowledge
graph.

As evidenced by the results in Table 6, the HGT model outstrips other baseline models in terms of the AUC
and AP metrics. Notably, while the AUC of 0.9824 and AP of 0.9810 for HGT are impressive, the superiority of
HGT over other models is not as pronounced in link prediction as it is in node classification tasks. This suggests
that while HGT is adept at uncovering complex patterns in node features for classification purposes, its edge in
discerning latent links is somewhat more modest, highlighting areas for potential enhancement in future iterations
of model development.
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Table 6
Quantitative results on the link prediction task.

Metric GCN GraphSAGE GAT HAN HGT
AUC 0.9717 0.9357 0.9380 0.9278 0.9824
AP 0.9739 0.9449 0.9180 0.8991 0.9810

5.2. Qualitative Insights from Graph-Related Tasks

5.2.1. Graph Embedding Visualization
Beyond the numerical analysis, we delve into a qualitative evaluation of our Knowledge graph through the vi-

sualization of node embeddings. This section focuses on the embeddings generated by the HGT, which previously
showcased superior performance. For an intuitive understanding of these embeddings, we employed t-distributed
Stochastic Neighbor Embedding (t-SNE) [71], a technique renowned for its efficacy in reducing high-dimensional
data into a two-dimensional space conducive to visual interpretation. This process facilitates the visualization of
node embeddings, with nodes color-coded according to their categorical affiliations, offering insights into the spa-
tial distribution of various scientific disciplines within our knowledge graph.

A closer look at the interplay between the categories of “Chemical & Material Sciences” and “Engineering &
Computer Science” is provided in Figure 6b, with the former depicted in blue and the latter in red. Papers that
embody both fields are shown in purple, serving as a bridge between the two domains and situated at their juncture,
thereby illustrating the overlapping knowledge areas. This visualization not only evidences the model’s capacity to
distinguish between singular and intersecting domains but also its sensitivity to the complex landscape of scientific
research. Subsequent figures, Figure 6c and Figure 6d, extend this analysis to other category pairs, consistently
revealing the model’s adeptness at mapping the multifaceted relationships between various scientific disciplines.

Figure 7 provides a granular view of paper embeddings within the specific lower fields of "Chemical & Material
Sciences" and "Engineering & Computer Science", showcasing the model’s adeptness at classification. In Figure 7a,
the visualization illustrates a clear demarcation between papers classified under these higher fields, affirming the
model’s precision in maintaining distinct domain boundaries. Figure 7b reveals an interesting phenomenon where
nodes associated with "Engineering & Computer Science" (teal-colored) are positioned close to the intersection
with "Chemical & Material Sciences". This proximity suggests a conceptual overlap or interdisciplinary nature of
certain papers that bridge the two fields, underscoring the model’s capacity to reflect the complex, multidimensional
structure of scientific knowledge. Further analysis through Figures 7c and 7d plots the distribution of nodes by their
lower field classifications, confirming that each class is distinctly separated.

These visual analyses provide deep insights into the ScienceON Knowledge Graph’s ability to intricately map
the complex and interwoven landscape of the science and technology domain. The clear delineation of classes, cou-
pled with the identification of interdisciplinary nodes at the intersection of major fields, demonstrates the model’s
refined comprehension of the scientific domain. This qualitative assessment sheds light on the knowledge represen-
tation’s depth and sophistication, revealing the graph’s rich structural intricacies and the dynamic interrelationships
it encapsulates.

5.2.2. Network Analysis of Patent and Paper
Traditional knowledge graphs often fail to capture the heterogeneous nature of the relationships between patents

and papers, a limitation that overlooks the interplay between scientific research and technological innovation. The
ScienceON Knowledge Graph, however, stands out by bridging this gap, offering a more comprehensive framework
that enables the interpretation of the intricate relationships between patents and papers. To enhance our understand-
ing of the intricate relationships among various node types within the ScienceON Knowledge Graph, we delve into
the analysis of co-occurrence frequencies, specifically between patents and journals. This approach involves calcu-
lating the frequency with which a target node (e.g., a IPC) appears alongside a source node (e.g., a paper), thereby
gauging the proximity and relevance between them. As co-occurrence frequency escalates, the relational closeness
between the target and source nodes intensifies, providing a quantitative measure of their association.

Illustrated in Figure 8, our analysis zeroes in on the dynamic interplay between journal nodes and IPC nodes.
Here, IPC nodes serve as source nodes, while journals associated with related patents act as target nodes. The
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Fig. 6. Embedding of 8 paper’s class in 1st level category. (a) Node colors denote classes. Nodes marked with a circle are single-label classes,
and nodes marked with a asterisk are multi-label classes. (b) The class "Chemical & Material Sciences" is colored blue, the class "Engineering
& Computer Science" is colored red, nodes that belong to both are colored purple, and the rest are gray. (c) The class "Life Sciences & Earth
Sciences" is colored blue, the class "Engineering & Computer Science" is colored red, nodes that belong to both are colored purple, and the rest
are gray. (d) The class "Physics & Mathematics" is colored blue, the class "Engineering & Computer Science" is colored red, nodes that belong
to both are colored purple, and the rest are gray.

visualization employs varying thicknesses of links to denote the degree of proximity between the IPC and its cor-
responding journals; a thicker link suggests a stronger relationship. In Figure 8a, we spotlight the "Electric com-
munication technique" IPC category (denoted as H04), a higher field of patent classification. The analysis indicates
a pronounced connection between this category and journals within domains such as “Engineering & Computer
Science”, “Computer Networks & Wireless Communication”, “Signal Processing”, “Microelectronics & Electronic
Packaging”, and “Computing Systems”, highlighting significant interdisciplinary overlaps. Figure 8b presents the
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Fig. 7. Embedding of selected papers belonging to "Chemical & Material Sciences" and "Engineering & Computer Science". (a) Node colors
denote classes. Nodes marked with a rectangle are "Chemical & Material Sciences" classes, nodes marked with a circle are "Engineering &
Computer Science" classes, nodes with an X are multi-label classes that belong to "Engineering & Computer Science" class, and nodes with
an asterisk are multi-label classes that belong to both classes. (b) "Chemical & Material Sciences" nodes are colored blue and "Engineering
& Computer Science" nodes are colored purple, papers similar to "Chemical & Material Sciences" in "Engineering & Computer Science" are
colored teal, and nodes belonging to both are colored red. (d) Chemical & Material Sciences" nodes are colored blue, "Engineering & Computer
Science" nodes are colored purple, nodes that belong to both are colored red.

same results as Figure 8a. Further exploration in Figure 8c examines the "Image data processing or generation,
in general" IPC category (G06T), a lower field of patent classification. The proximity of this category to journals
like “Sensors”, “Electronics Letters”, “IEEE Access”, “Scientific Reports”, and “Multimedia Tools and Applica-
tions” underscores meaningful relationships, suggesting thematic commonalities that bridge these areas of research.
Similarly, Figure 8d shows the same results as Figure 8c.
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Fig. 8. The IPC related the journal based on the frequency of co-occurrence. The IPC nodes are colored teal in the top center, and the journal
nodes are colored blue. As the thickness of the link increases, it indicates that the IPC and the journal are getting closer to each other. (a) and (b)
are IPC nodes belonging to the 1st level patent category, and (c) and (d) are IPC nodes belonging to the 2nd level patent category.

Through this analysis, the ScienceON Knowledge Graph emerges not only as a repository of data, but also as a
dynamic map of the confluence of scientific disciplines and technological innovation. The co-occurrence frequency
approach reveals how patents and papers, as proxies for broader research trends, are interconnected within the vast
ecosystem of science and technology, providing a perspective on the collaborative nature of modern research efforts.

5.2.3. Network Analysis of Scientific Keyword
The ScienceON Knowledge Graph offers valuable insights into the interconnections among scientific keywords

across different fields of study. This visualization underscores the ways in which the same keyword may align with
different sets of related terms, depending on the academic or professional field. It highlights the critical need for
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Fig. 9. Scientific keyword projection network. (a) represents a network of keywords centered on "patent analysis", and (b) depicts a network of
keywords centered on "social network analysis". Keywords with varying characteristics are linked depending on the research area.

precise field specification when recommending or analyzing keyword lists within the science and technology domain
to ensure the relevance and accuracy of the results.

As depicted in Figure 9, the graph visualizes how certain keywords cluster together, revealing their varying as-
sociations across disciplines. For instance, Figure 9a highlights the keyword "patent analysis" and its connections
to distinct sets of keywords based on their disciplinary context. Keywords such as "document clustering," "dimen-
sion reduction," and "latent Dirichlet allocation" are closely linked within the "Engineering & Computer Science"
field, indicating a technical focus. In contrast, within the "Business, Economics & Management" domain, terms like
"novel patents," "existing technology," and "business method" cluster together, reflecting a more business-oriented
perspective. Similarly, Figure 9b explores the keyword "social network analysis" and its diverse linkages across
fields. Here, keywords related to "Business, Economics & Management" and "Engineering & Computer Science"
converge around the theme of social network analysis yet form distinct groupings that mirror their respective disci-
plinary lenses.

6. ScienceON Knowledge Graph Applications

In this section, we demonstrate the capabilities of the ScienceON Knowledge Graph System through the develop-
ment of various functionalities aimed at providing science and technology information to the general public via the
ScienceON web service. By showcasing examples of the user interface (UI) along with SPARQL queries designed
to facilitate these services, we illustrate how the ScienceON Knowledge Graph System can effectively support a
wide range of services for disseminating scientific and technological knowledge to non-expert audiences. The UI
examples and SPARQL queries serve to highlight the system’s ability to curate and deliver relevant information in
an accessible and user-friendly manner.

The first application provides access to scientific papers collected by ScienceON. As shown in Figure 10, this
service delivers various metadata related to papers, including titles, journals, authors, affiliations, publication years,
DOIs, abstracts, keywords, and references. This allows users to easily understand detailed information about a paper.
On the right side of the figure, an example SPARQL query is presented, showcasing how data can be queried in a
manner simpler than the equivalent SQL queries for relational databases.
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Fig. 10. Detailed view of a scientific paper’s metadata provided by the ScienceON service, alongside an example SPARQL query for accessing
this information.

Fig. 11. Visualization of a keyword cloud generated from a selected paper and its references, demonstrating the network of scientific topics.

The second application generates keyword clouds for papers. Illustrated in Figure 11, this service searches for
keywords associated with a selected paper and its references, visualizing them all together. The corresponding query,
as shown on the right, retrieves and groups keywords from all related papers, sorting them by frequency. The more
frequently a keyword appears, the more significant it is, which is represented by its larger size in the keyword cloud.

Lastly, we offer a feature that retrieves national R&D projects by year and their resulting outputs. In Figure 12,
projects from 2014 to 2016 are displayed along with their yearly published papers, patents, and reports in a timeline
format. The SPARQL query, as demonstrated, locates all Sub-Projects belonging to a Top-Project and fetches all
research outputs produced from these Sub-Projects.

7. Conclusion

The pursuit of integrating and analyzing scientific and technological information is fraught with challenges. The
exponential growth in data volume, coupled with the complexity of relationships within this domain, necessitates
sophisticated solutions. Such challenges underscore the need for advanced data structures that can not only integrate
vast amounts of interconnected data but also enable meaningful knowledge discovery.
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Fig. 12. A timeline visualization of national R&D projects from 2014 to 2016, including their yearly outputs of papers, patents, and reports, with
an example SPARQL query for data retrieval.

In addressing the complexities inherent in data-driven analysis of scientific and technological domains, we have
developed the ScienceON Knowledge Graph System. This advanced system is built upon a solid data ecosystem
that aggregates a wide range of information, encompassing R&D projects, papers, patents, reports, authors, organi-
zations, keywords, and categories. A key strength of the ScienceON Knowledge Graph System is its commitment
to strict curation and standardization protocols. This approach ensures the high quality and reliability of the data,
setting a foundation that supports intricate queries and analyses. These capabilities surpass those offered by conven-
tional systems, offering a more comprehensive exploration of the interconnected web of scientific and technological
knowledge.

The value of the ScienceON Knowledge Graph System has been further demonstrated through a series of exper-
iments and the development of user-centric applications. These endeavors have showcased the system’s capability
to enhance knowledge discovery, offering deeper insights into the scientific and technological landscape. By con-
ducting experiments for graph analysis, we have validated the efficacy of the knowledge graph in capturing the
complicated relationships between various data points. Moreover, the applications developed on this system have
proven to be instrumental in disseminating scientific knowledge, thereby reinforcing the practical utility and signif-
icance of the ScienceON Knowledge Graph System.

Looking ahead, the evolution of the ScienceON Knowledge Graph System will be guided by feedback from a
broad range of stakeholders, including researchers, policymakers, and industry professionals. This iterative process
of feedback and refinement will not only aid in the continuous collection and curation of scientific and technological
data but also in the enhancement and expansion of the knowledge graph. Furthermore, by fostering the development
of diverse applications, we aim to extend the reach and impact of the ScienceON Knowledge Graph System, ensuring
it remains a vital resource in the exploration and understanding of science and technology. Through this collaborative
and dynamic approach, we aspire to unlock new horizons in data-driven science, paving the way for breakthroughs
that could transform our understanding of the world.
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