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Abstract. Linked data and labelled property graphs (LPG) are two data management approaches with complementary 
strengths and weaknesses, making their integration beneficial for sharing datasets and supporting software ecosystems. In this 
paper, we introduce rdf2pg, an extensible framework for mapping RDF data to semantically equivalent LPG formats and data-
bases. Utilising this framework, we perform a comparative analysis of three popular graph databases - Virtuoso, Neo4j, and 
ArcadeDB - and the well-known graph query languages SPARQL, Cypher, and Gremlin. Our qualitative and quantitative as-
sessments underline the strengths and limitations of these graph database technologies. Additionally, we highlight the potential 
of rdf2pg as a versatile tool for enabling polyglot access to knowledge graphs, aligning with established standards of linked 
data and the semantic web. 
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1.  Introduction 

While the Semantic Web and ontology engineering 
are still fundamental as common languages to ex-
change data (mainly related to the ‘Interoperable’ of 
the FAIR principles [1]), we have seen some  differ-
ent recent trends in networked and shared knowledge, 

reflecting the difficulties that practitioners still expe-
rience with dealing with these approaches. For in-
stance, while domains like life science still benefit 
from precise annotations based on OWL ontologies 
[2], complementary models such as schema.org and 
Bioschemas [3]  are becoming popular as ‘light-
weight’ data models, which are easier to use and fit 
well use cases such as harmonising large and hetero-
geneous datasets or making them visible on search 
engines and accessible via the Web [4]. 

Another emerging trend, which has arisen in do-
mains like data intelligence or machine learning, is 
the adoption of labelled property graphs (LPG), 
which are the basis of graph databases [5] and other 



 

frameworks [6,7]. With respect to RDF triples, the 
LPG graphs are less fine-grained, being able to keep 
together an entity's properties in a single node, and 
most importantly, they are more expressive in repre-
senting ‘binary relations with annotations’ (see Fig-
ure 1). The proliferation of LPG-based technologies 
has stimulated collective efforts to standardise 
(again…) at least the query languages, with examples 
like Open Cypher [8], later turned into GQL [9], or 
the Gremlin/TinkerPop framework [10]. 

In the authors’ experience, LPG-based data man-
agement is not an alternative to more ‘traditional’ 
Linked Data approaches, as the two have a set of 
complementary advantages and disadvantages [11]. 
For instance, while systems such as Neo4j [12] can 
offer fast and scalable access to LPG knowledge 
graphs by means of the expressive Cypher language, 
they do not have reference/standard formalisms for 
data exchange, nor does a standard exist to represent 
LPG schemas and advanced schema-related entities, 
such as ontologies. Both these aspects are the focus 
of the Semantic Web stack and existing literature 
shows that these two approaches can be usefully in-
tegrated [11,13,14]. 

A consequence of this is the need for bridging 
these two worlds, in order to obtain good integrations 
and benefit from the best of the two. In this paper, we 
present rdf2pg, an extensible framework to convert 
RDF graph data into various target LPG graph for-
mats and graph databases by means of a user-defined 
mapping between the source RDF data and the target 
LPG. As we will show, this has the main advantage 
of allowing for a sensible and domain-aware map-
ping between these two graph data models that, 
though very similar, have significant ‘natural’ ways 
to represent certain semantics (e.g., relations with 
properties vs reified statements). Another objective 
of this paper is to explore, both qualitatively and 
quantitatively, the use of different graph databases 
and query languages, when used to store data that are 
conceptually the same and are aligned to the same 
conceptual model. We show how our rdf2pg tool 
makes such alignment possible and we base our 
analysis on plant biology datasets, which is a typical 
use case for which the knowledge graph model fits 
very well [15–17]. 

1.1. Motivational use cases 

In this section, we describe the use cases that mo-
tivated the development of the rdf2pg tool and the 

management of respective datasets with graph data-
bases and their query languages. 

KnetMiner. The rdf2pg framework is an evolu-
tion of the rdf2neo tool [13]. The need for the latter 
was born within the KnetMiner project [17,18], a 
platform that provides functionality to explore 
knowledge about molecular biology. KnetMiner of-
fers the end users an easy-to-use web application to 
quickly search genes of interest and related entities 
(e.g., diseases, biological processes, scientific litera-
ture), as well as to visualise them in various forms, 
including knowledge networks. This is based on 
knowledge graphs that are built starting by integrat-
ing many useful public data sources. The same data 
that powers the web application are also available 
programmatically, in the form of a specific web API 
[19], a SPARQL endpoint, and a Neo4j data endpoint 
(that is, Cypher access via the BOLT protocol and 
the Neo4j browser). The KnetMiner team decided to 
use (and share) both RDF-based data and Neo4j due 
to the complementary pros and cons that the two 
have, both in general and for the specific platform 
needs. For example, after many years of varying suc-
cess, RDF and the Semantic Web stack are still relia-
ble standards to integrate data, being particularly 
suitable for sharing schemas and ontologies [20] and 
for operations such as automatically merging datasets 
referring to the same Uniform Resource Identifiers 
(URIs), ontology terms and public identifiers. On the 
other hand, many developers and bioinformaticians 
find Cypher and Neo4j an easier technology to work 
with. As an example of the latter, they use Cypher to 
define ‘semantic motifs’, which are graph patterns 
capturing chains from genes to relevant entities [21] 
(e.g., gene->protein->bio-process->article-mention), 
so that the related entities can be exploited to realise 
application-level functionality like displaying seman-
tic associations between genes of interest. Another 
advantage given by Neo4j is that its ecosystem offers 
useful tools to manage and analyse the data, such as 
Bloom [22] or NeoDash [23]. Recently, the latter has 
been used to summarise the general characteristics of 
KnetMiner datasets [24,25]. 

Enterprise Semantic ETL. This use case deals 
with the integration of data coming from different 
information systems within different enterprise do-
mains, including health and insurance, realised by 
NTT Data in collaboration with the University of 
Zaragoza, within the project ‘Semantic Data Man-
agement in Knowler’. Here, we describe the main 
project aspects by considering the non-disclosure 
requirements set by the companies involved. One of 
the seed domains was the integration of all the in-



 

house information about the ongoing projects, the 
employees and their skills. Such information was 
scattered across various underlying information sys-
tems (usually following different governance poli-
cies). To integrate such information, a knowledge 
graph was built out from many different structured 
sources, designing a Semantic ETL (Extract-
Transform-Load) pipeline. Each source (usually 
structured) followed a different model and, in order 
to include everything together under RDF format, 
many times reification of non-binary relationships 
must be applied. In our initial domain, we had Em-
ployees related to their Skills (both soft and hard 
skills, such as Technologies) and their particular lev-
els achieved (evaluated within the company). Thus, 
in RDF, we needed to reify such relationships in or-
der not to lose any information in the integration pro-
cess. Moreover, once we have the triple store com-
pletely populated, it was especially convenient to 
have all the flexibility required to build views on 
property graphs, possibly materialising traversals 
over different property paths. For example, we could 
materialise the time that an employee has been work-
ing on a particular kind of project and directly in-
clude that in the property graph appropriately. In this 
ETL, we used an ontology as an integration umbrella 
to bring together data from different sources. For 
information integration purposes, we used RDF triple 
stores, which are particularly effective at handling 
Linked Data [26,27]. For other tasks, such as build-
ing an adaptive presentation layer, we used property 
graph databases, mainly because internal tests 
showed their better performance. We designed the 
pipeline in a way that ensures high flexibility in 
building the presentation views. Moreover, we also 
paid attention to the particular requirements in enter-
prise scenarios, where software licence costs and 
avoidance of vendor-locking are two factors which 
might lead to project failure. Those two risks were 
avoided by the adoption of standard formats and by 
using the property graph as a general and unified data 
model. We chose GraphML as the reference format 
to produce LPG data in the ETL pipeline as it al-
lowed us to store labelled multigraphs in an extensi-
ble way (adding attributes or references to the edges 
themselves) and it is supported by many different 
graph databases and visualisation tools. 

In both KnetMiner and Semantic ETLs, an ap-
proach and software tool are needed to align RDF-
represented data with different LPG data. Initially, 
the rdf2neo framework was developed [13], which 
offered the feature to map RDF data models to the 
LPG model that is supported by the Neo4j database, 

and in a configurable way, which is decided by data 
managers and is the most appropriate for the datasets 
they deal with and their semantics. Later, similar 
needs have arisen in the Semantic ETLs scenario. 
This has naturally led us to extend the initial rdf2neo 
software into the rdf2pg infrastructure that we pre-
sent hereby. As described later, we introduce the 
concept of mapping RDF to an abstract LPG model 
which allows for the execution of a specialised data 
generator. This same generator materialises the ab-
stract property graph into a specific format or tech-
nology. By following this approach, we have repur-
posed a considerable amount of existing code for the 
development of an RDF->Neo4j and RDF-
>GraphML converter. Furthermore, the same frame-
work remains extendable to accommodate similar or 
related use cases. 

2. Technologies and methods 

The semantic web. As well known, RDF is part of 
a stack of standard technologies defined under the 
vision of the Semantic Web [28–30]. Its main idea is 
to leverage the World Wide Web concepts and stand-
ards to share data in the same way we share human-
targeting documents. As a result of this concept, the 
core of the RDF model (Figure 1, bottom) consists of 
binary relations between entities or about entities and 
data values, where the entities are described by 
means of resolvable URIs. URIs serve as both uni-
versal entity identifiers and, in most cases, they are 
web URLs that employ HTTP technology to provide 
documents of RDF statements about the identified 
entities they refer to. Over the years, a number of 
RDF-based formal languages (and standards) have 
been developed to characterise the data semantics 
with either lightweight schemas or advanced ontolo-
gies. As mentioned earlier, the RDF data model is 
very fine-grained: everything is a triple, including a 
property associated with an entity (such as name, 
surname, ‘protein description’). Together with the 
use of URIs, this makes the merge of data about the 
same entities very straightforward. At the same time, 
in the original triple-only model it is neither possible 
to isolate a set of properties for an entity (eg, two 
pairs of name+description for the same protein, com-
ing from two different sources), nor to associate 
properties (or other entities) with a triple (eg, the text 
mining software name and the date of a ‘mentions’ 
relation between a document and a product). Both 
can be obtained by modelling patterns such as RDF 



 

reification [31], which is considered a difficult to use 
technique. Recently, the RDF-Star extension to RDF 
has been proposed [32], which allows one to use tri-
ples as subjects of other triples, making RDF more 
similar to LPGs bringing the advantages of the latter 
into the Semantic Web world. We are interested in 
the future adoption of this approach as a standard. 

Most graph database technologies have associated 
graph query languages. In KnetMiner, we utilise the 
Virtuoso triple store (a synonym for RDF-based 
graph database) to store our RDF data and make 
them publicly accessible via SPARQL, the standard 
query language for RDF, which is part of the Seman-
tic Web stack [29,33]. SPARQL is essentially a 
graph pattern formalism for RDF, with a syntax that 
is a mix of the Turtle encoding format for RDF and 
SQL. Because the native form of the KnetMiner da-
tasets is not based on RDF, we also employ the Jena 
framework, including the TDB triple store compo-
nent, for software tools that convert such data into 
RDF [34,35]. TDB is particularly well-suited for 
programmatic access, while it is not the most perfor-
mant SPARQL engine available, which is why we 
have opted for Virtuoso for the public endpoint. 

Labelled property graphs. As mentioned above, 
Labelled Property Graph models are less fine-grained 
than RDF (Figure 1, top), meaning they support the 
notion of nodes and relations between nodes, both of 
which may have attributes attached, in the form of 
name/value pairs. The attribute values are usually of 
plain data types (e.g., string, number). Both nodes 
and relations usually have special additional attrib-
utes, such as, using the common jargon, ‘labels’ for 
nodes and ‘types’ for relations, commonly used to 
characterise the represented entity type. The approx-
imate equivalent in RDF is the standard property 
`rdf:type` and the predicate’s URI respectively, while 
many other models have similar concepts, e.g., class 
type in object-oriented languages. While in general, 
LPG implementations exist that support multiple 
relation types, here we will stick to the graph models 
used by Neo4j and the Gremlin framework, where 
only nodes can have multiple labels. As previously 
mentioned, RDF and LPGs are similar, though they 
have significant differences, especially in the details, 
and they have orthogonal technical advantages and 
disadvantages. 

Currently, our rdf2pg supports the conversion of 
RDF to two LPG targets, the Neo4j graph database 
and the GraphML format. The converter for the latter 
has been designed and developed with a focus on 
populating Gremlin-compatible graph databases (ie, 
to load GraphML files via Gremlin commands). 

Neo4j is one of the most popular graph databases 
built on the LPG model. It is known for its ease of 
deployment and maintenance, as well as its powerful 
query language, Cypher. Neo4j also offers a rich eco-
system of applications and tools designed to interact 
seamlessly with its data format, including a graph 
data science framework and database functions to 
ease graph embedding. 

GraphML [36,37] is an XML-based language to 
define generic graphs, supporting labelled (directed, 
undirected, mixed) multigraphs and hypergraphs in 
an extensible way. Unsurprisingly, the format has 
elements like <graph>, <node> and <edge>. More-
over, it allows for the extension of the core attributes 
used in node and edges, by means of definitions like: 
<key id = “prefName” for = “node” attr.name = 
“Preferred Name” attr.type = “string” />. Attributes 
and <data> elements provide the aforementioned 
flexibility. Additionally, GraphML is supported by 
many graph tools and graph databases. 

As presented on their project page, Apache Tink-
erPop [38] is a graph computing framework for both 
graph databases (OLTP) and graph analytic systems 
(OLAP). In essence, it is a unifying layer that offers 
an abstraction over the graphs and their processing, 
allowing different vendors to implement their specif-
ic implementations. 

Gremlin [10,39,40] is the graph traversal language 
employed by Apache TinkerPop. Its name stems 
from the metaphor of a gremlin hopping from graph 
element to graph element while performing calcula-
tions and gathering data. This is how traversals, a 
central concept for data exploration and manipulation, 
are described in Gremlin. More formally, a traversal 
is a sequence of steps. For instance, Figure 5 shows a 
traversal that walks the composition relationship be-
tween protein complexes and the proteins they’re 
made of. The query has basic traversal steps, plus 
operators similar to projection operators in other lan-
guages. In the KnetMiner use case, we have used 
ArcadeDB [41] to experiment with Gremlin queries 
on the plant biology data sets described later. Ar-
cadeDB is a multi-model database [42], which is 
available as open source code, derived from the Ori-
entDB database [43]. ArcadeDB supports, among 
other data models, graphs, document stores, relation-
al/SQL databases. Although a recent and still pro-
gressing project, it is made fast by software devel-
opment that exploits lower-level Java optimisations 
and avoids time and memory-consuming abstractions 
available in the standard Java language and libraries. 
Moreover, it is OS-portable and suitable for cloud 
software, such as Docker. We have preferred this 



 

database to experiment with Gremlin, due to both its 
good performance and its ease of installation and 
management. 

rdf2pg, architecture and approach. Figures 1 
and 2, show the mapping approach rdf2pg is based 
on. An RDF graph can be seen as a data model where 
part of the triples are about LPG node’s plain proper-
ties and another part are about LPG relations, where 
one can map the latter from either straight RDF tri-
ples (i.e., which yield LPG relations with essentially 
any attribute) or from set of triples that correspond to 
the semantic of reified statements or similar entities. 
Such mappings, which are dataset or domain-specific, 
are defined by means of SPARQL queries. We se-
lected SPARQL as the language for this mapping 
since it offers the significant advantage of not need-
ing to learn anything new if one is already proficient 
in Semantic Web technologies. A mapping is defined 
by four types of SPARQL queries. Firstly, we have 
queries that select the URIs of those RDF nodes that 
are to be mapped to LPG nodes. Secondly, these 
URIs are used as parameters in RDF resource-centric 
queries that select/map node attributes (key/value 
properties and labels) from the RDF. Two other types 
of analogous queries are defined for the LPG rela-
tions: one query defines the relation identifying URI, 
its type and endpoints (as already mentioned, we 
support the common model where a relationship has 
one type only), and another URI-parameterised query 
allows for picking up the relation properties (again, a 
set of key/value pairs). The latter can be omitted 
when mapping plain RDF triples (in which case, the 
relation URI is a fictitious reference that can be built 
with appropriate SPARQL constructs, see [44] for an 
example). 

In Figure 3 we show how the mapping is enacted 
by the rdf2pg architecture. For the case of nodes, a 
SPARQL query that selects node URIs is submitted 
to an input Jena TDB triple store, then, returned node 
URIs are batched and each batch is processed in par-
allel by an instance of a node handler. The node han-
dler has a base abstract class, which has the common 
logic to do two things: fetching the node attributes 
from RDF, using the corresponding queries and, for 
each node, producing an abstract representation of 
the node’s data (i.e., an abstract LPG view, see [45] 
for details). The abstract Node handler is then ex-
tended in the specific LPG data transformers, so that 
they can turn the abstract node representation into the 
representation that they need, e.g., Cypher CREATE 
instructions for the Neo4j converter or XML frag-
ments for the GraphML converter. Conceptually sim-

ilar components are available to produce LPG rela-
tions, that is, a relation processor that selects the rela-
tion URIs and types, and a relation handler, which 
produces LPG relations from a relation property se-
lector defined in SPARQL. Clearly, a future exten-
sion to some other kind of similar RDF/LPG trans-
former would be based on this architecture and thus it 
would require its own implementation of the node 
handler and relation handler. As further mapping 
flexibility, the framework supports the definition of 
multiple query sets (sets of node and relation map-
ping queries), for those cases where a single RDF 
graph has subgraphs that are mapped differently to 
the LPG model. For instance, one might have to map 
gene and experiment representations, which are enti-
ties with enough differences (classes, node properties, 
relations) to warrant separated mappings. 

 

3. Results 

 
In this section, we evaluate rdf2pg as a tool to ex-

pose the conceptually equivalent data as multiple 
datasets, supporting multiple data access languages. 
This can be considered an expansion of a similar 
evaluation work initially done for the rdf2neo tool 
[13]. In particular, first, we will briefly review the 
three query languages that we have used and provide 
a qualitative analysis stemming from our experience 
and the lessons learned during the development of 
rdf2pg. Then, we present a quantitative evaluation of, 
on the one hand, the performance of rdf2pg in con-
verting from RDF to three different graph databases, 
and on the other hand, the execution performance of 
semantically equivalent queries written in three dif-
ferent query languages, each against the rdf2pg-
populated databases. Overall, this work aims at a 
broad comparison of essentially equivalent datasets 
managed with different graph databases and graph 
query languages, where their semantic alignment is 
obtained through a tool like rdf2pg. 

 

3.1. Test datasets 

 
Details about our benchmarks are available at the 

github repository [46]. As explained there, we have 
used three datasets about plant biology. 



 

 

Fig. 1. An example (from [49]) of a Labelled Property Graph (top) and how it can be represented as RDF triples (bottom). 

All the datasets have similar entities and mostly 
follow the same schema, which allows for assessing 
the scalability of the same queries. Figure 4 shows 
elements of such schema that we considered to write 
the benchmark queries. Essentially, one aspect these 
elements describe is gene annotations, including 
Gene Ontology [47] annotations, gene mutations 
(SNPs) and associated mutation phenotypes, together 
with phenotype annotations from the Plant Trait On-
tology [48]. Another aspect is biochemical processes 
(so-called biological pathways) in which gene prod-
ucts are involved. The starting point for the bench-
mark was RDF files that represent these data, from 
which we populated Virtuoso triple stores (providing 
SPARQL access) by direct RDF loading, Neo4j da-
tabases (providing Cypher) using rdf2neo, and Ar-
cadeDB databases (providing Gremlin) using 
rdf2graphml and then the Gremlin helpers to import 
from GraphML. The result for each dataset is that the 
three different databases contain data that are aligned 
to the same conceptual model, therefore it was possi-
ble to design several query tasks, which could be 

translated into semantically equivalent queries in the 
tested query languages (see our benchmark report for 
details about the semantic equivalence). 

3.2. Qualitative considerations 

In this section, we compare the three tested graph 
query languages, SPARQL, Cypher and Gremlin 
from qualitative perspectives. This includes examin-
ing the syntax and patterns that the languages offer, 
identifying which queries are easy to write and which 
ones present challenges. We present our experience 
in this area by referring to the queries used for the 
benchmark; all mentioned queries are listed in the 
benchmark code repository [46]. Both SPARQL and 
Cypher are declarative languages and both allow one 
to work with graph patterns, that is, templates that 
describe subgraphs in the database to be matched and 
retrieved. This declarative approach is typically ex-
ploited by query engines for optimisation operations, 
such as query rewriting. 

 



 

 

Fig. 2. How the RDF graph in Figure 1 can be mapped onto the corresponding LPG in rdf2pg tools, using SPARQL queries to list node or 
relation main elements, which are then passed to node-specific or relation-specific queries, to gather further element details

SPARQL, being bound to the RDF model, shapes 
this graph pattern paradigm around the idea of triple 
patterns (Figure 5), a network of nodes like the one in 
Figure 4 translates to a list of triples in the pattern, 
where nodes participating in multiple triples are 
simply listed with the same binding variable names. 
An advantage of this is that the syntax is rather sim-
ple and operations like querying integrated data 
(where entities with the same URIs were automatical-
ly merged in the database) are straightforward. Typi-
cal disadvantages are that certain patterns are rather 
verbose, eg, matching chains of nodes, matching 
many properties for a node, and dealing with data 
modelling workarounds such as reification might be 
even more verbose. The joinRel query from our 
benchmark is an example of the latter. On the other 

hand, Cypher is a language oriented to property 
graphs and its syntax is often more ‘visual’, feeling 
like you can draw the subgraphs to be matched, in 
particular chain patterns. For a typical example, 
compare the Cypher version of the joinRel example 
to the SPARQL one. An exception to this is in cases 
like 2UnionNest, where graph patterns have to be 
built that involve many branches from hub nodes. 

With past versions of Neo4j and Cypher, this was 
particularly hard to write, requiring to ‘flow’ partial 
results from one subquery to another (using the 
WITH and UNFOLD clauses), which is very unusual 
with respect to the more common UNION construct. 
Indeed, Cypher improved this construct recently (in 
version 4.0) and now such queries are easier to write, 
as we show in 2union1Nest+. 



 

 

Fig. 3. : the rdf2pg architecture (from [50]). The diagram shows the components used to collect RDF batches of node references via SPARQL; 
the batches are then passed to parallel node handlers, which retrieve node details like properties (using additional SPARQL) and convert in-

memory representations of LPG elements into a specific LPG target. Similar components are available to process relationships.

The Gremlin language contrasts with SPARQL 
and Cypher for giving the impression of a procedural 
language. In fact, writing a query looks similar to 
specifying the states/nodes and transitions/relations 
of a state machine. Common queries such as simple 
selections (see the ‘selection’ group in our bench-
mark) are as easy to write in Gremlin as in the other 
languages, and Gremlin is fairly simple when dealing 
with traversal patterns. Furthermore, the language is 
integrated with other programming languages like 
Groovy, which makes it a Turing-complete pro-
gramming language [39], useful for advanced graph 

exploring tasks. For instance, our joinReif query de-
fines a function to match a uri property in a relation-
ship to a node (property graphs have data properties, 
but don’t allow for links to other nodes or relation-
ships). At the same time, this power often backfires. 
For instance, hub-based patterns (where many sub-
graphs depart from or join a node) are often hard to 
define in Gremlin efficiently, especially when the 
traversal paradigm makes it hard to link separated 
subgraphs through joining properties. Indeed, we 
needed to write the joinReif query using a lambda 
function, in order to make the uri-based join efficient.



 

 

Fig. 4. typical elements of the plant biology datasets that we have used for benchmarking three different graph databases and query languages, 
with data coming from the same RDF sources and kept aligned using rdf2pg tools. Details in our dedicated code repository [46]. 

 
 Related to this nature of mostly imperative query 

language, Gremlin leaves the query writer in control 
of how the graph database is explored, which can be 
very flexible, but at the same time, can force the que-
ry author to pay much more attention to query opti-
misation, including cases where such optimisation 
would be automatically computed by more declara-
tive languages. We have experienced this in queries 
like 2union, where traversing the graph in the order 
enzyme-to-protein is faster than protein-to-enzyme, 
due to the cardinality difference for the two types. 
For similar reasons, we have experienced significant 
challenges in writing aggregations using Gremlin. 
For example, existAg pinpoints biological pathways 
with certain characteristics and then computes both a 
reaction-per-pathway count and an average of pro-
teins per reaction. This is a long query to write in 
SPARQL and Cypher, which becomes even longer 
and more convoluted in Gremlin, requiring a first 
part of traversals, which is combined with aggregat-
ing traversals starting from the elements projected 

from the first part. Another comparison we made 
concerns queries that traverse graph chains, ie, graph 
patterns like: x-to-y-to-z… (see the ‘paths’ category 
in our benchmark). The Cypher syntax is very com-
pact and easy with this kind queries, and it is man-
ageable to write them in SPARQL and Gremlin, alt-
hough with more verbose patterns. These queries 
become more complicated when a traversal pattern 
has variable-length relations (eg, a pattern that 
matches both protein1/xref/protein2 and 
prot1/xref/prot2/xref/prot3). Both SPARQL and Cy-
pher support this in their syntax, while Gremlin re-
quires care with writing repeat() traversing steps (see 
our ‘paths’ queries and section 3.27 in [40]). Things 
become even more complicated for traversal paths 
with ‘optional tails’, eg, see the lngSmf query in the 
benchmark, where the chain tail consisting of pro-
tein/protein/gene is made optional. The Cypher syn-
tax for defining such a case is still straightforward, 
since a chain tail having optional relations only (with 
min cardinality set to 0) is implicitly considered op-



 

tional in its entirety, that is, the pattern doesn’t need 
to match the nodes linked by such relations. Both 
SPARQL and Gremlin require an OPTIONAL clause 
for achieving the same, since node matching in these 
languages is not optional in this case. 

3.3. Performance benchmark 

In this section, we show the results from a quanti-
tative benchmark that we have run over the three 
chosen databases and languages, measuring the times 
taken to populate the graph databases, as well as the 
average times taken by the test queries to complete in 
multiple executions. For these tests, we have used: 
Virtuoso, Open Source edition, version 7.2.10-r16, 
Neo4j, Community edition version 5.11.0, Ar-
cadeDB: version 23.4.1. We have used the rdf2pg 
framework and tools version 5.0. We have run these 
systems on a virtual machine equipped with: CPU, 
Intel(R) Xeon(R) Gold 6152, 2.10GHz, 8 cores, 
32Gb RAM assigned to each DB server, 32GB as-
signed to rdf2pg tools. We have employed these set-
tings to test three different datasets (referring to simi-
lar data and sharing a very similar schema) of in-
creasing sizes of about 2, 21 and 97 million of RDF 
triples. Results and more details about the test set-
tings and approach are described in the already-
mentioned github repository [46]. 

Database population performance. The times 
taken to load the three test datasets into the three test 
databases are shown in Figure 6. This shows that 
even the largest dataset can be uploaded to any of the 
databases in a reasonable time (with a range between 
about 14 seconds to 30 minutes), at least when con-
sidering the case where a large dataset does not need 
frequent updates (eg, it is uploaded once a week or 
less often). We have also experienced that all the 
databases scale the uploading time linearly with the 
data size. In addition to the loading times, we have 
verified expected behaviours that depend on the de-
tails of rdf2pg. For example, the Neo4j population is 
influenced by the fact that the database is written by 
the rdf2neo tool, which has the overhead to read the 
input via SPARQL. In contrast, Virtuoso is the fast-
est database in the loading task, since it just needs to 
read RDF data and has optimised support for that. 
Though not within the scope of this paper, these fig-
ures could be improved by several optimisations. For 
example, the ArcadeDB population (and in general, 
any Gremlin-based writing) could be realised in a 
single step, where data are read from SPARQL and 

streamed to the target Gremlin database, similarly to 
the way the rdf2neo tool works. Adopting the per-
formance-optimised RDF format HDT might be an-
other improvement [51]. All of these hereby results 
are in line with our previous work [13]. 

Query performance. As explained in the bench-
mark report [46], we have designed 5 graph query 
categories and a total of 25 queries, based on both 
real use cases and other benchmark works, such as 
the Berlin benchmark [52]. As explained above, for 
each query, we wrote semantically aligned versions 
in the three tested languages. Results are shown in 
Figure 7. As shown, all the databases/languages per-
form within the order of hundreds of ms for most 
queries (each finding and fetching the first 100 rec-
ords on average). In particular, Neo4j is the fastest 
database in many cases. Results also show that Vir-
tuoso is still a good choice for pure-RDF and pure-
SPARQL applications, although this triple store has 
the limitation of not supporting the above-mentioned 
RDF-star. Gremlin on top of ArcadeDB is often the 
slowest endpoint, this might depend on the fact that 
ArcadeDB is a relatively new product and its devel-
opers are still actively improving it. Moreover, 
Gremlin is usually implemented starting from a 
common code base and that might affect its perfor-
mance compared to languages which are more native 
to a given database and its query engine. Another 
factor to consider is that, as said above, Gremlin is 
more sensitive to how queries are written. For in-
stance, for the join and joinRel queries, we have no-
ticed that the traversal step where returned results are 
limited to the first 100 matches matters for perfor-
mance significantly, since exploring only the first 
100 short chains in a graph pattern avoids that the 
engine traverses many more subgraphs and then cut 
the results to be returned at the end (it also might 
change the query semantics and results, see our 
github report for details. This has also an impact on 
the scalability towards the database size, in fact, 
while both Virtuoso and Neo4j show good scalability, 
this is more problematic with ArcadeDB. Consider-
ing specific queries, as expected, the fastest, most 
homogeneous and most scalable queries were selec-
tions/projections from simple patterns, while the ag-
gregations were among the most challenging queries. 
This is in line with existing literature [13,52,53]: 
basic matching and projection are among the most 
used features in most query languages, while aggre-
gations are notoriously hard to compute. 



 

 

Fig. 5. The graph query languages we tested, the example is a simplified version of the joinRel query in our benchmark [46] and based on the 
graph in Figure 4. a) SPARQL, syntax like bk:Protein shows the use of URIs to identify entities (resources in RDF jargon). The rdf:Statement 

match is an example of reification used to link the bk:evidence property to a part-of relationship (based on the standard rdf: vocabulary). b) 
Semantically equivalent query in Cypher, where a more visual and more compact syntax can be noticed. c) The Gremlin version, showing 
queries in this language describe graph traversals, by means of steps from one node or edge to another (V(), outV(), outE()) filtering steps 

(hasLabel()) and a number of other steps, such as selectors (select()), step modifiers (by()) and reference-creating steps (as()).

The semantic motif paths queries (i.e., a kind of 
chain pattern queries) are a particularly interesting 
category for the KnetMiner use cases, since in 
KnetMiner we often follow path chains to find enti-
ties associated with genes. As expected, Neo4j and 
Cypher excel in this kind of query, which is in line 
with their authors claiming their database engine is 
optimised for traversals. We were surprised these 
queries can be challenging for Gremlin, after further 
investigation, we noticed graph patterns with variable 
length relations (eg, find protein pairs linked by a 
chain of ‘xref’ relations of max length = 3) can be-
come quite slow with large datasets. Again, this is 
likely to depend on the way the query is written and 
the fact Gremlin traversals are hard to optimise au-
tomatically. Finally, the queries in the ‘counts’ cate-
gory have very varying performance across different 
databases and we presume this depends on the fact 
systems like Neo4j store summary data like the total 
number of nodes or relations, while other engines run 
the corresponding queries every time that such sum-
maries are asked. 

3.4. Theoretical considerations 

It is useful to add theoretical analysis of the algo-
rithms used by rdf2pg. In previous work (supple-
mental material in [13]), we have shown how the 
SPARQL-based mapping from RDF graphs to LPG 
graphs can be formalised by means of abstract alge-
bra and we proved that the Cypher queries we gener-
ate in rdf2neo correspond to the mapped LPG. Simi-
lar reasoning can be done for the GraphML conver-
sion, that is, it is possible to formally define how an 
LPG maps to the XML elements of the GraphML 
format and use that to prove that the LPG we build 
from SPARQL queries is correctly converted into 
GraphML. Namely, the proof is analogous to the 
proof of Theorem 1 in our mentioned work, which 
combines definitions 4 (RDF/LPG mapping), 5 
(transformation induced by a mapping) and the 
GraphML semantics. 

Furthermore, we have shown that the computa-
tional complexity of rdf2neo is dominated by the 
SPARQL mapping queries and it is PSPACE in the 
worst case, with a significant class of queries that can 
be reduced to LOGSPACE. Since the conversion 
from the LPG entities extracted from these queries to 



 

 

Fig. 6. Results from graph database population with varying size datasets. More details at [46]. 

GraphML is linear with respect to the selected 
LPG nodes and relationships, this computational 
complexity holds for the GraphML converter too. 

In general, this computational complexity analysis 
is valid for any converter implemented with our 
framework, as long as the target-specific conversion 
has the same linearity (or does not exceed LOG-
SPACE/PSPACE). 

It is also worth considering more recent theoretical 
work concerning the properties of RDF/LPG map-
ping algorithms. Using the terminology introduced 
by [54], the SPARQL-based transformation we de-
fine by means of SPARQL (Definition 4 in [54]) is a 
kind of database mapping (from RDF to LPG), and 
such transformation uses SPARQL to also induce an 
LPG schema, consisting of all the labels, relation 
types, property domain and ranges that we implicitly 
extract from RDF. Such transformation/mapping is 
certainly computable (our tool computes it!) and it is 
semantics-preserving by construction, that is, the 
translated LPG is a valid instance of the schema con-
structed from SPARQL selections. According to the 
same mentioned paper by Angles et al., the infor-
mation preservation of our transformation/mapping 
consists of the possibility of reconstructing the origi-
nal RDF data from the translated property graph. In 
general, this is not a property of our RDF/PG trans-
formations, eg, we might have instances of the clas-
ses ‘Car’ and ‘Van’ on the RDF side and, for some 
reason, one might want to define a mapping where all 

car and van nodes are assigned the ‘Vehicle’ label. 
Thus, in such a case, the original RDF data would be 
impossible to reconstruct (ie, no inverse PG/RDF 
mapping could exist). That said, we might show a set 
of conditions sufficient to make our transformation 
information-preserving. For instance, if the LPG 
node IRIs are always selected from a pattern like: ?iri 
rdf:type ex:Car, and the label that is selected in this 
case is always ‘Car’, then, assuming no other selec-
tor maps to the ‘Car’ label, all the rdf:type relations 
can be reconstructed correctly from the LPG labels. 
Similar conditions on relationships and node/relation 
properties could be defined to ensure this infor-
mation-preserving property of our tool transfor-
mations. Note that, generally speaking, our SPARQL 
selectors consider a subset of the input RDF graph, 
hence this property of information preservation, that 
is, the possibility of going from the LPG data back to 
the RDF data the LPG was derived from, can only 
hold for such actually converted subset and not for 
the possibly bigger entire RDF graph one has started 
from. This corresponds to the real use of rdf2pg, 
where in most cases, the reversibility of RDF/LPG 
mapping is only interesting for the subset of data that 
are actually converted in either direction and moreo-
ver, such reversibility is not always a desired and 
sought-for property (eg, cars and vans merged into 
the vehicle class is a simplification where, likely, 
there is not interest in reconstructing the original 
RDF details). 



 

4. Discussion 

We have shown that labelled graph databases and 
their query languages have advantages and disad-
vantages that are complementary to more traditional 
Semantic Web technologies and Linked Data practic-
es. The latter allows for managing dataset building 
and data sharing in a way that complies with the 
FAIR principles. In particular, RDF and existing on-

tologies or schemas based on RDF are still important 
means to ensure the goal of data interoperability. 
They also still play an important role in building 
pipelines to integrate heterogeneous data into unified 
knowledge graphs (i.e., ETL or ELT pipelines 
[55,56]). For instance, features like reusable URIs 
and standard schemas and ontologies produce graphs 
of data that are integrated in a seamless way. 

 

Fig. 7, Part 1. Results for benchmarking three various-size datasets on the three target graph query languages and graph databases, using que-
ries of different categories. See [46] for a detailed list of all the tested queries, their description and code.



 

 
Fig. 7. Part 2. 



 

On the other hand, users who are not proficient 
with SPARQL and the Semantic Web might prefer to 
query knowledge bases by means of languages like 
Cypher. We have shown that the performance of 
graph databases and triple stores are not extremely 
different, which allows for scenarios where data are 
first prepared using mainly RDF and related technol-
ogies and then loaded into a LPG database. Further-
more, our experience with KnetMiner proves that 
more complex architectures are feasible too, where, 
for instance, the same data are served via both 
SPARQL and Cypher, we could easily add Gremlin 
support and, at the same time, all the access points 
and encoding formats are aligned to the same con-
ceptual data model. All of this is possible by means 
of the rdf2pg framework, which is both a base library 
to build RDF to property graph converters and two 
specific converters based on the framework. Our ex-
perience and our tests also show that, while query 
languages like SPARQL and Cypher have similar 
expressivity, Gremlin feels more like a lower level of 
abstraction and more suitable as a standard to build 
applications like multi-language or multi-model 
graph databases [42], or for use cases where ad-
vanced graph traversals are necessary. 

4.1. Related work 

As described in previous sections, this paper is an 
extension of our previous work on aligning RDF and 
Neo4j-based datasets, done within the context of the 
KnetMiner platform, where we have an interest in 
giving multiple access means to knowledge graphs 
[9]. Based on this initial work, we have seen the 
rdf2neo approach suitable for the generalisation and 
extensions described hereby and to be used to man-
age the enterprise ETL use case described above, 
where we have similar needs to align mixed data 
models and technologies. In developing our frame-
work, we have relied on literature comparing the two 
types of graph paradigms. For instance, [57] discuss-
es various definitions of knowledge graphs and their 
applications, [58] is a comprehensive review of 
knowledge graphs, how they are built and their appli-
cations, including link extraction from existing 
graphs. The above-mentioned work [54] gives formal 
definitions of graph databases and shows the kind of 
mappings that are possible between them. Work has 
been done to standardise property graph representa-
tions [59], convert between them automatically 
[14,60], or map query languages on multiple para-
digms [61,62]. These conversion approaches are usu-

ally based on fixed mappings between the RDF and 
the LPG data model. For instance, all rdf:type rela-
tionships are converted into a node with a given label, 
all datatype triples become node properties and all 
node-to-node triples are turned into relationships. 
This makes the RDF-to-LPG conversion simple, 
since one does not have to design how to map their 
RDF model onto the corresponding LPG, which, for 
example, allows the Neosemantics tool for automatic 
back-conversion from Neo4j to RDF. However, a 
drawback of this pre-defined mapping is that it con-
verts RDF graphs in a flat way, mostly ignoring the 
better expressivity of the LPG model. In particular, if 
a set of triples reifies a relationship with properties, 
they are mapped one-to-one on the LPG side, rather 
than producing the corresponding single relationship. 
In contrast, a major goal of our work is allowing for 
the definition of how RDF graph patterns should be 
translated onto LPG structures, especially in cases 
like reification. Although fixed mapping approaches 
avoid the overhead of defining custom mappings, our 
approach is more flexible and can address the cases 
where more natural (for the LPG model) mappings 
are desired.  Moreover, we allow for using SPARQL 
as the language to define the mappings, since it does 
not require the users to learn any new special syntax, 
contrary to other approaches, such as [63]. Clearly, 
that is an advantage for Semantic Web experts, while 
it requires to learn at least the basics of RDF and 
SPARQL to other kind of data practitioners. Another 
limit of our approach is that it is not bi-directional, 
i.e., there is not an easy way to take a SPARQL-
based mapping in the RDF-to-LPG direction and 
automatically compute the opposite LPG-to-RDF. 
This out of the scope of rdf2pg framework and possi-
bly, it would need to be addressed with more declara-
tive mapping languages (similarly to R2RML [64]). 
As mentioned, part of the queries we have used in the 
presented benchmark tests are inspired by the well-
known Berlin benchmarks [52], a seminal work on 
RDF and SPARQL performance. Various other 
works on performance testing of relational and 
NoSQL databases exist, graph databases in particular. 
For example, [53] compared Neo4j and the relational 
database PostgreSQL, while [65] compared Cy-
pher/Neo4, a Gremlin implementation on top of a 
Neo4j server, and a JPA object/relational mapping 
based on a MySQL database. In both cases, they 
found results similar to ours, that is, similar perfor-
mance across the different storage and data access 
systems, with variability depending on the query 
types and use cases. Regarding the qualitative analy-
sis of graph query languages, a recent study [66] sur-



 

veyed different users of SPARQL and Cypher, con-
cluding that they find them more similar than differ-
ent. Interestingly, this contrasts with the analysis we 
have presented here, which highlights that user back-
ground and expertise significantly influence their 
perception of Cypher, SPARQL, and their respective 
data models. Additionally, we identify expressivity 
differences in these languages that impact the ease of 
writing specific query types, such as multiple graph 
pattern hubs and long graph chain patterns, factors 
the cited authors did not consider in their analysis. 
The Gremlin and TinkerPop project started in 2009 
as an Apache Foundation project, based on existing 
database graphs and models [39]. The idea of graph 
traversals stems mainly from work in the area of 
network analysis and graph processing algorithms 
[67]. To the best of our knowledge, our rdf2pg is the 
first that allows for customised mapping from RDF 
schemas to Gremlin-compatible databases and the 
first that compares the use of Gremlin and its perfor-
mance to other LPG languages and their implementa-
tions. 

5. Conclusions 

Labelled property graphs are a strongly emerging 
approach to integrate heterogeneous data, with a 
number of graph databases and similar products sup-
porting this data model. At the same time, Semantic 
Web technologies remain a reference to encode 
graph-like data in a standard way, which is open to 
any particular software system or data storage system. 
We have shown that different query languages to 
search graph data have complementary characteris-
tics both in terms of usability and performance. Due 
to this, a framework like rdf2pg can help to efficient-
ly convert RDF data onto labelled property graphs, 
choosing the LPG target that best suits one’s needs 
and keeping data across different endpoints concep-
tually aligned. In fact, the major strength of rdf2pg 
consists in allowing for mapping from an RDF data 
schema to an LPG data schema via SPARQL patterns, 
which is often familiar to data management practi-
tioners. The rdf2pg design offers the further ad-
vantage of making the framework easy to extend to 
new LPG targets. Indeed, we plan to support more of 
such extensions in future, for example, we are inter-
ested in supporting GQL as a future standard lan-
guage to query graph databases [9]. SQL-like lan-
guages for graph databases are another category of 
LPG languages that we want to analyse in future, 

conducting a qualitative and quantitative evaluation 
similar to what we have presented in this paper. Re-
lated to this, we have done some preliminary work 
rewriting the benchmark queries with the Arcade DB 
SQL dialect, with first results showing the efficiency 
of this language [68]. Representing property graphs 
with an RDF schema is another ongoing standardisa-
tion effort [69,70] and we believe our tool would 
benefit from the adoption of such a standard, since it 
would allow for a further factorisation of the map-
ping that rdf2pg uses between an abstract LPG model 
and specific LPG targets. As stated previously, RDF-
Star is a similar standardisation effort [32], which 
aims at extending RDF statements over statements. 
We look at this with interest as well, since it could be 
both a possible LPG target for rdf2pg or a richer 
RDF format to support as input. 
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