

Managing FAIR Knowledge Graphs as
Polyglot Data End Points: A Benchmark
based on the rdf2pg Framework and Plant
Biology Data
Editor(s): Name Surname, University, Country TODO
Solicited review(s): Name Surname, University, Country TODO
Open review(s): Name Surname, University, Country TODO

Marco Brandizia,*,†, Carlos Bobedb,c,*, Luca Garullid, Arné de Klerka, Keywan Hassani-Paka

aRothamsted Research, Harpenden, AL5 2JQ, UK
bAragon Institute of Engineering Research (I3A)
cUniversity of Zaragoza, Zaragoza, Spain
dArcade Data Ltd, London, UK
*These authors contributed equally
† Corresponding author, email: marco.brandizi@rothamsted.ac.uk

Abstract. Linked data and labelled property graphs (LPG) are two data management approaches with complementary
strengths and weaknesses, making their integration beneficial for sharing datasets and supporting software ecosystems. In this
paper, we introduce rdf2pg, an extensible framework for mapping RDF data to semantically equivalent LPG formats and data-
bases. Utilising this framework, we perform a comparative analysis of three popular graph databases - Virtuoso, Neo4j, and
ArcadeDB - and the well-known graph query languages SPARQL, Cypher, and Gremlin. Our qualitative and quantitative as-
sessments underline the strengths and limitations of these graph database technologies. Additionally, we highlight the potential
of rdf2pg as a versatile tool for enabling polyglot access to knowledge graphs, aligning with established standards of linked
data and the semantic web.

Keywords: Knowledge graphs, graph databases, labelled property graphs, linked data, plant biology

1. Introduction

While the Semantic Web and ontology engineering
are still fundamental as common languages to ex-
change data (mainly related to the ‘Interoperable’ of
the FAIR principles [1]), we have seen some differ-
ent recent trends in networked and shared knowledge,

reflecting the difficulties that practitioners still expe-
rience with dealing with these approaches. For in-
stance, while domains like life science still benefit
from precise annotations based on OWL ontologies
[2], complementary models such as schema.org and
Bioschemas [3]  are becoming popular as ‘light-
weight’ data models, which are easier to use and fit
well use cases such as harmonising large and hetero-
geneous datasets or making them visible on search
engines and accessible via the Web [4].

Another emerging trend, which has arisen in do-
mains like data intelligence or machine learning, is
the adoption of labelled property graphs (LPG),
which are the basis of graph databases [5] and other

frameworks [6,7]. With respect to RDF triples, the
LPG graphs are less fine-grained, being able to keep
together an entity's properties in a single node, and
most importantly, they are more expressive in repre-
senting ‘binary relations with annotations’ (see Fig-
ure 1). The proliferation of LPG-based technologies
has stimulated collective efforts to standardise
(again…) at least the query languages, with examples
like Open Cypher [8], later turned into GQL [9], or
the Gremlin/TinkerPop framework [10].

In the authors’ experience, LPG-based data man-
agement is not an alternative to more ‘traditional’
Linked Data approaches, as the two have a set of
complementary advantages and disadvantages [11].
For instance, while systems such as Neo4j [12] can
offer fast and scalable access to LPG knowledge
graphs by means of the expressive Cypher language,
they do not have reference/standard formalisms for
data exchange, nor does a standard exist to represent
LPG schemas and advanced schema-related entities,
such as ontologies. Both these aspects are the focus
of the Semantic Web stack and existing literature
shows that these two approaches can be usefully in-
tegrated [11,13,14].

A consequence of this is the need for bridging
these two worlds, in order to obtain good integrations
and benefit from the best of the two. In this paper, we
present rdf2pg, an extensible framework to convert
RDF graph data into various target LPG graph for-
mats and graph databases by means of a user-defined
mapping between the source RDF data and the target
LPG. As we will show, this has the main advantage
of allowing for a sensible and domain-aware map-
ping between these two graph data models that,
though very similar, have significant ‘natural’ ways
to represent certain semantics (e.g., relations with
properties vs reified statements). Another objective
of this paper is to explore, both qualitatively and
quantitatively, the use of different graph databases
and query languages, when used to store data that are
conceptually the same and are aligned to the same
conceptual model. We show how our rdf2pg tool
makes such alignment possible and we base our
analysis on plant biology datasets, which is a typical
use case for which the knowledge graph model fits
very well [15–17].

1.1. Motivational use cases

In this section, we describe the use cases that mo-
tivated the development of the rdf2pg tool and the

management of respective datasets with graph data-
bases and their query languages.

KnetMiner. The rdf2pg framework is an evolu-
tion of the rdf2neo tool [13]. The need for the latter
was born within the KnetMiner project [17,18], a
platform that provides functionality to explore
knowledge about molecular biology. KnetMiner of-
fers the end users an easy-to-use web application to
quickly search genes of interest and related entities
(e.g., diseases, biological processes, scientific litera-
ture), as well as to visualise them in various forms,
including knowledge networks. This is based on
knowledge graphs that are built starting by integrat-
ing many useful public data sources. The same data
that powers the web application are also available
programmatically, in the form of a specific web API
[19], a SPARQL endpoint, and a Neo4j data endpoint
(that is, Cypher access via the BOLT protocol and
the Neo4j browser). The KnetMiner team decided to
use (and share) both RDF-based data and Neo4j due
to the complementary pros and cons that the two
have, both in general and for the specific platform
needs. For example, after many years of varying suc-
cess, RDF and the Semantic Web stack are still relia-
ble standards to integrate data, being particularly
suitable for sharing schemas and ontologies [20] and
for operations such as automatically merging datasets
referring to the same Uniform Resource Identifiers
(URIs), ontology terms and public identifiers. On the
other hand, many developers and bioinformaticians
find Cypher and Neo4j an easier technology to work
with. As an example of the latter, they use Cypher to
define ‘semantic motifs’, which are graph patterns
capturing chains from genes to relevant entities [21]
(e.g., gene->protein->bio-process->article-mention),
so that the related entities can be exploited to realise
application-level functionality like displaying seman-
tic associations between genes of interest. Another
advantage given by Neo4j is that its ecosystem offers
useful tools to manage and analyse the data, such as
Bloom [22] or NeoDash [23]. Recently, the latter has
been used to summarise the general characteristics of
KnetMiner datasets [24,25].

Enterprise Semantic ETL. This use case deals
with the integration of data coming from different
information systems within different enterprise do-
mains, including health and insurance, realised by
NTT Data in collaboration with the University of
Zaragoza, within the project ‘Semantic Data Man-
agement in Knowler’. Here, we describe the main
project aspects by considering the non-disclosure
requirements set by the companies involved. One of
the seed domains was the integration of all the in-

house information about the ongoing projects, the
employees and their skills. Such information was
scattered across various underlying information sys-
tems (usually following different governance poli-
cies). To integrate such information, a knowledge
graph was built out from many different structured
sources, designing a Semantic ETL (Extract-
Transform-Load) pipeline. Each source (usually
structured) followed a different model and, in order
to include everything together under RDF format,
many times reification of non-binary relationships
must be applied. In our initial domain, we had Em-
ployees related to their Skills (both soft and hard
skills, such as Technologies) and their particular lev-
els achieved (evaluated within the company). Thus,
in RDF, we needed to reify such relationships in or-
der not to lose any information in the integration pro-
cess. Moreover, once we have the triple store com-
pletely populated, it was especially convenient to
have all the flexibility required to build views on
property graphs, possibly materialising traversals
over different property paths. For example, we could
materialise the time that an employee has been work-
ing on a particular kind of project and directly in-
clude that in the property graph appropriately. In this
ETL, we used an ontology as an integration umbrella
to bring together data from different sources. For
information integration purposes, we used RDF triple
stores, which are particularly effective at handling
Linked Data [26,27]. For other tasks, such as build-
ing an adaptive presentation layer, we used property
graph databases, mainly because internal tests
showed their better performance. We designed the
pipeline in a way that ensures high flexibility in
building the presentation views. Moreover, we also
paid attention to the particular requirements in enter-
prise scenarios, where software licence costs and
avoidance of vendor-locking are two factors which
might lead to project failure. Those two risks were
avoided by the adoption of standard formats and by
using the property graph as a general and unified data
model. We chose GraphML as the reference format
to produce LPG data in the ETL pipeline as it al-
lowed us to store labelled multigraphs in an extensi-
ble way (adding attributes or references to the edges
themselves) and it is supported by many different
graph databases and visualisation tools.

In both KnetMiner and Semantic ETLs, an ap-
proach and software tool are needed to align RDF-
represented data with different LPG data. Initially,
the rdf2neo framework was developed [13], which
offered the feature to map RDF data models to the
LPG model that is supported by the Neo4j database,

and in a configurable way, which is decided by data
managers and is the most appropriate for the datasets
they deal with and their semantics. Later, similar
needs have arisen in the Semantic ETLs scenario.
This has naturally led us to extend the initial rdf2neo
software into the rdf2pg infrastructure that we pre-
sent hereby. As described later, we introduce the
concept of mapping RDF to an abstract LPG model
which allows for the execution of a specialised data
generator. This same generator materialises the ab-
stract property graph into a specific format or tech-
nology. By following this approach, we have repur-
posed a considerable amount of existing code for the
development of an RDF->Neo4j and RDF-
>GraphML converter. Furthermore, the same frame-
work remains extendable to accommodate similar or
related use cases.

2. Technologies and methods

The semantic web. As well known, RDF is part of
a stack of standard technologies defined under the
vision of the Semantic Web [28–30]. Its main idea is
to leverage the World Wide Web concepts and stand-
ards to share data in the same way we share human-
targeting documents. As a result of this concept, the
core of the RDF model (Figure 1, bottom) consists of
binary relations between entities or about entities and
data values, where the entities are described by
means of resolvable URIs. URIs serve as both uni-
versal entity identifiers and, in most cases, they are
web URLs that employ HTTP technology to provide
documents of RDF statements about the identified
entities they refer to. Over the years, a number of
RDF-based formal languages (and standards) have
been developed to characterise the data semantics
with either lightweight schemas or advanced ontolo-
gies. As mentioned earlier, the RDF data model is
very fine-grained: everything is a triple, including a
property associated with an entity (such as name,
surname, ‘protein description’). Together with the
use of URIs, this makes the merge of data about the
same entities very straightforward. At the same time,
in the original triple-only model it is neither possible
to isolate a set of properties for an entity (eg, two
pairs of name+description for the same protein, com-
ing from two different sources), nor to associate
properties (or other entities) with a triple (eg, the text
mining software name and the date of a ‘mentions’
relation between a document and a product). Both
can be obtained by modelling patterns such as RDF

reification [31], which is considered a difficult to use
technique. Recently, the RDF-Star extension to RDF
has been proposed [32], which allows one to use tri-
ples as subjects of other triples, making RDF more
similar to LPGs bringing the advantages of the latter
into the Semantic Web world. We are interested in
the future adoption of this approach as a standard.

Most graph database technologies have associated
graph query languages. In KnetMiner, we utilise the
Virtuoso triple store (a synonym for RDF-based
graph database) to store our RDF data and make
them publicly accessible via SPARQL, the standard
query language for RDF, which is part of the Seman-
tic Web stack [29,33]. SPARQL is essentially a
graph pattern formalism for RDF, with a syntax that
is a mix of the Turtle encoding format for RDF and
SQL. Because the native form of the KnetMiner da-
tasets is not based on RDF, we also employ the Jena
framework, including the TDB triple store compo-
nent, for software tools that convert such data into
RDF [34,35]. TDB is particularly well-suited for
programmatic access, while it is not the most perfor-
mant SPARQL engine available, which is why we
have opted for Virtuoso for the public endpoint.

Labelled property graphs. As mentioned above,
Labelled Property Graph models are less fine-grained
than RDF (Figure 1, top), meaning they support the
notion of nodes and relations between nodes, both of
which may have attributes attached, in the form of
name/value pairs. The attribute values are usually of
plain data types (e.g., string, number). Both nodes
and relations usually have special additional attrib-
utes, such as, using the common jargon, ‘labels’ for
nodes and ‘types’ for relations, commonly used to
characterise the represented entity type. The approx-
imate equivalent in RDF is the standard property
`rdf:type` and the predicate’s URI respectively, while
many other models have similar concepts, e.g., class
type in object-oriented languages. While in general,
LPG implementations exist that support multiple
relation types, here we will stick to the graph models
used by Neo4j and the Gremlin framework, where
only nodes can have multiple labels. As previously
mentioned, RDF and LPGs are similar, though they
have significant differences, especially in the details,
and they have orthogonal technical advantages and
disadvantages.

Currently, our rdf2pg supports the conversion of
RDF to two LPG targets, the Neo4j graph database
and the GraphML format. The converter for the latter
has been designed and developed with a focus on
populating Gremlin-compatible graph databases (ie,
to load GraphML files via Gremlin commands).

Neo4j is one of the most popular graph databases
built on the LPG model. It is known for its ease of
deployment and maintenance, as well as its powerful
query language, Cypher. Neo4j also offers a rich eco-
system of applications and tools designed to interact
seamlessly with its data format, including a graph
data science framework and database functions to
ease graph embedding.

GraphML [36,37] is an XML-based language to
define generic graphs, supporting labelled (directed,
undirected, mixed) multigraphs and hypergraphs in
an extensible way. Unsurprisingly, the format has
elements like <graph>, <node> and <edge>. More-
over, it allows for the extension of the core attributes
used in node and edges, by means of definitions like:
<key id = “prefName” for = “node” attr.name =
“Preferred Name” attr.type = “string” />. Attributes
and <data> elements provide the aforementioned
flexibility. Additionally, GraphML is supported by
many graph tools and graph databases.

As presented on their project page, Apache Tink-
erPop [38] is a graph computing framework for both
graph databases (OLTP) and graph analytic systems
(OLAP). In essence, it is a unifying layer that offers
an abstraction over the graphs and their processing,
allowing different vendors to implement their specif-
ic implementations.

Gremlin [10,39,40] is the graph traversal language
employed by Apache TinkerPop. Its name stems
from the metaphor of a gremlin hopping from graph
element to graph element while performing calcula-
tions and gathering data. This is how traversals, a
central concept for data exploration and manipulation,
are described in Gremlin. More formally, a traversal
is a sequence of steps. For instance, Figure 5 shows a
traversal that walks the composition relationship be-
tween protein complexes and the proteins they’re
made of. The query has basic traversal steps, plus
operators similar to projection operators in other lan-
guages. In the KnetMiner use case, we have used
ArcadeDB [41] to experiment with Gremlin queries
on the plant biology data sets described later. Ar-
cadeDB is a multi-model database [42], which is
available as open source code, derived from the Ori-
entDB database [43]. ArcadeDB supports, among
other data models, graphs, document stores, relation-
al/SQL databases. Although a recent and still pro-
gressing project, it is made fast by software devel-
opment that exploits lower-level Java optimisations
and avoids time and memory-consuming abstractions
available in the standard Java language and libraries.
Moreover, it is OS-portable and suitable for cloud
software, such as Docker. We have preferred this

database to experiment with Gremlin, due to both its
good performance and its ease of installation and
management.

rdf2pg, architecture and approach. Figures 1
and 2, show the mapping approach rdf2pg is based
on. An RDF graph can be seen as a data model where
part of the triples are about LPG node’s plain proper-
ties and another part are about LPG relations, where
one can map the latter from either straight RDF tri-
ples (i.e., which yield LPG relations with essentially
any attribute) or from set of triples that correspond to
the semantic of reified statements or similar entities.
Such mappings, which are dataset or domain-specific,
are defined by means of SPARQL queries. We se-
lected SPARQL as the language for this mapping
since it offers the significant advantage of not need-
ing to learn anything new if one is already proficient
in Semantic Web technologies. A mapping is defined
by four types of SPARQL queries. Firstly, we have
queries that select the URIs of those RDF nodes that
are to be mapped to LPG nodes. Secondly, these
URIs are used as parameters in RDF resource-centric
queries that select/map node attributes (key/value
properties and labels) from the RDF. Two other types
of analogous queries are defined for the LPG rela-
tions: one query defines the relation identifying URI,
its type and endpoints (as already mentioned, we
support the common model where a relationship has
one type only), and another URI-parameterised query
allows for picking up the relation properties (again, a
set of key/value pairs). The latter can be omitted
when mapping plain RDF triples (in which case, the
relation URI is a fictitious reference that can be built
with appropriate SPARQL constructs, see [44] for an
example).

In Figure 3 we show how the mapping is enacted
by the rdf2pg architecture. For the case of nodes, a
SPARQL query that selects node URIs is submitted
to an input Jena TDB triple store, then, returned node
URIs are batched and each batch is processed in par-
allel by an instance of a node handler. The node han-
dler has a base abstract class, which has the common
logic to do two things: fetching the node attributes
from RDF, using the corresponding queries and, for
each node, producing an abstract representation of
the node’s data (i.e., an abstract LPG view, see [45]
for details). The abstract Node handler is then ex-
tended in the specific LPG data transformers, so that
they can turn the abstract node representation into the
representation that they need, e.g., Cypher CREATE
instructions for the Neo4j converter or XML frag-
ments for the GraphML converter. Conceptually sim-

ilar components are available to produce LPG rela-
tions, that is, a relation processor that selects the rela-
tion URIs and types, and a relation handler, which
produces LPG relations from a relation property se-
lector defined in SPARQL. Clearly, a future exten-
sion to some other kind of similar RDF/LPG trans-
former would be based on this architecture and thus it
would require its own implementation of the node
handler and relation handler. As further mapping
flexibility, the framework supports the definition of
multiple query sets (sets of node and relation map-
ping queries), for those cases where a single RDF
graph has subgraphs that are mapped differently to
the LPG model. For instance, one might have to map
gene and experiment representations, which are enti-
ties with enough differences (classes, node properties,
relations) to warrant separated mappings.

3. Results

In this section, we evaluate rdf2pg as a tool to ex-

pose the conceptually equivalent data as multiple
datasets, supporting multiple data access languages.
This can be considered an expansion of a similar
evaluation work initially done for the rdf2neo tool
[13]. In particular, first, we will briefly review the
three query languages that we have used and provide
a qualitative analysis stemming from our experience
and the lessons learned during the development of
rdf2pg. Then, we present a quantitative evaluation of,
on the one hand, the performance of rdf2pg in con-
verting from RDF to three different graph databases,
and on the other hand, the execution performance of
semantically equivalent queries written in three dif-
ferent query languages, each against the rdf2pg-
populated databases. Overall, this work aims at a
broad comparison of essentially equivalent datasets
managed with different graph databases and graph
query languages, where their semantic alignment is
obtained through a tool like rdf2pg.

3.1. Test datasets

Details about our benchmarks are available at the

github repository [46]. As explained there, we have
used three datasets about plant biology.

Fig. 1. An example (from [49]) of a Labelled Property Graph (top) and how it can be represented as RDF triples (bottom).

All the datasets have similar entities and mostly
follow the same schema, which allows for assessing
the scalability of the same queries. Figure 4 shows
elements of such schema that we considered to write
the benchmark queries. Essentially, one aspect these
elements describe is gene annotations, including
Gene Ontology [47] annotations, gene mutations
(SNPs) and associated mutation phenotypes, together
with phenotype annotations from the Plant Trait On-
tology [48]. Another aspect is biochemical processes
(so-called biological pathways) in which gene prod-
ucts are involved. The starting point for the bench-
mark was RDF files that represent these data, from
which we populated Virtuoso triple stores (providing
SPARQL access) by direct RDF loading, Neo4j da-
tabases (providing Cypher) using rdf2neo, and Ar-
cadeDB databases (providing Gremlin) using
rdf2graphml and then the Gremlin helpers to import
from GraphML. The result for each dataset is that the
three different databases contain data that are aligned
to the same conceptual model, therefore it was possi-
ble to design several query tasks, which could be

translated into semantically equivalent queries in the
tested query languages (see our benchmark report for
details about the semantic equivalence).

3.2. Qualitative considerations

In this section, we compare the three tested graph
query languages, SPARQL, Cypher and Gremlin
from qualitative perspectives. This includes examin-
ing the syntax and patterns that the languages offer,
identifying which queries are easy to write and which
ones present challenges. We present our experience
in this area by referring to the queries used for the
benchmark; all mentioned queries are listed in the
benchmark code repository [46]. Both SPARQL and
Cypher are declarative languages and both allow one
to work with graph patterns, that is, templates that
describe subgraphs in the database to be matched and
retrieved. This declarative approach is typically ex-
ploited by query engines for optimisation operations,
such as query rewriting.

Fig. 2. How the RDF graph in Figure 1 can be mapped onto the corresponding LPG in rdf2pg tools, using SPARQL queries to list node or
relation main elements, which are then passed to node-specific or relation-specific queries, to gather further element details

SPARQL, being bound to the RDF model, shapes
this graph pattern paradigm around the idea of triple
patterns (Figure 5), a network of nodes like the one in
Figure 4 translates to a list of triples in the pattern,
where nodes participating in multiple triples are
simply listed with the same binding variable names.
An advantage of this is that the syntax is rather sim-
ple and operations like querying integrated data
(where entities with the same URIs were automatical-
ly merged in the database) are straightforward. Typi-
cal disadvantages are that certain patterns are rather
verbose, eg, matching chains of nodes, matching
many properties for a node, and dealing with data
modelling workarounds such as reification might be
even more verbose. The joinRel query from our
benchmark is an example of the latter. On the other

hand, Cypher is a language oriented to property
graphs and its syntax is often more ‘visual’, feeling
like you can draw the subgraphs to be matched, in
particular chain patterns. For a typical example,
compare the Cypher version of the joinRel example
to the SPARQL one. An exception to this is in cases
like 2UnionNest, where graph patterns have to be
built that involve many branches from hub nodes.

With past versions of Neo4j and Cypher, this was
particularly hard to write, requiring to ‘flow’ partial
results from one subquery to another (using the
WITH and UNFOLD clauses), which is very unusual
with respect to the more common UNION construct.
Indeed, Cypher improved this construct recently (in
version 4.0) and now such queries are easier to write,
as we show in 2union1Nest+.

Fig. 3. : the rdf2pg architecture (from [50]). The diagram shows the components used to collect RDF batches of node references via SPARQL;
the batches are then passed to parallel node handlers, which retrieve node details like properties (using additional SPARQL) and convert in-

memory representations of LPG elements into a specific LPG target. Similar components are available to process relationships.

The Gremlin language contrasts with SPARQL
and Cypher for giving the impression of a procedural
language. In fact, writing a query looks similar to
specifying the states/nodes and transitions/relations
of a state machine. Common queries such as simple
selections (see the ‘selection’ group in our bench-
mark) are as easy to write in Gremlin as in the other
languages, and Gremlin is fairly simple when dealing
with traversal patterns. Furthermore, the language is
integrated with other programming languages like
Groovy, which makes it a Turing-complete pro-
gramming language [39], useful for advanced graph

exploring tasks. For instance, our joinReif query de-
fines a function to match a uri property in a relation-
ship to a node (property graphs have data properties,
but don’t allow for links to other nodes or relation-
ships). At the same time, this power often backfires.
For instance, hub-based patterns (where many sub-
graphs depart from or join a node) are often hard to
define in Gremlin efficiently, especially when the
traversal paradigm makes it hard to link separated
subgraphs through joining properties. Indeed, we
needed to write the joinReif query using a lambda
function, in order to make the uri-based join efficient.

Fig. 4. typical elements of the plant biology datasets that we have used for benchmarking three different graph databases and query languages,
with data coming from the same RDF sources and kept aligned using rdf2pg tools. Details in our dedicated code repository [46].

 Related to this nature of mostly imperative query

language, Gremlin leaves the query writer in control
of how the graph database is explored, which can be
very flexible, but at the same time, can force the que-
ry author to pay much more attention to query opti-
misation, including cases where such optimisation
would be automatically computed by more declara-
tive languages. We have experienced this in queries
like 2union, where traversing the graph in the order
enzyme-to-protein is faster than protein-to-enzyme,
due to the cardinality difference for the two types.
For similar reasons, we have experienced significant
challenges in writing aggregations using Gremlin.
For example, existAg pinpoints biological pathways
with certain characteristics and then computes both a
reaction-per-pathway count and an average of pro-
teins per reaction. This is a long query to write in
SPARQL and Cypher, which becomes even longer
and more convoluted in Gremlin, requiring a first
part of traversals, which is combined with aggregat-
ing traversals starting from the elements projected

from the first part. Another comparison we made
concerns queries that traverse graph chains, ie, graph
patterns like: x-to-y-to-z… (see the ‘paths’ category
in our benchmark). The Cypher syntax is very com-
pact and easy with this kind queries, and it is man-
ageable to write them in SPARQL and Gremlin, alt-
hough with more verbose patterns. These queries
become more complicated when a traversal pattern
has variable-length relations (eg, a pattern that
matches both protein1/xref/protein2 and
prot1/xref/prot2/xref/prot3). Both SPARQL and Cy-
pher support this in their syntax, while Gremlin re-
quires care with writing repeat() traversing steps (see
our ‘paths’ queries and section 3.27 in [40]). Things
become even more complicated for traversal paths
with ‘optional tails’, eg, see the lngSmf query in the
benchmark, where the chain tail consisting of pro-
tein/protein/gene is made optional. The Cypher syn-
tax for defining such a case is still straightforward,
since a chain tail having optional relations only (with
min cardinality set to 0) is implicitly considered op-

tional in its entirety, that is, the pattern doesn’t need
to match the nodes linked by such relations. Both
SPARQL and Gremlin require an OPTIONAL clause
for achieving the same, since node matching in these
languages is not optional in this case.

3.3. Performance benchmark

In this section, we show the results from a quanti-
tative benchmark that we have run over the three
chosen databases and languages, measuring the times
taken to populate the graph databases, as well as the
average times taken by the test queries to complete in
multiple executions. For these tests, we have used:
Virtuoso, Open Source edition, version 7.2.10-r16,
Neo4j, Community edition version 5.11.0, Ar-
cadeDB: version 23.4.1. We have used the rdf2pg
framework and tools version 5.0. We have run these
systems on a virtual machine equipped with: CPU,
Intel(R) Xeon(R) Gold 6152, 2.10GHz, 8 cores,
32Gb RAM assigned to each DB server, 32GB as-
signed to rdf2pg tools. We have employed these set-
tings to test three different datasets (referring to simi-
lar data and sharing a very similar schema) of in-
creasing sizes of about 2, 21 and 97 million of RDF
triples. Results and more details about the test set-
tings and approach are described in the already-
mentioned github repository [46].

Database population performance. The times
taken to load the three test datasets into the three test
databases are shown in Figure 6. This shows that
even the largest dataset can be uploaded to any of the
databases in a reasonable time (with a range between
about 14 seconds to 30 minutes), at least when con-
sidering the case where a large dataset does not need
frequent updates (eg, it is uploaded once a week or
less often). We have also experienced that all the
databases scale the uploading time linearly with the
data size. In addition to the loading times, we have
verified expected behaviours that depend on the de-
tails of rdf2pg. For example, the Neo4j population is
influenced by the fact that the database is written by
the rdf2neo tool, which has the overhead to read the
input via SPARQL. In contrast, Virtuoso is the fast-
est database in the loading task, since it just needs to
read RDF data and has optimised support for that.
Though not within the scope of this paper, these fig-
ures could be improved by several optimisations. For
example, the ArcadeDB population (and in general,
any Gremlin-based writing) could be realised in a
single step, where data are read from SPARQL and

streamed to the target Gremlin database, similarly to
the way the rdf2neo tool works. Adopting the per-
formance-optimised RDF format HDT might be an-
other improvement [51]. All of these hereby results
are in line with our previous work [13].

Query performance. As explained in the bench-
mark report [46], we have designed 5 graph query
categories and a total of 25 queries, based on both
real use cases and other benchmark works, such as
the Berlin benchmark [52]. As explained above, for
each query, we wrote semantically aligned versions
in the three tested languages. Results are shown in
Figure 7. As shown, all the databases/languages per-
form within the order of hundreds of ms for most
queries (each finding and fetching the first 100 rec-
ords on average). In particular, Neo4j is the fastest
database in many cases. Results also show that Vir-
tuoso is still a good choice for pure-RDF and pure-
SPARQL applications, although this triple store has
the limitation of not supporting the above-mentioned
RDF-star. Gremlin on top of ArcadeDB is often the
slowest endpoint, this might depend on the fact that
ArcadeDB is a relatively new product and its devel-
opers are still actively improving it. Moreover,
Gremlin is usually implemented starting from a
common code base and that might affect its perfor-
mance compared to languages which are more native
to a given database and its query engine. Another
factor to consider is that, as said above, Gremlin is
more sensitive to how queries are written. For in-
stance, for the join and joinRel queries, we have no-
ticed that the traversal step where returned results are
limited to the first 100 matches matters for perfor-
mance significantly, since exploring only the first
100 short chains in a graph pattern avoids that the
engine traverses many more subgraphs and then cut
the results to be returned at the end (it also might
change the query semantics and results, see our
github report for details. This has also an impact on
the scalability towards the database size, in fact,
while both Virtuoso and Neo4j show good scalability,
this is more problematic with ArcadeDB. Consider-
ing specific queries, as expected, the fastest, most
homogeneous and most scalable queries were selec-
tions/projections from simple patterns, while the ag-
gregations were among the most challenging queries.
This is in line with existing literature [13,52,53]:
basic matching and projection are among the most
used features in most query languages, while aggre-
gations are notoriously hard to compute.

Fig. 5. The graph query languages we tested, the example is a simplified version of the joinRel query in our benchmark [46] and based on the
graph in Figure 4. a) SPARQL, syntax like bk:Protein shows the use of URIs to identify entities (resources in RDF jargon). The rdf:Statement

match is an example of reification used to link the bk:evidence property to a part-of relationship (based on the standard rdf: vocabulary). b)
Semantically equivalent query in Cypher, where a more visual and more compact syntax can be noticed. c) The Gremlin version, showing
queries in this language describe graph traversals, by means of steps from one node or edge to another (V(), outV(), outE()) filtering steps

(hasLabel()) and a number of other steps, such as selectors (select()), step modifiers (by()) and reference-creating steps (as()).

The semantic motif paths queries (i.e., a kind of
chain pattern queries) are a particularly interesting
category for the KnetMiner use cases, since in
KnetMiner we often follow path chains to find enti-
ties associated with genes. As expected, Neo4j and
Cypher excel in this kind of query, which is in line
with their authors claiming their database engine is
optimised for traversals. We were surprised these
queries can be challenging for Gremlin, after further
investigation, we noticed graph patterns with variable
length relations (eg, find protein pairs linked by a
chain of ‘xref’ relations of max length = 3) can be-
come quite slow with large datasets. Again, this is
likely to depend on the way the query is written and
the fact Gremlin traversals are hard to optimise au-
tomatically. Finally, the queries in the ‘counts’ cate-
gory have very varying performance across different
databases and we presume this depends on the fact
systems like Neo4j store summary data like the total
number of nodes or relations, while other engines run
the corresponding queries every time that such sum-
maries are asked.

3.4. Theoretical considerations

It is useful to add theoretical analysis of the algo-
rithms used by rdf2pg. In previous work (supple-
mental material in [13]), we have shown how the
SPARQL-based mapping from RDF graphs to LPG
graphs can be formalised by means of abstract alge-
bra and we proved that the Cypher queries we gener-
ate in rdf2neo correspond to the mapped LPG. Simi-
lar reasoning can be done for the GraphML conver-
sion, that is, it is possible to formally define how an
LPG maps to the XML elements of the GraphML
format and use that to prove that the LPG we build
from SPARQL queries is correctly converted into
GraphML. Namely, the proof is analogous to the
proof of Theorem 1 in our mentioned work, which
combines definitions 4 (RDF/LPG mapping), 5
(transformation induced by a mapping) and the
GraphML semantics.

Furthermore, we have shown that the computa-
tional complexity of rdf2neo is dominated by the
SPARQL mapping queries and it is PSPACE in the
worst case, with a significant class of queries that can
be reduced to LOGSPACE. Since the conversion
from the LPG entities extracted from these queries to

Fig. 6. Results from graph database population with varying size datasets. More details at [46].

GraphML is linear with respect to the selected
LPG nodes and relationships, this computational
complexity holds for the GraphML converter too.

In general, this computational complexity analysis
is valid for any converter implemented with our
framework, as long as the target-specific conversion
has the same linearity (or does not exceed LOG-
SPACE/PSPACE).

It is also worth considering more recent theoretical
work concerning the properties of RDF/LPG map-
ping algorithms. Using the terminology introduced
by [54], the SPARQL-based transformation we de-
fine by means of SPARQL (Definition 4 in [54]) is a
kind of database mapping (from RDF to LPG), and
such transformation uses SPARQL to also induce an
LPG schema, consisting of all the labels, relation
types, property domain and ranges that we implicitly
extract from RDF. Such transformation/mapping is
certainly computable (our tool computes it!) and it is
semantics-preserving by construction, that is, the
translated LPG is a valid instance of the schema con-
structed from SPARQL selections. According to the
same mentioned paper by Angles et al., the infor-
mation preservation of our transformation/mapping
consists of the possibility of reconstructing the origi-
nal RDF data from the translated property graph. In
general, this is not a property of our RDF/PG trans-
formations, eg, we might have instances of the clas-
ses ‘Car’ and ‘Van’ on the RDF side and, for some
reason, one might want to define a mapping where all

car and van nodes are assigned the ‘Vehicle’ label.
Thus, in such a case, the original RDF data would be
impossible to reconstruct (ie, no inverse PG/RDF
mapping could exist). That said, we might show a set
of conditions sufficient to make our transformation
information-preserving. For instance, if the LPG
node IRIs are always selected from a pattern like: ?iri
rdf:type ex:Car, and the label that is selected in this
case is always ‘Car’, then, assuming no other selec-
tor maps to the ‘Car’ label, all the rdf:type relations
can be reconstructed correctly from the LPG labels.
Similar conditions on relationships and node/relation
properties could be defined to ensure this infor-
mation-preserving property of our tool transfor-
mations. Note that, generally speaking, our SPARQL
selectors consider a subset of the input RDF graph,
hence this property of information preservation, that
is, the possibility of going from the LPG data back to
the RDF data the LPG was derived from, can only
hold for such actually converted subset and not for
the possibly bigger entire RDF graph one has started
from. This corresponds to the real use of rdf2pg,
where in most cases, the reversibility of RDF/LPG
mapping is only interesting for the subset of data that
are actually converted in either direction and moreo-
ver, such reversibility is not always a desired and
sought-for property (eg, cars and vans merged into
the vehicle class is a simplification where, likely,
there is not interest in reconstructing the original
RDF details).

4. Discussion

We have shown that labelled graph databases and
their query languages have advantages and disad-
vantages that are complementary to more traditional
Semantic Web technologies and Linked Data practic-
es. The latter allows for managing dataset building
and data sharing in a way that complies with the
FAIR principles. In particular, RDF and existing on-

tologies or schemas based on RDF are still important
means to ensure the goal of data interoperability.
They also still play an important role in building
pipelines to integrate heterogeneous data into unified
knowledge graphs (i.e., ETL or ELT pipelines
[55,56]). For instance, features like reusable URIs
and standard schemas and ontologies produce graphs
of data that are integrated in a seamless way.

Fig. 7, Part 1. Results for benchmarking three various-size datasets on the three target graph query languages and graph databases, using que-
ries of different categories. See [46] for a detailed list of all the tested queries, their description and code.

Fig. 7. Part 2.

On the other hand, users who are not proficient
with SPARQL and the Semantic Web might prefer to
query knowledge bases by means of languages like
Cypher. We have shown that the performance of
graph databases and triple stores are not extremely
different, which allows for scenarios where data are
first prepared using mainly RDF and related technol-
ogies and then loaded into a LPG database. Further-
more, our experience with KnetMiner proves that
more complex architectures are feasible too, where,
for instance, the same data are served via both
SPARQL and Cypher, we could easily add Gremlin
support and, at the same time, all the access points
and encoding formats are aligned to the same con-
ceptual data model. All of this is possible by means
of the rdf2pg framework, which is both a base library
to build RDF to property graph converters and two
specific converters based on the framework. Our ex-
perience and our tests also show that, while query
languages like SPARQL and Cypher have similar
expressivity, Gremlin feels more like a lower level of
abstraction and more suitable as a standard to build
applications like multi-language or multi-model
graph databases [42], or for use cases where ad-
vanced graph traversals are necessary.

4.1. Related work

As described in previous sections, this paper is an
extension of our previous work on aligning RDF and
Neo4j-based datasets, done within the context of the
KnetMiner platform, where we have an interest in
giving multiple access means to knowledge graphs
[9]. Based on this initial work, we have seen the
rdf2neo approach suitable for the generalisation and
extensions described hereby and to be used to man-
age the enterprise ETL use case described above,
where we have similar needs to align mixed data
models and technologies. In developing our frame-
work, we have relied on literature comparing the two
types of graph paradigms. For instance, [57] discuss-
es various definitions of knowledge graphs and their
applications, [58] is a comprehensive review of
knowledge graphs, how they are built and their appli-
cations, including link extraction from existing
graphs. The above-mentioned work [54] gives formal
definitions of graph databases and shows the kind of
mappings that are possible between them. Work has
been done to standardise property graph representa-
tions [59], convert between them automatically
[14,60], or map query languages on multiple para-
digms [61,62]. These conversion approaches are usu-

ally based on fixed mappings between the RDF and
the LPG data model. For instance, all rdf:type rela-
tionships are converted into a node with a given label,
all datatype triples become node properties and all
node-to-node triples are turned into relationships.
This makes the RDF-to-LPG conversion simple,
since one does not have to design how to map their
RDF model onto the corresponding LPG, which, for
example, allows the Neosemantics tool for automatic
back-conversion from Neo4j to RDF. However, a
drawback of this pre-defined mapping is that it con-
verts RDF graphs in a flat way, mostly ignoring the
better expressivity of the LPG model. In particular, if
a set of triples reifies a relationship with properties,
they are mapped one-to-one on the LPG side, rather
than producing the corresponding single relationship.
In contrast, a major goal of our work is allowing for
the definition of how RDF graph patterns should be
translated onto LPG structures, especially in cases
like reification. Although fixed mapping approaches
avoid the overhead of defining custom mappings, our
approach is more flexible and can address the cases
where more natural (for the LPG model) mappings
are desired. Moreover, we allow for using SPARQL
as the language to define the mappings, since it does
not require the users to learn any new special syntax,
contrary to other approaches, such as [63]. Clearly,
that is an advantage for Semantic Web experts, while
it requires to learn at least the basics of RDF and
SPARQL to other kind of data practitioners. Another
limit of our approach is that it is not bi-directional,
i.e., there is not an easy way to take a SPARQL-
based mapping in the RDF-to-LPG direction and
automatically compute the opposite LPG-to-RDF.
This out of the scope of rdf2pg framework and possi-
bly, it would need to be addressed with more declara-
tive mapping languages (similarly to R2RML [64]).
As mentioned, part of the queries we have used in the
presented benchmark tests are inspired by the well-
known Berlin benchmarks [52], a seminal work on
RDF and SPARQL performance. Various other
works on performance testing of relational and
NoSQL databases exist, graph databases in particular.
For example, [53] compared Neo4j and the relational
database PostgreSQL, while [65] compared Cy-
pher/Neo4, a Gremlin implementation on top of a
Neo4j server, and a JPA object/relational mapping
based on a MySQL database. In both cases, they
found results similar to ours, that is, similar perfor-
mance across the different storage and data access
systems, with variability depending on the query
types and use cases. Regarding the qualitative analy-
sis of graph query languages, a recent study [66] sur-

veyed different users of SPARQL and Cypher, con-
cluding that they find them more similar than differ-
ent. Interestingly, this contrasts with the analysis we
have presented here, which highlights that user back-
ground and expertise significantly influence their
perception of Cypher, SPARQL, and their respective
data models. Additionally, we identify expressivity
differences in these languages that impact the ease of
writing specific query types, such as multiple graph
pattern hubs and long graph chain patterns, factors
the cited authors did not consider in their analysis.
The Gremlin and TinkerPop project started in 2009
as an Apache Foundation project, based on existing
database graphs and models [39]. The idea of graph
traversals stems mainly from work in the area of
network analysis and graph processing algorithms
[67]. To the best of our knowledge, our rdf2pg is the
first that allows for customised mapping from RDF
schemas to Gremlin-compatible databases and the
first that compares the use of Gremlin and its perfor-
mance to other LPG languages and their implementa-
tions.

5. Conclusions

Labelled property graphs are a strongly emerging
approach to integrate heterogeneous data, with a
number of graph databases and similar products sup-
porting this data model. At the same time, Semantic
Web technologies remain a reference to encode
graph-like data in a standard way, which is open to
any particular software system or data storage system.
We have shown that different query languages to
search graph data have complementary characteris-
tics both in terms of usability and performance. Due
to this, a framework like rdf2pg can help to efficient-
ly convert RDF data onto labelled property graphs,
choosing the LPG target that best suits one’s needs
and keeping data across different endpoints concep-
tually aligned. In fact, the major strength of rdf2pg
consists in allowing for mapping from an RDF data
schema to an LPG data schema via SPARQL patterns,
which is often familiar to data management practi-
tioners. The rdf2pg design offers the further ad-
vantage of making the framework easy to extend to
new LPG targets. Indeed, we plan to support more of
such extensions in future, for example, we are inter-
ested in supporting GQL as a future standard lan-
guage to query graph databases [9]. SQL-like lan-
guages for graph databases are another category of
LPG languages that we want to analyse in future,

conducting a qualitative and quantitative evaluation
similar to what we have presented in this paper. Re-
lated to this, we have done some preliminary work
rewriting the benchmark queries with the Arcade DB
SQL dialect, with first results showing the efficiency
of this language [68]. Representing property graphs
with an RDF schema is another ongoing standardisa-
tion effort [69,70] and we believe our tool would
benefit from the adoption of such a standard, since it
would allow for a further factorisation of the map-
ping that rdf2pg uses between an abstract LPG model
and specific LPG targets. As stated previously, RDF-
Star is a similar standardisation effort [32], which
aims at extending RDF statements over statements.
We look at this with interest as well, since it could be
both a possible LPG target for rdf2pg or a richer
RDF format to support as input.

Acknowledgements

Funding: The contributions of MB, ADK and KHP
to this work have been funded by the Biotechnology
and Biological Sciences Research Council (BBSRC),
through the projects of the Institute Strategic Pro-
gramme: Designing Future Wheat (BB/P016855/1)
and Delivering Sustainable Wheats (BB/X011003/1).
The work of CB has been supported by Spanish na-
tional Project PID2020-113903RB-I00 (AEI / FED-
ER, UE), DGA / FEDER, and by the project Seman-
tic Data Management in Knowler, Research Trans-
ference Project OTRI 2021/0432.

We would like to thank Kelvin Lawrence, for hav-
ing published his excellent book on the Gremlin lan-
guage and for his feedback related to the present
work that he has given through the StackOverflow
website.

References

[1] M.D. Wilkinson, M. Dumontier, Ij.J. Aalbers-
berg, G. Appleton, M. Axton, A. Baak, N.
Blomberg, J.-W. Boiten, L.B. da Silva Santos,
P.E. Bourne, and others, The FAIR Guiding
Principles for scientific data management and
stewardship, Sci Data. 3 (2016).

[2] OWL 2 Web Ontology Language Primer (Sec-
ond Edition), (n.d.).
https://www.w3.org/TR/owl2-primer/.

[3] A.J. Gray, C. Goble and R.C. Jimenez, Bio-
schemas: From Potato Salad to Protein Annota-
tion, (2017).

[4] R.V. Guha, D. Brickley and S. Macbeth, Sche-
ma.Org: Evolution of Structured Data on the
Web, Commun ACM. 59 (2016), 44–51.

[5] RDF Triple Stores vs. Labeled Property Graphs:
What’s the Difference?, Neo4j Graph Database
Platf. (2017). https://neo4j.com/blog/rdf-triple-
store-vs-labeled-property-graph-difference/ (ac-
cessed March 6, 2018).

[6] Z.J. Zhang, Graph Databases for Knowledge
Management, IT Prof. 19 (2017), 26–32.

[7] S. Jouili and V. Vansteenberghe, An Empirical
Comparison of Graph Databases, IEEE, 2013,
pp. 708–715.

[8] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M.
Rydberg, P. Selmer and A. Taylor, Cypher: An
Evolving Query Language for Property Graphs,
in: Proceedings of the 2018 International Con-
ference on Management of Data, Association
for Computing Machinery, New York, NY,
USA, 2018, pp. 1433–1445.

[9] S. Plantikow, Towards an International Stand-
ard for the GQL Graph Query Language, in:
W3C workshop in Berlin on graph data man-
agement standards, 2019.

[10] Apache TinkerPop, Getting Started, (n.d.).
https://tinkerpop.apache.org/docs/current/tutoria
ls/getting-started/ (accessed March 16, 2023).

[11] M. Brandizi, A. Singh, C. Rawlings and K.
Hassani-Pak, Towards FAIRer Biological
Knowledge Networks Using a Hybrid Linked
Data and Graph Database Approach, J Integr
Bioinforma. 15 (2018).

[12] A. Vukotic, Neo4j in action, Manning Publica-
tions Co, Shelter Island, NY, 2015.

[13] M. Brandizi, A. Singh and K. Hassani-Pak, Get-
ting the best of Linked Data and Property
Graphs: rdf2neo and the KnetMiner use case.,
in: SWAT4LS, 2018.

[14] neosemantics (n10s): Neo4j RDF & Semantics
toolkit - Neo4j Labs, Neo4j Graph Data Platf.
(n.d.). https://neo4j.com/labs/neosemantics/ (ac-
cessed March 10, 2023).

[15] B.O. Hansen, J. Taubert and T. Thiel, The Use
of Data Integration and Knowledge Graphs in
Modern Molecular Plant Breeding, in: Integra-
tive Bioinformatics: History and Future, M.
Chen, and R. Hofestädt, eds., Springer, Singa-
pore, 2022, pp. 121–143.

[16] P. Larmande and K. Todorov, AgroLD: A
Knowledge Graph for the Plant Sciences, in:
The Semantic Web – ISWC 2021, A. Hotho, E.
Blomqvist, S. Dietze, A. Fokoue, Y. Ding, P.
Barnaghi, A. Haller, M. Dragoni, and H. Alani,
eds., Springer International Publishing, Cham,
2021, pp. 496–510.

[17] M. Brandizi, A. Singh, J. Parsons, C. Rawlings
and K. Hassani-Pak, Integrative Data Analysis
and Exploratory Data Mining in Biological
Knowledge Graphs, in: Integrative Bioinformat-
ics: History and Future, M. Chen, and R. Ho-
festädt, eds., Springer, Singapore, 2022, pp.
147–169.

[18] K. Hassani‐Pak, A. Singh, M. Brandizi, J.
Hearnshaw, J.D. Parsons, S. Amberkar, A.L.
Phillips, J.H. Doonan and C. Rawlings,
KnetMiner: a comprehensive approach for sup-
porting evidence‐based gene discovery and
complex trait analysis across species, Plant Bio-
technol J. 19 (2021), 1670–1678.

[19] B. Cooksey, An introduction to APIs, Zapier
Inc Apr. 23 (2014), 77.

[20] T. Tudorache, Ontology engineering: Current
state, challenges, and future directions, Seman-
tic Web. 11 (2020), 125–138.

[21] Semantic Motif Searching in Knetminer ·
Rothamsted/knetminer Wiki, (n.d.).
https://github.com/Rothamsted/knetminer/wiki/
Semantic-Motif-Searching-in-Knetminer.

[22] A.E. Hodler and M. Needham, Graph Data Sci-
ence Using Neo4j, in: Massive Graph Analytics,
Chapman and Hall/CRC, 2022.

[23] NeoDash - Dashboard Builder for Neo4j -
Neo4j Labs, Neo4j Graph Data Platf. (n.d.).
https://neo4j.com/labs/neodash/ (accessed
March 10, 2023).

[24] M. Shehata, Interactive Dashboards and Note-
books for Knetminer Knowledge Graphs, Cran-
field University, School of Water, Energy and
Environment, MSCc in Applied Bioinformatics,
2022.

[25] Enrichment Analysis Notebooks, (2022).
https://github.com/Rothamsted/knetgraphs-
gene-traits (accessed March 10, 2023).

[26] M. Galkin, S. Auer and S. Scerri, Enterprise
Knowledge Graphs: A Backbone of Linked En-
terprise Data, in: 2016 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI),
2016, pp. 497–502.

[27] P. Pauwels, K. McGlinn, S. Törmä and J. Beetz,
Linked Data, in: Building Information Modeling,
A. Borrmann, M. König, C. Koch, and J. Beetz,

eds., Springer International Publishing, Cham,
2018, pp. 181–197.

[28] T. Berners-Lee, J. Hendler and O. Lassila, The
semantic web, Sci Am. 284 (2001), 34–43.

[29] G. Antoniou, A semantic Web primer, 2nd ed.,
MIT Press, Cambridge Mass., 2008.

[30] X. Wang, R. Gorlitsky and J.S. Almeida, From
XML to RDF: how semantic web technologies
will change the design of “omic” standards, Nat
Biotechnol. 23 (2005), 1099–1103.

[31] F. Orlandi, D. Graux and D. O’Sullivan,
Benchmarking RDF Metadata Representations:
Reification, Singleton Property and RDF, in:
2021 IEEE 15th International Conference on
Semantic Computing (ICSC), 2021, pp. 233–
240.

[32] RDF-star and SPARQL-star, (n.d.).
https://w3c.github.io/rdf-star/cg-
spec/editors_draft.html (accessed November 24,
2023).

[33] Apache Jena - SPARQL Tutorial, (n.d.).
https://jena.apache.org/tutorials/sparql.html (ac-
cessed March 6, 2018).

[34] ONDEX rdf-export-2 plug-in, (2017).
[35] Apache Jena TDB, (n.d.).

https://jena.apache.org/documentation/tdb/ (ac-
cessed March 16, 2023).

[36] U. Brandes, M. Eiglsperger, J. Lerner and C.
Pich, Graph markup language (GraphML),
(2013).

[37] GraphML Primer, (n.d.).
http://graphml.graphdrawing.org/primer/graphm
l-primer.html (accessed March 16, 2023).

[38] Apache TinkerPop, (n.d.).
https://tinkerpop.apache.org/ (accessed March
16, 2023).

[39] M.A. Rodriguez, The gremlin graph traversal
machine and language (invited talk), in: Pro-
ceedings of the 15th Symposium on Database
Programming Languages, 2015, pp. 1–10.

[40] K.R. Lawrence, Practical Gremlin-An Apache
TinkerPop Tutorial, 2020.

[41] ArcadeDB - MultiModel and Graph Database,
(n.d.). https://arcadedb.com (accessed Novem-
ber 14, 2023).

[42] J. Lu and I. Holubová, Multi-model Databases:
A New Journey to Handle the Variety of Data,
ACM Comput Surv. 52 (2020), 1–38.

[43] OrientDB, (n.d.). https://orientdb.org/ (accessed
November 14, 2023).

[44] rdf2pg, Listing relations via SPARQL, GitHub.
(n.d.).
https://github.com/Rothamsted/rdf2pg/wiki/Det

ails-about-RDF-Mapping#list-of-relations-and-
their-types (accessed November 14, 2023).

[45] rdf2pg, PG representation in Java, (n.d.).
https://github.com/Rothamsted/rdf2pg/tree/mast
er/rdf2pg-
core/src/main/java/uk/ac/rothamsted/kg/rdf2pg/
pgmaker/support/entities (accessed November
14, 2023).

[46] rdf2pg-based Graph Databases Benchmark,
Code and Results, (2023).
https://github.com/Rothamsted/graphdb-
benchmarks (accessed November 14, 2023).

[47] The Gene Ontology Consortium, S.A. Ale-
ksander, J. Balhoff, S. Carbon, J.M. Cherry, H.J.
Drabkin, D. Ebert, M. Feuermann, P. Gaudet,
N.L. Harris, D.P. Hill, R. Lee, H. Mi, S. Moxon,
C.J. Mungall, A. Muruganugan, T. Mushaya-
hama, P.W. Sternberg, P.D. Thomas, K. Van
Auken, J. Ramsey, D.A. Siegele, R.L. Chisholm,
P. Fey, M.C. Aspromonte, M.V. Nugnes, F.
Quaglia, S. Tosatto, M. Giglio, S. Nadendla, G.
Antonazzo, H. Attrill, G. dos Santos, S. Mary-
gold, V. Strelets, C.J. Tabone, J. Thurmond, P.
Zhou, S.H. Ahmed, P. Asanitthong, D. Luna
Buitrago, M.N. Erdol, M.C. Gage, M. Ali Ka-
dhum, K.Y.C. Li, M. Long, A. Michalak, A. Pe-
sala, A. Pritazahra, S.C.C. Saverimuttu, R. Su,
K.E. Thurlow, R.C. Lovering, C. Logie, S.
Oliferenko, J. Blake, K. Christie, L. Corbani,
M.E. Dolan, H.J. Drabkin, D.P. Hill, L. Ni, D.
Sitnikov, C. Smith, A. Cuzick, J. Seager, L.
Cooper, J. Elser, P. Jaiswal, P. Gupta, P. Jaiswal,
S. Naithani, M. Lera-Ramirez, K. Rutherford, V.
Wood, J.L. De Pons, M.R. Dwinell, G.T. Hay-
man, M.L. Kaldunski, A.E. Kwitek, S.J.F.
Laulederkind, M.A. Tutaj, M. Vedi, S.-J. Wang,
P. D’Eustachio, L. Aimo, K. Axelsen, A. Bridge,
N. Hyka-Nouspikel, A. Morgat, S.A. Ale-
ksander, J.M. Cherry, S.R. Engel, K. Karra, S.R.
Miyasato, R.S. Nash, M.S. Skrzypek, S. Weng,
E.D. Wong, E. Bakker, T.Z. Berardini, L. Rei-
ser, A. Auchincloss, K. Axelsen, G. Argoud-
Puy, M.-C. Blatter, E. Boutet, L. Breuza, A.
Bridge, C. Casals-Casas, E. Coudert, A. Estrei-
cher, M. Livia Famiglietti, M. Feuermann, A.
Gos, N. Gruaz-Gumowski, C. Hulo, N. Hyka-
Nouspikel, F. Jungo, P. Le Mercier, D. Lieber-
herr, P. Masson, A. Morgat, I. Pedruzzi, L.
Pourcel, S. Poux, C. Rivoire, S. Sundaram, A.
Bateman, E. Bowler-Barnett, H. Bye-A-Jee, P.
Denny, A. Ignatchenko, R. Ishtiaq, A. Lock, Y.
Lussi, M. Magrane, M.J. Martin, S. Orchard, P.
Raposo, E. Speretta, N. Tyagi, K. Warner, R.

Zaru, A.D. Diehl, R. Lee, J. Chan, S. Diaman-
takis, D. Raciti, M. Zarowiecki, M. Fisher, C.
James-Zorn, V. Ponferrada, A. Zorn, S. Rama-
chandran, L. Ruzicka and M. Westerfield, The
Gene Ontology knowledgebase in 2023, Genet-
ics. 224 (2023), iyad031.

[48] L. Cooper, A. Meier, M.-A. Laporte, J.L. Elser,
C. Mungall, B.T. Sinn, D. Cavaliere, S. Carbon,
N.A. Dunn, B. Smith, B. Qu, J. Preece, E.
Zhang, S. Todorovic, G. Gkoutos, J.H. Doonan,
D.W. Stevenson, E. Arnaud and P. Jaiswal, The
Planteome database: an integrated resource for
reference ontologies, plant genomics and phe-
nomics, Nucleic Acids Res. 46 (2018), D1168–
D1180.

[49] rdf2pg, Mapping RDF to PG using SPARQL,
GitHub. (n.d.).
https://github.com/Rothamsted/rdf2pg/wiki/Ma
pping-RDF-to-PG-using-SPARQL (accessed
November 14, 2023).

[50] rdf2pg Architecture, GitHub. (n.d.).
https://github.com/Rothamsted/rdf2pg/wiki/rdf2
pg-Architecture (accessed November 14, 2023).

[51] J.D. Fernández, M.A. Martínez-Prieto, C.
Gutiérrez, A. Polleres and M. Arias, Binary
RDF representation for publication and ex-
change (HDT), J Web Semant. 19 (2013), 22–41.

[52] C. Bizer and A. Schultz, The Berlin SPARQL
Benchmark:, Int J Semantic Web Inf Syst. 5
(2009), 1–24.

[53] M. Macak, M. Stovcik and B. Buhnova, The
Suitability of Graph Databases for Big Data
Analysis: A Benchmark., in: IoTBDS, 2020, pp.
213–220.

[54] R. Angles, H. Thakkar and D. Tomaszuk, Map-
ping RDF Databases to Property Graph Data-
bases, IEEE Access. 8 (2020), 86091–86110.

[55] A. Raj, J. Bosch, H.H. Olsson and T.J. Wang,
Modelling Data Pipelines, in: 2020 46th Eu-
romicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, Por-
toroz, Slovenia, 2020, pp. 13–20.

[56] J.M. Perkel, Workflow systems turn raw data
into scientific knowledge, Nature. 573 (2019),
149–150.

[57] L. Ehrlinger and W. Wö\s s, Towards a Defini-
tion of Knowledge Graphs., in: SEMANTiCS
(Posters, Demos, SuCCESS), 2016.

[58] S. Tiwari, F.N. Al-Aswadi and D. Gaurav, Re-
cent trends in knowledge graphs: theory and
practice, Soft Comput. 25 (2021), 8337–8355.

[59] D. Tomaszuk, R. Angles and H. Thakkar, PGO:
Describing Property Graphs in RDF, IEEE Ac-
cess. 8 (2020), 118355–118369.

[60] D. Tomaszuk, RDF Data in Property Graph
Model, in: Metadata and Semantics Research, E.
Garoufallou, I. Subirats Coll, A. Stellato, and J.
Greenberg, eds., Springer International Publish-
ing, Cham, 2016, pp. 104–115.

[61] T. Storzerová, Transformation of SPARQL que-
ries into Cypher queries in Neo4j, Univerzita
Karlova, Matematicko-fyzikální fakulta, 2022.

[62] H. Thakkar, D. Punjani, J. Lehmann and S. Au-
er, Two for one: Querying property graph data-
bases using SPARQL via gremlinator, in: Pro-
ceedings of the 1st ACM SIGMOD Joint Inter-
national Workshop on Graph Data Manage-
ment Experiences & Systems (GRADES) and
Network Data Analytics (NDA), 2018, pp. 1–5.

[63] S. Matsumoto, R. Yamanaka and H. Chiba,
Mapping RDF Graphs to Property Graphs,
(2018).

[64] R2RML: RDB to RDF Mapping Language,
(n.d.). https://www.w3.org/TR/r2rml/ (accessed
April 19, 2024).

[65] F. Holzschuher and R. Peinl, Performance of
graph query languages: comparison of cypher,
gremlin and native access in Neo4j, in: Pro-
ceedings of the Joint EDBT/ICDT 2013 Work-
shops, ACM, Genoa Italy, 2013, pp. 195–204.

[66] P. Warren and P. Mulholland, Edge-Labelled
Graphs and Property Graphs - To the User,
More Similar Than Different, in: Knowledge
Graphs and Semantic Web, B. Villazón-
Terrazas, F. Ortiz-Rodriguez, S. Tiwari, M.-A.
Sicilia, and D. Martín-Moncunill, eds., Springer
International Publishing, Cham, 2022, pp. 90–
105.

[67] U. Brandes and T. Erlebach, Network Analysis:
Methodological Foundations, Springer-Verlag
Berlin Heidelberg, Berlin, Heidelberg, 2005.

[68] Graph Database Benchmark, ArcadeDB/SQL
Performance Results, (n.d.).
https://github.com/Rothamsted/graphdb-
benchmarks/blob/master/results/querying-
results-arcade-sql.ipynb (accessed May 8, 2024).

[69] W3C Workshop on Web Standardization for
Graph Data, (n.d.).
https://www.w3.org/Data/events/data-ws-2019/
(accessed March 27, 2023).

[70] R. Angles, H. Thakkar and D. Tomaszuk, RDF
and Property Graphs Interoperability: Status and
Issues., AMW. 2369 (2019).

