© 00 N O s W N

aa oD DD DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

Semantic Web 0 (2024) 1 1
108 Press

RDEF Surfaces: Enabling Classical Negation
on the Semantic Web

Patrick Hochstenbach »P:, Mathijs van Noort ?, Dérthe Arndt ¢, Rebekka Martens €,
Jos De RooP, Ruben Verborgh”, Pieter Bonte ™4 and Femke Ongenae "

& Ghent University Library, Ghent University, Belgium

E-mail: patrick.hochstenbach@ugent.be

> IDLab, Ghent University - imec, Belgium

E-mails: mathijs.vannoort@ugent.be, jos.deroo@ugent.be, ruben.verborgh@ugent.be,
femke.ongenae@ugent.be

¢ International Center for Computational Logic, Technische Universitit Dresden, Germany
E-mails: doerthe.arndt@tu-dresden.de, rebekka.martens@mailbox.tu-dresden.de

d Department of Computer Science, KU Leuven Campus Kulak, Belgium

E-mail: pieter.bonte@kuleuven.be

Abstract.

The Resource Description Framework (RDF) is a fundamental technology in the Semantic Web, enabling the
representation and interchange of structured data. However, RDF lacks the capability to express negated statements
in a generic way. As a result, exchanging negative information on a Web scale is thus far restricted to specific cases
and predefined statements. The ability to negate (virtually) any RDF statement allows for a comprehensive way to
refute, deny or otherwise invalidate claims on a Web scale. Via an intermediate step of a diagrammatic approach
to logical expressions called Peirce graphs, we introduce RDF Surfaces, an extension of RDF that incorporates
the concept of classic negation, known from first-order logic. Overall, RDF Surfaces provides an abstract, visual
approach to negation within the Semantic Web, offering a more general and widely applicable approach than
previous attempts at incorporating negation. Aside from a (traditional) programmatic syntax, RDF Surfaces can
also be represented visually by means of diagrams inspired by Peirce graphs. We demonstrate negation via RDF
Surfaces and how to reason upon it in illustrative use cases drawn from the domains of academic publishing and
eHealth. We hope this vision paper attracts new implementers and opens the discussion to its formal specification.

Keywords: RDF Logic, Classical negation, BLOGIC, Existential graphs

1. Introduction

Reasoning with classical negation has attracted interest in the Semantic Web since its early days.
Classical negation has properties similar to processing boolean values with the NOT operator in computer
languages. Classical negation can take "true" to "false" and vice versa. It follows the law of the excluded
middle: any statement P is either "true" or "false". If some P is "true", then a double negated P is also
"true" (and vice versa for "false"). This form of negation is also explicit: "false" is not a default value; it

*Corresponding author. E-mail: patrick.hochstenbach@ugent.be.

1570-0844/$35.00 © 2024 — IOS Press. All rights reserved.

©W 00 N O s W N

NONONON N R B R R s B R s s
a A W N R O © O N A W N = O

26

mailto:patrick.hochstenbach@ugent.be
mailto:mathijs.vannoort@ugent.be
mailto:jos.deroo@ugent.be
mailto:ruben.verborgh@ugent.be
mailto:femke.ongenae@ugent.be
mailto:doerthe.arndt@tu-dresden.de
mailto:rebekka.martens@mailbox.tu-dresden.de
mailto:pieter.bonte@kuleuven.be
mailto:patrick.hochstenbach@ugent.be

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

2 P. Hochstenbach et al. / RDF Surfaces

cannot be assumed; it should be stated. All other forms of negation that do not follow these principles
— there are many variants — are "weaker" forms of negation. The interest in "strong" classical negation
can be attributed to a desire to fulfill one of its core design principles. Just as the Web is open-ended,
allowing anyone to create a webpage on a server and link to any other webpage, the Semantic Web aspires
to enable anyone to express any statement about any topic [38]. The Resource Description Framework
(RDF) [40] is the W3C recommendation that defines the language to express statements about anything in
the universe in the form of RDF triples. Using RDF, not only Web resources can be described, but physical
objects, abstract concepts, and, in general, anything that can be given an identifier. However, there are
also limitations. RDF lacks the ability to express classical "strong" negation, explicitly stating negative
information that also follows the law of the excluded middle and all other classical negation properties.
Additionally, RDF can express existential quantification (using blank nodes): statements about one or
more resources, but lacks the expressivity to create statements about zero or more resources: universal
quantification. As we see below, there are reasons to desire such features, but there are also some compelling
reasons why classical negation has mostly been avoided.

1.1. Why is classical negation and universal quantification desirable?

We provide three argument for classical negation and universal quantification.

First, negation and universal quantification are applicable across various use cases. Straccia and
Casini [56] describe how, in medicine, it is important to distinguish between the absence of biochemical
reactions between substances and not knowing about their existence, which results in a need for explicitly
stating negative information. Wagner [66] makes the case for a generalized Web logic based on classic
negation and quantification to drive business processes. In an earlier paper, Wagner [65] demonstrated
that two types of negation are necessary to interpret data effectively. The monotonic strong (classical)
negation "Patient X did not take pill-B" expresses negative knowledge. The non-monotonic weak nega-
tion "Patient X is not registered at a hospital" expresses a negation as failure (NAF). Esteves [18] and
Kebede [33] advocate for the use of negation in making policy information on permissions, prohibitions,
and obligations enforceable through the Open Digital Rights Language (ODRL) [31]. They also suggest
that negation can facilitate conflict resolution while creating policy documents.

Second, democratic and social reasons can be provided to desire classical negation on the Semantic Web.
We live in times of massive information flows trying to influence users’ social and political worldviews.
Deciding what resources can be trusted, or even evaluating contrasting views, is challenging for many
Web citizens. The Semantic Web is not the harbinger of absolute truth: expressing a statement as RDF
does not automatically make it closer to absolute truth. Every application that processes information on
the Semantic Web relies on a lesser form of truth, a relative truth: trust. By "asserting an RDF triple,"
a Semantic Web application assumes a triple as being "true' (whatever that means in the real world).!
Combining multiple RDF triples forms those triples’ logical conjunction (AND). Based on this relative
truth of a set of triples, boolean queries can be executed using the SPARQL Query language [21], and new
RDF triples can be inferred using the RDF Schema language [11]. However, without classical negation,
explicitly stating what is not the case, there is no explicit notion of contradiction on the Semantic Web.
This limits the applicability of formal ways to validate statements and discover contrasting views on the
Semantic Web.

Third, there could be scientific reasons to add these features to the Semantic Web. Classical negation
combined with existential quantification in RDF, as we will see later in the paper, provides the expres-
sivity of first-order logic (FOL), including universal quantification. The properties of this logic have been
studied over centuries. Adding classical negation to the Web, even for its own sake, would give us broad
opportunities to express human reasoning and scientific inquiries. It offers the chance to present facts on
the Web and the logic behind them, enhancing the scientific process’s transparency.

n this paper we will quote "true" and "false' to remind the reader about this relative truth. However, with important
logical consequences.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

P. Hochstenbach et al. / RDF Surfaces 3

In addition to practical reasons related to solving real-world use cases, there are also technical reasons
why a classical negation and, in extension, FOL have desirable properties.

FOL retains the monotonicity property. When Web logic is monotonic, adding new asserting RDF triples
to a previous set of asserted RDF triples will never invalidate previous queries or inferences. What was
a valid inference using an older set of RDF triples must also be a valid inference in the updated set of
RDF triples. Following Hayes (2001), Web reasoning is inherently open-ended, i.e. one can never assume
all the facts about a topic are available. By consulting additional resources, new information might arise.
Non-monotonic reasoning, such as NAF, assumes that information about any topic is complete. Missing
information is assumed to be "false". However, this is unsafe in an open world, such as the Web, where one
does not have the license to assume a statement is "false" without explicitly stating it to be "false". This
is not the case for classical negation, which is explicit in the triples that should be considered "false".

There are also grounds to believe that contradictions on the Semantic Web are inherent, not detrimental
as suggested by our second point, but rather benign. Hayes refers to this as the ’diamond of confusion’ [24]:
we may agree on a shared reality (whether it be absolute or relative truth) and a common method to
create statements and express logical reasoning about this reality, yet still end up with contradictory
conceptualizations of this reality. Hayes provides an example of how concepts can be conceptualized with
and without a temporal dimension, which leads to contradictory results. For instance, a patient can be
a fixed "thing" in one formalization with a name, address, and social security number; the same patient
can be an "event in time" in another formalization where the patient with a fever is not the same patient
without fever after giving a medication (a "thing" cannot both have a fever and not a fever). Understanding
and identifying these contradictions among RDF resources is crucial for interpreting resources in querying
and reasoning scenarios.

In some way, negation is already implicitly available in the Semantic Web when asserting triples. In
logic, there are no alternative versions of "true". If, within a context, some RDF triple is regarded as being
"true', this means that the negation of that triple is "false" in that context (regardless of the absolute
truth or availability of other RDF triples on the open Web). Or, stated differently, within a context, any
assertion negates the negated triple because P = -—P.

1.2. Why was classical negation not added to RDF?

Considering all the reasons, why can’t we incorporate this form of classic negation into RDF?

Monotonic logic was welcomed by many as a desirable feature on the Web, but the full expressivity of
monotonic logic in the form of FOL was not. The designers of RDF deliberately chose to exclude these
features, citing Lassila [39], who expressed concern that such complex features "might discourage the
acceptance and adoption of RDF within the Web community."

A more compelling argument against logics with the expressivity of FOL is that they have been proven
to be undecidable for finding all valid inferences from a knowledge base [58]. For machines, undecidable
means that processing any arbitrary RDF with full FOL expressivity, and finding all correct inferences,
and doing all of this in a finite amount of time is impossible. At most, two of these features can be
achieved [47].

Finding all valid inferences in a finite time (two of the features of the previous point) is one of the
core design issues in the Web Ontology Language (OWL) [9]. OWL2 DL is the flavour of OWL based
on Description Logics (DL). OWL2 DL chose to use only those fragments of FOL that are decidable
and (a second design choice) can be safely processed by machines in isolation. A safe execution makes
computational reasoning tasks tractable (executable in polynomial time). However, two compromises need
to be made to achieve this form of computability: negation and quantification need to be introduced
in a weakened form, and OWL2 DL and its sublanguages need to abandon the semantics of RDF when
expressing Web logic. OWL2 DL introduces "Direct Semantics" [44] as an alternative for "RDF Semantics."

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

SO DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s BB
g b W NP, O © 0N WN P, O © 0N WN RO © 0N W N, O

46

4 P. Hochstenbach et al. / RDF Surfaces

Only the former has the desired decidable and tractable features.? However, Direct Semantics disregards
the RDF nature of the OWL2 DL formulas in its semantics.

1.8. Rationale for proposing the addition of classical negation and FOL expressivity to RDF

Our rationale for adding classic negation and FOL expressivity to RDF is not novel. They were ar-
ticulated in Hayes’ “BLOGIC” invited talk at TWSC 2009 [26]. In his argumentation, RDF is portable,
i.e. any, RDF triple expresses the same data irrespective of the processing environment. However, this
is not the case for current Web logics. Combinations of RDFS and OWL2 DL (and even within OWL2
DL) come with semantics that do not always agree. Web logics that use only a fraction of FOL does
not commute: different fragments can disagree on what can be concluded from an RDF knowledge base.
These concerns for the portability of Web logic led Hayes to propose weB LOGIC (BLOGIC) as a new
approach for portable logic on the Web, rooted in the theory of existential graphs by Charles Sanders
Peirce (1839-1914) [52]. In Hayes’s vision, BLOGIC in the form of existential graphs mitigates the limited
expressivity of RDF and the limitations on the portability of logic on the Web. To incorporate existential
graphs, RDF needs to introduce two additional concepts: a surface as a boundary for negated triples and
for collections of graffiti (blank) nodes that act as existentially quantified variables. Together with the
standard assertion of triples and their conjunction, the full expressivity of FOL can be achieved without
losing the structure and semantics of existing RDF resources.

Achieving BLOGIC with FOL expressivity again introduces undecidability to the Semantic Web, which
is precisely what the RDF designers aimed to avoid. We argue that any portable Web logic in RDF will
likely not be decidable. Decidability requires a delicate choice in limiting the expressive power of Web
logics. While fragments of FOL may individually lead to decidability, their combination often does not,
and certainly not in combination with the semantics of RDF. To communicate and transport Web logic
as RDF, undecidability will be a fact we must live with and not a limiting choice.

Undecidability, in general, is not a showstopper on the Web. The satisfiability of the RDF Query language
(SPARQL) is undecidable[22][69]. Billions of websites and Web applications exchange HTML, CSS, and
JavaScript code in combination, fully Turing complete, thus providing a daily undecidable halting problem
on the Web stack. Despite this, the Web has continued to evolve and thrive. Real-world use cases might
not require solving the most extreme computability problems. In our paper, we will highlight two use cases
that can be solved by implementing our translation of the BLOGIC vision in RDF, which we call RDF
Surfaces.

We do not assume that a single machine will solve the undecidable problem and simultaneously provide
a solution that can accept arbitrary knowledge input, produce all valid inferences, and always find these
results in a finite amount of time. However, one of these features can be dropped to turn an undecidable
problem into a decidable one where machines can assist humans in decision-making.

Our standpoint is a bit provocative. We assume that human knowledge is, by nature, undecidable and
contradictory. Even in science, only romanticized views regard it as a "flawless building" of knowledge,
only containing positive information and results [42]. A true Semantic Web should encompass more than
just information and logic that machines can process. Human knowledge is decentralized and can be
contradictory. Machine intelligence, if it wants to be in any way compared to what humans can produce,
needs to be decentralized and able to be contradictory too. These contradictions should not be hidden,
but expressed openly in portable syntax and logic.

In summary, a Semantic Web that is closer to enabling anyone to express any statement about any topic
requires:

1. Expressing the classic negation of every possible statement.
2. Providing the full expressivity of FOL (including universal quantification).
3. Adhere to the RDF program of portability.

2https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/#Example_on_ Semantic_ Differences

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/#Example_on_Semantic_Differences

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

P. Hochstenbach et al. / RDF Surfaces 5

1.4. Contribution

As far as we know, no attempt has been made to implement classical negation, as proposed by the
BLOGIC vision, in a concrete RDF syntax and implementation since Hayes’ talk in 2009. Our paper
will introduce RDF Surfaces as an extension of RDF’s simple interpretation based on Peirce’s existential
graphs, with the extended semantics of classical negation and the expressivity of FOL. In this vision paper,
we aim to translate Hayes’ BLOGIC vision into a concrete RDF syntax, investigate the expressivity of
its semantics, test the applicability in real-world use cases, demonstrate initial implementation steps, and
encourage further research in formalization and potential implementations.

Our main contributions in this paper are thus as follows:

1. RDF Surfaces Syntax: We apply existential graphs to RDF in the form of RDF Surfaces and demon-
strate how Hayes” BLOGIC vision can be made concrete with a serialization using a subset of the
Notation3 syntax.

2. Investigation of expressivity: We demonstrate how two additions to the RDF model under simple
entailment semantics provide the full expressivity of FOL with explicit quantification, with addi-
tions of (a) surfaces with negated contents, and (b) collections of graffiti (blank) nodes that act as
existentially quantified variables.

3. Showcase applicability: We provide two use cases, one from scholarly communication and one from the
healthcare domain, demonstrating the need for classic negotiation. These use cases demonstrate how
positive and negative data and logic can be shared using the RDF syntax with extended semantics.
Both use cases implement FOL features, such as quantification, disjunctions, and implications to
share logic rules.

4. RDF Surfaces initial reasoner implementation: We demonstrate how RDF Surfaces and the examples
of our paper can be queried using an implementation of RDF Surfaces.

1.5. Paper outline

In the remainder of this paper, Section 2 will highlight two scenarios that will be used to illustrate
the application of FOL Web logic in scholarly communication and healthcare. In Section 3, we will review
related work on implementing FOL and negation on the Web. In Section 4, we introduce Peirce’s existential
graphs. In Section 5, we introduce RDF Surfaces and its syntax, which implements Hayes’ BLOGIC vision.
In Section 6, an overview will be presented of four implementations of RDF Surfaces and the properties
of the most mature version we used to test the use cases of this paper. In Section 7, the RDF Surfaces
will be applied to the two use cases presented in Section 2. In Section 8, we will discuss our study’s main
points and further work. Finally, our conclusions will be presented in Section 9.

2. Running examples

This article will use two running examples to highlight the potential for negation on the Web. Our use
cases help explain this paper’s abstract concepts and put their application in the context of real-world use
cases.

2.1. Scholarly communication

For many researchers, choosing the right place to publish is the most contentious question in their
pathway to pursue an academic degree. Researchers do not need to spend much time searching online to
find numerous websites from universities, libraries, publishers, and individual researchers that present the
trade-offs in various publication paths. This question can be more complex than it seems. A researcher
might want to give a topic more visibility by targeting a wide (nonspecialist) academic community or the

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

6 P. Hochstenbach et al. / RDF Surfaces

‘ Researcher X Preferences ‘ Department Y Preferences ‘

Prefers a subject repository, a journal that does not
charge APC costs or an indexed journal in WOS.
Table 1

Examples of possible publication venue preferences for a researcher and a department.

The publication venue must be indexed in WOS.

general public. Alternatively, a researcher could choose to publish new results as fast as possible to claim
precedence. Some scholarly communities progress in their field by sharing these fast research results as
preprints in subject repositories, such as arXiv and medRxiv. However, certain journals refuse to accept
research articles previously disseminated in this manner or charge high article processing charges (APC).
Institutions might prefer to accept only some types of publications for satisfactory completion of a degree,
for instance, only publications from high-impact journals indexed in the Web of Science (WOS) database.
The academic world could utilize library databases to share lists of journals that are explicitly stated to
be part of the WOS database or explicitly state them as excluded or formally removed from coverage.

It would benefit all scholarly communication network actors to share their preferences using publicly
accessible preference documents. These preferences could then provide input for smart agents to suggest
new venues and provide the best advice on where to publish. An example of each actor’s different types
of policies is sketched below in Table 1 and Table 2.

Both the researcher and department preferences contain explicit and implicit negations. A journal that
explicitly states that APC costs are not charged is a researcher’s X preference. The department’s Y
demand for a venue in WOS excludes all venues that are explicitly not indexed in WOS. Journal facts
make positive and negative facts clear. These facts can be published online by the journal or publisher’s
homepage or provided by library databases that track journal information. In our examples, journals ABC
and DEF would be researcher and departmental preferences, but journal GHI and repository JKL would
not simultaneously match the researcher and departmental preferences.

2.2. Medicine Prescription

For the second use case, we show the applicability of FOL to the healthcare domain. Determining a
suitable set of medications is a complex process, taking into account a patient’s symptoms, the effectiveness
of medication, the patient profile, and other factors. Specifically, the presence of allergies towards one or
more types of medication, as well as possible secondary afflictions inferencing with some medication, makes
for a difficult process to prescribe each patient the best suitable medication. Combining a high level of
required domain knowledge and the need to perform complex reasoning upon said knowledge makes this
an overall hard process to capture and automate accurately.

For a given condition, multiple possible medicines are often available to provide treatment. Here, we
consider the condition of an acute myocardial infarction, with possible treatments of a low dosage of
aspirin or beta-blockers. Aspirin should not be prescribed if a patient is allergic to it or suffers from active
peptic ulcer disease. Likewise, beta-blockers should only be prescribed when a patient does not suffer from
severe asthma or chronic obstructive pulmonary disease. Furthermore, a high aspirin dosage is known to
be an effective treatment for fever, with identical exclusion criteria compared to a low aspirin dosage. The
information is summarised in Table 3.

To arrive at a suitable medicine prescription, it is necessary to reason upon negative information. A
patient should only be prescribed a given drug if it does hold that said drug is an effective treatment of
a patient’s condition and if all the known exclusion criteria of the drug are assured to mnot hold, e.g., in
case of aspirin prescription, it must hold that a patient does not have an aspirin allergy nor a peptic ulcer
disease.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

P. Hochstenbach et al. / RDF Surfaces 7

‘ Journal ABC Facts
Indexed in WOS. Re-

‘ Journal DEF Facts ‘ Journal GHI Facts

Not indexed in WOS.

‘ Repository JKL Facts ‘

Indexed in WOS. A subject repository.

quires APC. Does not require APC.
Table 2
Facts for hypothetical journals ABC, DEF, GHI, and a repository JKL.
Medicine Treated affliction Exclusion criteria
High dosage of aspirin Fever Aspirin Allergy, Active peptic ulcer disease

Low dosage of aspirin
Beta-blockers

Acute myocardial infarction Aspirin allergy, Active peptic ulcer disease

Acute myocardial infarction | Severe asthma, Chronic obstructive pulmonary disease
Table 3

Overview of Medicine treatment

3. Related Work

A significant body of research on defining the requirements for Web logic with negation is available with
possible extensions to FOL expressivity. Table 4 presents an overview of the three main requirements we
seek for a Web logic, i.e. enabling classical negation, providing the full expressivity of FOL (including
universal quantification), and building upon the RDF data & syntax to attain portability, and compares
them against the solutions discussed in the following paragraphs in more detail. It can be concluded from
this table that none of the available solutions fit all the requirements, hence the motivation for RDF
Surfaces.

Technology Classic negation FOL expressivity RDF data & logic
KIF + + -
Common Logic + + -
N3Logic - - +
FIPA - - +
OWL2 DL + (restricted) - +
RIF + +(restricted) -
SWRL - - +
SWSL + + -
De Bruijn, Tsarkov, Tammet + + -
TPTP + + -
Datalog - - -
ASP + +(subset) -
SPARQL +(limited to filters) | +(limited to filters) +

Table 4

Overview of technologies and their support for classic negation with explicit quantification for processing RDF data using
an RDF syntax.

In the early 1990s, the Defense Advanced Research Projects Agency (DARPA) and other funding agen-
cies started the development of the Knowledge Interchange Format (KIF) as a machine-readable inter-
change format of knowledge among disparate programs with an expressivity near equivalent to FOL
predicate calculus including classical negation [20]. KIF’s Lisp-based syntax predates the Semantic Web
and was, in the 1990s, the de facto exchange format in the research community. Common Logic continued
the work of KIF and has since been developed and published as the ISO standard "ISO/IEC 24707:2018"
as a framework for a family of logic-based languages [32]. Common Logic can process RDF data but the
syntax relies on Lisp like S-expressions. Common Logic is highly relevant for the BLOGIC vision as it
includes Piercian graphical logic in the Appendix B of the ISO standard. Our paper applies this logic to
the Semantic Web using an RDF syntax, ensuring compatibility with all existing RDF resources. With

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

8 P. Hochstenbach et al. / RDF Surfaces

RDF Surfaces, we strive not to separate data and logic. No separate syntax and semantics are required to
negate a set of RDF triples.

In 2000, Berners-Lee called for developing a unifying language for classical logic as an extension, or even
the modification, of the RDF model. His SWeLL proposal was imaged to “allow any Web software to read
and manipulate data published by any other Web software” [7]. For all logical relations to be expressed, the
SWeLL project proposal advocated negation and explicit quantification as an extension to RDF. The work
on SWeLL influenced the development of N3Logic [8] as an extension of RDF so that the same language
can be used for transporting logic and data. N3Logic provides negation in the form of scoped negation as
failure (SNAF), i.e. the monotonic version of NAF. Both NAF and SNAF are logical operations to reason
about information missing from a knowledge graph, but cannot be used (or in a very limited form) to
express negative information that classic negation requires explicitly. Both NAF and SNAF do not have all
the desired properties of classical negation. In N3Logic, SNAF can only be used as part of an implication
and not as part of the data. It is possible to create a negated statements and negated graphs by setting
the consequent of an implication "false" G — false, but this negated graph does not have the properties
of a classic negation. A double negated graph cannot be interpreted as "true".

In 2001, the FIPA RDF Content Language Specification [71] was created to specify how RDF can be
used as a message content language in the communication acts of FIPA-compliant agents. It proposes a
method to express negated RDF facts by adding a believe or disbelieve in the facts. The FIPA proposal
adds a fipa:Proposition and relies on reification of RDF triples. A fipa:believe predicate can be added
to the reified triple to express a boolean trust. Using this mechanism a single triple can be interpreted as
"false", but it is not a classical negation for the same reason as N3Logic "false" is not a classical negation.

Related developments were made in 2004 with the Web Ontology Language (OWL) as an extension
of RDF. The newest version, OWL 2 [9], has several profiles, of which OWL 2 DL is based on frag-
ments of FOL. In all OWL 2 DL profiles, negation is available in the form of owl:complementOf and
owl:NegativePropertyAssertion, but these negations are restricted to specific cases in the profiles
to prevent the halting problem and ensure the language remains decidable. As an example, using the
owl:NegativePropertyAssertion it is possible to state that two individual do not have the relation
:hasParent,

:John a owl:NamedIndividual .
:Mary a owl:NamedIndividual .

[a owl:NegativeObjectPropertyAssertion ;
owl:sourcelIndividual :John ;
owl:assertionProperty :hasParent ;
owl:targetIndividual :Mary]

From these statements it follows that :John :hasParent :Mary is 'false’, which makes it a negation of
one triple. However, this negation does not have the properties of a full classical negation. The construction
only works for a single triple (and not arbitrary collections of triples), and the double negation properties
of classical negation are unavailable (which would lead to full FOL expressivity). As for N3Logic, a "false"
is available but in a limited form. These types "false' statements can be used as constraints in an ontology,
but do not have the properties of a proper classical negation. There is even a more subtle difference
between this type of negation and classical negation. The John and Mary example does not state that it
is impossible that John has a parent Mary, only that it is not modelled in a particular ontology.

Universal quantification is available in OWL 2 DL, but in a restricted form. The ObjectAllValuesFrom
and DataAllValuesFrom predicates require a set of all individuals to choose from in an quantification.
This restricted quantification differs from classical universal quantification, which permits an arbitrary
(unlimited) number of individuals.

The Rule Interchange Format (RIF) [35] was an activity started in 2009 within the W3C to develop Web
standards for the interchange of rules among disparate systems, especially on the Semantic Web. RIF is a

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

P. Hochstenbach et al. / RDF Surfaces 9

collection of extensible languages and dialects serialized as XML documents. Two types of languages are
available: logic-based dialects and dialects for rules with actions. The logic-based dialects include languages
based on FOL and various non-FOL semantics, but do not allow negation in the rule head or body (the
Horn subset). As far as we know, no RDF syntax was provided for RIF.

Semantic Web Rule Language (SWRL) [30] is a W3C membership submission that extends the OWL
Web Ontology Language with the Rule Interchange Format (RIF). The proposed language extends OWL
axioms to include Horn clauses for OWL descriptions and properties and a limited set of built-in func-
tions. This form supports neither the disjunction nor the classical negation of clauses. Also, to guarantee
decidability, rules are restricted to only include named individuals (and not existentially introduced in-
dividuals). The language allows for explicit quantification, but introducing variables goes beyond RDF
semantics [43].

The Semantic Web Services Language (SWSL) [4] is a language for specifying the formal character-
izations of Web service concepts and descriptions of individual Web services. The language consists of
two sublanguages: SWSL-FOL, a full FOL language, and SWSL-Rules, a rule-based sublanguage with
non-monotonic semantics. However, the authors of SWSL did not envision the need for full FOL reasoners
based on SWSL-FOL as its main use case is creating Web service ontologies. The syntax of SWL is inspired
by F-Logic and is not based on RDF.

Several papers by De Bruijn, Tsarkov and Tammet demonstrate the embedding of RDF in FOL using
frameworks, such as F-Logic[13], Vampire[59] and JSON-LDI[57]. The advantage of FOL lies in its well-
established nature and the ability to define its mappings, as demonstrated by these papers. However,
our project aims to achieve the expressivity of FOL within the Web language itself, specifically in the
RDF model, from the ground up. The papers start from the opposite direction and try incorporating
RDF semantics into a framework with FOL semantics. For similar reasons, plain FOL, such as the TPTP
language?, is excluded.

Datalog knows some extensions which aim to incorporate negation into the rule language, most notably
semi-positive Datalog and stratified Datalog [34]. Including negative atoms in rule bodies allows negation
to be contained. This inclusion allows for introducing disjunctive and negative statements through a back
door. Nonetheless, as is the case for SWRL considered above, Datalog’s variants do not allow for existential
variables, only to reason over existing ones [1]. Furthermore, many Datalog variants are restricted to safe
rules, where all variables of a rule must occur in a positive atom of the rule body, which further restricts
the free use of negative statements.

Answer Set Programming (ASP) [16] provides classical "strong" negation and NAF, and even first-order
extensions can be written [41]. Eiter et al. [17] provides an extension of ASP with description logic for
the Semantic Web. However, using Datalog, ASP, and even Prolog as Web logic creates a dichotomy
between the world of data (RDF) and the world of logic (the computer program). In the rationale of RDF
Surfaces, it should be possible to negate information in RDF and transport logic/reasoning in a portable
way (using RDF). RDF Surfaces could be the language, the syntactic sugar, to transport RDF data with
FOL expressivity to an ASP, Datalog, or Prolog program. We do not deny the expressivity of any of these
programming languages. Our argument reverses the conventional perspective: Web logics that follow the
requirements of the computing agent (decidable, tractable). RDF Surfaces advocates for Web logic for the
human agent, emphasizing sharing information and logic in a portable way.

SPARQL can use classical negation and first-order expressivity in filters that can be used to query an
RDF data set (that has not FOL expressivity). Three types of negation are supported: (a) the Boolean
NOT operator that can be used in filters; (b) the negation as failure operators MINUS and NOT-EXISTS;
and (c) a combination of OPTIONAL with the BOUND operator [2]. Additionally, SPARQL provides
an RDF serialization through SPARQL-SPIN [37]. However, we regard SPARQL primarily as a query
language rather than a Web logic language.

Shttps://tptp.org/Proposals/ TPILanguage.html

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://tptp.org/Proposals/TPILanguage.html

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

10 P. Hochstenbach et al. / RDF Surfaces

4. Existential Graphs

Existential graphs can be considered a "whiteboard" language for logical reasoning. The whiteboard
surface is a logic area that contains thoughts or ideas asserted to be "true". Thoughts or ideas are written
on the whiteboard in the form of symbols. These symbols can represent propositions or relations depending
on the used diagram system. Groups of symbols can be encircled to create a ‘nested surface’ with special
logical properties. Symbols and nested surfaces can be inserted and erased from the whiteboard according
to a fixed set of diagram rules. These diagram rules are Peirce symbolic method of natural deduction
and represent the calculus of his symbolic language. Symbol manipulation was, for Peirce, the means to
make logical reasoning more natural and visual. The dynamic diagrams represent "a moving picture of
the actions of the mind in thought" [53]. Peirce developed three diagrammatic systems: the Alpha system,
where the symbols represent propositions and the calculus propositional reasoning; the Beta system, where
the symbols represent relations and the calculus predicate logic; and the Gamma system, which explores
modal and higher-order logic [54]. RDF Surfaces, the core topic of this paper, is the application of existential
graphs for RDF. To guide the reader in this translation, a short introduction to the Alpha system and
some highlights of the Beta system will be presented below. The application of Peirce’s system to RDF
will be the topic of the next section.

4.1. Default positive surface

The default positive surface (the whiteboard) is an area that contains zero or more symbols or deeper
nested surfaces. In the Alpha system, each symbol represents a proposition. The default surface, or in
Peirce’s terminology the "sheet of assertion", has the property that any symbol written on it represents a
formula that is considered logically "true" (that is, "true" in the relative sense, not an absolute truth). The
order in which symbols are written or their position on the surface has no special meaning. The positive
surface is interpreted as the logical conjunction (A) of all symbols and surfaces written on it. If the symbols
A and B are written on the positive surface, then the conjunction A A B is interpreted as true by that
surface. The empty positive surface is interpreted as a tautology ("true" in every possible interpretation)

4.2. Negative surface

A negative surface (in Peirce’s terminology, the "cut") has the property that any symbol that is written
on it represents a formula that is considered logically "false". If the symbols A and B are written on a
negative surface, then the conjunction A A B is interpreted as being 'false" by that surface. Or stated
differently, the negation —(A A B) is "true" on the default positive surface on which the negative surface is
written. A negative surface is the classical negation (—) of the symbols written on it. An empty negative
surface is interpreted as a contradiction ("false" in every possible interpretation).

4.83. Nested surfaces

Negative surfaces can be nested inside other negative surfaces, but no nested surfaces are allowed to
overlap another. We will define the surface nesting level as the number of "negative borders" one must
cross to reach a surface’s interior. The parity of the surface nesting level is the number of crossings modulo
2. We will see that the surface nesting level and its parity will be vital for the diagram manipulation rules,
which we will explain in the next subsection. For any surface S, the containment is defined as the set of
all symbols/nested surfaces enclosed by S, including the surface S itself.

Positive surfaces, negative surfaces, and nesting are all required to interpret any composite diagram. As
an example, in Figure 1, we see a default positive surface with propositions A and B, a nested negative
surface with proposition A, and inside the nested surface another nested surface with proposition C'. On
both the default positive surface and the nested negative surface, A represents the same proposition. The
positive surface has parity 0, the first nested negative surface has parity 1, and the innermost negative
surface has parity 0. The full interpretation of this diagram is A A B A =(AA—=C). The containment of the
first (outer) negative surface in Figure 1 includes 5 symbols/nested surfaces as is shown in Figure 2.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 11

Nested Negative Surface
(Even)

1

A C

B

Nested Negative Surface

Positive Surface
(Odd)

(Even)

Figure 1. A positive surface with the symbols A and B, a nested negative surface with the symbol A, and a deeper nested
negative surface with the symbol C. The logical interpretation of this diagram is AA BA—(AA—C). The parity of the surface
is the number of "negative borders" one needs to cross to reach the symbols modulo 2. The positive surfaces has parity 0,
the negative surfaces with A parity 1, and the negative surface with C parity 0.

A b C b c H) C H C
A A

Figure 2. The first inner nested negative surface (the one with odd parity) of Figure 1 has a containment of 5 symbols/nested
surfaces.

4.4. Diagram rules

Peirce provided for his Alpha system four diagram manipulation rules to insert and erase symbols and
nested surfaces:

R1 Insertion: Any symbol/nested surface can be introduced on any surface with parity 1.

— R2 Erasure: Any symbol/nested surface can be erased on any surface with parity 0.

— R3 Double Cut: A double nested surface can be replaced by its interior when the outer region is
empty.

R4 (De)iterate: Any symbol/nested surface S’ on a surface S can be placed or erased from any surface
that is not part of S’, but contained by S.

The last rule R4 requires some explanation. A copy of any symbol/nested graph can be added or erased
from any nesting level. Starting from Figure 1 we can create Figure 3 by adding the B symbol in the
nested surface with party 1, and the inner nested surface with party 0. Likewise, the A symbols can be
added at any nesting level. Rule R4 also erases these A and B copies. Rule R4 does not allow to place a
copy of a nested surface within itself.

Diagram manipulation rules can be applied to create new diagrams that maintain the same logical truth
value as the original diagram. For instance, Figure 4a is a copy of Figure 1. By applying the deiterate
rule R4 to this diagram, we can remove the A copy from the nested negative surface, which results in
Figure 4b. As a next step, we see that Figure 4b contains a double nested negative surface, which can be
erased using the double cut rule R3. This results in Figure 4c and eventually Figure 4d. This symbolic
calculus provides a deduction for Equation (1).

©W 00 N O ;s W N

["
& W N P~ O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

12 P. Hochstenbach et al. / RDF Surfaces

A B [BCA

A

Figure 3. Using rule R4 a copy of a symbol or nested surface can be placed in at any surface level which is contained by the
origin surface. But, it is not possible to place a copy of a nested surface within itself.

A A

A

Figure 4. (a) A representation of AANBA—-(AA-C) ; (b) the deiterate rule R4 is applied to erase a copy of A from the nested
negative surface; (c) the double cut rule R3 is applied to erase the double nested surface; (d) the result of the deduction
AANBAC.

R4 R3
AANBA-(AAN-C)EF AANBA=(=-C)F AANBAC (1)

An implication can be recognized in Equation (1). A negative surface containing A plus a deeper nested
negative surface containing C' is the diagrammatic equivalent of the logical formula —(A A —~C), which is,
by definition, the implication: =(A A -~C) = A — C. That is, it cannot be the case that A is "true" and C
is not "true". Stated differently, from A follows C. This can be written in symbolic form as:

ANBA~(AAN-C)FANBA(A—C)FAANBAC (2)

The correspondence between Alpha calculus and propositional logic (Beta calculus with predicate logic)
is not coincidental. Zeman formally established it in the early 1960s [68]. Important for our discussion
is that any compound truth-functional statement can be written diagrammatically using symbols and
(nested) negative surfaces:

— The logical conjunction A is given by writing symbols (or nested negative surfaces) on a positive
surface (Figure 5a).

— The logical negation — is given by writing symbols (or nested negative surfaces) on a negative surface
(Figure 5b).

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 13

— The logical disjunction V is given by noting that AV B = —(—A A =B) (Figure 5c¢).
— The logical implication — is given by noting that A — B = —(A A =B) (Figure 5d).

A A A
B B B

Figure 5. Diagram representations of (a) AA B, (b) =A, (¢) AV B, and (d) A — B

4.5. Quantification

Figure 6. Quantification using the Beta system. The interpretations of these diagrams are: (a) 3z : A(x), (b) 3z : = A(z), (c)
-3z : A) =Vx: 2A(z), and (d) -(Fz : 7A) =V : A(x).

The diagrams thus far addressed reasoning with propositions using the Alpha system. The Beta system
expands the Alpha system by adding quantification and the logic of relations. In this article, we will only
provide a concise example of the Beta system, providing enough detail to understand the quantification
techniques of the next section.

A (possibly indexed) heavy dot e denotes that some identity exists in the Beta system. These heavy
dots can be extended into a "line of identity", which has the same interpretation as the heavy dot. When
two or more heavy dots appear in a diagram with indexes with equal labels, they act as coreferences and
denote the same identity. In the Beta system, symbols are interpreted as relations. A relation’s arity is
the number of "lines of identity" attached to the symbol. In our examples, we will use a script-like font to
differentiate relation symbols from proposition symbols.

In Figure 6, we see a Beta diagram that means "There exists some entity x which is an A" or as a
logical formula 3z : A(z). If the relation symbol is written on a negative surface, as in Figure 6b, the
interpretation becomes "There exists some entity x which is not an A" or as a logical formula 3z : ~A(x).
When the heavy dot is placed inside the nested surface, as in Figure 6¢, the contents of the surface and the
heavy dot will be denied. This diagram means "It is false that some entity x is an A4," which is equivalent
to "Nothing is an A," or as a logical formula Vz : = A(z). When we move the relation to a deeper nested
negative surface, as in Figure 6d, we get the interpretation "It is false that some identity x is not an A,"
or stated differently "Every entity z is an A", which can be written as the logical formula Vz : A(x).

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

14 P. Hochstenbach et al. / RDF Surfaces

De Morgan’s identity, Equation (3), can be recognized in these four examples. A heavy dot on a surface
with parity 0 (e.g., the default positive surface) should be interpreted as an existentially quantified variable.
A heavy dot on a surface with parity 1 should be interpreted as a negated existentially quantified variable
equivalent to a universally quantified variable.

=3z : P(z)) =V : =P(z) (3)

Figure 7. The interpretation of the quantified variables x and y depend on the surface nesting level. The outermost z is on
the negative surface with nesting level 1, thus, its scope is the outer surface. The y is on the negative surface with nesting
level 2, and its scope is the inner surface.

Using the Beta system, arbitrary complex statements with predicates can be composed of (indexed)
heavy dots (extended into "lines of identity") and relation symbols. Figure 7 expresses the implication "It
is false that some entity x is famous (F) and not some entity y knows (K) x". That is, "For any entity x
that is famous, there is some entity y that knows x." Or, stated as a logical formula:

=3z : F(z) A=y : K(y,x))) = Vady : F(z) = K(y, z) (4)

The scope of the heavy dot depends on the surface with the lowest surface nesting level on which the
(possibly indexed) heavy dot is written. In Figure 7, the heavy dot with index z is placed on the negative
surface with level 1 and extended to the negative surface with level 2.

For the Beta system diagram, rules can be provided that are an extension of the four Alpha system
diagram rules that were described in Section 4.4, by including rules for heavy dots. For the remainder of
this paper, we do not delve into the specifics of this extension. Instead, we refer the reader to Roberts [50]
for a thorough introduction. It is sufficient to state that a heavy dot is treated as a wildcard.

In Figure 8, we see an example of a Beta system derivation using heavy dots. Figure 8a is a copy of
Figure 7, which includes on the default positive surface the statement A...F that symbolizes: "There is
some A which is famous". In Figure 8b, we see that a heavy dot was applied as a wildcard: z...F = A..F
if x = A. This replacement = 4 must also be done for the x in the deeper nested negative surface. In
Figure 8c, we apply the deiteration rule R4 to remove the copy A...F from the nested negative surface.
From Figure 8c, we get to Figure 8d by applying the double cut rule R3.

It should be noted that the Beta system does not have a notion of logical constants. The diagram
notation A...F should be interpreted as:

Jz: A(z) A Flx) (5)

In the Beta system, relations with any arity can be introduced on the whiteboard (the A4 and F in our
examples were of arity 1 and K of arity 2). We will see in the next section on RDF Surfaces we use Peirce’s

© 00 N O O W N

B DD s DR D DWW W W W W W W W WNNNNNNNNNDDN R PR R R R R R R
0o N O b W N, O W 00N O WN R, O O 00N R WN R, O © 0N O W N =, O

49

P. Hochstenbach et al. / RDF Surfaces 15

Figure 8. Concise example of a derivation using the Beta system: (a) the original diagram, (b) z is a wildcard which matches
A on the positive surface, (c) using the deiterate rule R4 the copy A...F can be removed from the nested negative surface,
(d) using the double cut rule R3 the double nested surface can be removed.

Existential graphs as an inspiration for applying surface language in RDF context, but we will deviate
from the Beta system and allow constants, use only relations of arity 2, and reinterpret the heavy dot as
the blank nodes of RDF.

5. RDF Surfaces

In the previous section provided the foundation for expressing FOL using Peircian diagram logic. This
section applies Peirce diagrams to the Semantic Web. As an introductory step, we add RDF triples in the
form of an implication in a Peirce diagram and demonstrate that the same diagram rules of Section 4 can
be applied to derive new RDF triples. In a second step, we translate the diagrams into an RDF syntax
and semantics we named RDF Surfaces.

With existential graphs, we are not limited to including only abstract symbols in the diagrams. In
Figure 1, the A, B, and C can be replaced by any concrete object, such as ideas, drawings, and even RDF
statements and still retain the same expressive power of visualized reasoning. Using these insights, we
use the results of our previous section to apply existential graphs to RDF following the BLOGIC vision
of Hayes. This new form, called RDF Surfaces, will demonstrate how the expressivity of FOL can be
implemented with only two additions to the RDF Model: surfaces on which to draw RDF Graphs and the
explicit scoping of quantified variables using collections of blank nodes, called the graffiti, which are the
"heavy dots" of the previous section.

‘WOS [‘WOS] [:FacultyX]

:indexed :indexed :accredit

Y Y

Y
:JournalA [:JournalA] [:JournalA]

Figure 9. A diagram representations of the RDF fact (:WOS :indexed :JournalA) and the implication (:W0S :indexed
:Journald) — (:FacultyX :accredit :Journall).

To illustrate our approach, Figure 9 presents an example where the previous section’s abstract symbols
A, B, and C have been replaced with RDF statements. The default surface in our example contains the
diagram:

©W 00 N O ;s W N

BB D D D D D W W W W W W W W W W NN NN NNRNNNRD B R R s e s s
N o b O N R O © N DN RO ©®© 0N A ®N PO © N0 A W N B O

48

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

16 P. Hochstenbach et al. / RDF Surfaces

:indexed
o) %

This diagram stands for the RDF triple (:WOS :indexed :Journall), i.e. "WOS added JournalA to
its index". It also contains an implication with the meaning "If WOS indexed JournalA, then FacultyX
accredited JournalA". As such, Figure 9 expressed in symbolic form represents:

(:WOS :indexed :Journald) A

(6)

((:W0S :indexed :JournalA) — (:FacultyX :accredit :Journalh))

Using the diagram rules from Section 4.4 we can deduce (:FacultyX :accredit :Journald) in two
steps:

:indexed
— R4 : deiterate — from the nested negative surface with nesting level 1.

— R3: remove the double cut that was created by the first step.
To make RDF Surfaces more concrete, we define the concept of a Hayes triple and a Hayes graph.
Definition 5.1. A Hayes triple consists of three components (Gr S H) where:

— Gr is a (possibly empty) set of blank nodes, called graffiti.
— S is a surface type.
— H is a (possibly empty) set of RDF triples and Hayes triples, called the Hayes graph.

Following Viswanathan [64], we can define a scope, plus bound and free occurrences of graffiti nodes, as
follows:

Definition 5.2. For the Hayes triple (Gr S H), H is said to be the scope of the graffiti nodes in Gr.

Definition 5.3. Every occurrence of a graffiti node g in Gr as a blank node in any (nested) RDF triple of
H is called a bound occurrence of g in H. The blank node in that RDF triple is a coreference to g. Any
occurrence of a graffiti g that is not bound is called a free occurrence of ¢ in H.

We say that the graffiti nodes of Gr are on the surface defined by the Hayes graph H. The recursive
definition of a Hayes graph reflects the fact that, following Section 4, we deal with nested surfaces. The
surface type translates to different surface interpretations we saw in Section 4, i.e. positive and negative. In
general, more surface types can be imagined. Hayes BLOGIC presentation, for example, mentioned neutral
and deprecated surface types as possible extensions. Neutral surfaces would not be asserted or negated
and could be used for packaging RDF triples without giving them a truth value. Deprecated surfaces could
be used to provide a time constraint on the truth value of a surface.

Graffiti, in the form of blank nodes, are a direct translation of the heavy dots of the previous section.
Blank nodes that appear in the RDF triples of H act as coreferences to the graffiti nodes Gr with the
same label on an ancestor surface. These graffiti nodes are scoped in H in such a way that if a deeper
nested Hayes graph exists that contains graffiti nodes using the same label as a parent Hayes graph, this
deeper nested Hayes graph creates a new logical scope for the graffiti node with that label. If a blank node
in a RDF triple does not have such a coreference to a graffiti node, it is said to be free.

Figure 10 provides an example. A graffiti node with label _:B is written on the negative surface with
parity 1. There are also blank nodes written on the same surface, and on a deeper nested negative surface
with parity 0 with the same label _:B. All these blank nodes, labeled _:B, are coreferences to the graffiti
node with label _:B.

Given the concept of a Hayes graph we can define an RDF Surface.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 17
Definition 5.4. An RDF Surface is a Hayes triple with a positive surface type, and every Hayes triple
nested within the RDF Surface has a negative surface type (regardless of the depth of their nesting).

This definition reflects the role of the default surface as a positive surface, i.e. its content has the value
"true'. All the nested surfaces are negative, i.e. its content has the value "false".

|
‘WOS m _A I - -<‘ _C

sindexed : :indexed :accredit

A4 : Y v

: A,
JournalA [«l _B _B

Figure 10. A diagram representation of the fact :WOS :indexed :JournalA and an implication which means "Every A that
indexed B, has some C that accredits B".

Each blank node that occurs somewhere in an RDF Surfaces graph, i.e. either in the Hayes graph of the
positive surface or in that of a nested Hayes graph, but not in any of the sets of graffiti of its parent Hayes
graphs, is considered free. We subsequently ’existentially close’ the RDF Surfaces graph by adding graffiti
nodes on the top level, the default positive surface, for every freely occurring blank node. In the case of
identically named blank nodes, there is only one single graffiti to which all occurrences are referenced. This
coincides with the approach taken in plain RDF, i.e. any blank node in RDF is implicitly assumed to be
existentially quantified. Within RDF Surfaces, we aim to support any existing RDF document. To achieve
this, we create an implicit existential closure by capturing these seemingly ’free’ blank nodes within RDF
in the set of graffiti of the top-level, positive Hayes graph, 'pinning down’ their existential nature.

An example of a full RDF Surfaces graph using explicit quantification can be seen in Figure 10. The
default surface contains the assertion: (:WOS :indexed :JournalA). The right part of the figure contains
an implication similar to the one in Figure 9, but now using the graffiti blank nodes (in black) to denote
quantifications that are used in RDF Surfaces. The graffiti nodes _:A and _:B are attached to the negative
surface with nesting level 1, parity 1. This position of the graffiti nodes _:A and _:B on a negative surface
with parity 1 provides an interpretation of these nodes as existential quantified variables that can be
transformed into universal quantified variables. However, the graffiti node _:C is attached to a negative
surface with nesting level 2, parity 0. The position of the graffiti node _:C on this negative surface with
parity O interprets the node as an ezistential quantified variable. All other blank nodes (in white) on
the negative surface and its deeper levels are coreferences to the graffiti nodes with the same label. The
meaning of implication in Figure 10 is "Every A that indexed B, has some C that accredits B". The full
diagram can be symbolized using Equation (7), as follows:

(:WOS :indexed :JournalA) A

(7)

(Va,b: Jc: {a :indexed b) — (c :accredit b))

Applying the diagram rules of Section 4.4 in combination with the extension for quantification in Sec-
tion 4.5, the following deduction is possible:

:indexed

- — can be deiterated using rule R4 when _:A is equal to :W0S, and _:B is equal to
:JournalA.
— This leaves us with a double cut that can be removed using rule R3.

©W 00 N O ;s W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

18 P. Hochstenbach et al. / RDF Surfaces

— The result is a graffiti node labeled _:C on the default positive surface and the new fact:

raccredit
g .

When multiple facts are available, the diagram rules from Section 4.4 can be repeatedly applied to make
derivations, which always result in the same graffiti nodes labeled _:C. Using the iteration rule R4 we can
add many copies of the implication of Figure 10.

5.1. Notation8 serialization

Hayes introduced an annotated Turtle syntax, using comments, in his BLOGIC presentation to express
Peirce’s diagrams. With RDF Surfaces we opted to use a subset of the Notation3 (N3) [67] syntax to
provide a more structured serialization format in RDF itself. N3 already has parsers, such as EYE [14]
and n3 [62], that provide syntactical support for graph terms and RDF lists as first-class citizens of the
language, which provide a possibility for a direct translation of RDF Surfaces diagrams into N3. Graph
terms can be used to describe a RDF /Hayes graph H on a surface and lists for the set Gr of graffiti on a
surface.

It is important to differentiate between the requirements for the RDF model (and its semantics) to
describe RDF Surfaces and the serialization format to transport that model.

Our first choice for using N3 as a serialization format is pragmatic, based on de facto approaches to make
statements about sets of RDF triples. Alternatively, we could have considered named graphs. However, if
the surfaces have IRIs, this approach risks self-referential surfaces and paradoxes. If the surfaces use blank
node identifiers, it also leads to issues with the quantification of surfaces. We aimed to stay close to the
Semantic Web ideal that everything can be expressed as triples.

Our requirements for the RDF model focus on identifying the minimal additions needed to achieve
the expressivity of FOL with explicit quantification. RDF Surfaces requires two additions: a concept of a
surface containing a (possible empty) set of triples, and a concept of a collection of graffiti blank nodes
that act as existentially quantified variables. RDF Surfaces relies on the simplest version of entailment:
only Simple Entailment is required* and other entailments such as RDFS follow by applying RDF Surfaces
formulas. That is, from:

(:CelestialObject rdfs:subClassOf :Cheese) A (:Moon a :CelestialObject)

one may conclude

(:Moon a :CelestialObject)

but not

(:Moon a :Cheese),

as this relies on RDFS entailment. In RDF Surfaces, we build RDF entailment from the ground up,
creating a foundational layer to make entailments explicit, based on FOL. To entail the RDFS version, an
extra formula can be introduced that explains what rdfs:subClass0f means, such as the RDF Surfaces
version of the symbolic form:

4https://www.w3.org/TR/rdf11-mt/#simpleentailment

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://www.w3.org/TR/rdf11-mt/#simpleentailment

© 00 N O O W N

e e =
w N~ O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

P. Hochstenbach et al. / RDF Surfaces 19

Vz,y,z: ((x rdfs:subClass0f y)A(z a x)) = (z a y).

To allow for a serialization of surfaces and graffiti we use only a subset of the N3 syntaz (not its
semantics):

The Turtle textual syntax for RDF: meaning that any valid RDF 1.1 Turtle [6] graph is a valid RDF
Surfaces graph.

N3 list terms as a set of graffiti (blank) nodes.

N3 graph terms as a conjunction of quoted statements.

A new IRI log:onNegativeSurface which indicates the type of surface (currenly only the negative
surface type is used).

A (default) positive surface is implicit assumed on the boundary of every RDF document. That is,
every RDF triple in existing RDF documents is assumed to be "on" a (default) positive surface. Every
'free’ blank node in an RDF graph is assumed to be implicit existential closed in the set of graffiti nodes
of the (default) positive surface. These graffiti nodes cannot be shared between RDF documents. When
combining two or more RDF documents, a new set of graffiti nodes must be created ("engraved" in Hayes
terminology) in the resulting RDF document.

A Hayes triple is expressed in "RDF Surfaces in N3" (N3S) as a Turtle/RDF triple with on the subject
position an N3 collection to represent the graffiti nodes that are "on" a surface. In the predicate position,
we write the surface type: in our case log:onNegativeSurface. In the object position, an N3 graph term
represents the Hayes graph. The usage of N3 graph terms is restricted so that they only occur in the object
position of a triple having a surface type as a predicate. N3 collections (lists terms) are first-class citizens
in N3 (and N3S). We require this feature in the N3 serialization of RDF Surfaces because "classical' RDF
lists introduced blank nodes. This is problematic, as we need to exactly know where blank nodes are
quantified.

Listing 1 provides an example of such a N3S serialization of the RDF Surfaces diagram of Figure 10.
The triple on line 4 is "on" the (default) positive surface. Line 6 defines a negative surface with the graffiti
nodes _:A and _:B, interpreted to be on the negative surface. The blank nodes _:A and _:B on lines 8
and 11 act as coreferences to the graffiti nodes declared by the outer negative surface. Line 10 defines a
nested negative surface with one graffiti node, _:C. The blank node _:C on line 11 is a coreference to the
graffiti node declared on line 10.

1 @prefix log: <http://www.w3.org/2000/10/swap/log#> .
2 G@prefix : <https://example.org/ns#> .
3

4 :WOS :indexed :Journall .

5

6 (_:A _:B) log:onNegativeSurface {
7

8 _:A :indexed _:B .

9

10 (_:C) log:onNegativeSurface {
11 _:C :accredit _:B .

12 .

13 .

Listing 1: The N3S serialization of the RDF Surfaces diagram depicted in Figure 10.

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

20 P. Hochstenbach et al. / RDF Surfaces

5.2. Blank nodes and explicit scoping of logical variables

Using the concept of scope, as defined by Definition 5.2, a careful relabeling of graffiti nodes in Listing 1
without changing the meaning of the RDF Surfaces graph is possible.

1 G@prefix log: <http://www.w3.org/2000/10/swap/log#> .
2 O@prefix : <https://example.org/ns#> .

3

4 :WOS :indexed :Journall .

5

6 (_:A _:B) log:onNegativeSurface {
7

8 _:A :indexed _:B .

9

10 (_:A) log:onNegativeSurface {
11 _:A :accredit _:B .

12 .

13 .

Listing 2: A relabeled version of Listing 1 with the same meaning, using the scoping of graffiti nodes.

In Listing 2, a graffiti node with label _ :A appears on lines 6 and 10, with corresponding blank nodes
on lines 8 and 11. The question remains: which graffiti nodes on lines 6 and 10 should bind? RDF Surfaces
uses the following binding convention:

Convention. Blank nodes bind to graffiti nodes with the same label on the closest parent surface.

In our example, this would imply that the blank node with label _:A on line 8 is bound to the graffiti
node with the same label declared on line 6, and the blank node with label _:A on line 11 is bound to
the graffiti node with the same label declared on line 10. This convention makes the meaning of Listing 2
equal to Listing 1.

The binding of blank nodes that are not mentioned in any graffiti is implicit and becomes ‘existentially
closed’ on the top-level (default) positive surface. In this sense, RDF Surfaces mimic the behavior of plain
RDF. Well-known ambiguities for quantification can be avoided [29]. For example, the design documents for
N3Logic added syntactical features, such as @forAll and @forSome for quantification, but because graphs
have no order in RDF, ambiguity exists in which N3 formulas are quantified by these quantifiers [3]. In
RDF Surfaces, quantification is unambiguous using mandatory graffiti nodes with scope.

5.3. Explicit negation

Within the boundaries of RDF Surfaces, positive or negative facts can be stated without requiring access
to all possible RDF triples in a much bigger world. For instance, to express that an RDF triple in an RDF
Surfaces graph does not have a particular property, we can state (Listing 3):

1 @prefix log: <http://www.w3.org/2000/10/swap/log#> .
2 @prefix : <https://example.org/ns#> .
3

4 () log:onNegativeSurface {

5 :WO0S :indexed :JournalABC .

6 1.

Listing 3: An RDF Surfaces graph with an explicit negation with meaning "WOS did not index Journal-
ABC."

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 21

The meaning of Listing 3 is: “It is not the case that :WOS :indexed :JournalABC”. If this RDF Surfaces
graph would contain any triples stating that :WOS :indexed :JournalABC, or if this could be inferred
by deduction, it would be in conflict with the stated negation and thus create a contradiction. These
contradictions are explicitly available by the semantics of RDF Surfaces and are not hidden as in the
current RDF model.

Adding explicit negation as data or as a consequence of an implication makes it possible to state which
statements are "false". This explicit negation is not equivalent to NAF. One could be tempted to create a
negation to simulate NAF as in Listing 4. However, Listing 4 does not entail : Surface :is :Journalless.
The RDF Surfaces graph, as shown in Figure 11, does not contain the explicit (negative) fact that some
entity is not a journal. The deiteration rule R4 cannot be applied.

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix : <https://example.org/ns#> .

1
2
3
4 :BookABC a :Book .
5 :BookDEF a :Book .
6
7
8

(_:A) log:onNegativeSurface {

9 () log:onNegativeSurface {
10 _:A a :Journal

11 }

12

13 () log:onNegativeSurface {
14 :Surface :is :Journalless
15 }

16 r .

Listing 4: A negative surface cannot be used as a negation as failure. The triple (:Surface :is
:JournalLess) is not a logical consequence of this RDF Surfaces graph.

Coomee | (oo || [] []
Eesiiesies

Figure 11. A diagram representations of Listing 4. There is no negative fact on the default positive surface to deiterate the
negation of (_:A a :Journal). It is not possible to conclude (:Surface :is :Journalless).

Explicit negation is also distinct from SNAF, which is available in Notation3 by the log:notIncludes
builtin predicate®. Both NAF and SNAF styles of negation make statements about information that cannot

Shttps://w3c.github.io/N3 /reports/20230703 /builtins.html#log:notIncludes

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

https://w3c.github.io/N3/reports/20230703/builtins.html#log:notIncludes

© 00 N O s W N

SR D DWW W W W W W W W WNNNNNNNNNDN R PR R R R R R R
W N P, O © 0 N O O W NP O O 0N OO WN R, O W 0N s W N =, O

44

22 P. Hochstenbach et al. / RDF Surfaces
be derived from a knowledge base. NAF requires assumptions about the rest of the world, thus implying
complete knowledge about missing information. SNAF requires assumptions about missing triples within
the boundaries of an RDF document. In contrast, explicit negation does not require any assumptions
about missing information. Instead, RDF Surfaces can explicitly state negative information or derive
explicit negative information.
5.4. Disjunctions in the data, antecedent and consequent of an implication

Following the hints in Section 4.4, a disjunction can be constructed using a combination of negations
with conjunctions given that AV B = =(=AA-B). Listing 5 provides a fictional example of such disjunction
by adding nested negative surfaces in a negative surface. Expressed in a symbolic form this becomes:

Vady : (x a :JournalArticle) V ({(x a :Preprint) A (y :reviewed x))

which is equivalent to:

= (3z:—~(x a :JournalArticle) A= (Jy: (x a :Preprint) A (y :reviewed x))).

1 G@prefix log: <http://www.w3.org/2000/10/swap/log#> .
2 G@prefix : <https://example.org/ns#> .
3

4 (_:X) log:onNegativeSurface {

)

6 () log:onNegativeSurface {

7 _:X a :JournalArticle .

8 .

9

10 (_:Y) log:onNegativeSurface {
11 _:X a :Preprint .

12 _:Y :reviewed _:X.

13 .

14 3 .

Listing 5: Adding nested negative surfaces in a negative surface creates a disjunction. The RDF Surfaces
graph means, "Any article is a journal article or a preprint, and some S reviewed it, or both."

Listing 5 can be read in many ways, all equally valid, and all share the same meaning;:

— Everything is a journal article or a preprint that was also reviewed by someone or both.
— If there is something that is not a journal article, it is a preprint, and someone reviewed it.
— If there is something that is not a preprint that someone reviewed, then it is a journal article.

This is because =X — Y = =Y — X = X VY. RDF Surfaces makes the equivalence of all these readings
explicit.

To illustrate the effect of disjunction in reasoning, a negation can be added on the default positive
surface, which, for instance, expresses that (:MyArticle a :JournalArticle) is "false":

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix : <https://example.org/ns#> .

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 23

() log:onNegativeSurface {
:MyArticle a :JournalArticle .
.
Applying the diagram rules of Section 4.4 the following deduction is possible:

— () log:onNegativeSurface { _:X a :JournalArticle } can be deiterated from Listing 5 using
rule R4 when _:X is equal to :MyArticle.
— This leaves us with a double cut that can be removed using rule R3.

As result, the deductive closure of Listing 5 contains the RDF triples:
@prefix : <https://example.org/ns#> .

:MyArticle a :Preprint .
_:Y :reviewed :MyArticle .

The diagram form of Listing 5 and the diagrammatic derivation is available in Figure 12.
Disjunctions are not only available in the data but can also be added to the antecedent and consequent

of an implication. That is, both forms are possible:

Vo : ({(x a :Journal) V (x a :Book)) — (x a :Publication)

and

Va:(x a :Publication) — ({(x a :Journal)V (x a :Book)).

Disjunctions in the consequent is a feature in RDF Surfaces unavailable in N3Logic. The latter implica-

tion could be written in RDF Surfaces using Listing 6.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

Oprefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix : <https://example.org/ns#> .

(_:X) log:onNegativeSurface {
_:X a :Publication .

() log:onNegativeSurface {
() log:onNegativeSurface {

() log:onNegativeSurface {
_:X a :Jourmal .

T

() log:onNegativeSurface {
_:X a :Book .
T

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

P. Hochstenbach et al. / RDF Surfaces

:MyArticle

:JournalArticle

I

Y Y

[:JournalArticle] [:Preprint

:MyArticle

:JournalArticle

It

[:MyArticle] [:MyArticle

a a

A 4 Y

:reviewed
\ 4

[:JournalArticle] [:Preprint

| [e |

:MyArticle

:JournalArticle

It

:MyArticle

:JournalArticle

il

[:MyArticle][_Y }
a Y
reviewed
v \ 4
[:Preprint][:MyArticle]
[:MyArticle][Y }---,
a Y
:reviewed
) 4) 4
[:Preprint][:MyArticle]

Figure 12. (a) Listing 5 with the added —(:MyArticle a :JournalArticle) on the default (positive) surface; (b) deiteration
of graffiti nodes by setting _:X equal to :MyArticle; (c) deiteration using rule R4; (d) removing the double cut using rule R3.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 25

20 .
Listing 6: An RDF Surfaces graph with a disjunction in the conclusion with meaning: "Anything that is a
publication is a journal or a book, or both."

Thus, complex implications can be composed using a copy-and-paste approach with simpler constructs.
The pattern of nested negative surfaces on lines 4-8 starts an implication, and the pattern of negative
surfaces on lines 9-18 is that of a disjunction.

6. RDF Surfaces reasoner implementation

While Peirce’s diagram rules provide one approach to the logic inferencing of RDF Surfaces, it is not
the sole method available. We use Peirce’s diagram rules in this paper to convince the reader of the
application of FOL using RDF Surfaces. Using four relatively simple rules, authors of RDF Surfaces can
make simple derivations and check the consequences of surface logic by hand. However, this does not
imply that automated systems must use this derivation method. The world of automatic theorem proving
is extensive, featuring many FOL provers and an active community including a "World Championship for
Automated Theorem Proving" (CADE).6

We are currently experimenting with four implementations specially targeted to RDF Surfaces. Only
one implementation uses a direct translation of Peirce diagram rules in its codebase:

— EYE [14] is implemented in SWI-Prolog” and is based on forward and backward chaining. The reso-
lution algorithm rewrites RDF Surfaces into a conjunction of disjunctive normal forms (DNF). The
codebase was originally written to support the syntax and semantics of Notation3 but also implements
RDF Surfaces semantics.

— Retina [15] is also implemented in Prolog and can be run in Trealla® and Scryer?. The codebase is a
rewrite of EYE targeted to processing RDF Surfaces.

— Latar [28] uses a calculus that is directory inspired by Beta graph reasoning implemented in SWI-
Prolog.

— Tension.js [61] is implemented in Typescript and uses a similar resolution algorithm as EYE.

Of all these implementations, EYE is the most mature and was used extensively in our experiments
to apply RDF Surfaces to real-world use cases. EYE provides a command line and a browser version. At
https://w3c-cg.github.io/rdfsurfaces/demonstrator/, an experimental RDF Surfaces implementation using
EYE is available. The following RDF Surfaces features are already available in EYE:

Full support of the RDF Surfaces syntax as presented in this paper.

— Explicit scoping of logical variables.

— Existential closure of free variables on the default (positive) surface.

Explicit negation of triples and conjunctions of triples using the log:onNegativeSurface predicate.
Disjunctions in the data, antecedent and consequent of an implementation.

In the current version, EYE v10.10.0, there are some known limitations. Due to the extensive support
for forward and backward chaining, our focus was mainly on use cases with an implication structure.
Additionally, every implementation is expected to have computational limits due to the undecidable nature
of the underlying logic. It is possible to create formulas that never halt. Creating formulas that will result
in an incomplete answer is possible.

Shttps://tptp.org/CASC/

Thttps:/ /www.swi-prolog.org
8https://github.com/trealla-prolog/trealla
9https://www.scryer.pl

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

https://w3c-cg.github.io/rdfsurfaces/demonstrator/
https://tptp.org/CASC/
https://www.swi-prolog.org
https://www.scryer.pl

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

26 P. Hochstenbach et al. / RDF Surfaces

EYE, building on its foundations in Notation3 reasoning, also offers several extensions that are not part
of the core RDF Surfaces, including functional predicates for list, string, and mathematical calculations.

In EYE and all other RDF Surfaces implementations, there is no distinction between assertion and theory
boxes, which are typically required in many knowledge processing systems. RDF Surfaces transport data
and logic using a common embedded RDF syntax; all assertions and theory statements can be combined
in one document.

Two methods are available for querying data in an RDF Surfaces graph in all implementations.

Proof by contradiction checks if a graph G is available in the knowledge base by adding the negated -G
to the knowledge base and tests if this leads to a contradiction.

Proof by negation checks if a graph =G is available in the knowledge base by adding negated - -G = G
to the knowledge base and tests if this leads to a contradiction.

A contradiction in EYE is implemented by an "inference fuse." The EYE reasoner will stop running
when such an "inference fuse" is detected and will display the context in which it happened.

Both proof methods are based on classical logic but are quite limited. They only provide yes/no answers:
is a graph part of a knowledge base (and its derivations) or not? To answer a more generic query, "show me
all triples and derived triples that match a triple/graph pattern," an experimental new surface was added
to EYE: the query surface log:onQuerySurface. To each RDF Surfaces document, one or more query
surfaces can be appended to inspect which bindings for graffiti nodes are available. Listing 7 provides an
example of a query surface that asks which patterns can be found in a knowledge base for accreditations.

1 (_:S _:0) log:onQuerySurface {
2 _:8 :accredit _:0 .
3 1.

Listing 7: An example query surface to retrieve all triples and derived triples that match a triple pattern.

Applied to Listing 1 this query surface should result in the following triples on the standard output:
_:el :accredit :JournallA .

Proof by contradiction and proof by negation are common derivation techniques. However, contradictions
can appear in RDF Surfaces without adding a negated query. The Web can and will be contradictory. Web
agents require an approach to address this challenge. Due to the principle of explosion, anything can be
proven from a contradiction. If a knowledge base leads to a contradiction, something must be wrong for bad
and good reasons. A bad reason includes, for instance, errors in a knowledge base that require correction
or data from unreliable sources that should be disregarded. A good reason could include genuine conflicts
in human knowledge!'?, which indicate starting points for research and academic discourse. In both cases,
human intervention or heuristics based on some oracle could decide which data to include in a derivation
and how to resolve conflicts. In our opinion, these explicit contradictions are safer on an open Web —
in some way even desired — rather than implicit assumptions about negative information with possible
contradictions that cannot be discovered.

7. Examples

With the help of the results of Section 5 and Section 4, we are now ready to apply them to the use cases
presented in Section 2.

10These days, we could add machine-generated knowledge when addressing this issue.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 27

7.1. Scholarly communication

For the scholarly communication use case, we envision a scholarly network of researchers who share their
preferences when searching for publication venues. These preferences are preference documents that are
serialized as N3S. These policies can contain information on what preference is regarded as positive, what
certainly is not the case or preferences that are only "true" under some conditions. The latter takes the
form of an implication. Section 2.1 provides an example of such a researcher preference:

— Researcher X preferences: Researcher X prefers preprints in a subject repository, a journal that does
not charge APC costs, or a journal indexed in WOS.

One way to express this preference in FOL is by using disjunctions in the antecedent of an implication,
as demonstrated in Equation (8).

Vx :((x a :SubjectRepository) V
((x a :Journal) A =(x :charges :APC)) V
((x a :Journal) A (:WOS :indexed x)))

— (x a :ResearcherPreference).

For the preference Equation (8), the universal quantified variable = stands for a publication venue. When
the conditions hold for x, it is a preference for a particular researcher.
An alternative way to formulate this preference with the same meaning can be seen in Equation (9).

(Vx : (x a :SubjectRepository) —(x a :ResearcherPreference)) A
(Vx : ({(x a :Journal) A —(x :charges :APC)) —(x a :ResearcherPreference)) A (9)

(Vx :({(x a :Journal) A (:WOS :indexed x)) —(x a :ResearcherPreference)).

We made here use of the fact that (A — C)A (B — C) = (AV B) — C which can be easily derived using
Peirce’s Alpha system!!. This alternative formulation has the advantage that formula Equation (9) as an
RDF Surfaces serialization does not require the double nesting of all disjunction elements. New preference
options can be added to the RDF Surfaces preferences document by appending a new implication pattern
rather than inserting a new RDF Surfaces statement into an existing disjunction. The translation of the
preferences of researcher X, as stated in Equation (9), into RDF Surfaces is provided in Listing 8.

@prefix : <https://example.org/ns#> .
@prefix log: <http://www.w3.org/2000/10/swap/log#> .

1 The derivation starts on the left with the diagram for (A — C) A (B — C). Using diagram rule R3, a double negated
surface can be drawn around this diagram. Using diagram rule R1, a new symbol can be added on the outer negative

surfaces with parity 1. With diagram rule R4 this can be deiterated from the inner nested surfaces with nesting level 3.
The result is the diagram for (AV B) — C.

alc]|[elc]| rg|(alc]][elc]| rejlalc]][B[cT|| R4 |(a B |

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

28

P. Hochstenbach et al. / RDF Surfaces

Pref 1 . Publications in a subject repo
(_:X) log:onNegativeSurface {
_:X a :SubjectRepository .

() log:onNegativeSurface {
_:X a :ResearcherPreference.
}
.

Pref 2 . Publications by a journal that doesn’t charge APC costs
(_:X) log:onNegativeSurface {
_:X a :Jourmal .

() log:onNegativeSurface {
_:X :charges :APC .
}

() log:onNegativeSurface {
_:X a :ResearcherPreference.

}

Pref 3 . Publications by a publisher that is in WOS
(_:X) log:onNegativeSurface {

_:X a :Journal

:WOS :indexed _:X .

() log:onNegativeSurface {
_:X a :ResearcherPreference.

T

Listing 8: The translation of the symbolic Equation (9) into RDF Surfaces N3S.

The same procedure can be done for the departmental Y preferences that were stated as follows:

— Department Y preferences: All publications must be journals that are indexed in WOS.

A direct translation into FOL follows in Equation (10).

Vx: ((x a :Journal) A (:WOS :indexed x)) — (x a :DepartmentPreference))
The RDF Surfaces version of Equation (10) is available Listing 9.

@prefix : <https://example.org/ns#> .
Oprefix log: <http://www.w3.org/2000/10/swap/log#> .

Pref 1 . Only journals that are indexed in WOS
(_:X) log:onNegativeSurface {
_:X a :Journal

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

© 00 N O O W N

N T o s
0o N o oo W N =B O

19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

P. Hochstenbach et al. / RDF Surfaces 29
:WOS :indexed _:X .

() log:onNegativeSurface {
_:X a :DepartmentPreference .

T

Listing 9: The translation of the symbolic Equation (10) into RDF Surfaces N3S.

The policies for publishing venues can be spread around the Web. Sources that describe journal informa-
tion can include information such as the journal homepage, the publisher’s website, the library database,
and indexing services, such as Web of Science, to name a few. The nature of this information is inher-
ently decentralized and, when provided as Linked Data, distributed using many ontologies. Establishing a
common method for creating negative facts becomes essential in such an environment. For instance, it is
quite common for journals to charge APC costs. That a particular journal does not charge APC costs is
a negative fact that benefits the budgets of many researchers. In Equation (11), we symbolize a summary
of publishing venue facts that state:

— ABC, DEF, and GHI are journals.

— JKL is a subject repository.

— ABC charges APC costs, but GHI does not charge these costs.

— ABC and DEF are indexed in the WOS database, but GHI is not.

:ABC a :Journal) A (:DEF a :Journal) A (:GHI a :Journal) A
:JKL a :SubjectRepository) A
:ABC :charges :APC) A =(:GHI :charges :APC) A

(
(
(
(:WOS :indexed :ABC) A (:WOS :indexed :DEF) A —(:WOS :indexed :GHI)

The translation of Equation (11) into RDF Surfaces is provided in Listing 10.

@prefix : <https://example.org/ns#> .
Oprefix log: <http://www.w3.org/2000/10/swap/log#> .

Journal facts
:ABC a :Journal .
:DEF a :Journal .
:GHI a :Journal .

APC facts
:ABC :charges :APC .

GHI is a journal that does not require APC costs
() log:onNegativeSurface {

:GHI :charges :APC .
}.

WOS Facts
:WO0S :indexed :ABC , :DEF .

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

30 P. Hochstenbach et al. / RDF Surfaces

() log:onNegativeSurface {
:WOS :indexed :GHI .
}.

JKL is a subject repository
:JKL a :SubjectRepository .
Listing 10: The translation of the symbolic Equation (11) into RDF Surfaces N3S.

In our vision, facts about publishing venues are publicly shared. This allows Web agents to harvest and
match the data against researcher and department policies. Consequently, this process can be used to
make informed publishing recommendations as a service. For instance, when a Web agent gets hold of the
policies expressed in Equation (8), Equation (9), Equation (10), and Equation (11), a logical query can
be posed that asks if journal ABC is a researcher and department preference, by adding the negation of
(:ABC a :ResearcherPreference) A (:ABC a :DepartmentPreference) to the knowledge base and test
if this leads to a contradiction.

At https://w3c-cg.github.io/rdfsurfaces/demonstrator/, an experimental RDF Surfaces implementation
using EYE is available to test the examples provided in this section. The RDF Surfaces from this section can
be consulted as one resource at https://w3c-cg.github.io/rdfsurfaces/examples/scholary publication.n3.

For illustration purposes, we assume a Web agent wants to consult these preferences and adds a negated
query at the end:

() log:onNegativeSurface {
:ABC a :DepartmentPreference .
:ABC a :ResearcherPreference .

}.

The negation:

—((:ABC a :ResearcherPreference) A (:ABC a :DepartmentPreference))

leads to a contradiction. Therefore, the Web agent can conclude that journal ABC is a researcher and
department preference.

Figure 13 illustrates this example where, after specifying the location of the RDF Surfaces knowledge
base plus the negated query, the derivation leads to an "inference fuse", indicating a contradiction.

7.2. Medicine Prescription

In the healthcare domain, we envision knowledge systems that include both positive and negative in-
formation about medications and policies on how these medications can be prescribed to patients with
pre-existing conditions. These systems would consider that for example certain medications may cause
allergic reactions when prescribed to patients. Consider a collection of medicines for a medical prescription
use case: high-dosage aspirin, low-dosage aspirin, and beta-blockers. A high dosage of aspirin is an effective
treatment for a fever. In turn, a low dosage of aspirin or a prescription of beta-blockers are both consid-
ered to be an effective treatment for acute myocardial infarction. However, both high and low dosages of
aspirin may only be prescribed when a patient is known not to be allergic to aspirin. Aspirin can also not
be prescribed when a patient has active peptic ulcer disease. Beta-blockers, on the other hand, cannot be
prescribed when a patient suffers from severe asthma.

We assume the following expert policies in terms of medicine prescription:

— A low aspirin dosage can be prescribed for a patient with a fever and with neither an allergy to aspirin
nor active peptic ulcer disease.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://w3c-cg.github.io/rdfsurfaces/demonstrator/
https://w3c-cg.github.io/rdfsurfaces/examples/scholary_publication.n3

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

P. Hochstenbach et al. / RDF Surfaces 31

Input: N3 Document

@@ via URL

Implicit query | Derivations only v

Dataset URL
https://w3c-cg.github.io/rdfsurfaces/examples/scholary_publication.n3

EXECUTE

Output

Error while executing query: sk ERROR ** eam sk inference_fuse({
:ABC a :DepartmentPreference.
:ABC a :ResearcherPreference.
() log:onNegativeSurface {
:ABC a :DepartmentPreference.
:ABC a :ResearcherPreference.
.
} => false)

Figure 13. If adding negated triples to an RDF Surfaces document results in a contradiction (expressed as an inference fuse
in EYE), the positive version of the triples can be asserted instead. In this example (:ABC a :ResearcherPreference) and
(:ABC a :DepartmentPreference) is part of the deductive closure.

— For a patient with acute myocardial infarction but without an allergy to aspirin or active peptic ulcer
disease, a high dosage of aspirin can be prescribed.

— For a patient with acute myocardial infarction but without severe asthma or chronic obstructive
pulmonary disease, beta-blockers can be prescribed.

The first policy indicates that if a given patient has a fever (A), one of the following must hold: the
patient has an aspirin allergy (B), has active peptic ulcer disease (C), or is prescribed a high dosage of
aspirin (D). This can be inferred from the logical equivalence ~(AA =B A—-C A—=D) = (AAN-BA-C) —
D = A — (BVCVD). In other words, the Peircian diagram that corresponds with these formulas
has equal readings'?. Any of these three forms could be used to translate the policy in a FOL format.
In Equation (12), we use a symbolic form that closely matches the method applied in Equation (9) for
researcher preferences.

Vx ((x :has :Fever) A
—(x :has :AllergyForAspirin) A
(12)
—(x :has :ActivePepticUlcerDisease))

— (x :isPrescribed :aspirinHighDose)

2Diagram (a) can be read in many ways: ~(A A =B A =C A =D), (AA-B A—-C) — D, (-BA-CA /D) — —A,
(AAN—=C A=D) — =B, etc. Diagram (b) can be read as A — (BV C'V D) and is diagram (a) with an added double negative
surface around the negated B, C, and D which can be removed using diagram rule R3.

A|E|EABCD

© 0 N O O W N e

g DD DD DD DR DWW W W W W W W WNN NN N NNNNN R R R R R R R R e
» O © 00 N O O b W N P O O 0 N O O P W N P O W 0N O P WN PR O © 0N O O W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

32 P. Hochstenbach et al. / RDF Surfaces

The translation for the other two pieces of expert knowledge can be constructed analogously. The RDF
Surfaces version of these policies is provided in Appendix A.

With the expert knowledge encoded in RDF Surfaces, we are able to infer the correct prescription for a
patient, given their medical condition as well as allergies (or lack thereof). We consider the following two
patients, Ann and Joe. Ann has a fever and does not have an allergy to aspirin or an active peptic ulcer
disease. Joe suffers from acute myocardial infarction and is allergic to aspirin. However, he does not have
active peptic ulcer disease, severe asthma, or chronic obstructive pulmonary disease. These facts can be
translated into symbolic form as demonstrated by Equation (13) and Equation (14) with a translation in
RDF Surfaces in Appendices B and C.

(:Ann :has :Fever) A
—(:Ann :has :AllergyForAspirin) A (13)

—(:Ann :has :ActivePepticUlcerDisease)

(:Joe :has :AcuteMyocardiallnfarction) A

(:Joe :has :AllergyForAspirin) A

—(:Joe :has :ActivePepticUlcerDisease) A (14)
—(:Joe :has :SevereAsthma) A

—(:Joe :has :ChronicObstructivePulmonaryDisease)

The RDF Surfaces from Appendices A, B, and C can be consulted as one resource at https://w3c-cg.
github.io/rdfsurfaces/examples/medication__prescription.n3. Using the experimental RDF Surfaces imple-
mentation of Section 6, this resource can be consulted to test if we can prescribe a high-dose aspirin for
patient Ann and a beta blocker for patient Joe. The procedure is similar to the one in the previous section.
We can add to the stated RDF Surfaces a negative query and check for a contradiction:

() log:onNegativeSurface {
:Ann :isPrescribed :aspirinHighDose .
:Joe :isPrescribed :betaBlocker .

}.

Figure 14 illustrates this example where, after copy and pasting the RDF Surfaces knowledge base and
adding the negative query, the derivation leads to an "inference fuse", indicating a contradiction. The
negation:

—((:Ann :isPrescribed :aspirinHighDose) A (:Joe :isPrescribed :betaBlocker))

leads to a contradiction. Therefore, we can conclude that patient Ann can be prescribed a high aspirin
dosage, and patient Joe can be prescribed a beta-blocker.

Are these the only conclusions that can be drawn from this knowledge base and patient data? To know
who can be prescribed what medication instead of a negative surface, the EYE query surface can be added
to the knowledge base:

(_:WHO _:WHAT) log:onQuerySurface {
_:WHO :isPrescribed _:WHAT .
.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://w3c-cg.github.io/rdfsurfaces/examples/medication_prescription.n3
https://w3c-cg.github.io/rdfsurfaces/examples/medication_prescription.n3

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

P. Hochstenbach et al. / RDF Surfaces 33

Input: N3 Document
Via URL

Implicit query | Derivations only M

N3 Document
() log:onNegativeSurface {

:Ann :isPrescribed :aspirinHighDose .
:Joe :isPrescribed :betaBlocker .

).

EXECUTE

Output

Error while executing query: sk ERROR **x eam x* inference_fuse({
:Ann :isPrescribed :aspirinHighDose.
:Joe :isPrescribed :betaBlocker.
() log:onNegativeSurface {
tAnn :isPrescribed :aspirinHighDose.
:Joe :isPrescribed :betaBlocker.
}.
} => false)

Figure 14. Addition of a negated conjunction to the healthcare knowledge base plus patient data leads to a contradiction.
Therefore, the positive version of the conjunction can be asserted.

When this query is run in the reasoning interface, as demonstrated in Figure 15, the output will include:
@prefix : <https://example.org/ns#>.

:Ann :isPrescribed :aspirinHighDose
:Joe :isPrescribed :betaBlocker

In this case the reasoner will find any possible binding in the deductive closure where

Vx,y: (x :isPrescribed y)

leads to a contradiction. The query surfaces only includes RDF triples (not N3S) and in case of a
contradiction it provides counter examples following this scheme.

8. Discussion and future road map

This paper discussed the need for an expressive Semantic Web Logic extending RDF. We especially
identified classical negation as crucial for many use cases, including scholarly communication and health-
care. Therefore, we proposed RDF Surfaces, provided an abstract and a concrete syntax and first reasoner
implementation, and showed how our use cases could benefit from it. The authors are currently experi-
menting with implementing RDF Surfaces in reasoners, and future experiments using existing FOL reasons
from the TPTP project are on the near horizon. In 2022, a W3C Community group was formed to define
the semantics and discuss the general requirements for implementations and Web logic.'3:14 Of course,

Bhttps://www.w3.org/community /rdfsurfaces/
Mhttps://w3c-cg.github.io/rdfsurfaces/

© 0 N O O W N e

g DD DD DD DR DWW W W W W W W WNN NN N NNNNN R R R R R R R R e
» O © 00 N O O b W N P O O 0 N O O P W N P O W 0N O P WN PR O © 0N O O W N P O

https://www.w3.org/community/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O © 00 N O O P W N P, O W 00 N OO P W N P, O W 00 N OO P W N PR O W 00 N O O W N Pr O

34 P. Hochstenbach et al. / RDF Surfaces

Input: N3 Document
Via URL

Implicit query | Derivations only ~

N3 Document

(L:WHO _:WHAT) log:onQuerySurface {
_WHO :isPrescribed _:WHAT .
}. 7

EXECUTE

Output
@prefix : <https://example.org/ns#>.

tAnn :isPrescribed :aspirinHighDose.
:Joe :isPrescribed :betaBlocker.

Figure 15. The addition of a query surface to an RDF Surfaces document can be used to bind all graffiti nodes and inspect
all triples that can be derived.

this new logic comes with many open challenges, and this vision paper is only the starting point of a longer
endeavor. Below, we list the most important challenges ahead and briefly discuss possible ways to solve
them.

8.1. Negation on the Web

With RDF Surfaces, we provided logic and syntax to express negative information on the Web using
RDF. To implement negation, we extended the RDF model with surfaces that describe a (possibly empty)
set of negated triples. These triples are quantified by adding graffiti nodes that act as existentially quan-
tified variables. Combining these features with the default conjunction of triples under simple entailment
semantics provides the full expressivity of FOL in RDF. Ambiguities in the quantification can be avoided
by providing an explicit scope for graffiti nodes placed "on" a surface. We demonstrated how to solve
real-world use cases in scholarly communication and healthcare that contain shared negative information,
disjunctions, and implications in a decentralized setting. Using RDF Surfaces, Hayes’s BLOGIC vision can
be realized in concrete implementations, such as the EYE reasoner demonstrated in this paper.

The expressivity and portability of FOL provide the advantage that we can state what we want to
say instead of only stating what machines can process. The Semantic Web is an endeavor to express the
combined human knowledge irrespective of the computability of this knowledge. Consequently, we do not
anticipate that any realistic Web reasoner will be capable of delivering a fully portable solution (P) and
accepting every conceivable FOL input, consistently providing complete (C) and exhaustive responses to
any query, and invariably terminating (H) within a finite time frame. Demanding these (P)+(C)+(H)
attributes simultaneously is infeasible due to the undecidability of FOL and forms an iron triangle: at
most, only two of these features can be selected for any implementation. If we want a portable Web logic,
feature (P) is unavoidable. Any portable Web reasoner must choose to be complete (C) or always halt (H)
in a finite time. In practice, this will lead to a necessary fragmentation and decentralization of the Web

© 00 N O O W N

g DD DD DD DR DWW W W W W W W W NN NN NNNN R R R R R R R R, e
» O © 00 N O O b W N B O O 0N O O P W N P O O 0N O P WN P O O 0N O O W N P O

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 35

where many Web agents must compete to find inconsistencies or find all derivations that can be made
from a decentralized knowledge graph.

When a derivation or inconsistency is found, verifying that the given solution can be derived from the
knowledge graph is possible. As Trakhtenbrot [58] demonstrated, this is a semi-decidable procedure!®. A
more interesting solution would be publishing proof of every derivation. Rather than publishing what is
a (derived) fact on the Web, Web agents could publish the proof of how they concluded these facts. For
instance, in a scholarly communication setting, one would like to know why a journal was selected as a
valid preference for a researcher. In a healthcare setting, one would trace why or why not a medication
was provided to a patient.

We do not anticipate that every Web author should use FOL terminology to express knowledge and
create logical formulas. We regard RDF Surfaces as a low-level language that can transport data and
logic to the Web. Higher level vocabularies are still required to create a compact serialization for human
consumption (human editors). The pragmatic choice will be to exchange knowledge using higher level
vocabularies that can be "compiled" into RDF Surfaces logic. One such example is from the Flemish
SHARCS project'® where a demonstrator was created to make ODRL policy actionable by compilation
them to RDF Surfaces.!” A similar approach using RDF Surfaces was taken by Zhuo and Zhuo (2024).

Extensions to RDF Surfaces would certainly be helpful when expressing non-monotonic negation. For
instance, in the scholarly communication use case, expressing which topics are not part of a database is
not always feasible. Notation3 provides the capabilities for scoped negation as failure that might need
to be combined with RDF Surfaces. Real-world use cases also need to provide input on which extended
predicates are required for things that are not easily expressable in FOL, such as calculations, string
manipulation, and list manipulation. This requires a delicate balance between the expressiveness of the
language for general computation use cases and the formal semantics of classic FOL.

8.2. Syntax

A first attempt at a hosting language for RDF Surfaces led us to use the Notation3 syntax in the form of
"RDF Surfaces in N3" (N3S), which only requires a reduced set of features. Notation3 was only used for its
syntactical features — graph terms for creating a scope around negated triples and list terms for declaring
graffiti nodes — but not its semantic features. Some authors of this paper are active participants in both the
Notation3 and RDF Surfaces groups, where overlap and differences between both approaches are debated.
One point of argument is the scoping of blank nodes that in Notation3 semantics is local to a graph term
but in RDF Surfaces explicit within a negative surface. Another point is Patel-Schneider’s argument that a
same-syntax extension of RDF to FOL necessarily leads to paradoxes due to self-referential statements [49].
We think we can 'wiggle out’ self-referential statements due to introducing negative surfaces with a N3 list
term in the subject position (where the graffiti nodes are declared). Using N3 list terms, negative surfaces
inside an RDF Surfaces document do not have an identifier. Surfaces can be compared and be isomorphic
but cannot be referred to. But this does not absolve us from paradoxes because these are very hard to
avoid in highly expressive languages. At least, RDF Surfaces does not rely on potential self-referential
statements.

8.3. Formal semantics
As RDF Surfaces is introduced as a logic, the obvious next step is to define it formally. We have

already provided the syntax in this paper, but the semantics are only discussed informally and must be
specified further. There are several possibilities to solve this issue. Given that Pat Hayes’ original idea

15 A semi-decidable procedure always halts and says "yes" when a statement S validly derives a knowledge base K but
might not halt if S is an invalid derivation.

I6https://www.imec-int.com/en/research-portfolio/sharcs

IThttps://github.com/eyereasoner/Notation3- By-Example/tree/main/examples/sharcs-odrl

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

https://www.imec-int.com/en/research-portfolio/sharcs
https://github.com/eyereasoner/Notation3-By-Example/tree/main/examples/sharcs-odrl

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

36 P. Hochstenbach et al. / RDF Surfaces

of a BLOGIC was inspired by existential graphs, we could base RDF Surfaces semantics on Beta graphs
and map them to this framework. This would make it easy to define a calculus for RDF Surfaces by
following existing literature, e.g., Zeman [68] and Dau [12]. A difficulty, however, is that Beta graphs do
not have native support for constants. To formalize this, one would need to address this limitation, for
example, by mimicking constants using relations in combination with existential quantification. Another
possibility would be to base RDF Surfaces semantics on FOL, which is close to the approach we followed
in this paper when we explained our examples. An advantage of this approach would be that FOL is well
understood regarding expressiveness and limitations. As RDF Surfaces extends RDF, RDF formalizations
based on Beta graphs or FOL would have the burden of proof that the semantics is in line with the one of
RDF. In the case of a FOL formalization, this could be done following the work of De Bruijn et al. [13].
This last aspect — the fact that RDF Surfaces aim to extend RDF — makes a formalization extending
RDF semantics [27] an interesting choice. It would make sense only to consider simple entailment and
D-entailment as the semantics or RDFS could be modeled through RDF Surfaces axioms. Of course, these
axioms would need to be carefully designed, and the equivalence would need to be proven.

8.4. Implementations

To be of use for the Web, RDF Surfaces should not only be a theoretical framework, but should be
applicable in practice. We need implementations that can check and exchange each other’s findings to
achieve this. We thus need to agree on the explicit syntax, and the N3S-based framework we introduced
in this paper could be a starting point for that. Reasoners should use this as input and apply a calculus
that is proven correct and — if possible — also complete according to the semantics. Currently, there are
four experimental implementations based on our N3S-based syntax: Latar [28], whose calculus is directly
inspired by Beta graph reasoning, EYE [14], which is originally a Notation3 reasoner but lately also
provides support for RDF Surfaces, retina [15] based on a rewrite of EYE for RDF Surfaces in Trealla
and Scryer Prolog, and Tension.js [61] a Typescript implementation. The calculus applied is close to
FOL reasoning. To ensure interoperability between these reasoners and encourage more implementors to
support RDF Surfaces, we need shared test cases that express the expected behavior of reasoning systems.
A first repository providing such test cases is already available!'®. Still, the test infrastructure needs to
become more fine-grained to check for different types of problems like simple parsing errors or the correct
application of single inference steps. Use cases like the ones we presented above will help generate more
test cases and better understand the specific needs the reasoning should satisfy. They could help to decide
on optimizations for data storage and inferencing.

8.5. Relation to other Web logics and standards

Alongside the formalization of the logic, its relationship to existing frameworks should be investigated.
Since RDF Surfaces supports classical negation, existential quantification, and conjunction, it is likely that
it can express FOL, though this claim must be proven. It is particularly interesting to explore how we can
express OWL DL and its profiles [45] in RDF Surfaces, but other common Web frameworks should also
be considered.

The relationship to RDF Surfaces is clear for RDF and simple entailment, as the latter is defined as
an extension of the former. However, the relationship is less clear for RDFS or rule formats like Nota-
tion3 Logic [67] or SWRL [30]. And it becomes even more difficult regarding WC3 recommendations like
SHACL [36] or SPARQL [21], which both support non-monotonic features. In its current form, as pre-
sented in this paper, RDF Surfaces cannot cope with non-monotonicity. Still, other aspects, like querying
with recursive property paths, can be covered in RDF Surfaces.

I8https://github.com/eyereasoner/rdfsurfaces-tests

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

https://github.com/eyereasoner/rdfsurfaces-tests

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces 37
8.6. Ezxtensions

The last aspect mentioned, the current inability to support non-monotonic behavior, illustrates another
direction for future research: it could be possible and maybe even necessary to support concepts, such
as negation as failure or closed predicates [46], to be suitable to fully support use cases like the ones
introduced in this paper. Notation3 and SPARQL come with built-in or filter predicates, which makes
it easy to, e.g. perform operations on strings or sum up two integers. As RDF Surfaces is introduced as
a logic facilitating practical use cases, it would be beneficial to include such predicates. As a third, but
— given the variety of use cases in the Web — certainly not least extension, we believe that support for
unasserted triples like it is proposed in RDF-star [23] and unasserted graphs as they exist in N3 would be
beneficial for many use cases, like for example the exchange of provenance knowledge and the reasoning
about it. To also support the latter, this support for unasserted knowledge should come with a mechanism
that could assert it in the case of provenance, for example, if we decide to trust a source.

Of course, this section only provides a few examples of future development, and we hope our readers
already have their own visions here. In that sense, we are very curious to see what the future brings, and
we plan to work on these and other research to further RDF actively.

9. Conclusion

RDF Surfaces is a concrete implementation of Pat Hayes’ BLOGIC vision of portable Web logic based
on FOL. In this vision paper, we demonstrated how BLOGIC has its foundations in Peirce’s existential
graphs and provided a gentle introduction to the calculus of diagrammatic logic. Our contribution provides
the translation of BLOGIC into a concrete RDF syntax, a semantic with FOL expressivity and multiple
implementations. RDF Surfaces, with its N3S syntax, deviates from Hayes’ original "annotated Turtle" and
is a sub-language of Notation3 with a reduced set of features: N3 list terms to represent a set of graffiti
blank nodes and graph terms to represent a (possibly empty) set of triples. Using these extensions to RDF
and adding a surface type as a predicate, the full expressivity of FOL is available using simple entailment.
The applicability of RDF Surfaces was demonstrated in two use cases, one from scholarly communication
and one from healthcare.

The benefits of RDF Surfaces as Web logic becomes evident in decentralized networks that need to
exchange data and the logic behind the data. In our scholarly communication use-case, no facts were
published by the researcher and institute, but conditions on future facts in the form of preferences. In
the healthcare use case, the conditions on which medication would be applicable for (future) a patient
were exchanged. In a decentralized network, Web agents should agree on a Web logic to analyze these
preferences and conditions for possible triples that can become facts.

Another use case that could benefit from RDF Surfaces is rights policies that need to exchange infor-
mation about the permissions and prohibitions to access and use information. With RDF Surfaces, policy
documents could not only make this information machine actionable but, in addition, in a decentralized
setting, contradictions can be discovered between policies at the authoring time (and not at run time).
The computer can say "no" to a policy author who does not have to wait for "the customer at the door"
to find out something is wrong.

Publishing negative information is part of human activity; it is a part of commercial activity. The soft
drink industry’s "This drink contains no sugar' marketing statement is an explicit negative fact. For a
consumer, this explicit negative information could be the reason to buy this drink. One option could be
to add many negative predicates or classes to Web ontologies to publish this negative information. We
believe this would obfuscate that classical negation is intended but not expressed and only adds to Hayes’
"diamond of confusion."

Computation complexity is an issue, and as Web logic can be used for different purposes, many levels
of complexity can be imagined. Adding the undecidability of FOL queries can potentially require vast
computer resources or even run forever without providing an answer. Using Sowa argumentation [55], we

©W 00 N O ;s W N

Gl s s A S D D D N s WO W W W W W W WWNNNDNNNNRNDND B R e R Rl s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

38 P. Hochstenbach et al. / RDF Surfaces

do not assume that worst-case scenarios will be the norm on the Web. The theorems of Whitehead and
Russell’s Principia Mathematica could already be proven in the 1960s by vacuum-tube machines. The
Web runs today with a potential halting problem waiting in every HTML + JavaScript page. Database
queries use the SQL language, which has FOL expressivity and can be solved in polynomial time. We
advocate with RDF Surfaces to choose for sharing information and the logic behind this information using
an RDF syntax, which makes as few assumptions as possible to create FOL expressivity. With FOL, we
have semantics that is well understood.

Our research is still young and requires follow-up research to strengthen our claims. Formal semantics
needs to be written. Implementations must demonstrate that values can be added to the Semantic Web
using FOL expressivity for real-world use cases. Machines must cooperate and demonstrate, using proofs,
why particular derivations were made and their reasoning for providing a conclusion. As Web citizens, we
can clearly state what is and what is not using RDF Surfaces.

10. Acknowledgements

This work is partly funded by the Andrew W. Mellon Foundation (grant number: 1903-06675), SolidLab
Vlaanderen (Flemish Government, EWI and RRF project VV023/10), and the FWO Project FRACTION
(Nr. G086822N). The authors would like to thank the W3C RDF Surfaces community group for joint
discussions on the requirements for Web logic. The authors would also like to thank Jesse Wright and
Ieben Smesseart for creating a Web version of the EYE reasoner and RDF Surfaces as a Web application.

References

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of databases, Vol. 8, Addison-Wesley Reading, 1995.

[2] R. Angles and C. Gutierrez, Negation in SPARQL, arXiv preprint arXiv:1603.06053 (2016).

[3] D. Arndt, T. Schrijvers, J. De Roo and R. Verborgh, Implicit quantification made explicit: How to inter-
pret blank nodes and universal variables in Notation3 Logic, Journal of Web Semantics 58 (2019), 100501.
doi:10.1016/j.websem.2019.04.001.

[4] S. Battle, A. Bernstein, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin, S. McIIraith, D. McGuiness, J. Su and
S. Tabet, Semantic Web Services Language (SWSL), 2005.

[5] S. Bechhofer, F. Van Harmelen, I. Horrocks, D. McGuiness, P.F. Patel-Schneider and L.A. Stein, OWL Web Ontology
Language Reference.

[6] D. Beckett, T. Berners-Lee, E. Prud’hommeaux and G. Carothers, RDF 1.1 Turtle, 2014.

[7] T. Berners-Lee, D. Karger, L.A. Stein, R. Swick and D. Weitzner, SWELL - Semantic Web Logic Language, 2000.

[8] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf and J. Hendler, N3Logic: A logical framework for the World Wide
Web, Theory and Practice of Logic Programming 8(3) (2008), 249-269. doi:10.1017/S1471068407003213.

[9] C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler and M. Smith, OWL 2 Web Ontology
Language, 2012, http://www.w3.org/TR/owl2-syntax/.

[10] J. Bollen and H. Van de Sompel, An architecture for the aggregation and analysis of scholarly usage data, in: Proceedings
of the 6th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’06, Association for Computing Machinery, 2006,
pp. 298-307. ISBN 978-1-59593-354-6. d0i:10.1145/1141753.1141821.

[11] D. Brickley and R.V.G. Guha, RDF Schema 1.1, 2014.

[12] F. Dau, The logic system of concept graphs with negation: And its relationship to predicate logic, Vol. 2892, Springer
Science & Business Media, 2003. doi:10.1007/b94030.

[13] J. de Bruijn and S. Heymans, Logical Foundations of (¢) RDF (S): Complexity and Reasoning, Lecture Notes in Computer
Science 4825 (2007), 86. doi:10.1007/978-3-540-76298-0__7.

[14] J. De Roo, Euler Yet another proof Engine, GitHub. https://github.com/eyereasoner/eye.

[15] J. De Roo, retina, GitHub. https://github.com/KNowledgeOnWebScale/retina.

[16] T. Eiter, G. Ianni and T. Krennwallner, Answer set programming: A primer, Springer, 2009. doi:10.1007/978-3-642-
03754-2_ 2.

[17] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer and H. Tompits, Combining answer set programming with description
logics for the Semantic Web, Artificial intelligence 172(12-13) (2008), 1495-1539. doi:10.1016/j.artint.2008.04.002.

[18] B. Esteves, H.J. Pandit and V. Rodriguez-Doncel, ODRL profile for expressing consent through granular access control
policies in SOLID, in: 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, 2021,
pp. 298-306. do0i:10.1109/EuroSPW54576.2021.00038.

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

http://www.w3.org/TR/owl2-syntax/
https://github.com/eyereasoner/eye
https://github.com/KNowledgeOnWebScale/retina

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O © 00 N O O P W N P, O W 00 N O o0 P W N P, O W 00 N OO P W N PR O O 00 N O O W N Pr O

(19]

20]
(21]

(22]
(23]
(24]

25]
[26]

27]
(28]
29]
(30]

(31]
(32]

(33]
(34]
(35]

(36]

(42]
[43]

[44]
[45]

[46]

[47]

[48]
[49]
[50]

(51]

[52]

(53]

P. Hochstenbach et al. / RDF Surfaces 39

T. Feder and M.Y. Vardi, Homomorphism closed vs. existential positive, in: 18th Annual IEEE Symposium of Logic in
Computer Science, 2003. Proceedings., IEEE, 2003, pp. 311-320. doi:10.5555/788023.789065.

M. Genesereth and R.E. Fikes, Knowledge Interchange Format Version 3.0, 1992.

S. Harris and A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, W3C, 2013, https://www.w3.org/
TR/2013/REC-sparqll1-query-20130321/.

O. Hartig, SPARQL for a Web of linked data: semantics and computability, in: Proceedings of the 9th international
conference on The Semantic Web: research and applications, 2012, pp. 8-23.

O. Hartig, P.-A. Champin, G. Kellogg and A. Seaborne, RDF-star and SPARQL-star, 2023, https://w3c.github.io/
rdf-star/cg-spec/editors_ draft.html.

P. Hayes, Re: [EXT] Re: Upper ontologies from phayes@ihmec.us on 2021-01-20 (semantic-web@w3.org from January
2021).

P. Hayes, Re: Why must the Web be monotonic? from Pat Hayes on 2001-07-24 (www-rdf-logic@w3.org from July 2001).
P. Hayes, = BLOGIC. (ISWC 2009 Invited Talk), 2009. https://www.slideshare.net/PatHayes/
blogic-iswc-2009-invited-talk.

P. Hayes and P.F. Patel-Schneider, RDF 1.1 Semantics, 2014.

P. Hochstenbach, Latar, GitHub. https://github.com/phochste/Latar.

A. Hogan, M. Arenas, A. Mallea and A. Polleres, Everything you always wanted to know about blank nodes, Journal
of Web Semantics 27 (2014), 42-69.

I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL: A Semantic Web Rule Language
Combining OWL and RuleML (2004).

R. Iannella and S. Villata, ODRL Information Model 2.2, 2018.

Information technology — Common Logic (CL) — A framework for a family of logic-based languages, Standard, Inter-
national Organization for Standardization, Geneva, CH, 2018. https://www.iso.org/standard/66249.html.

M.G. Kebede, G. Sileno and T. Van Engers, A critical reflection on ODRL, in: International Workshop on AI Approaches
to the Complexity of Legal Systems, Springer, 2018, pp. 48—61.

B. Ketsman and C. Koch, Datalog with Negation and Monotonicity, in: 23rd International Conference on Database
Theory (ICDT 2020), Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2020.

M. Kifer, Rule Interchange Format: The Framework, in: Proceedings of the 2nd International Conference on Web
Reasoning and Rule Systems, 2008, pp. 1-11.

H. Knublauch and D. Kontokostas, Shapes Constraint Language (SHACL), Recommendation, World Wide Web Con-
sortium (W3C), 2017. https://www.w3.org/TR/shacl/.

H. Knublauch, J. Hendler and I. Kingsley, SPIN - SPARQL Inferencing Notation, 2013.

M.-R. Koivunen and E. Miller, W3C Semantic Web Activity, 2001.

O. Lassila, Web metadata: A matter of semantics, IEEE Internet Computing 2(4) (1998), 30-37.

O. Lassila and R. Swick, Resource Description Framework (RDF) Model and Syntax Specification.

C. Lefévre and P. Nicolas, A First Order Forward Chaining Approach for Answer Set Computing, in: Logic Programming
and Nonmonotonic Reasoning, E. Erdem, F. Lin and T. Schaub, eds, Springer, pp. 196—208. ISBN 978-3-642-04238-6.
doi:10.1007/978-3-642-04238-6__18.

N. Matosin, E. Frank, M. Engel, J.S. Lum and K.A. Newell, Negativity towards negative results: a discussion of the
disconnect between scientific worth and scientific culture 7(2) (2014), 171-173. doi:10.1242/dmm.015123.

J. Mei and H. Boley, Interpreting SWRL Rules in RDF Graphs 151(2) (2006), 53-69. doi:10.1016/j.entcs.2005.07.036.
https://www.sciencedirect.com/science/article/pii/S1571066106003367.

B. Motik, P.F. Patel-Schneider and B. Cuenca Grau, OWL 2 Web Ontology Language Direct Semantics (Second Edition).
B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue and C. Lutz, OWL 2 Web Ontology Language Profiles (Second
Edition), 2012, https://www.w3.org/TR/owl2-profiles/.

N. Ngo, M. Ortiz and M. Simkus, Closed predicates in description logics: Results on combined complex-
ity, in: Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning, 2016.
doi:10.5555/3032027.3032056.

G. O’Regan, Computability and Decidability, in: Mathematical Foundations of Software Engineering: A Practical Guide
to Essentials, G. O’Regan, ed., Springer Nature Switzerland, pp. 229-239. ISBN 978-3-031-26212-8. doi:10.1007/978-3-
031-26212-8__14.

P.F. Patel-Schneider, Building the Semantic Web Tower from RDF Straw, 2005, pp. 546-551.

P.F. Patel-Schneider, RDF: Back to the Graph, 2009.

D.D. Roberts, The Existential Graphs of Charles S. Peirce, Approaches to Semiotics, De Gruyter Mouton, 1973. ISBN
9789027925237.

J.C. Shepherdson, David Maier and David S. Warren. Computing with logic. Logic programming with Prolog. The
Benjamin/Cummings Publishing Company, Menlo Park, Calif., etc., 1988, xxi + 535 pp. 56(4) (1991), 1495-1495.
doi:10.2307/2275495.

J. Sowa, Knowledge Representation: Logical, Philosophical and Computational Foundations, Brooks/Cole, 2000. ISBN
0-534-94965-7.

J. Sowa, Peirce’s Tutorial on Existential Graphs, 2011. http://www.jfsowa.com/pubs/egtut.pdf.

© 0 N O O W N e

g DD DD DD DR DWW W W W W W W WNN NN N NNNNN R R R R R R R R e
» O © 00 N O O b W N P O O 0 N O O P W N P O W 0N O P WN PR O © 0N O O W N P O

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://github.com/phochste/Latar
https://www.iso.org/standard/66249.html
https://www.w3.org/TR/shacl/
https://www.sciencedirect.com/science/article/pii/S1571066106003367
https://www.w3.org/TR/owl2-profiles/
http://www.jfsowa.com/pubs/egtut.pdf

© 00 N O s W N

W NN NN NN NN NN R R R R B
O © 00 N O OO S W N BH O W 00 N O O W N = O

31

40

(54]

[55]
[56]

[57]

[58]
59]

[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]

[71]

P. Hochstenbach et al. / RDF Surfaces

J. Sowa, Reasoning with diagrams and images: observation and imagination as rules of inference., Journal of Applied
Logics 5(5) (2018), 987.

J.F. Sowa, Fads and fallacies about logic, IEEE Intelligent Systems 22(2) (2007), 84-87.

U. Straccia and G. Casini, A Minimal Deductive System for RDFS with Negative Statements, arXiv, 2022. http://arxiv.
org/abs/2202.13750.

T. Tammet and G. Sutcliffe, Combining JSON-LD with First Order Logic, in: 2021 IEEFE 15th International Conference
on Semantic Computing (ICSC), pp. 256261, ISSN: 2325-6516. doi:10.1109/ICSC50631.2021.00051.

B. Trakhtenbrot, On Recursive Separability, in: DOKL AKAD NAUK SSSR, Vol. 88, 1953, pp. 953-956.

D. Tsarkov, A. Riazanov, S. Bechhofer and 1. Horrocks, Using Vampire to Reason with OWL, Lecture notes in Computer
Science 3298 (2004), 471-485. doi:10.1007/978-3-540-30475-3__33.

H. Van De Sompel and P. Hochstenbach, Reference Linking in a Hybrid Library Environment: Part 1: Frameworks for
Linking 5(4) (1999). doi:10.1045/april99-van_de_sompel-pt1.

J. Van Herwegen, Tension.js, GitHub. https://github.com/joachimvh/tension.js.

R. Verborgh, n3. https://www.npmjs.com/package/n3.

R. Verborgh and J. De Roo, Drawing conclusions from linked data on the Web: The EYE reasoner, IEEE Software 32(3)
(2015), 23-27. doi:10.1109/MS.2015.63.

M. Viswanathan, CS498MV - First Order Logic, 2018. https://courses.physics.illinois.edu/cs498mv/fa2018/
FirstOrderLogic.pdf.

G. Wagner, Web Rules Need Two Kinds of Negation, in: Principles and Practice of Semantic Web Reasoning, Vol. 2901,
2003, pp. 33-50. doi:10.1007/978-3-540-24572-8 3.

G. Wagner, C.V. Damasio and G. Antoniou, Towards a general Web rule language, International Journal of Web
Engineering and Technology 2(2) (2005), 181-206. doi:10.1504/IJWET.2005.008483.

W.V. Woensel, D. Arndt, P.-A. Champin, D. Tomaszuk and G. Kellogg, Notation3 Language, 2023, https://w3c.github.
io/N3/reports/20230703/.

J.J. Zeman, The graphical logic of CS Peirce, PhD thesis, The University of Chicago, 1964.

X. Zhang, J. Van den Bussche and F. Picalausa, On the satisfiability problem for SPARQL patterns, Journal of Artificial
Intelligence Research 56 (2016), 403-428. doi:10.1613/jair.5028.

R. Zhao and J. Zhao, Perennial Semantic Data Terms of Use for Decentralized Web, in: Proceedings of the ACM on
Web Conference 2024, 2024, pp. 2238-2249. doi:10.1145/3589334.3645631.

FIPA RDF Content Language Specification, 2001. http://www.fipa.org/specs/fipa00011/XC00011B.html.

Appendix A Healthcare policies as RDF Surfaces in Notation3

@prefix : <https://example.org/ns#>
@prefix log: <http://www.w3.org/2000/10/swap/log#>

(_:WHO) log:onNegativeSurface {
_:WHO :has :AcuteMyocardialInfarction

() log:onNegativeSurface {
_:WHO :has :AllergyForAspirin
X

() log:onNegativeSurface {
_:WHO :has :ActivePepticUlcerDisease
X

() log:onNegativeSurface {
_:WHO :isPrescribed :aspirinlowDose

}

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

http://arxiv.org/abs/2202.13750
http://arxiv.org/abs/2202.13750
https://github.com/joachimvh/tension.js
https://www.npmjs.com/package/n3
https://courses.physics.illinois.edu/cs498mv/fa2018/FirstOrderLogic.pdf
https://courses.physics.illinois.edu/cs498mv/fa2018/FirstOrderLogic.pdf
https://w3c.github.io/N3/reports/20230703/
https://w3c.github.io/N3/reports/20230703/
http://www.fipa.org/specs/fipa00011/XC00011B.html

© 00 N O O W N

g g D DD D D DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s B
= O ©OW 00 N O O P W N = O O 00 N O 0P W N B O O 0 N O O WwWN R, O © 0N O O W N = O

P. Hochstenbach et al. / RDF Surfaces

(_:WHO) log:onNegativeSurface {
_:WHO :has :AcuteMyocardialInfarction .
() log:onNegativeSurface {
_:WHO :has :SevereAsthma .

}

() log:onNegativeSurface {

_:WHO :has :ChronicObstructivePulmonaryDisease

}

() log:onNegativeSurface {
_:WHO :isPrescribed :betaBlocker .
}

Appendix B Patient Ann data as RDF Surfaces in Notation3

@prefix : <https://example.org/ns#> .

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

patient Ann
:Ann :has :Fever .

() log:onNegativeSurface {
:Ann :has :AllergyForAspirin .
T

() log:onNegativeSurface {
:Ann :has :ActivePepticUlcerDisease

T

Appendix C Patient Joe data as RDF Surfaces in Notation3

Oprefix : <https://example.org/ns#> .

Oprefix log: <http://www.w3.org/2000/10/swap/log#> .

patient Joe
:Joe :has :AcuteMyocardialInfarction.
:Joe :has :AllergyForAspirin.

() log:onNegativeSurface {
:Joe :has :ActivePepticUlcerDisease

41

©W 00 N O ;s W N

O A s D B D A S D D W W W W W W oW W W W NN NNNRNNNN B R R R e s e s
O © ® N o g Rk O © KN O RN RO © MmN S ®N RO © ®m N0 S W N P O

© 00 N O s W N

g gD DD DD DD DWW W W W W W W W WNN NN NN DNNNDN S B s R s s s
= O ©OW 00 N O O P W N = O O 0 N O O P W N = O © 0 N O O b W N = O © 0 N O O b W N = O

42

P. Hochstenbach et al. / RDF Surfaces

.

() log:onNegativeSurface {
:Joe :has :SevereAsthma .

}.

() log:onNegativeSurface {
:Joe :has :ChronicObstructivePulmonaryDisease

T

©W 00 N O s W N

Ol s s A S D D D N W W W W W W W WwW NN NDNNNNRNDND B R e R Rl s
O © ® N o O Rk O O KN O RN PR O O© MmN A ®N RO © ®m N0 S W N P O

	Introduction
	Why is classical negation and universal quantification desirable?
	Why was classical negation not added to RDF?
	Rationale for proposing the addition of classical negation and FOL expressivity to RDF
	Contribution
	Paper outline

	Running examples
	Scholarly communication
	Medicine Prescription

	Related Work
	Existential Graphs
	Default positive surface
	Negative surface
	Nested surfaces
	Diagram rules
	Quantification

	RDF Surfaces
	Notation3 serialization
	Blank nodes and explicit scoping of logical variables
	Explicit negation
	Disjunctions in the data, antecedent and consequent of an implication

	RDF Surfaces reasoner implementation
	Examples
	Scholarly communication
	Medicine Prescription

	Discussion and future road map
	Negation on the Web
	Syntax
	Formal semantics
	Implementations
	Relation to other Web logics and standards
	Extensions

	Conclusion
	Acknowledgements
	References
	Healthcare policies as RDF Surfaces in Notation3
	Patient Ann data as RDF Surfaces in Notation3
	Patient Joe data as RDF Surfaces in Notation3

