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Abstract.
Semantic Table Annotation (STA) stands as a crucial process in the realm of data interpretation and knowledge extraction,

especially within the context of big data and the Semantic Web. Tables, ubiquitous across diverse domains from scientific liter-
ature to business reports, contain a wealth of structured information waiting to be unveiled. However, this information remains
largely untapped in the absence of effective methods for semantic annotation. In essence, STA enriches raw tables with semantic
metadata such as entities, classes, and relations obtained from Knowledge Graphs (KGs). It bridges the gap between unstructured
data and structured knowledge representation, enabling sophisticated data analytics, information retrieval, and decision-making
processes. It unlocks the potential of tabular data in the era of data-driven decision-making. However, automating this semantic
annotation, particularly for noisy tabular data, remains a formidable challenge. In this paper, we give a detailed overview of our
STA system, JenTab1. We developed and tested JenTab under the umbrella of the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab) challenge 2020-2022. However, we extended the evaluation of JenTab beyond the scope
of these challenges. JenTab is a core system for STA, it is a top-3 ranked systems among other participants throughout its years
of development. In addition, we present a detailed evaluation for its individual components, extensive discussion of JenTab with
its limitations, and a demonstration of the system configuration, execution and output.

Keywords: Tabular Data, Knowledge Graph, Matching, JenTab, SemTab, Semantic Table Annotation

1. Introduction

Semantic Table Annotation (STA) is a pivotal process in the field of data interpretation and knowledge extrac-
tion, particularly in the age of big data and the Semantic Web. Tables, ubiquitous in various domains ranging from
scientific literature to business reports, harbor a wealth of structured information waiting to be unlocked. However,
this information remains largely unexplored without effective methods for semantic annotation. In essence, STA
transforms raw data tables into rich sources of knowledge that machines can comprehend and analyze. By anno-
tating tables with semantic metadata, such as entity labels, relations, and attributes, STA bridges the gap between
uncontextualized data and structured knowledge representations, enabling advanced data analytics, information re-
trieval, and decision-making processes. In addition, it facilitates data integration, interoperability, and knowledge

1https://github.com/fusion-jena/JenTab
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discovery across heterogeneous data sources. Moreover, STA plays a crucial role in various applications, including
information extraction from documents, database augmentation, and semantic search. This caught the attention of a
broad community where a variety of STA systems have developed in the past years [1].

The objective of STA is to map individual table elements to their counterparts from a KG as illustrated by a bio-
diversity example in Figure 1 (naming according to [2]): Cell Entity Annotation (CEA) matches cells to individuals,
whereas Column Type Annotation (CTA) does the same for columns and classes. Furthermore, Column Property
Annotation (CPA) captures the relationship between pairs of columns.

JenTab is a modular system to map table contents onto large KGs like Wikidata [3] or DBpedia [4]. This toolkit
can annotate large corpora of tables. It follows a general pattern of Create, Filter, and Select (CFS): First, for
each annotation, initial candidates are generated using appropriate lookup techniques (Create). Subsequently, the
available context is used in multiple iterations to narrow down these sets of candidates as much as possible (Filter).
Finally, a solution is picked from the remaining candidate(s) (Select). We provide several modules for each of
these steps. Different combinations (pipelines) allow for fine-tuning the annotation process by considering both the
modules’ performance characteristics and their impact on the generated solutions. Besides the default pipeline that
implements the complete picture of the CFS pattern, since 2021, we have continuously developed various pipelines
based on the benchmark characteristics we tried to tackle.

We developed and tested JenTab during the participation in the Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab)2 challenge 2020-20223. JenTab received a second place prize (Usability
Track) of the SemTab challenge sponsored by IBM Research4 during ISWC 2021 [5]. In addition, JenTab was
awarded the Artifacts Availability Badge by SemTab 2022. All experiments are based on the large corpora provided
by SemTab [6–10] matching the content to Wikidata, DBpedia, or schema.org. In addition, we evaluated JenTab in
the biodiversity domain using the BiodivTab [11, 12] benchmark.

The core contributions distinguishing this paper from previous publications [13–16] are as follows with additional
details being available in [17]:

(i) Comprehensive overview of the related work.
(ii) Detailed evaluation comparing to other systems.

(iii) Inclusion of a new benchmark, tFood.
(iv) Assessment of its individual components.
(v) Extensive discussion of JenTab with its limitations.

(vi) Demonstration of JenTab configuration, execution, and output.

In this paper, we explain the required background in Section 2. We demonstrate a comprehensive overview of
the state-of-the-art systems in Section 3. We present JenTab approach including its architecture, preprocessing,
offline resources, disambiguation contexts, etc. in Section 4. We demonstrate various experiments to evaluate the
performance of JenTab over the years of continuous development in Section 5. This includes a detailed analysis
of individual components, the impact of different approaches, accuracy scores, and runtime. We follow with an
extensive discussion of JenTab with its limitations in Section 6. Finally, we summarize this paper and conclude in
Section 7.

2. Background

In this section, we explain the necessary background for this paper defining our primary data (tables6) and KGs.
We explain two dimensions that describe tables: Inner-relationship and orientation dimension. Our source data is

2http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
3A SemTab challenge has been held in 2023 but we did not participate and, hence, do not cover it here.
4https://research.ibm.com/
5We use the following prefixed throughout this paper:

wd: http://www.wikidata.org/entity/
wdt: http://www.wikidata.org/prop/direct/
dbr: http://dbpedia.org/resource/
dbo: http://dbpedia.org/ontology/

6We use the terms “tabular data” and “table” interchangeably.

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://research.ibm.com/
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
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Lilium 

wd:Q161714   ("Orchis")
wd:Q5194627  ("Lilium")


Orchis 

2752977

2849312

Lilioideae

Orchidinae

(a) CEA.

wd:Q34740  ("genus")
text

Lilium 

Orchis 

2752977

2849312

Lilioideae

Orchidinae

(b) CTA.

wdt:P846  ("GBIF taxon ID")
       

Lilium 

Orchis 

2752977

2849312

Lilioideae

Orchidinae

(c) CPA.

Fig. 1. Illustration of STA tasks5(from [12]).

raw in the sense that it lacks any semantic layer. A table consists of a set of cells, each of which contains plain text.
Further, we define annotation tasks for both tabular and textual data. Such tasks aim to extract subjects, predicates,
and objects which can be mapped to the target KG. We demonstrate an example for each task that describes the
operations applied to perform a semantic annotation.

2.1. Knowledge Graph

A knowledge graph is a graph-based model built to accumulate and convey real-world knowledge. It contains a
set of nodes and edges representing entities of interest and their relations [18, 19]. Auer et al. [20] propose them
to bring scholarly communication to the 21st century. However, there is no exact definition of a KG. We adopt the
inclusive definition from [18, 19] in Definition 2.1. A more formal definition of a KG is given by Definition 2.2.

Definition 2.1. A knowledge graph is a graph of data used to accumulate and convey knowledge of the real world,
whose nodes represent entities of interest and whose edges represent relations between these entities.

Definition 2.2. A knowledge graph is a subset of the cross product N × E × N, where N is a set of nodes (entities
or classes), and E is a set of edges (relations). Each member of this set is referred to as a triple.

2.2. Tabular Data

Tabular data, such as CSV files, are a common way to publish data and represent a precious resource [2, 5, 21].
Traditionally, they capture a lot of knowledge using free text entries. We define this data unit in Definition 2.3.

Definition 2.3. A table is a two-dimensional arrangement of data with n rows and m columns. It enables a compact
visualization for reading. A cell is the basic element of a table where Ti j(0 ⩽ i ⩽ n, 0 ⩽ j ⩽ m) indicates the cell
from row i and column j of the table T .

Tables are highly heterogeneous in terms of structure, content, and purpose. Therefore, before interpreting a table,
it is important to identify its type, so that specific characteristics can be taken into account in the Semantic Table
Annotation (STA) process [22]. A table could be just layout or be encapsulating a certain amount of information [23].
The former is used for visualization (layout table). However, the latter expresses a topic or thing (genuine table).
We express a genuine table in two dimensions [1, 24]: (i) Inner-relationship; a table can be Relational (Figure 2a),
Matrix (Figure 2b), or Entity (Figure 2c, (ii) Orientation considers the direction of relationships inside a table. It can
be horizontal, vertical, or matrix. Entities are described row-wise in horizontal tables (Figure 2a). In vertical tables,
entities are described by a column as shown in Figure 2c. Matrix tables cannot be interpreted row by row or column
by column but rather cell by cell while simultaneously considering both horizontal and vertical headers as given by
Figure 2b. In our work, we focus on relational, horizontal tables and annotate them from a KG.

2.3. STA Tasks

We analyzed the state-of-the-art to investigate how to annotate tabular data from, e.g., a CSV file using a KG.
Figure 3 summarizes our findings. It gives an overview of the five tasks of STA. First, Cell to Instance aims at
linking a table cell value to a KG entity. In the shown case, “Egypt” would be linked to wd:Q79 if the target

http://www.wikidata.org/entity/Q79
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Country or

territory

Average Internet connection speed

(2020)[49]

Smartphone usage

(2016)
Use of renewable electricity

Hong Kong 21.8 Mbit/s 87%[50] 0.3%

Singapore 47.5 Mbit/s 100%[51] 3.3%

South Korea 59.6 Mbit/s 89% 2.1%

Taiwan 28.9 Mbit/s 78%[52] 4.4%

(a) Relational (https://en.wikipedia.org/wiki/Four_Asian_Tigers).

Perceived

Produced
i e a o u

i 15 1

e 1 1

a 79 5

o 4 15 3

u 2 2

(b) Matrix (https://en.wikipedia.org/wiki/Whistled_language).

Charles Bridge

Charles Bridge in April 2007

Coordinates 50°05′11″N 14°24′43″E

Carries Pedestrian only

Crosses Vltava River

Locale Prague

Official name Karlův most

Other name(s) Stone Bridge (Kamenný

most), Prague Bridge

(Pražský most)

Characteristics

Design Stone

Material Bohemian sandstone

Total length 515.8 metres (1,692 ft)[1]

Width 9.5 metres (31 ft)[1]

Longest span 13.4 metres (44 ft)[1]

No. of spans 16

Clearance

below

13 metres (43 ft)[1]

History

Designer Peter Parler

Construction

start

1357[1]

Construction

end

1402 (45 years)[1]

Location

(c) Entity (https://en.wikipedia.org/wiki/
Charles_Bridge).

Fig. 2. Tables: Inner-relationship examples.

Country Area Capital

Egypt 1,010,408 Cairo

Germany 357,386 Berlin

9,826,675 Washington, D.C.

Topic 
Detection

Property
Detection

Row to 
Instance 

Cell to 
Instance

Column to 
Type

Fig. 3. A summary of STA tasks.

KG is Wikidata or dbr:Egypt if the target KG is DBpedia. Second, Column to Type maps the entire col-
umn to a semantic type. In the example, it annotates the column to wd:Q6256 if Wikidata is the target KG, or
dbo:Location or dbo:Place if DBpedia is the target KG. Third, Property Detection links a column pair
(subject-object) with a semantic property from the target KG. Country and capital columns would be linked through
wd:P1376 from Wikidata and dbo:capital from DBpedia. Fourth, Row to Instance (R2I) maps an entire row
to a KG entity. Its output is different from the first task since the subject column is absent in this example. In this
case, row to instance would be able to detect that the entire row refers to the “United States of America” (wd:Q30)
or dbr:United_States from Wikidata and DBpedia respectively. Finally, Topic Detection (TD) classifies the
entire table to a topic. Wikipedia articles are a perfect source of the expected output from this task. In the given
example, https://en.wikipedia.org/wiki/Country would be a solution.

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab)7 challenge defines its
three core STA tasks along these lines: CEA, CTA, and CPA (cf. Figure 1). It was co-hosted with the ISWC confer-
ence and the Ontology Matching (OM) workshop from 2019 to 2023. It provides a unified framework to evaluate
the current STA systems. So far, SemTab, used Wikidata, DBpedia, and Schema.org as target KGs to perform the
matching tasks. Each year, it provided a series of large-scale datasets. It asked participants to solve the three STA

7https://www.cs.ox.ac.uk/isg/challenges/sem-tab/

https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
https://en.wikipedia.org/wiki/Charles_Bridge
https://en.wikipedia.org/wiki/Charles_Bridge
http://dbpedia.org/resource/Egypt
http://www.wikidata.org/entity/Q6256
http://dbpedia.org/ontology//Location
http://dbpedia.org/ontology//Place
http://www.wikidata.org/entity/P1376
http://dbpedia.org/ontology//capital
http://www.wikidata.org/entity/Q30
http://dbpedia.org/resource/United_States
https://en.wikipedia.org/wiki/Country
https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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tasks for given targets without any prior knowledge about the ground truth data for each task. After the conclusion
of the challenge, the organizers published the hidden ground truth.

3. Related Work

The recent STA contributions (systems or benchmarks) are developed and tested in the Semantic Web Challenge
on Tabular Data to Knowledge Graph Matching (SemTab) challenge [2, 5, 21, 25] from 2019 to 2023 as illustrated.
Such a challenge presents a unified framework to evaluate STA systems and provides several large-scale benchmarks
for such evaluation. In the following, we give an overview of the existing approaches that solve STA tasks. We
categorize them into three main categories: Heuristic methods, feature-engineering techniques, and deep-learning
models. Table 1 summarizes these recent approaches that tackle the STA tasks in terms of supported STA tasks and
target KG.

Table 1
Summary of the current state-of-the-art STA approaches.

Category Approach CEA CTA CPA R2I TD KG Released

Heuristic MTab Yes Yes Yes Wikidata 2019-2021
DAGOBAH Yes Yes Yes Wikidata, DBpedia 2020-2021
bbw Yes Yes Yes Wikidata 2020
CSV2KG Yes Yes Yes DBpedia 2019
Tabularisi Yes Yes Yes DBpedia 2019
MantisTable Yes Yes Yes DBpedia, Wikidata 2019-2021
ADOG Yes Yes Yes DBpedia 2019
LinkingPark Yes Yes Yes Wikidata 2020
SSL Yes Yes Yes Wikidata 2020
Magic Yes Yes Yes DBpedia, Wikidata 2021
Kepler-aSI Yes Yes Yes DBpedia, Wikidata 2020-2023
AMALGAM Yes Yes Wikidata 2020
s-elbat Yes Yes Yes Wikidata 2022
TSOTSA Yes Yes Yes Yes DBpedia, Wikidata 2022-2023

Feature-Engineering Limaye Yes Yes Yes YAGO 2010
Neumaier et.al Yes DBpedia 2016

Deep Learning Efthymiou et. al Yes Yes Wikidata 2017
DAGOBAH-DL Yes Yes DBpedia 2019
ColNet Yes DBpedia 2019
Chen et. al Yes DBpedia 2019
Sherlock Yes DBpedia 2019
Turl Yes Yes Yes DBpedia 2021

3.1. Heuristic Techniques

The category of heuristic techniques contains a wide range of approaches. Usually, a typical approach relies
on candidate annotation generation via one or more lookup APIs, an iterative disambiguation process, and a final
selection strategy. STA tasks are carried out using heuristic techniques, mostly string similarity and majority voting,
followed by TF-IDF and probabilistic frameworks. In the following, we walk through heuristic approaches used by
the state-of-the-art.

MTab [26–28] solves the three STA tasks jointly. The authors explicitly mention clear assumptions on what kind
of table they solve, e.g., the target KG is complete and correct, and input tables are independent, which means there
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is no sharing of information between input tables. MTab depends on a joint probability distribution for the three
tasks. The authors introduce a pipeline of seven steps. The lookup part is built on top of multiple lookup services. It
is started with DBpedia lookup and endpoint in 2019. In 2020, the authors identified weaknesses from the previous
year; they changed their lookup module to support both fuzzy entity and statement search. They supported Wikidata
as a target KG, including the entity dump and all history revisions in a given time interval to generate as precise
candidates as possible. MTab is computationally expensive, and the authors had to disable various parts to be able
to release it to the public in 20218. MTab is the SemTab first place winner in 2019 and 2020 in the Accuracy Track,
and they achieved first place prize in the Usability Track in 2021.

DAGOBAH [29, 30] constructs an annotation workflow to solve the three STA tasks. In the first step, the authors
perform an entity lookup from Wikidata dump which is stored in a Hadoop distributed file system, using Wikidata
toolkit9 and PySpark10 for candidate annotation retrieval using Levenstein distance for similarity measurement. In
the second step, they follow a candidate scoring technique. A confidence score is calculated as a mixture of a context
score using Levenshtein distance and SMAPE for literal values and numbers, respectively, and a weighted similarity
score for literals. Then, they continue with CPA annotations. The authors retrieve all entity candidates and select
the most co-occurred property, a straightforward majority voting technique. Afterwards, the authors solve the CEA
task by selecting a final candidate with maximum CPA score support. Finally, they come up with CTA solutions.
Similar to selecting CEA solutions, CTA candidate is selected by a majority vote of CEA in the same column. In
addition, the authors take into account three levels of hierarchical types where they prefer the direct types in most
cases. DAGOBAH required 250 machines to run its 2020 configurations, although the authors managed to reduce it
to 30 machines in 2021. Moreover, it is the third place winner at SemTab 2020 and a first place winner at SemTab
2021.

bbw [31] solves the three STA tasks. bbw consists of a seven-step pipeline; we summarize its steps into two core
ideas. First, for candidate generation, the authors use a locally deployed SearX11 instance as a meta-lookup which
enables search over more than 80 engines. The authors do not use any Wikidata dump. This module collects the
lookup results and ranks them automatically. Second, the authors rely on the Wikidata SPARQL endpoint for con-
textual matching using two features: entity and property labels. Then, the authors pick the best matches using edit
distance. For the CTA solutions, they select the type through wdt:P31 (instanceOf) without any further ex-
ploration of multi-hop hierarchical types, achieving the best score on CTA with 98% F1-score during the challenge.
bbw won the third place of SemTab 2020.

CSV2KG [32] addresses the three tasks of STA. The authors follow an iterative process with the following steps:
(i) get entity matchings using lookup services; the authors adopt several services of DBpedia: DBpedia lookup
service, DBpedia Spotlight, and DBpedia resource. Each service returns a ranked list of candidates. On this large
pool of candidates, they apply a disambiguation step by selecting the candidate with an rdfs:label has the lowest
edit distance with the cell value. (ii) infer the column types and relations; the majority vote is the used strategy of the
final selection. The authors reported some inaccuracies on the DBpedia level, e.g., Barack Obama and not Donald
Trump is the president of USA12. (iii) refine cell mappings with the inferred column types and relations. (iv) refine
subject cells using the remaining cells of the row. Finally, (v) re-calculate the column type with all the corrected
annotations. CSV2KG is the second-place winner at SemTab 2019.

Tabularisi [33] solves the three STA tasks. The authors use lookup services to generate CEA candidates. For
each candidate, an adapted TF-IDF score is calculated. An entity candidate is represented by a binary feature vector
in which each feature is an indicator (1 if present, else 0) of a property used to describe the entity (e.g., instanceOf).
Different features have various expressiveness. They are thus weighted by the TD-IDF technique. Specifically, the
“Term Frequency” of a feature is the number of cells whose first entity candidate has this feature, and the “Document
Frequency” is the total occurrences of this feature in all entity candidates of all cells. The score of an entity candidate
is a weighted combination of its TD-IDF score, the Levenshtein distance between cell value and candidate label,

8https://mtab.app/mtabes/docs
9https://github.com/Wikidata/Wikidata-Toolkit
10https://spark.apache.org/docs/latest/api/python/
11https://github.com/searx/searx
12Checked on Late Feb 2020.

http://www.wikidata.org/prop/direct/P31
https://mtab.app/mtabes/docs
https://github.com/Wikidata/Wikidata-Toolkit
https://spark.apache.org/docs/latest/api/python/
https://github.com/searx/searx
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and a distance measure between cell value and the URL tokens is used to determine the final annotation. The CTA
solutions are obtained by a top-down, brute-force search in the KG class hierarchy tree. Finally, the CPA solutions
are determined using a row-by-row majority voting technique.

MantisTable [34] tackles the three set of the STA tasks. The authors introduce a pipeline that starts with classi-
fying each column into three types: Named entity, Literal, or Subject. The candidate generation of this approach is
based on SPARQL queries which extract all candidates containing the cell mentions. Then, the system handles the
CEA annotations by row-wise compatibility analysis and CPA by majority voting. For the CTA task, the authors
list all candidate types in addition to their number of occurrences in the table (row coverage). After threshold fil-
tering, the remainder of type candidates are transformed into a graph according to the ontology hierarchy. The type
scores are then updated with the distance to the root. The highest score representing the most accurate and specific
annotation at the end is finally picked as a solution.

MantisTable SE [35, 36] the authors optimized the system by updating the scoring function, accessing LamAPI13

(instead of using a SPARQL endpoint) and adding a final disambiguation step. LamAPI is considered an efficient
way to retrieve all necessary data for the three tasks independently from the target KG.

MantisTable V [37] is an even more optimized version that still relies on LamAPI and applies complex string
similarity functions for the entity generation task.

ADOG [38] solves the three STA tasks. It considers scores combined with string similarities, frequencies of
properties, and the normalized Elasticsearch score from each match of DBpedia for the CEA task. The system
weighs these scores with TF-IDF score for types. To be able to compute the Levenshtein distance and TF-IDF, the
authors use ArangoDB14 to load DBpedia dump and index its components.

LinkingPark [39] tackles the three STA tasks. Their framework consists of three main modules: i) an entity
linker to generate CEA, ii) a type inference to get CTA and, finally, iii) a property linker to obtain the possible
relations. The entity linker contains two sub-modules for entity generation and disambiguation. The authors use
a regular AccessMediaWiki API search, 1-edit distance typo via a spelling mistake corrector, and other mentions
that are used to build a fine-grained Elasticsearch index as a cascaded pipeline for entity generation. For entity
disambiguation, the authors follow a coarse-to-fine-grained disambiguation. They rely on an iterative classification
algorithm to conduct an approximate inference of an entity. Afterwards, they would able to characterize both types’
consistency (coarse) and select the discriminative value. The type inference retrieves the types of the generated
CEA candidates. Then it uses the majority vote to select a final CTA candidate. To break the ties, the authors use
a minimum average level score that is defined and based on the underlying ontology structure of the target KG.
In the property linker, the author support object properties matching by the entity property linker sub-module and
literals matching using the either perfect or fuzzy matching technique. For the object properties, the author obtains
the relations row-by-row and finally, selects the most co-occurred one as a final selection. The same procedure
is applied for the lexical property match but with an error tolerance to allow fuzzy matching. LinkingPark is the
second-place winner at SemTab 2020.

SSL [40] generates a Wikidata subgraph over a table using a four-stage pipeline to solve the three STA tasks. At
first, it leverages advanced SPARQL queries for the three tasks. Then, it selects the subject with the highest proba-
bility value to update the resultant graph. Afterwards, the authors apply a crawling process through Google search
engine to suggest better words for not-found subjects and repeat the first two steps. Thus, the authors overcome the
problem of spelling mistakes. Finally, for literal properties matching, the authors tolerate ±1.5% of the numerical
values.

Magic [41] addresses the three STA tasks. It adopts the approach of generating comparison matrices, namely INK
embeddings, to speed up computational efficiency. INK embeddings are representations of attributes and values for
an entity or table context for a cell mention. The complete comparison matrix is generated by fusing multiple
candidates. The system annotates CEA by measuring the compatibility between INK embeddings from KG and the
input table. For annotations, the authors focus on the key column. They do the lookup using public endpoints of the
target KG for each cell in the key column, then leverage its neighborhood to find the candidates for surrounding

13https://bitbucket.org/disco-unimib/lamapi
14https://www.arangodb.com/

https://bitbucket.org/disco-unimib/lamapi
https://www.arangodb.com/
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cells in the same row (they avoid performing the lookup on the whole table due to the limitation of public API
usage). Misspellings might be challenging for Magic, and detecting synonyms of attributes as well. Nonetheless,
INK embeddings improve computational efficiency and provide a way to implement column integration.

AMALGAM [42] covers both CEA and CTA only using a three-step pipeline. The authors rely on Wikidata
lookup services with a focus on spelling mistakes handling. They use the row context where all entities belong to the
same thing as the only annotation context. This gives a reason why AMALGAM is efficient and less computationally
expensive. Results show a maximum score of 92% for both tasks.

Kepler-aSI [43–45] is designed with three main modules: Preprocessing, Annotation Context, and Tabular Data
to KG Matching. The Preprocessing module handles diverse data types and formats, rectifying issues like spelling
errors and noisy textual data. The Annotation Context phase involves identifying candidates for annotation by an-
alyzing processing columns and employing regular expressions. Unlike other systems, semantic types are assigned
to columns using entities from Wikidata or DBpedia first then use these solutions to solve the rest of the tasks.

s-elbat [46] improves the technique of MantisTable (see above) by adopting an iterative process for entity linking
on tables. It consists of two modules: 1) Entity Linking (EL) that uses various techniques including search engine-
based and name dictionary-based methods to filter out irrelevant entity mentions for a given table entity. 2) Entity
Disambiguation (ED) that leverages contextual information besides the cell value to re-rank entities.

TSOTSA [47, 48] introduces a KG refinement approach to solve STA, focusing on error correction and com-
pletion of missing entities and relations. The pipeline for annotating tabular data involves cell pre-processing and
completion with missing entities and relations using SPARQL queries. The methodology has been changed to lever-
age the Bayes classifier to solve STA in 2023.

3.2. Feature-Engineering Techniques

This category relies on the hand-crafted feature vectors that represent a table. For example, authors of this category
extract statistical and lexical features, such as the distribution of numerical values, the occurrence of cell mentions,
and textual similarity among table rows and columns. Then, they feed such features to machine learning models like
SVM, Random Forest, and KNN algorithms. Since these are all supervised learning techniques, a labeled dataset is
required for the training. The amount and quality of training data, and consequently the quality of input features,
significantly impact the model performance. We notice that those techniques suites the CTA task more than the
others, since columns are more subject to statistical features than other STA tasks.

Limaye [49] introduce one of the earliest work on STA that tackels the the three tasks. The approach collects the
TF-IDF cosine similarity between cell mention and entity label and the compatibility between the cell type and the
column type to execute the CEA task. The solution to the CTA task depends on TF-IDF cosine similarity between
column header and entity label in the corresponding KG. The CPA annotation depends on the compatibility between
the relation and column pairs. All these features are weighted through a machine learning framework.

Neumaier et.al [50] focus on CTA labeling for numerical columns. Their work is not limited to labeling a
unique prediction but expands the scope of labeling to the surrounding information. For example, instead of labeling
“height”, this system will label it as “the height of an athlete playing basketball in the NBA”. To achieve this, the
authors proposed three steps pipeline: i) build Background Knowledge Graph (BKG) based on DBpedia where its
nodes consist of typical numerical values, annotated with context information. For example, grouped by properties
and their shared domain (subject) pairs. Such BKG contains the hierarchical structure and is divided into multiple
multi-level groups to provide context. ii) to search for mappings using k-nearest neighbours (kNN) for making
predictions. Finally, iii) to aggregate the results at different levels of the BKG to find the most likely context in
terms of properties and types. The authors also explore the system’s performance at different hierarchy levels for
the BKG built on DBpedia and Open Data. They pointed out that DBpedia still has limitations in terms of data
coverage and freshness when compared with other open datasets. For example, the Austrian Open Data Portal has
tables generated by weather stations every 15 minutes. Comparatively, DBpedia typically has numeric values only
for “current” or “latest”.
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3.3. Deep Learning Techniques

Deep Learning has achieved many successes in various domains thanks to the availability of massive amount of
data and powerful computing resources. It has attracted the attention of the STA community over the past few years.
KG embedding techniques represent one direction beyond this work’s scope. However, in the following, we show
some examples that leverage deep learning as a direct NLP model in the scope of STA.

Efthymiou et. al [51] provide different methods for entity linking, regular cell to an entity annotation (CEA),
as well as mapping the entire row to instance (R2I). The system assumes that a column’s correct CEA candidates
should be semantically close. From this assumption, a weighted correlation subgraph in which node represents a
CEA candidate is constructed. The edges are weighted by the cosine similarity between two related nodes. The
best candidates are the ones whose accumulated weights over all incoming and outgoing edges are the highest. In
addition, a hybrid system, as a combination of a correlation subgraph method and an ontology matching system, is
also introduced, which achieves a significant improvement in the final results.

DAGOBAH-DL [52] Solves the three STA tasks The authors assume that entities in the same column are close in
the embedding space. Candidates are first retrieved using a lookup based on regular expressions and the Levenshtein
distance. Then, they convert the retrieved entities into vector space. The selection of the candidate is made on several
steps starting from the clustering formulation (rows coverage-wise). The authors apply a K-means clustering using
TransE’s pre-trained embedding to cluster the entity candidates. Then they give each cluster a score, pick the one
with the highest score, and rank its candidates. The final ambiguity is resolved via a confidence score based on the
row context of the candidates.

ColNet [53] tackles only the CTA task. The authors use a Convolutional Neural Network (CNN) trained by
classes contained within a KG. The predicted annotations are combined with the results of a traditional KG. The
final annotation is selected using a score that selects the lookup solutions with high confidence and otherwise
resorts to the CNN predictions. Results have shown that CNN prediction outperforms the lookup service for a larger
knowledge gap. In addition, the authors explored the idea of ensembling the predictions from ColNet and those
from the lookup service. Such an ensemble strategy gave the best scores since it benefits from both techniques.
Afterwards, the authors extended the entity representation by considering other cells in the same row (row context).
Thus they create a property feature vector, a.k.a, Property to Vector (P2Vec). Such P2Vec is an additional signal to
the neural network, which yields better results [54].

Sherlock [55] Learns the CTA task using 1588 features extracted from a single column of a given relational
table. The features are divided into four categories: i) characterwise statistics (e.g., frequency of the character “c”),
ii) column statistics (e.g., mean, std of numerical values), iii) word embedding, and iv) paragraph embedding. Except
for the column statistics feature, other features are compressed into a fixed embedding size using a subnetwork. A
two-fully connected layer network is trained on both the embedding features and column statistics feature to predict
a column type annotation among 75 types inherited from T2Dv2 [56] dataset. The evaluation shows limited results
on various column types, including Dates and Industry. However, it is less sensitive to purely numerical values or
values appearing in multiple classes.

Turl [57] pioneers the application of pre-trained language models such as BERT in the STA tasks. It provides a
universal contextualized representation for each table element (i.e., caption, header, content cells), which can be fine-
tuned and applied in various downstream tasks such as CEA, CTA, and CPA. The model employs a Transformer-
based encoder [58] to capture the information from table elements. For this goal, the input table is first serialized
into a sequence of caption tokens, title tokens, header tokens, and row-by-row cells. A cell consists of its content
(mention) and a candidate entity representing it in a KG. The sequence of tokens is then converted into embedding
using a word embedding for textual tokens and KG embedding for entity tokens. To reduce the redundancy in the
fully connected attention learning and better draw the inter- and intra-column, inter-and intra-row, and column-row
interactions, the conventional attention layer is masked by a so-called visibility matrix which allows only a portion
of table elements to participate in the modeling of a specific element. For example, cells in the same row or the same
column can interact with each other. Apart from the BERT’s Masked Language Model objective, TURL introduces
an additional Masked Entity Recovery objective to reinforce the learning of factual knowledge embedded in the
table and represented by KG entities. The model is pre-trained on 570K unlabeled Wikipedia tables.
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Fig. 4. JenTab: Current system architecture (from [14]).

4. JenTab Toolkit

In this section, we explain the system architecture of JenTab. We outline the preprocessing steps executed before
JenTab’s actual pipeline. Then, we explain the offline resources calculated before the online run of JenTab and the
disambiguation contexts used to annotate a table. Finally, we explain the CFS pattern and the default pipeline of
JenTab with its variations.

4.1. Architecture

Figure 4 illustrates the most recent system design of JenTab. For the previous architecture, please refer to [13].
We opted for a distributed approach allowing to split the workload across several nodes. A central “Manager”
node orchestrates a family of associated “Runner” nodes. Runners contact the Manager to request new work items,
i.e., raw tables. After a work item is finished, results are sent back to the Manager, and the next one is requested.
The result of processing a single table consists of three parts: results correspond to annotations, audit data that
allows assessing the impact of individual modules, and possibly a list of any errors raised during the processing.
The Manager’s dashboard contains information on the current state of the overall system, i.e., processed and still
queued tables. In addition, it contains data about connected Runners, errors raised (if any), and an estimate of
the remaining processing time. Finally once finished, all gathered annotations can also be accessed. A Runner
coordinates the processing of a single table at a time through a series of calls to different services. “Solver” nodes
are the core service that perform the pre-processing steps and execute the chosen pipelines. This includes data
cleaning and primitive type detection (cf. Subsection 4.2). Conceptually, a Solver depends on two kinds of services:
A Proxy service to communicate with the target KG. We implemented a “Wikidata Proxy”, and a “DBpedia Proxy”
encapsulating Lookup APIs meant for fuzzy search and the SPARQL query endpoints of the corresponding KG.
Further, a Solver depends on a Generic Lookup — our primary means of tackling spelling mistakes. Proxy services
and the Generic Lookup rely on a centralized “Caching Server” reducing the number of queries issued by caching
already retrieved responses.

The developed architecture has several advantages. First, caches for computationally expensive tasks or external
dependencies increase the overall system performance. Further, it reduces the pressure on downstream systems,
especially when public third-party services are used. Second, when the target KG is to be substituted, all necessary
changes, like adjusting SPARQL queries, are concentrated within just two locations: the corresponding lookup and
endpoint services. Third, the distributed design allows for scaling well regarding the number of annotated tables.
Any increase in the number of tables can be mitigated by adding new Runners to cope with the workload. Finally,
the implementation allows for reusable and self-encapsulated pieces of code.
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4.2. Preprocessing

Before executing the actual pipeline, each table is run through preprocessing steps. We group them in “Data
Cleaning” and “Datatype Predicition”. We give their details as follows:

Data Cleaning First, we apply a series of steps to fix data issues in a table.

1. We start with using ftfy15 to fix any encoding issues encountered.
2. We use a regular expression to split up terms that are missing spaces like in “1stGlobal Opinion

Leader’sSummit” into “1st Global Opinion Leader’s Summit”.
3. We remove certain special characters like parentheses.
4. We replace the explicitly mentioned unknown values to null like “NA”, “Unknown”, “Undetermined” etc.
5. We capture the actual value of the classified date type cells. For example, “2010-11-23 November 23, 2010”

is translated to only “2010-11-23”.
6. We apply an off-the-shelf spell checker, autocorrect16, to fix typos resulting in an “autocorrected value” per

cell.

The result of these steps is stored as a cell’s “clean value”. We use this cleaned value during the actual execution
of JenTab’s pipeline. We deprecated the autocorrect step in 2021 due to its unstable behavior. Some values are
corrected in unrealistic words, i.e., do not fit in the given context. For example “Rashmon” that is expected to be
“Rashomon” (a movie from 1950) is converted to “Fashon”. Instead, we relied on the Generic Lookup (explained in
detail in Subsection 4.3). We apply such a series of steps to facilitate the CEA candidates generation by providing a
cleaner version of the given cell values. In return, we expect a higher performance of candidates matching.

Datatype Prediction We determine the primitive datatype of each column. While the system distinguishes more
datatypes, we aggregate the ones having a direct equivalent in Wikidata as the following four types:

1. OBJECT columns represent entities, those we solve CEA task for them since we check the given targets to
solve such task.

2. STRING columns that were classified as OBJECT but not found among the given targets. They would be
mapped to, e.g., entity labels or descriptions.

3. DATE columns represent date literals, which could be mapped later for a property like inception, start date,
etc.

4. NUMBER columns represent numerical values that would be mapped to literal properties as well.

Besides locating the entities of interest that would be mapped to CEA, such classification helps us develop a
datatype-specific property matching technique. For example, we solve the CPA task differently if the given column
is DATE or NUMBER.

4.3. Offline resources

In this section, we list the steps we conducted before the live run of JenTab. Usually, these steps are conducted
to solve a specific issue we have encountered in datasets. For example, Generic Lookup and Tough Tables (2T)
Cleaning are meant to fix spelling mistakes but for different conditions. The Biodiversity Dictionaries are developed
to tackle the problem of abbreviations in biodiversity datasets.

Generic Lookup Spelling mistakes and artificial noise are common challenges across STA benchmarks. A spe-
cialized lookup is our primary strategy for tackling this crucial issue. We created it ahead of time due to the re-
sources required for comparing cell values against all labels (and aliases) within Wikidata or DBpedia. We extracted
the unique values from all tables of a given dataset and matched those against labels of the respective KG using
an optimized Jaro-Winkler Similarity implementation based on [59] and a threshold for minimum similarity of 0.9.

15https://github.com/LuminosoInsight/python-ftfy
16https://pypi.org/project/autocorrect/

https://github.com/LuminosoInsight/python-ftfy
https://pypi.org/project/autocorrect/
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Fig. 5. Possible contexts for resolving and disambiguating annotations for subject cells only. Arrows indicate information used (from [15]).

Such an approach will fetch and store all labels that have a similarity between 1 (exact matches) and 0.9. The result
is a sqlite17 database which has the highest priority for the lookup during CEA-candidate generation.

Biodiversity Dictionaries In 2021, we built biodiversity dictionaries for species and chemical elements or com-
pounds to mitigate the impact of abbreviations. We constructed such dictionaries based on Wikidata. We queried
Wikidata with all instances of the taxon (?species wdt:P31 wd:Q16521) and programmatically fetched the
corresponding labels. From these labels, we created abbreviated variations by using one or two characters from
the first word followed by the full second name. So, “Canna glauca”, e.g., was converted into both “C.glauca”
and “Ca.glauca”. These variants were subsequently used as aliases for the respective Wikidata entities. The corre-
sponding lookup was used with the highest priority during our initial creation of CEA-candidates in the biodiversity
setting.

2T Cleaning In 2022, we developed a cleaning module for 2T [9] dataset. It is known for the huge amount of
artificially added misspellings to its tables. We have developed this strategy since our previously discussed Generic
Lookup failed to catch these noisy elements. Thus, our core idea is to locate the cells that are correctly spelled and
then replace all the artificial occurrences with the correct word. The first step is to find the correctly spelled words
by querying those cells in Wikidata. Those with exact matches are considered correct words. The second step is to
match the remaining values in the tables to the correctly identified values. We converted all the given cells into the
embedding space using fasttext [60] to avoid the out-of-vocab (OOV) problem. Then, we applied cosine similarity
among those vectors; we picked the correct target value if the similarity is ⩾ 70%. We ran this step offline before
the actual running of JenTab to solve the STA tasks. Thus, JenTab can work on relatively cleaner tables than those
provided in the original 2T dataset.

4.4. Disambiguation contexts

Tabular data offers different dimensions of context that can be used to either generate annotation candidates
(Create-Phase) or remove highly improbable ones (Filter-Phase). Figure 5 illustrates this visually. The Cell Context
is the most basic one, outlined in Figure 5a. Here, nothing but an individual cell’s content is available. We can then
define a Column Context as shown in Figure 5b. It is based on the premise that all cells within a column represent
the same characteristic of the corresponding tuples. For the annotation process, this can be exploited insofar that
all cells of a column share the same class from the KG. Annotations for cells in OBJECT-columns further have
a common class as required by the CTA task. Similarly, the assumption that each row refers to one tuple leads to
the Row Context of Figure 5c. Annotation candidates for the subject cell, i.e., a cell holding the identifier for the
respective tuple/row, have to be connected to their counterparts in all other cells within the same row. Finally, all
contexts can be subsumed in the Row-Column Context as given by Figure 5d. It combines the last two assumptions
representing the most exhaustive context.

17https://www.sqlite.org/index.html

https://www.sqlite.org/index.html
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4.5. CFS pattern

We base our approach on collecting mostly independent building blocks for each task following the pattern of the
CFS approach. The individual building blocks differ in what information they use and how accurate their results are.
They further differ in their performance characteristics: On the one hand, this refers to the time needed to execute
them. On the other hand, creation and filtration blocks vary in the number of candidates they output.

We maintain sets of candidates on different levels: For each cell, we maintain both the candidates for the respective
CEA task and those induced by this cell for the corresponding CTA task. Each pair of cells in the same row has a set
of candidates for the respective property connecting both cells contributing to the CPA task. The same is mirrored on
the column level. Here, we keep the onset of candidates for the CTA task and CPA candidates for the combinations
of columns.

Building blocks usually pertain to only one task as well as one CFS-stage: Create blocks generate candidates
of possible solutions for the respective task. Filter blocks reduce given sets of candidates. Here, we take a rather
conservative approach and only remove candidates that will not be a solution with a very high probability. Finally,
Select blocks pick a solution for a given set of candidates. Figure 6 summarizes the developed building blocks which
will be described in detail below. Unless noted otherwise, the building blocks only apply to columns of datatype
OBJECT as classified in the preprocessing. Further to query the KG, we rely on the official SPARQL endpoint of
Wikidata18 which imposes specific rate and execution time restrictions on our queries.

4.6. Create

In the following, we describe different building blocks that generate candidates for individual tasks.
CEA Label Lookup: The Label Lookup is the foundation of the pipeline. It does not depend on any prior

information other than the cell’s content and their datatype. We apply a series of strategies to retrieve candidates
based on the cells’ initial, clean, and autocorrected value. As each strategy succeeds in different cases, they are
applied in sequence until candidates are retrieved by one. All but the Generic Strategy use the Wikidata Lookup
Service19 to resolve from a given label to Wikidata entities.

– Generic Strategy compares the initial cell values with all Wikidata labels and aliases using the Jaro-Winkler
distance [61]. We iteratively20 lower the selection threshold from 1 (exact matches) to 0.9 until a set of
candidates is returned.

– Full Cell Strategy uses the initial cell values to query the lookup service.
– All Tokens Strategy splits a cleaned cell value into tokens removing all stopwords. The lookup service is then

queried with all possible orderings of these tokens.
– Selective Strategy removes any addition in parenthesis and uses the remainder to query the lookup service.
– Token Strategy splits the cleaned cell value into tokens and queries for each token in isolation.
– Autocorrection Strategy uses the autocorrected value from the preprocessing to query the lookup service.

CEA by row and column: This approach applies in cases where we could determine candidates for at least some
cells of datatype OBJECT within a row but failed for the subject cell. Furthermore, for the subject column, existing
candidates are required. If all conditions are met, we retrieve entities from the KG that are instances of a subject
column candidate and have a connection to at least one of the other candidates in the same row. Subsequently, these
entities are filtered such that the remaining ones have a connection to each object cell in the same row. Finally,
we compute the string distances between the remaining labels and the initial cell value and discard all that exceed
a certain threshold. Here, we use the Levenshtein distance [62] as implemented by edlib21. Finally, we add the
remaining entities as candidates to the subject cell in question.

18https://query.wikidata.org/
19https://www.wikidata.org/w/api.php
20To speed up the process, we use a many-to-many implementation for calculation [59].
21https://pypi.org/project/edlib/

https://query.wikidata.org/
https://www.wikidata.org/w/api.php
https://pypi.org/project/edlib/
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Fig. 6. Pool of building blocks and their assignment to CFS-stage and task. Create is indicated in red with a plus icon, Filter is represented in
green and a triangle sign and Select is shown in yellow with a circle symbol (from [13]).

CEA by row and CEA by column: These two approaches work in a similar fashion as CEA by row and column,
but drop one of its preconditions respectively. In CEA by row, a candidate does not have to be an instance of the
current column’s CTA-candidates. On the other hand, we apply CEA by column, when there are no other cells of
datatype OBJECT in the same row, or those cells have no candidates either.

CEA by subject: This approach is the inverse to CEA by row. Assuming that the subject cell of a row has a set of
candidates but any other cell of datatype OBJECT does not, it will fetch all entities from the Knowledge Base (KB)
that are directly connected to a subject cell candidate. We filter the resulting entities again by their string-distance
to the initial cell value before adding them as candidates.

CTA: To find candidates for each column of datatype OBJECT, we first retrieve the types for each cell individually
based on its current list of CEA-candidates. In DBpedia, we rely on rdf:type property to represent the types.
In Wikidata, a type denotes a combination of instanceOf (wdt:P31) and subclassOf (wdt:P279) relations. The
column’s type candidates are then given by the set of types appearing for at least one cell in this column. In addition,
we configured three settings of CTA module to Wikidata specifically as follows:

– P31 includes only direct parents using instance of (wdt:P31). This strategy does not include any higher
levels of classes.

– 2Hops includes “P31” with one additional parent (higher level) via subclass of (wdt:P279).
– Multi Hops creates a more general tree of parents following subclass of (wdt:P279) relations.

http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P279
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CPA: Candidates for column pairs’ relations are generated by first retrieving candidates for the connections
between cells of each row. We assume that there is a single subject column; thus, all other cells have to be connected
in some way to the cell of that column.

First, we retrieve all properties for a subject cell’s candidates, including both literal and object properties. Second,
we try to match individual properties to the values of other cells in the same row. If we have found a match, we add
the respective property as a candidate for the corresponding cell pair. Object properties are rather easy to match.
Here, we rely on previously generated CEA candidates of the respective target and merely compare those with the
object properties retrieved.

On the other hand, literal properties require more care. For them, we only consider matches to a cell whose
datatype has been determined as either DATE, STRING, or NUMBER in the preprocessing. If we can not establish an
exact match for a cell’s value, we resort to fuzzy matching strategies depending on the corresponding datatype. For
DATE-properties (RDF-type: dateTime), we try parsing the cell value using different date format patterns. If the
parsing succeeds and both dates share the same day, month, and year, we consider this a match. We omit time and
timezones for this comparison. In case of STRING-properties (RDF-type: string and langString), we extract
words from the given value and the retrieved Wikidata label. Then, we count how many words are shared between
the two string values. We consider a match if the overlap is above a certain threshold. For NUMBER-properties
(RDF-type: decimal) we tolerate a 10% deviation to still be considered a match according to Equation 1 where
cell_value is the table cell value and property_value is the retrieved property label.

Match =

{
true, if |1− cell_value

property_value | < 0.1

f alse, otherwise
(1)

Once candidates for each pair of cells are determined, we aggregate them to retrieve candidates on the column-
level. This initial generation corresponds to the union of all candidates found on the row-level for cells within the
respective columns.

4.7. Filter

Once we generated candidates for a particular task’s solution, we apply filter-functions to sort out highly improb-
able candidates. For create-functions depending on previously generated candidates, this can substantially reduce
the queries required and overall running time.

CTA-support: This filter works separately on each column of datatype OBJECT. First, it calculates the support
of all current CTA candidates concerning the cells of a column. A cell supports a given CTA candidate if any of
its current candidates has the corresponding type22. This filter neglects all cells that are either empty or have no
CEA-candidates at the moment. Next, we remove all CTA-candidates from the respective column that do not have a
support by at least 50% of the cells in this column. Finally, we remove all CEA-candidates from the corresponding
cells, which have no types in the remaining CTA-candidates.

CEA by unmatched properties: After generating the properties for all cells on a row-level, some CEA-
candidates will have no connection to any other cell in the same row. This filter removes these candidates, leav-
ing only those that have a connection to at least one cell in their respective row. It applies to all cells of datatype
OBJECT.

CEA by property support: This filter applies only to subject cells. We compute the support of a candidate as
the number of cells in the same column it can be connected to23. We determine the maximum support for each of a
cell’s candidates and remove all those with lower support.

CEA by string distance: Some create-functions generate a relatively large number of CEA-candidates. This
filter reduces that number by removing candidates whose label is too distant from the initial cell value. We rely on a

22Kindly refer to the definition of “type” in this context as given in the generation of CTA-candidates before.
23For non-subject cells, this value can only be 0 or 1, depending on whether they could be matched to the respective subject cell. This case is

already covered in a different filter and thus excluded here.
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Col0 P31

Spaziano . Florida Q18146819, Q19692072

Smith v/ Maryland Q18146819, Q19692072

SEC v. Texas Gulf Sumphur Co. Q2334719

Reieer v. Thompso Q18146819, Q19692072

Reed v. Pennsylvania Railroad Compan| Q18146819, Q2334719

Building Service Employees International Union Local 262 v/ 
Gazzam

Q18146819, Q19692072

Ramspeck v. Federal Trial Exainers Conference Q18146819, Q2334719

Budk v. California Q18146819, Q19692072

Cowma Dairy Company v. United States Q18146819, Q2334719

Noswood v. Kirkpatrick Q18146819, Q19692072

Mongomery Building & Construction Trades Council v. 
Ledbetter Erection Company

Q18146819, Q19692072

Southern Pacfic Company v. Gileo Q18146819, Q19692072

Colgate-Palmolive-Peft Company v. National Labor Relations 
Board

Q18146819, Q19692072

Unitee States v. United States Smelting Refining Q18146819, Q19692072

Poizzi v. Cowles Magazies Q18146819, Q19692072

(a) Cell values and corresponding types.

Q180684, …

Q2334719

Q19692072

Q18146819

10

24

13

24

(b) Hierarchy of retrieved types.
Fig. 7. Example for CTA selection by LCS, the selected type is highlighted in green (from [13]).

normalized version of the Levenshtein distance [62], which uses the length of the involved strings as a normalizing
factor. To keep any valid candidate, we resort to a rather conservative threshold, thus retain all candidates with a
value of at least 0.5 for any of its labels.

4.8. Select

The target of all tasks (CEA, CTA, and CPA) is to select the most suitable solution per each task. Hence at
some point, we have to select a single entry from the remaining candidates. As some of the methods below cannot
distinguish between the candidates in a certain situation, we apply them in sequence until we find a solution. If only
one candidate is left after the previous filter steps, we pick it for an obvious reason.

CEA by string similarity: For the remaining candidates, we calculate the string distance to the original cell
value using the Levenshtein distance [62]. If there are multiple candidates with the same distance, we break those
ties using the “popularity” of the respective candidates. We define popularity as the number of triples the respective
candidate appears in them. The intuition is that if there was no other way to distinguish among the candidates in
previous filter-steps, using the popularity results in the highest probability of selecting the correct candidate.

CEA by column: Sometimes filter-functions accidentally remove the correct solution from consideration. As
those cases are quite rare, this affects only a small number of cells in a column. Further, the value of non-subject
cells is often not unique throughout their column. In case no candidate is left for a cell, this function looks for
occurrences of the same value in other cells of the same column. If we find a match, we apply their solution to the
current cell.

CTA by Least Common Subsumer (LCS): The candidates for the CTA task do not stand in isolation but are
part of a class hierarchy. Given an example of Court Cases in R3, cell types are shown in Figure 7a. We first
expand this hierarchy for all remaining CTA-candidates, as shown in Figure 7b. Next, we compute the support
for all candidates similar to the respective filtering-function. We remove all candidates with support less than the
maximum. We choose the one with the longest path from the root node of the hierarchy as a solution from the
remaining candidates.

CTA by Direct Parents: This function selects the CTA-solution by a majority vote. It will fetch the type for all
remaining CEA-candidates of a column and then select the one appearing most often. In contrast to the previous
definition of type, it only considers the direct connections of an entity, i.e. instanceOf (wdt:P31) and subclassOf
(wdt:P279) but not their combination (wdt:P31/wdt:P279).

http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/prop/direct/P279
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CTA by Popularity: In case the other methods failed to produce a result due to ties, this function will break those
ties by using the candidates’ popularity. Again, this is given by the number of corresponding triples the candidate
appears in the entirety of the KB. As there is no semantic justification for this selection method, it is only used as a
matter of last resort.

CPA by Majority Vote: We compute the support for a given CPA-candidate. Here, this refers to the number
of remaining cell-candidate-pairs that use the respective property. We subsequently select the candidate with the
highest support as a solution.

4.9. Default pipeline

Figure 8 shows the details for the default configuration of our pipeline, pipeline_full. The current block
order results from experimentation using the available input tables as a source. After each run, we scanned the
results for tables lacking some mappings and investigated causes and possible solutions. We aggregate the individual
building blocks into groups for the sake of brevity in the following description.

Group 1 forms the core of our pipeline and is responsible for most of the mappings. Based on the CEA Label
Lookup, it generates candidates for all three tasks and removes only the most unlikely candidates from further
consideration.

Group 2 represents a first attempt to find missing CEA-mappings based on the context of a row and a column.
Be kindly reminded that all create blocks only work on cells that currently have no candidates attached. So both
blocks here apply to cells with no mappings from Group 1 . CEA by Row and Column is put before CEA by Row,
as it relies on a narrower context and thus will provide more accurate results. However, it might fail, e.g., when the
current CTA-candidates do not include the proper solution. In such cases, CEA by Row will loosen the requirements
to compensate. If either of these attempts provided new candidates, we re-execute the creation of CTA and CPA
candidates afterwards in Group 3 .

Group 4 is our first attempt at selecting solutions. After another filtering step on CEA-candidates using the
row context, we continue to select high-confidence solutions. As hinted before, this might fail to produce proper
mappings for a fraction of CEA-targets. Groups 5 , and 7 try to fill in the gaps for at least some of them. If new
candidates are found, groups 6 and 8 will filter and select from them.

Finally, Group 9 represents our means of last resort. Again, they only apply to targets for which we could not
generate a solution before. Here, we assume that not only parts of the context are wrong but doubt every part of the
context. The used blocks will reconsider all candidates discarded in the previous steps and attempt to find the best
solution among them.

4.10. Other pipelines

Since 2021 and based on the original JenTab pipeline, pipeline_full, we derived multiple variations and
evaluated them subsequently. This provided a better insight into the impact of individual components on the exe-
cution time and the quality of results. Most of these variations share the same initial phase to create candidates for
CEA, CTA, and CPA if required.

pipeline_essential This pipeline reduces pipeline_full to its core components. In particular, each
step runs only once, excluding any re-execution in the process. It became necessary initially as some tables
proved too demanding when executed using pipeline_full.

pipeline_no_cpa Compared to pipeline_full, this pipeline removes any CPA-related components. In
particular, filter operations involving relations among cells as well as selecting CPA-solutions are omitted in
this pipeline. It was applied in tasks that featured only CEA and CTA targets and omitted any CPA ones.

pipeline_numeric This pipeline is specifically geared towards tables that feature a single object (the subject)
column and one or more non-object (primarily numeric) column(s). After creating initial candidates for all
tasks it filters them with the least frequent properties to determine the most likely CEA and thus indirectly
CTA-candidates. The latter is then used while applying CEA by Column that adds new candidates to un-
matched cells based on all instances of the identified types. After subsequent additional filter steps, the default
selection process is used to determine the final solutions.
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Fig. 8. pipeline_full as an arrangement of CFS building blocks (from [13]).

pipeline_conditional As pipeline_numeric only applies to a subset of tables, this pipeline uses a
two-step approach: In a first step, pipeline_numeric is applied to all tables meeting the respective pre-
conditions. If these conditions are not met, or the returned result covers less than 80% of targets, the table is
again processed using pipeline_full.

pipeline_header This pipeline is based on pipeline_no_cpa which contains all modules from the default
configuration except the CPA creation, filteration, and selection parts. However, the new pipeline overrides
the CTA with header candidates. Indeed, such method suits datasets that contain meaningful header.

5. Evaluation

In the years from 2020 to 2022, we conducted a series of evaluations using the SemTab challenge for large-scale
general domain datasets and using a biodiversity-specific dataset. In 2023, we extended our evaluation by adopting
an automatically generated large-scale food-specific dataset as well. In the following, we describe the evaluation
corpora, preprocessing, and generic lookup strategy’s effectiveness. In addition, we evaluate our CEA creation
strategies and compare the accuracy scores of JenTab compared to the other systems tackling the same tasks. Finally,
we discuss the runtime of JenTab on the evaluation benchmark and give an overview of its performance over the
years of development.

5.1. Benchmarks

Before we evaluate JenTab in various dimensions, e.g., accuracy scores, we give an overview of the benchmarks
used in the evaluation.

– SemTab 2020 [7] is an Automatically Generated (AG) benchmark that contains over 130,000 tables from
Wikidata and is divided into four rounds. The tasks are to annotate these tables using Wikidata.
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Fig. 9. Confusion matrix for type prediction. A 4-label classification task (from [15]).

– HardTables [8, 25] is an AG dataset with a first release during the second round of SemTab 2021 with 7,207
tables. The authors filtered it to include only the hardest cases in SemTab 2022 and released it again with
3,691 and 4,659 tables in the first and second round of that year’s challenge. The target KG concerning its
tasks is Wikidata.

– Tough Tables (2T) [9] is a dataset consisting of 180 tables annotated from both Wikidata and DBpedia. It has
been used during SemTab 2021 and 2022. This dataset is known for its very high level of entity ambiguity
and its massive amount of artificially added noise to table cells.

– BioTables [5, 63] is a biomedical domain-related dataset for STA. It is also an AG dataset comprising 110
tables. It was released and used during SemTab 2021. This benchmark has a unique characteristic that features
a high average number of columns, 2500.

– BiodivTab [11, 12] is a real-world and manually annotated benchmark from biodiversity research. It consists
of 50 tables. This benchmark is released and used for the first time during SemTab 2021, where the target KG
is Wikidata. It is released and used again during the third round of SemTab 2022, where the target KG was
changed to DBpedia. The authors of this paper have constructed this benchmarks in its two versions, however,
details of its construction are beyond this paper.

– tFood [64] is an AG dataset derived from the food domain and has two types of tables: 1) horizontal, relational
tables each representing a collection of entities, and 2) entity tables, each representing a single entity. In this
paper, we use the horizontal tables fold since it provides ground truth mappings to Wikidata for CEA, CTA,
and CPA tasks.

5.2. Datatype Prediction Assessment

For evaluation, we start with assessing the preprocessing during the “Type Prediction” step. This step is respon-
sible for determining a column’s datatype (cf. Subsection 4.2). Figure 9 shows is confusion matrix. It shows a 99%
prediction accuracy score. We used the SemTab 2020 benchmark for evaluating this step. We used the ground truth
for CEA and CPA tasks to query Wikidata for their types. Values represent the actual datatypes while predicted
values are by JenTab.

5.3. Generic Lookup Coverage

Spelling mistakes are a crucial problem tackled using the “Generic Strategy”. We create this lookup before the
actual pipeline run due to the resources required. First, we extract the unique values from all tables of a dataset and
match them against labels (and aliases) of the target KG using an optimized Jaro-Winkler Similarity implementation
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Table 2
Generic Strategy: Unique labels and ratio of resolved labels per round.24

Year Rounds Dataset Target Unique Labels Matched Matched

2020 R1 SemTab2020 Wikidata 252,329 249,806 99.0%
2020 R2 SemTab2020 Wikidata 132,948 131,486 98.9%
2020 R3 SemTab2020 Wikidata 361,313 357,700 99.0%
2020 R4 SemTab2020 Wikidata 533,015 515,959 96.8%

2021 R1 2T Wikidata 69,980 62,908 89.89%
2021 R1 2T DBpedia 66,340 59,168 89.19%
2021 R2 HardTables Wikidata 249,625 249,025 99.76%
2021 R3 HardTables Wikidata 47,809 46,865 98.03%

2022 R1 HardTables Wikidata 19,107 18,928 99%
2022 R2 HardTables & 2T Wikidata 74,177 67,986 91.6%
2022 R2 2T DBpedia 65,223 58,235 89.3%

based on [59] and a minimum similarity of 0.9. This lookup represents our primary and only source to fix spelling
mistakes since 2021. The effectiveness of the lookup is illustrated in Table 2 over the three years. For the SemTab
2020 benchmark, almost 99% of unique labels were resolved in the first three rounds. However, this is reduced to
∼ 97% in the last round.

In 2021, more than 89% of unique values could be matched including a 99.76% success rate for R2’s HardTables.
However, it is significantly lower for the 2T dataset. This dataset has a massive amount of spelling mistakes that the
selected threshold could not solve.

In 2022, for the synthetic dataset, HardTables, the matching percentage stayed high with up to 99% in R1 while
2T results remained as low as in the previous year reaching only around 89% in R2 for DBpedia. The low matching
results guided us to develop a more sophisticated cleaning step before the actual run, as discussed in Subsection 4.3.
We have not created a generic lookup for BiodivTab in 2021 and 2022 since our approach here relies on dictionaries
for taxons and chemical elements — the prevalent type of cell values in this dataset.

5.4. Audit Results

We have implemented five strategies for creating initial CEA candidates, including Generic Lookup, Full Cell,
Tokens, All Tokens, Selective, and Autocorrect. We investigated their use using various benchmarks.

CEA Creation Figure 10 shows how much each strategy across general domain benchmarks. Generic Lookup
proves its strength in solving spelling mistakes and, thus, is the most used strategy for all benchmarks. We re-
cently disabled “Autocorrect” and “All Tokens” strategies due to their high computational requirements in the recent
benchmarks (BioTables and HardTables). This underlines the need for various strategies to capture a wide range of
useful information inside each cell. The shown distribution also reflects our chosen order of methods. For example,
“Generic Strategy” has the highest priority and is used most of the time. On the other hand, “Autocorrect” has the
lowest priority and is used as a means of last resort. We handle the BiodivTab benchmark differently, i.e., we build
a dictionary for taxons and chemical compounds and use it as a customized lookup service. Figure 11 shows the
distribution of selected methods to create CEA candidates in both editions of BiodivTab, Wikidata and DBpedia.

CEA Selection Figure 12 outlines the use of each strategy. The dominant select approach is “String Similarity”,
used by 38% more than the “Column Similarity” in all benchmarks except HardTables where the “String Similar-
ity” managed to solve all cases. For BiodivTab, Figure 13 depicts the methods distribution for the CEA selection
strategies. For both versions, i.e., Wikidata and DBpedia, “String Similarity” solved more than double the amount
compared to “Column Similarity”.

24We deactivated the generic lookup option from JenTab during the processing of the tFood dataset, so no results are available here.
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Fig. 10. Audit statistics for CEA creation. y-axis is the log scale of the solved cells.

CTA Selection Figure 14 describes the distribution of CTA selection methods with LCS being the dominant
strategy. It shows continuous success in solving the task for all benchmarks, especially BioTables and HardTable.
Both benchmarks did not need any backup solutions to select the CTA candidate at all. For BiodivTab, Figure 15
highlights the distribution of CTA selection strategies. The dominant method in the Wikidata version is the LCS
where we activated the “2Hops” mode. However, the primary method in the DBpedia version is “Majority Vote”.
We observe that LCS successfully finds more solutions than the other relying less on backup strategies or tiebreak-
ers. The same prioritization from the CEA selection is also applied in CTA. The dominant method, e.g., LCS or
“Majority Vote”, is invoked more frequently due to its higher priority during execution. Other backup strategies try
to solve the remaining columns if previous methods failed.

5.5. Accuracy Scores

In the following, we compare JenTab to existing state-of-the-art systems tackling STA tasks to demonstrate its
effectiveness25.

SemTab 2020 (cf. Table 3). This represents the first participation of JenTab in SemTab. We did not participate in
R1’s CPA task since the corresponding functions were not yet implemented. However, we continued development
after the challenge and report a complete list of scores here. In this benchmark, JenTab demonstrated high scores
across all rounds, especially in the CPA task. JenTab is achieved third place for the given benchmarks and without
complex dependencies or a KG dump.

HardTables (cf. Table 4). JenTab kept its high performance and rank during 2021’s edition of this benchmark.
However, during the second round in 2022, it achieved lower scores. A reason could be that HardTables during this
challenge’s edition is way more complicated compared to previous instances. A higher level of ambiguity has been
introduced causing all top participants, not only JenTab, to achieve lower scores.

Tough Tables (2T) (cf. Table 5). It first appeared during R4 of SemTab 2020 and used Wikidata as the target KG.
In 2021, it appeared again with an updated ground truth from Wikidata. In addition, the authors added DBpedia as
an additional target KG. The scores by JenTab and others systems are relatively lower than those on AG datasets.
The main reason for these low scores is the high level of ambiguity that could confuse even a human [9] of the table

25SemTab challenge results are used for comparison.
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Fig. 11. Audit statistics for CEA creation (BiodivTab). y-axis is the log scale of the solved cells.
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Fig. 12. Audit statistics for CEA selection. y-axis is the log scale of the solved cells.

cells. Another reason is the excessive amount of artificial spelling mistakes added to the entries. In 2020, JenTab was
still more sensitive to the latter issue than other systems. We continuously developed JenTab to tackle the problem
of misspellings. For CEA, over the years, JenTab gained much higher scores on this dataset from 37% to slightly
above 80%, given Wikidata as a target KG.

BioTables (cf. Table 6). JenTab showed consistent scores and ranked among the top systems. This benchmark
introduced new obstacles for all participants. Initially, we failed to run our pipeline_full due to several time-
out issues. However, we developed our default pipeline and managed to execute it on this benchmark and reach
competitive scores.
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Fig. 13. Audit statistics for CEA selection (BiodivTab). y-axis is the log scale of the solved cells.
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Fig. 14. Audit statistics for CTA selection. “2Hops” mode. y-axis is the log scale of the solved cells.

BiodivTab (cf. Table 7). JenTab, achieved the best score for the CEA task. However, the best CTA score was
achieved by KEPLER [43]. We gained low scores of 60%/10% in 2021 and 55%/41% in 2022 (CEA / CTA).
In contrast, for the synthetic dataset, HardTables 2021, DAGOBAH achieved the maximum F1-score 97.4%/99%
(CEA / CTA). These low scores are due to the unique benchmark characteristics differing from the traditional AG
and general-domain benchmarks.

tFood (cf. Table 8). We asked the authors of DAGOBAH [66] and s-elbat [46] to solve this dataset beyond the
scope of SemTab 2023 to compare all systems. We gained our lowest scores on this benchmark as the case for other
systems. We need to investigate in depth concrete examples of this dataset to determine the root cause. Possible
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Fig. 15. Audit statistics for CTA selection (BiodvTab). “2Hops” mode. y-axis is the log scale of the solved cells.

reasons are either the dataset is too hard to solve for STA systems, i.e., lacking enough context to disambiguate table
cells and columns, or the dataset contains errors and lacks data quality.

General Overview We give an overview of JenTab scores on both AG (cf. Figure 16), and 2T (cf. Figure 17)
datasets between 2020 to 2022. For the AG datasets, the average F1-score for the three tasks – CEA, CTA, and CPA
– are 0.91, 0.93, and 0.97 respectively. For the 2T dataset, the average F1-score for both CEA and CTA tasks is 0.54.
This shows JenTab’s sensitivity for high levels of artificial noise. In 2022, CEA results have significantly improved
due to a sophisticated cleaning module for such datasets.

5.6. Runtime Performance

During JenTab’s development, we used regular laptops for execution, e.g., two core i7 machines, with 16GB and
8GB of memory. Starting from 2021, we hosted added a virtual machine with 256 cores and 64GB of memory. We
set up three different experiments to test the effect of CTA selection strategies for the SemTab 2020 benchmark.
Besides low scores, the Multi-Hops strategy is also computationally expensive. Table 9 shows the processing time
for all four rounds with the number of used runners for each mode setting of the CTA task. Close inspection revealed
that the execution time is largely dominated by the responses of Wikidata servers and thus beyond our control. The
execution was time-scoped, i.e., an upper limit for the time per table was set. This allowed the system to converge
faster compared to the initial implementation of JenTab in 2020, with, e.g., R4 showing a more than 50% reduction
in time. Intermediate results are cached across rounds, saving time and lowering the number of requests to external
services. Our modular approach allows us to scale the number of runners based on available resources and speed up
the overall process.

We excluded the “Multi-Hops” from further use and limit ourselves to “P31” and “2Hops”. Table 10 shows the
runtime of JenTab during its participation in 2021 and 2022. This table shows the configuration yielding the best
scores. For 2021, the setup of CTA is “2Hops”, but for 2022 benchmarks, we selected “P31”. The 2020 benchmark is
the average of the corresponding setting’s four rounds from the previous table. We summarize JenTab’s performance
in Figure 18. We point out the continuous enhancements developed to reduce the required resources across its years
of development.
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Table 3
SemTab 2020 top participants’ scores (AG-datasets). F1 - F1 Score, Pr - Precision, R - Recall, AF1, APr, and AR - Approximate version of F1
Score, Precision, and Recall respectively.

CEA CTA CPA

Round System F1 Pr AF1 APr F1 Pr

R1 MTab [27] 0.987 0.988 0.885 0.884 0.971 0.991
R1 LinkingPark [39] 0.987 0.988 0.926 0.926 0.967 0.978
R1 SSL [40] 0.936 0.936 0.861 0.860 0.943 0.943
R1 bbw [31] NA NA NA NA NA NA
R1 DAGOBAH [29] 0.922 0.944 0.834 0.854 0.914 0.962
R1 JenTab 0.968 0.969 0.962 0.965 0.984 0.988

R2 MTab [27] 0.995 0.995 0.984 0.984 0.997 0.997
R2 LinkingPark [39] 0.993 0.993 0.984 0.985 0.993 0.994
R2 SSL [40] 0.961 0.961 0.966 0.966 0.973 0.973
R3 bbw [31] 0.892 0.960 0.914 0.929 0.991 0.992
R2 DAGOBAH [29] 0.993 0.993 0.983 0.983 0.992 0.994
R2 JenTab 0.975 0.975 0.965 0.965 0.984 0.984

R3 MTab [27] 0.991 0.992 0.976 0.976 0.995 0.995
R3 LinkingPark [39] 0.986 0.986 0.978 0.979 0.985 0.988
R3 SSL [40] 0.906 0.906 0.913 0.913 0.815 0.815
R3 bbw [31] 0.954 0.974 0.960 0.966 0.949 0.957
R3 DAGOBAH [29] 0.985 0.985 0.974 0.974 0.993 0.994
R3 JenTab 0.967 0.967 0.955 0.959 0.981 0.987

R4 MTab [27] 0.993 0.993 0.981 0.982 0.997 0.997
R4 LinkingPark [39] 0.985 0.985 0.953 0.953 0.985 0.985
R4 SSL [40] 0.833 0.833 0.946 0.946 0.924 0.924
R4 bbw [31] 0.978 0.984 0.980 0.980 0.995 0.995
R4 DAGOBAH [29] 0.984 0.985 0.972 0.972 0.995 0.995
R4 JenTab 0.974 0.974 0.945 0.93 0.993 0.994

6. Discussion and Limitations

JenTab is easily extensible and its components are highly configurable. For example, it provides an easy way
to change the target KG and enable various settings for solving the STA tasks. Currently, it contains six pipelines
that we developed based on various dataset characteristics. In addition, it supports annotations from both Wikidata
and DBpedia. JenTab adopts a distributed approach that leverages the capabilities of the individual client machines.
This allows for a scalable framework that can process large-scale tabular data benchmarks. We tested JenTab on
more than 156, 000 tables in the scope of the SemTab challenge. JenTab has a reasonable amount of open-source
dependencies and is well-documented. In addition, it supports an easy-to-use execution via Docker containers, as
seen in Listing 1.

Listing 1: JenTab docker commands

docker-compose -f docker-compose.manager.yml up
docker-compose -f docker-compose.yml up
docker run --network="host" runner

JenTab won the second prize in the “Usability track” by IBM research in 2021. In addition, JenTab is the only
participant obtaining the “Artificate Availability Badge” by SemTab 2022. This badge is awarded for systems that
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Table 4
JenTab & SOTA scores (HardTables 2021-2022). F1 - F1 Score, Pr - Precision, R - Recall, AF1, APr, and AR - Approximate version of F1
Score, Precision, and Recall respectively.

CEA CTA CPA

Year Round System F1 Pr AF1 APr F1 Pr

2021 R2 MTab [28] 0.985 0.985 0.977 0.977 0.997 0.998
2021 R2 DAGOBAH [30] 0.975 0.975 0.976 0.976 0.996 0.996
2021 R2 Magic [41] 0.836 0.947 0.757 0.681 0.865 0.954
2021 R2 Kepler-aSI [43] 0.975 0.975 0.894 0.931 0.915 0.989
2021 R2 JenTab 0.966 0.967 0.914 0.917 0.996 0.997

2021 R3 MTab [28] 0.968 0.968 0.984 0.984 0.993 0.993
2021 R3 DAGOBAH [30] 0.974 0.974 0.990 0.990 0.991 0.995
2021 R3 Magic [41] 0.641 0.721 0.687 0.687 0.788 0.936
2021 R3 Kepler-aSI [43] NA NA 0.244 0.244 NA NA
2021 R3 JenTab 0.940 0.940 0.942 0.942 0.992 0.992

2022 R1 KGCODE-Tab [65] 0.893 0.916 0.942 0.944 0.906 0.918
2022 R1 DAGOBAH [66] 0.954 0.955 0.975 0.975 0.984 0.99
2022 R1 s-elbat [46] 0.945 0.964 0.951 0.957 0.983 0.989
2022 R1 JenTab 0.945 0.946 0.938 0.940 0.975 0.986

2022 R2 KGCODE-Tab [65] 0.856 0.875 0.968 0.971 0.916 0.943
2022 R2 DAGOBAH [66] 0.904 0.905 0.96 0.96 0.931 0.97
2022 R2 s-elbat [46] 0.825 0.875 0.859 0.878 0.931 0.96
2022 R2 JenTab 0.751 0.758 0.836 0.881 0.872 0.921

Table 5
JenTab and existing systems scores (2T dataset). F1 - F1 Score, and Pr - Precision. AF1, and APr - Approximate version of F1 Score, Precision
respectively.

Wikidata DBpedia
CEA CTA CEA CTA

Year System F1 Pr AF1 APr F1 Pr AF1 APr

2020 MTab [28] 0.907 0.907 0.885 0.884 NA NA NA NA
2020 LinkingPark [39] 0.810 0.811 0.926 0.926 NA NA NA NA
2020 SSL [40] 0.198 0.198 0.861 0.860 NA NA NA NA
2020 bbw [31] 0.863 0.927 NA NA NA NA NA NA
2020 DAGOBAH [40] 0.412 0.749 0.834 0.854 NA NA NA NA
2020 JenTab 0.374 0.541 0.574 0.626 NA NA NA NA

2021 DAGOBAH [30] 0.923 0.923 0.832 0.832 0.945 0.946 0.422 0.424
2021 AMALGAM [42] 0.658 0.791 0.476 0.422 NA NA NA NA
2021 Kepler-aSI [43] 0.194 0.760 0.464 0.481 0.110 0.644 0.027 0.133
2021 Magic [41] NA NA NA NA 0.184 0.506 0.159 0.628
2021 JenTab 0.457 0.520 0.697 0.697 0.607 0.669 0.460 0.468

2022 KGCODE-Tab [65] 0.905 0.913 0.543 0.546 0.827 0.830 0.480 0.484
2022 DAGOBAH [66] 0.945 0.946 0.409 0.409 NA NA NA NA
2022 s-elbat [46] 0.937 0.938 0.366 0.366 0.789 0.808 0.373 0.375
2022 JenTab 0.802 0.807 0.346 0.356 0.572 0.792 0.234 0.290



N. Abdelmageed et al. / JenTab 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
JenTab & SOTA scores (BioTables 2021). F1 - F1 Score, Pr - Precision. AF1, and APr - Approximate version of F1 Score, and Precision
respectively.

CEA CTA CPA

Year Round System F1 Pr AF1 APr F1 Pr

2021 R2 MTab [28] 0.985 0.985 0.977 0.977 0.997 0.998
2021 R2 DAGOBAH [30] 0.975 0.975 0.976 0.976 0.996 0.996
2021 R2 Magic [41] 0.836 0.947 0.757 0.681 0.865 0.954
2021 R2 Kepler-aSI [43] 0.975 0.975 0.894 0.931 0.915 0.989
2021 R2 JenTab 0.966 0.967 0.914 0.917 0.996 0.997

Table 7
JenTab & SOTA scores (BiodivTab 2021-2022) [5, 25]. F1 - F1 Score, Pr - Precision, AF1, and APr - Approximate version of F1 Score and,
Precision respectively.

CEA CTA

Year Target System F1 Pr AF1 AP1

2021 Wikidata MTab [28] 0.522 0.527 0.123 0.282
2021 Wikidata Magic [41] 0.142 0.192 0.10 0.253
2021 Wikidata DAGOBAH [30] 0.496 0.497 0.381 0.382
2021 Wikidata mantisTable [37] 0.264 0.785 0.061 0.076
2021 Wikidata KEPLER [43] NA NA 0.593 0.595
2021 Wikidata JenTab 0.602 0.611 0.107 0.107

2022 DBpedia KGCODE-Tab [65] 0.910 0.910 0.870 0.870
2022 DBpedia DAGOBAH [66] NA NA 0.620 0.620
2022 DBpedia s-elbat [46] NA NA 0.06 0.06
2022 DBpedia JenTab 0.550 0.610 0.420 0.412

Table 8
JenTab & SOTA scores (tFood 2023) . F1 - F1 Score, Pr - Precision, AF1, and APr - Approximate version of F1 Score and, Precision respectively.

CEA CTA CPA

System F1 Pr AF1 APr F1 Pr

DAGOBAH [66] 0.012 0.069 0.305 0.422 0.013 0.176
s-elbat [46] 0.012 0.067 0.339 0.553 0.034 0.085
TSOTSA [48] 0.045 0.041 0.031 0.031 0.285 0.285
Kepler-aSI [45] - - 0.105 0.105 0 0
JenTab 0.01 0.052 0.320 0.424 0.031 0.176

Table 9
Execution time for different setups (SemTab2020 benchmark).

R1 R2 R3 R4

Mode Days Runners Days Runners Days Runners Days Runners

P31 0.5 4 2.5 4 1.5 6 2 4
2Hops 1 4 1.2 4 2 4 1.1 8

Multi Hops 1 4 1.5 4 2.5 6 3.5 6
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Fig. 16. JenTab F1-scores Automatically Generated (AG) datasets [2020-2022].
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Fig. 17. JenTab F1-scores Tough Tables (2T) datasets [2020-2022].

are open-source data and code, well-documented, and have open-source and reasonable dependencies. The open-
source data includes the pre-computed lookup and the system solutions. We released both of them to be publicly
available to enable further analysis by future work. For example, Avgardro et al. [67] used the output of our system
in a deeper quality check framework. JenTab demonstrated effectiveness in this work compared to other state of
the art. Further, Chaves-Fraga and Dimou [68] used our artifacts to compare fully automatic systems versus the
declarative mapping rules.
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Table 10
Execution time for different setups (SemTab 2020-2022 benchmarks).

Mode Year Dataset Target Runner Time

P31 2020 SemTab2020 Wikidata 4.5 1.5 Days
2022 HardTables Wikidata 3 11 Hours
2022 2T DBpedia 1 5 Hours
2022 2T Wikidata 1 3 Hours
2022 BiodivTab DBpedia 1 1 Hour

2 Hops 2020 SemTab2020 Wikidata 5 1.33 Days
2021 HardTables Wikidata 1 10.5 Hours
2021 2T DBpedia 1 1 Day
2021 2T Wikidata 2 11 Hours
2021 BioTables Wikidata 1 7 Hours
2021 BiodivTab Wikidata 1 1.5 Hours
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Fig. 18. Runners and runtime of JenTab [2020-2022].

JenTab provides an overview of the current processing state. Figure 20 depicts a screenshot of the centralized
Manager node of JenTab. It shows how many tables are in progress, successfully completed, failed to complete, and
the errors returned. It stores the results and can export them in the required format. The output format is shown in
Figure 19 where Wikidata is the target KG. First, CEA results include the file/table name without extension, row id,
column id (together they point to a specific cell), and the mapped entity from KG. Second, CTA results consist of
file/table name, target column id, and the mapped semantic type or class from the KG. Finally, CPA output contains
the file/table name, subject and object columns id, and their semantic property or relation from the KG. The Manager
enables a debug feature by retrieving tables with no or incomplete annotations to help us investigate these hard cases
more closely. Such features helped us identify each dataset’s characteristics and facilitate error analysis. Moreover,
the Manager contains audit statistics, i.e., the loads on individual system components (e.g., CEA Creation Module)
making the system more transparent.

JenTab is a top performer system solving STA tasks. During its years of development, it achieved a high accuracy
in general domain benchmarks. On average and given all the Automatically Generated (AG) datasets, it achieved
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filename row_id col_id entity

(a)

filename col_id type

(b)

filename subj_id obj_id prop

(c)

Fig. 19. JenTab: Output snippet. (a) CEA, (b) CTA, and (c) CPA.

Fig. 20. JenTab: Manager screenshot.

0.91, 0.93, and 0.97 F1-scores (CEA, CTA, and CPA). In the biodiversity domain, JenTab was less effective. It
achieves 60% and 41% for CEA and CTA tasks for the BiodivTab dataset. These scores are quite low compared to
AG datasets due to the unique characteristics of the biodiversity dataset.
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6.1. Limitations

JenTab relies on live lookup APIs and SPARQL query endpoints of target KGs. Thus, the performance of JenTab
is constrained by these external services and their usage limits. Benchmark datasets and their ground truth are
created at some point in time. Hence, looking for annotations in the current and live version of the target KG can
have a negative effect on accuracy scores. Using the live APIs would be recommended for live deployments of
JenTab, but for benchmark datasets, an offline dump will perform better.

CTA solutions are crucial. We investigated the effect of CTA selection on the scores of other tasks and developed
three strategies relying on the direct types and their parents. Our findings show that these direct parents, e.g., “P31”,
suit easy-to-solve, auto-generated datasets. However, we found that adding one more level to these parents “2Hops”
is a better fit for more challenging datasets. We do not recommend using more hierarchy levels like “MultiHops”
since this produces very general, inaccurate solutions. JenTabs uses the assumption that semantic types are derived
via the direct parents or higher levels. However in real-world scenarios like BiodivTab, the most fine-grained type
may be given by another property, e.g., wd:P105 in the case of taxon-related columns. JenTab detected these
columns as “taxon”, e.g., wd:Q16521, which is correct class but not the most fine-grained solution.

7. Conclusions & Future Work

We developed a modular approach called JenTab to solve STA tasks. This framework aims to match individual
components of tabular data to a KG. JenTab is easily extensible and its components are highly configurable provid-
ing an easy way to change the target KG and enabling various settings to adapt to it. JenTab provides six pipelines
for both Wikidata and DBpedia. JenTab won the second prize in the “Usability track” by IBM research in 2021.
In addition, JenTab is the only system participant that obtained the “Artifact Availability Badge” of SemTab 2022.
JenTab provides an overview and analysis of the current processing state via its Manager GUI. During its years of
development, it achieved high accuracy scores for general domain benchmarks. On average and given all the Auto-
matically Generated (AG) datasets, it has an average 0.93 F1-score for all three tasks. However, for the biodiversity
domain it has 0.51 F1-score for the two supported tasks.

7.1. Future Work

– Pre-computed lookup as a service The pre-computed lookup is our primary source to tackle the misspellings.
Due to its high resource requirements, we build this lookup before the actual start of JenTab’s pipeline. It
would be essential to convert this step into a live service integrated in the pipeline execution. This would
speed up deploying and running JenTab and decrease its dependencies.

– JenTab as a service Currently, we support two execution modes: either by local setup or via docker contain-
ers. Deploying JenTab as a public service would increase its audience and users.

– RDF as an output JenTab supports the required formats of the SemTab challenges. For example, for CEA
task, JenTab produces a CSV file containing “filename”, “row_id”, “col_id”, and the annotation itself (cf.
Section 6). However, for generating a KG over tabular data, RDF would be a better format to use than the
current CSV file.

– Interactive GUI Currently, we support an overview of the processing state in the “Manager” node. However,
input tables and targets are pre-configured. An interactive GUI should support uploading (batches of) tables
and targets and selecting a target KG. Since we provide multiple pipelines, the GUI should also provide a list
of all supported pipelines for users to choose from.

– Target inference JenTab relies on provided targets to annotate tables. For real-life scenarios, those targets
should be inferred automatically.

– Scoring system Currently, the most powerful pipeline in “JenTab” is the pipeline_full using all pro-
vided modules. However, filter functions might be too harsh on the candidates dropping, e.g., correct map-
pings due a high support threshold. Switching to a scoring system that preserves all candidates and keeps
them until a final selection would enhance the scores of JenTab.

http://www.wikidata.org/entity/P105
http://www.wikidata.org/entity/Q16521
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– Statistics Domain We plan to use JenTab to transform statistical data given by data providers like World-
Bank26 and eurostat27 into KGs.
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