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Abstract. Knowledge representation in RDF guarantees shared semantics and enables interoperability in data exchanges. Various
approaches have been proposed for RDF knowledge graph construction, with declarative mapping languages emerging as the
most reliable and reproducible solutions. However, not all information systems can understand and process data encoded as RDF.
In these scenarios, to guarantee seamless communication there is a need for a further conversion of RDF graphs to one or more
target data formats and models. Existing solutions for the declarative lifting of data to RDF are not able to effectively support
knowledge conversion towards a generic output. Based on an examination of existing mapping languages and processors for RDF
knowledge graph construction, we define a reference workflow supporting a knowledge conversion process between different
data representations. The proposed workflow is validated by the mapping-template tool, an open-source implementation
based on a popular template engine. The template-based mapping language enables the definition of mappings without requiring
prior knowledge of RDF and provides flexibility for the target output. The tool is evaluated qualitatively, considering common
challenges in the declarative specification of mappings, and quantitatively, considering performance and scalability. This paper
extends a previous version of this work by integrating a discussion of the proposed workflow considering the analysed state-
of-the-art for knowledge graph construction, introducing the tool’s direct support for the execution of RML mapping rules, and
describing a more comprehensive qualitative and quantitative evaluation, also considering the results obtained by participating
in the Knowledge Graph Construction Challenge 2024.

Keywords: Knowledge Graph Construction, Knowledge Conversion, Declarative Mappings, Mapping Languages

1. Introduction

The challenge of data interoperability can be addressed by representing knowledge according to shared semantics
in RDF graphs. In recent years, several approaches have been proposed for lifting, i.e., the generation of RDF graphs
from heterogeneous data sources. Declarative mapping languages emerged, in contrast with ad-hoc procedures, as a
suitable solution to improve the maintenance and reproducibility of the mapping process. Different requirements led
to the definition of multiple declarative mapping languages and the implementation of several mapping processors
interpreting and executing them [62]. In this context, the recent and ongoing research activities mainly focus on
(i) the extension of declarative mapping languages to support new mapping challenges and requirements for RDF
knowledge graph construction [38], and (ii) the improvement of performances for mapping processors against the
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identified benchmarks [4, 14]. However, not all information systems are able to process information represented
as RDF. In these cases, a knowledge conversion process from the knowledge graph towards a generic output is
required [8, 54]. While the available declarative mapping languages for RDF graph generation can not directly sup-
port such a process, they propose key contributions to address this problem. Based on the analysis of the literature
reported in Section 2, we propose a workflow for a generic knowledge conversion process, enabling not only trans-
formations to/from RDF but also conversions among data formats and data models not bound to Semantic Web
technologies. The workflow aims to identify the key characteristics of existing declarative mapping languages and
processors, propose an approach to decouple the steps involved, and overcome the limitation of generating an RDF
output.

We implemented the mapping-template tool1 as an open-source software component that leverages the
Apache Velocity2 template engine to enact and validate the defined workflow. The adoption of a template-based
language enables the definition of mapping rules by users not familiar with RDF and the possibility of targeting a
generic output format and schema. Section 3 describes the proposed workflow and how it can be used as a framework
to discuss and compare existing contributions for declarative knowledge graph construction. Section 4 presents the
tool and how it implements the workflow. In Section 5, we discuss example templates demonstrating how the tool
can address the requirements of RDF graph generation and cover additional scenarios. In Section 6, we perform a
quantitative evaluation of the tool on an RDF materialisation task, and we compare it with other existing engines.
Configurations and results of both evaluations are made available online to promote reproducibility3. Finally, in
Section 7, we describe the tool’s adoption for different use cases, while in Section 8, we draw conclusions and
discuss future work.

2. Preliminaries and related work

The W3C Knowledge Graph Construction Community Group4 involves researchers and practitioners aiming at
investigating the problem of RDF graph construction, the different approaches and solutions proposed, and the
potential extension of the R2RML W3C recommendation [21] beyond relational databases [38]. This section in-
troduces the main terminology adopted in the paper and the state-of-the-art declarative mapping languages and
processors.

2.1. Terminology

The RDF knowledge graph construction process targets the techniques and tools that can process (semi-)struc-
tured heterogeneous data sources to generate an RDF representation of the input data. In this paper, we adopt the
definitions proposed by Van Assche et al. [62].

Schema mappings define a set of rules according to a mapping language to transform a source schema in a
target schema. We identify as schema both the data format (e.g., RDF, JSON) and data model (e.g., ontology,
JSON Schema) adopted. A schema transformation applies the schema mappings to an input data source represented
through the source schema and generates output data according to the target schema. A data transformation applies
a custom logic (e.g., functions) to process data values (e.g., changes in string capitalization). This paper considers
a generic mapping process (also referred to as a conversion process) that may require both schema and data trans-
formations. In particular, we do not restrict the data format of the target schema to RDF. As a final remark, it is
essential to highlight that we focus on approaches for the materialisation of the output, i.e., storing the result of the
mapping process.

1https://github.com/cefriel/mapping-template
2https://velocity.apache.org/
3https://github.com/cefriel/mapping-template-eval
4https://www.w3.org/community/kg-construct/

https://github.com/cefriel/mapping-template
https://velocity.apache.org/
https://github.com/cefriel/mapping-template-eval
https://www.w3.org/community/kg-construct/
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2.2. Declarative mapping languages and processors

The process of RDF graph generation from (semi-)structured data encompasses three main approaches [62]:

– Hard-coded procedures. The definition of these procedures does not require learning a mapping language;
however, they are difficult to maintain since every modification requires a new development for its implemen-
tation. Moreover, they are not reusable, and the user should completely handle the optimisation of the mapping
process.

– Format-specific mappings. The mapping language and processor are optimised for the specific format consid-
ered. However, the definition and execution of mappings for data sources in different formats require learning
and maintaining multiple solutions. Moreover, it is not possible to integrate data sources with different formats.

– Declarative mappings: Propose a single solution for the declarative definition of mappings from different data
sources. The mappings are reusable and decoupled from the processor executing them. Indeed, other processors
may be used to execute the mappings if they conform to the same adopted mapping language.

The declarative mapping languages can be classified as (i) dedicated languages based on R2RML syntax
(R2RML [21], RML [28], D2RML [16], KR2RML [58], R2RML-F [24], xR2RML [50]), (ii) dedicated languages
with custom syntax (Helio Mapping Language [17], D-REPR [68]), (iii) repurposed languages based on constraint
languages (ShExML [30] extending the ShEx syntax), (iv) repurposed languages based on SPARQL syntax: XS-
PARQL [1], Facade-X [7], SPARQL-Generate [47]. Each mapping language is implemented by at least one mapping
processor able to execute a set of mappings fulfilling its specification.

Different solutions address specific requirements and have their advantages and disadvantages. For this reason,
it is crucial to offer comparison workflows for the user to choose and promote initiatives to reconcile the proposed
solutions.

The paper from [39] discusses an ontological approach for representing declarative mapping languages gen-
erating an RDF output. The paper defines the Conceptual Mapping ontology to cover both features offered by
state-of-the-art mapping specifications and a set of mapping challenges collected by members of the knowledge
graph construction community5. The high-level concepts identified by the ontology are considered in this work to
support the workflow definition. Moreover, we use the ontological requirements6 for the evaluation of the mapping
capabilities of our tool.

The literature review by Van Assche et al. [62] provides an overview of mapping languages and available mapping
processors for RDF graph generation. The review identifies a set of characteristics for both schema transformation
and data transformation. It compares approaches for materialisation and virtualisation of the RDF knowledge graph
based on declarative mapping languages. RML emerges as the language providing a wider number of compatible
mapping processors. We considered the reviewed tools and the extracted characteristics to define a generalised
conversion process.

Several efforts in the literature focus on the evolution of mapping languages to cover new requirements. The
integration of the Function Ontology (FnO) with RML is proposed in [23] to enable the declaration of data trans-
formations in the mappings. The authors in [61] describe the extension of the RML Logical Source to support Web
APIs and streams. Moreover, they introduce the RML Logical Target to define the characteristics of the expected
knowledge graph generated. An RML extension to directly support the mapping of in-memory data structures is
discussed in [22]. RML Views [5] are proposed to facilitate the mapping of tabular data sources. The RML-star [26]
extension for the RML language enables the definition of declarative mappings to generate RDF-star [33] triples,
while the RML-CC7 extension allows generating RDF Collections and Containers. Finally, the RML Fields [25] and
RML Logical Views [67] proposals define an approach to handle mapping rules for complex nested data structures.
The new RML ontology [38] incorporates several of the discussed extensions and is designed as a modular solution:
RML-Core for schema transformations, RML-IO for the logical source and target, RML-CC for collections and
containers, RML-FNML for data transformations, RML-star for RDF-star.

5https://kg-construct.github.io/workshop/2021/challenges.html
6https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
7https://github.com/kg-construct/rml-cc

https://kg-construct.github.io/workshop/2021/challenges.html
https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
https://github.com/kg-construct/rml-cc
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Another set of contributions targets the performance and scalability of the mapping process. The GTFS-Madrid-
Bench [13] defines a benchmark to test the scalability of solutions for knowledge graph construction. The KROWN
benchmark [60] extends the GTFS-Madrid-Bench, providing an extended set of test cases for RDF graph material-
ization and has been used for the challenge of the Knowledge Graph Construction workshop [14, 15]. A qualitative
and quantitative comparison of different (R2)RML processors is provided by Arenas-Guerrero et al. in [4]. Opti-
misations for the processing of data transformations defined within the mappings are proposed by FunMap [42]
and Dragoman [41]. The usage of support data structures to speed up the mapping execution is proposed by SDM-
RDFizer [37]. The optimisation of the execution of join operations defined within the mapping is also investigated
considering the removal of self-joins [6] and the replacement with reference conditions [66]. The concurrent pro-
cessing of mapping rules is investigated by Chimera [55] and Morph-KGC processor [6]. RMLStreamer [52] and
RPT/SANSA [59] leverage respectively Apache Flink and Apache Spark to optimise the execution of RML map-
pings rules. Finally, FlexRML [29] is written using C++ and introduces several solutions (e.g., size estimation
algorithm) to minimise memory usage and address knowledge graph construction on resource-constrained devices.

2.3. Beyond RDF knowledge graph construction

Declarative mapping languages for knowledge graph construction assume RDF triples as the expected output
of the mapping process. However, a lowering procedure targeting heterogeneous data formats and models is often
needed to process the knowledge represented in the RDF graph. The position paper from Bennara et al. [8] discusses
how knowledge graphs can foster the interoperability of web services on the Web of Things (WoT) and claims the
need for appropriate lowering procedures enabling communication among different devices. In previous work, we
described how semantic technologies can enhance data exchanges between different data standards within a multi-
stakeholder environment, and we demonstrated it considering a use case from the transportation domain [54]. We
claimed the need to lower RDF data to heterogeneous data formats to achieve this goal, and we proposed a solution
based on the Apache Velocity language. The presented mapping-template tool represents a generalisation of
the proposed approach for defining mappings between different data representations. XSPARQL offers a solution
for the definition of lifting and lowering mappings to/from RDF but is limited to the XML format [9]. The SPARQL
Template Transformation Language (STTL) [19] provides a SPARQL-based solution for the definition of lowering
mappings from RDF data to heterogeneous data sources.

The advantages of applying a single approach for the definition of lifting and lowering mappings emerge from the
literature mentioned. The possibility of reusing declarative lifting mappings (e.g., RML mappings) for both direc-
tions is also discussed but with limited results [2, 34] due to the difficulties of inverting uniquely and unambiguously
the assertions defined for the lifting process.

3. A workflow for declarative knowledge conversion

Starting from the analysis of available languages and tools for declarative RDF knowledge graph construction,
we designed a workflow to generalise the declarative conversion process between different data representations.
We consider a mapping scenario where data from a data source, represented according to an input data format and
data model, should be converted to an output data format and output data model and stored in a data sink. The
mapping scenario may involve integrating additional data sources to generate the output and data transformations to
be applied during the process. The workflow defines the building blocks for a generic declarative mapping language
and the corresponding block for a mapping process executing the mappings.

Figure 1 describes the complete workflow proposed through a diagram that identifies and decouples the different
steps. The mapping process can be described as an Extract-Transform-Load (ETL) process [4] defined through
a declarative mapping language. The workflow is designed to synthesise the state-of-the-art solutions for RDF
knowledge graph construction and overcome the limitation of generating only RDF outputs.
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Fig. 1. Overview of the proposed workflow for the generalisation of the declarative mapping process.

3.1. Extract

The Data Source Specification defines how to access and retrieve the data to be processed during the mapping
process. Different configurations may be needed according to the data source, for example, whether it is local or re-
mote, a dataset or a data service (stream or connection to a database). The Data Source Access indicates the location
(e.g., URL) to access the data source, the protocol to access the resource, and the security mechanisms restricting
the access. The Reading Strategy indicates the type of interaction expected, e.g., push versus pull mechanism, syn-
chronous versus asynchronous, batch versus stream. The RML Logical Source8 can be used to define a Data Source
Specification declaratively. The implementation of the Data Source Reading functionality requires the selection of
Data Source Connector(s) supporting the selected data source(s) and the expected interaction in reading data from
them.

The parsing and extraction process from heterogeneous data sources can be generalised considering the concept
of data frame, i.e. a two-dimensional data structure made of rows and columns. The selection of a data frame as the
input data structure to apply the mapping rules is inherited by declarative languages based on the R2RML syntax.
Indeed, tabular data sources already fit a data frame, and query languages (like SPARQL9) usually define their re-
sult set in a tabular format. To enable the definition of declarative rules over hierarchical data formats (e.g., JSON
and XML), several declarative mapping languages relied on the definition of an intermediate representation based
on a tabular data structure. For example, the authors in [58] considered the Nested Relational Model (NRM) an
intermediate abstraction. Differently from NRM, we define the identification of a complete flattening strategy as
a requirement for a generic conversion process, e.g., not allowing nested tables or objects. Indeed, NRM can also
be normalised in the general case [48]. Similarly, the RML [28] specification implicitly defines a flattening strat-
egy for hierarchical data sources through the rml:iterator and rml:reference operators. The approaches
proposed by RML Fields [25] result in a more explicit identification of a tabular structure for complex nested data
sources in RML. In this paper, we claim that the explicit declarative definition of the data frame(s) as the interme-
diate abstraction between the Extract and Transform steps of the mapping process can facilitate the definition and
optimisation of schema and data transformations.

8https://w3id.org/rml/io/spec
9https://www.w3.org/TR/rdf-sparql-query/

https://w3id.org/rml/io/spec
https://www.w3.org/TR/rdf-sparql-query/
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The Data Frame Definition defines a proper Reference Formulation (e.g., SQL, XQuery, etc.) to express a Flat-
tening Strategy that extracts one or more data frames from the input data source according to its data format and
model. This workflow mainly focuses on mapping (semi-) structured data sources; however, assuming a specific
procedure to define a data frame from unstructured data sources (e.g., text in a PDF), the overall workflow may also
be applied to these data sources.

The implementation of the Data Frame Extraction functionality requires the selection of two components: a
Data Parser responsible for parsing data received from the data source according to their specific format (e.g.,
CSV/XML/JSON), and a Query Engine capable of extracting the data frame from the parsed data and according
to the Data Frame Definition. In this context, we identify as Query Engine a generic component that can interpret
the Flattening Strategy defined to extract the data frame from the parsed data. Examples of a Query Engine are a
SQL query engine in the case of a relational database, a SPARQL query engine in the case of RDF data, or a more
generic library extracting a data frame from a JSON object.

3.2. Transform

The specification of Data Frame Manipulation considers both the need for combining the extracted data frame
with Other Data Sources and the Data Transformation Needs.

The Data Frame Combination Rules specify how multiple data frames extracted from different (or the same) data
source(s) should be combined to define the combined frame that mapping rules will target. Other combination rules
can be adopted according to relational algebra operations (e.g., the union of data frames, cartesian product, or join
operation).

The Data Transformation Rules specify how to manipulate a set of data in the data frame, e.g., all the values for
a column in the data frame. Generally, a data transformation rule is an arbitrary function processing a portion of
the data frame. In some cases, data transformation rules may be restricted to functional computations, i.e., without
a state or side effects. However, specific scenarios may require more generic computations (e.g., transformation of
the data frame should keep track of values already processed). It is always possible to decouple data transformations
from the Declarative Mapping Rules definition [41]. Using the FnO ontology [23] and RML-FNML, data transfor-
mation rules can be declaratively described in RML and associated with a specific implementation the processor
can execute.

The implementation of the Data Frame Manipulation functionality requires the selection of two components:
a Data Frame Combiner capable of executing the combination of one or more data frames according to the rules
specified, and a Transformation Executor capable of applying the data transformation logic required to the data
frame. Data frame combination rules can be avoided if the combination is applied during the data frame extraction
(e.g., performing the extraction with a join query over multiple input data sources [5]).

The specification of Declarative Mapping Rules is based on Schema Transformation Rules that define how to pro-
cess the data frame(s) to obtain the target data format and model. We believe that the work done by the community
in defining fully declarative mapping languages based on the R2RML approach has the drawback of focusing on the
output of RDF triples via TriplesMap. This approach requires the introduction of several extensions of the syntax to
enable specific types of outputs (cf. Section 2). Moreover, it can be verbose and counter-intuitive for the final user,
e.g., if constant RDF triples should be materialised or if multiple triples should be generated for a single input. So-
lutions like YARRRML [35] facilitate the definition of the mappings, however, they still follow a TriplesMap-based
approach. The languages based on SPARQL benefit from the flexibility provided by the CONSTRUCT clause to fa-
cilitate the user’s definition of the expected target. However, they are also bound to the generation of an RDF-based
output. Finally, it should be noted that several mapping languages for RDF generation are based on Semantic Web
specifications (e.g., RDF, SPARQL, ShEx). A syntax for the specification of declarative mapping rules towards a
generic output can support additional conversion requirements.

Implementing the Mapping Execution functionality requires the identification of a Rule Engine component that
can access data from the extracted and manipulated data frames and produce the output according to the speci-
fied declarative mappings. The Mapping Execution can rely on additional components. A Mapping Rule Planner
determines and optimises the order in which mapping rules should be executed. A Data Formatter validates the
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Table 1
Coverage of the proposed workflow by mapping language specifications.

Declarative mapping

language specification

Data Source
Specification

Data Frame
Definition

Data Frame
Manipulation

Declarative
Mapping Rules

Data Sink
Specification

R2RML [21] RDB X RDF

R2RML-F [24] X

RML [28]
(Relational) Database

File(s)
X X RDF

Source/Target RML [61] Web APIs and Streams X

RML-CC7 RDF
Collections/Containers

RML+FnO [23] X

RML-star [26] RDF-star

RML Fields [25] X

RML Logical Views [67] X X

RML Reference Condition [66] X X

RML Views [4] X X

RML In-memory [22] X

Conceptual Mapping ontology [39] X X X RDF

produced output according to a specific data format and can obtain different representations of the same output
(e.g., pretty-printing, different RDF serialisations).

3.3. Load

The Data Sink Specification defines how to connect (Data Sink Access) and send (Writing Strategy) the data
obtained as a result of the mapping process. As for the Data Source Access, different configurations may be specified.
Furthermore, the definition of an incremental writing strategy may be required to determine how the output data
should be partitioned for writing [55]. Finally, the result of the mapping process may be split considering different
data sinks. The RML Logical Target8 supports a declarative Data Sink Specification for an output RDF graph.

The implementation of the Data Sink Writing functionality requires the selection of Data Sink Connector(s),
supporting the target data source and the expected interaction in writing data.

3.4. Related Work Discussion

This section discusses how the workflow proposed can be used to support the comparison of existing languages
and tools for knowledge graph construction introduced in Section 2. Considering mapping languages, Table 1 pro-
vides an overview of which aspects of the workflow are covered by different works in the literature on mapping
languages based on the R2RML syntax. The declarative specification of heterogeneous data sources (Data source
specification) is supported to enable several use cases through different extensions. The adoption of techniques
for the declarative definition of the flattening strategy (Data frame definition) is investigated to support use cases
with nested and multiple data sources. The support for the specification of data transformation functions and the
combination of data extracted from different data sources (e.g., join conditions) is analysed in the literature (Data
frame definition). All the proposed works limit the definition of the output (Declarative mapping rules) as RDF(-
star) triples. The work presented in [61] investigates the declarative specification of the target data sink (Data sink
specification).

Considering mapping processors, the available engines10 cover all the steps required to support the functionalities
associated with the target mapping language. However, the processors provide integrated solutions for the execution

10https://github.com/kg-construct/awesome-kgc-tools

https://github.com/kg-construct/awesome-kgc-tools
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of the mappings that are usually difficult to compare without analysing their source code. The proposed decoupling
in building blocks enables a comparison of optimisations and enhancements discussed in the literature and imple-
mented by different processors. As discussed in previous work [55], the selection of libraries for implementing the
Data Frame Extraction functionality may heavily impact the usage of computational resources and the execution
time. The implementation of this functionality should avoid multiple parsing procedures on the same data source
(e.g., if it contributes to the definition of multiple data frames) and exploit caching mechanisms to avoid the execu-
tion of the same query multiple times. Also, the adoption of incremental writing strategies in the Data Sink Writing
phase may affect the overall performance of the mapping process. The authors in [41] discuss how the decoupling
of the Data Frame Processing phase from the Mapping Execution can benefit the performances of the mapping
processors. Iglesias et al. in [37] demonstrate the benefits of creating support data structures to optimise the execu-
tion of join operations and minimise the access to data frames in the Data Frame Processing. Arenas et al. in [6]
discuss how a smart Mapping Rule Planner can be exploited to identify dependencies among different mapping
rules and exploit concurrency in their processing. Similarly, another work by Iglesias et al. [36] proposes a strategy
to efficiently plan and schedule the mapping rules by leveraging greedy algorithms.

We believe that the proposed workflow can also support the development of more decoupled mapping processors,
providing flexibility for the user in introducing optimizations based on the specific requirements of the mapping
scenario being addressed. In this direction, the prototype implemented for the RML Logical View specification [67]
investigates the performance benefits of applying the proposed specification to existing RML processors. Indeed, the
explicit definition of views in RML results in an approach similar to the one discussed for our workflow considering
data frames. RML Logical Views enable a decoupling between the definition of tabular views and the mapping rules,
and this results in the possibility of optimising data access for nested data sources during the execution or ahead
of the execution by processing the input data sources accordingly. As an example, the optimization of the mapping
execution can be improved if a minimal set of data is extracted as data frames from the data sources taking into
account the mapping rules to be processed. Moreover, multiple join conditions may be optimised if applied directly
to the data frame, potentially also leveraging indexes and/or support data structures for their execution.

4. The mapping-template tool

The mapping-template1 tool provides a solution for implementing generic data and schema transformations
and is designed according to the workflow discussed in Section 3. The mapping-template is released open-
source under an Apache License 2.0. It can be downloaded from GitHub11 for standalone usage and is also available
on Maven Central as a library.

The mapping-template tool is based on the Apache Velocity Engine2, a template engine to dynamically
generate a generic output according to a predefined structure. The Velocity Template Language12 (VTL) allows for
the definition of a template that is composed of (i) static elements that are added to the output as constant strings,
(ii) dynamic variables that are bound at runtime to specific values, (iii) directives that can be used to define a specific
logic (e.g., if/else). A typical use case for templates is rendering web pages according to the data dynamically re-
trieved by a user. The mapping-template tool extends the VTL syntax for the definition of a Mapping Template
Language13 (MTL) to specify mapping rules between different data representations. The definition of mapping rules
as templates trades some aspects of a fully declarative approach, but provides flexibility in the generated output and
facilitates the definition of mapping rules by users unfamiliar with RDF as discussed in Section 5.

The Data Source Reading and Data Sink Writing functionalities are partially supported via the MTL to enable
the execution via CLI. However, we opted for decoupling these steps to avoid the need to import several external
libraries into the tool. We took this decision assuming that the mapping-template tool may easily be integrated
within existing ETL tools, providing several production-ready data connectors out-of-the-box. In this direction, we

11https://github.com/cefriel/mapping-template/releases
12https://velocity.apache.org/engine/2.0/vtl-reference.html
13https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)

https://github.com/cefriel/mapping-template/releases
https://velocity.apache.org/engine/2.0/vtl-reference.html
https://github.com/cefriel/mapping-template/wiki/Mapping-Template-Language-(MTL)
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integrated the tool within the Chimera14 framework to support the declarative definition of composable semantic
transformation pipelines leveraging MTL and the Apache Camel integration framework [31].

The Data Frame Extraction process is standardized by a Reader interface enabling the extraction of a data
frame from a generic input data source. The selection of a specific Reader implementation depends on the Ref-
erence Formulation of the data. The Flattening Strategy should be provided in the template as a parameter of the
getDataFrame method exposed by the Reader. The tool currently implements the Data Frame Extraction for
CSV, XML via XQuery [53], JSON via JsonPath [32], RDF via SPARQL and relational databases via SQL. Specific
Readers are implemented for each supported Reference Formulation, requiring different configurations to extract
the data frame. For example, the XQuery Reader can process queries over XML inputs to extract a data frame. The
user should specify in the definition of the template the proper query to extract the required data frames. Multiple
data frames can be defined in a single template from different data sources exploiting different Readers. Addi-
tional input data formats or different Reference Formulation for the formats already supported can be integrated by
providing a dedicated implementation of the Reader interface.

Once a data frame has been obtained, the Data Frame Manipulation and the Declarative Mapping Rules can
be defined by leveraging the Velocity Template Language. The usage of custom Java functions in the template for
data transformation is possible if a suitable implementation is provided in the tool configuration. Functions can be
applied to the data frame or directly during the processing of the declarative mapping rules. A set of commonly
used functions is made available by default. The template language provides direct access to the data frames and
gives the user complete control over the definition of their processing. On the one hand, the user can access the
different data frames using the VTL directives (e.g., foreach). On the other hand, the template-based approach
allows for an unconstrained textual output, not limited to the production of RDF. The access to data frames can
be optimised by the user defining the mapping template considering the specific mapping scenario. For example,
multiple accesses to a data frame can be optimised by merging different rules accessing the same data frame to
generate different outputs. Moreover, the tool makes available a set of functions to define and exploit support data
structures for the optimisation of join operations between different data frames. Finally, the mapping-template
tool provides formatting and validation capabilities for specific output formats, namely for XML, JSON and different
RDF serialisations. The tool can be easily extended by implementing the Formatter interface to process additional
data formats generated as an output of the template.

The mapping-template tool also supports the execution of RML mappings15 encoded using the new RML
ontology [38]. We introduced this feature to guarantee compatibility with a fully declarative approach for knowledge
graph construction and to enable a better evaluation of the proposed workflow and tool with respect to existing RML
mapping processors. The support for RML mappings is added by applying the mapping-template tool in two
steps, as shown in Figure 2.

Fig. 2. Implemented approach for supporting the execution of RML mapping rules.

14https://github.com/cefriel/chimera
15The feature is currently implemented in a dedicated branch and will be made available on Maven Central in the next major release of the

tool https://github.com/cefriel/mapping-template/tree/feat-rml-compiler/rml

https://github.com/cefriel/chimera
https://github.com/cefriel/mapping-template/tree/feat-rml-compiler/rml
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In the first step, the RML mapping rules are processed via a specific template16 defined to process the input
as RDF and generate a corresponding template using MTL. A specific query, adapted from the SDM-RDFizer
implementation17, is used to extract an appropriate data frame accessing the RML mapping rules. The data frame is
then processed to generate the appropriate directives using MTL. In the second step, the generated MTL template
is processed by applying the defined rules to the input data sources to generate the target output. By default, the
RDF triples are serialised as nquads, but an appropriate Formatter may be specified to obtain the output according
to a different RDF serialization. The execution of RML via the mapping-template tool can be performed
transparently in a single invocation, by utilizing a dedicated option and providing the RDF serialization of the
mapping rules, or in two decoupled steps. For this second option, it is sufficient to invoke the mapping-template
tool twice since the execution of the RML-to-MTL template can be performed as it would be done for any other
MTL template having as input an RDF dataset. This case allows checking and potentially optimising the MTL
template generated from RML before executing it.

5. Qualitative Evaluation

This section discusses a qualitative evaluation of the mapping-template tool considering the requirements
for declarative mapping languages for RDF knowledge graph construction identified in [39] and the RML test
cases18.

The list of requirements19 comprises the set of features made available by different declarative mapping languages
and the challenges identified by the community. Each requirement is associated with an identifier of type cm-
r*

20. In the evaluation, we discuss example mapping templates targeting different mapping scenarios and how
they demonstrate the fulfilment of requirements. For each template, the identifiers of the related requirements are
mentioned. The complete set of generated templates can be found in the tool repository21 together with instructions
on how to run them and the generated output. Table 2 summarises the qualitative evaluation, also referencing the
corresponding portion of the workflow.

The coverage of basic requirements is demonstrated through the definition of templates for the examples available
in the RML documentation22. These templates (rml-csv, rml-xml, rml-json, r2rml) consider respectively a
CSV, XML, JSON and SQL data source as input (cm-r2), define the data to be processed for each data source (cm-
r10), specify how the extracted data should be dynamically converted to RDF (cm-r8, cm-r11, cm-r12). In
Figure 3, the snippet (a) shows the mappings of the XML example for our tool, and the snippet (b) the corresponding
ones in RML23. A mapping template defines the extraction of a data frame using the correct Reader associated with
the considered data format and Reference Formulation. The XMLReader in the example adopts XQuery to define a
Flattening Strategy. The extracted data frame can then be iterated using the template language VTL to generate the
same output RDF triples of the corresponding RML mappings.

The template language does not constrain the generated output, thus facilitating the definition of rules for pro-
ducing valid RDF triples also considering datatypes, language tags, blank nodes and named graphs (from cm-r16
to cm-r21). The example (csv-multiple-values) addresses the mapping challenge to dynamically generate
language tags (C1 and cm-r12). The same approach can be applied to generate datatype tags dynamically. Further-
more, this example shows the definition of a custom data transformation function directly applied to the data frame.
The column title in the input data contains both a string and the associated language tag. A function is used to
split the information into two different columns.

16RML-to-MTL translatorhttps://github.com/cefriel/mapping-template/blob/feat-rml-compiler/src/main/resources/rml/rml-compiler.vm
17https://github.com/SDM-TIB/SDM-RDFizer
18https://w3id.org/rml/portal
19https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
20The identifiers cm-r26 and cm-r28 are missing due to a numbering error in the original list of requirements [39].
21https://github.com/cefriel/mapping-template/tree/main/examples
22https://rml.io/specs/rml/
23The prefixes used in the snippets reported in the paper can be resolved by accessing the complete examples online.

https://github.com/cefriel/mapping-template/blob/feat-rml-compiler/src/main/resources/rml/rml-compiler.vm
https://github.com/SDM-TIB/SDM-RDFizer
https://w3id.org/rml/portal
https://github.com/oeg-upm/Conceptual-Mapping/tree/main/requirements
https://github.com/cefriel/mapping-template/tree/main/examples
https://rml.io/specs/rml/
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Fig. 3. Example mapping templates: (a) conversion from XML to RDF, (c) conversion from CSV to RDF-star. Snippet (b) contains RML
mappings equivalent to (a), and snippet (d) contains RML-star mappings equivalent to (c).

A more complex example (yarrrml-tutorial) from the YARRRML tutorial shows how to apply a function
for data transformation (cm-r15), join data frames from multiple data sources (cm-r10, cm-r13), and specify a
named graph for the triples (cm-r12). All the functions made available in the tool’s configuration can be invoked
through a mapping template and applied as nested functions (cm-r25). Using an if directive in VTL, a function
can also be used to conditionally generate a specific output (cm-r22).

The mapping-template tool allows via MTL to specify inner and left join operations between data frames.
However, given a specific set of mapping rules, the user could also specify via MTL custom strategies to iterate more
efficiently over the data frames. For example, a smaller data frame can be extracted to perform the join, considering
only the data required. This approach addresses the mapping challenges related to join operations (C5 and associated
requirements cm-r23, cm-r29, cm-r30). Functions can be used in the template to conditionally determine the
processing of the join operation (cm-r24).

The example rml-star considers a mapping scenario provided in the RML-star documentation with nested
quoted triples generated from a CSV file. In Figure 3, the snippet (c) shows the mappings for our tool, and the
snippet (d) shows the corresponding ones in RML-star. The example demonstrates how the template approach
simplifies the definition of mapping rules towards a custom output without requiring the user to adopt a different
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Identifier Conceptual Mapping Requirement Workflow Reference Qualitative Evaluation

cm-r1
A mapping can describe data sources retrieved synchronously,
asynchronously and as streams

Data Source Reading
Partially covered by MTL.
Supported via Chimera pipeline.

cm-r2
A data source can describe data in different formats specifying
its Media Type

Reference Formulation rml-csv, rml-xml, rml-json, r2rml

cm-r3 A data source may have a specified data access service Data Source Reading
Partially covered by MTL.
Supported via Chimera pipeline.

cm-r4 A data access service can specify security terms Data Source Reading
Not covered by MTL.
Supported via Chimera pipeline.

cm-r5 A data access service can specify up to one retrieval protocol Data Source Reading
Not covered by MTL.
Supported via Chimera pipeline.

cm-r6 A data source can specify the encoding Data Source Reading
Not covered by MTL.
Supported via Chimera pipeline.

cm-r7 A mapping can describe data sources and their access Data Source Reading
Partially covered by MTL.
Supported via Chimera pipeline.

cm-r8
A mapping specifies statement maps to declare the transformation
of frames into RDF triples

Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r9
Multiple data sources can be described with combined frames
and nested frames

Data Frame Combination Rules yarrrml-tutorial

cm-r10 A source frame describes exactly one data source Data Frame Definition rml-csv, rml-xml, rml-json, r2rml

cm-r11
A statement map can describe constant and dynamic subjects,
predicates, objects

Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r12
A statement map can describe constant and dynamically up
to 1 named graph, datatype and language tag

Schema Transformation Rules
rml-csv, rml-xml, rml-json, r2rml,
yarrrml-tutorial

cm-r13
A resource map can reference one or more data fields from
one or more data sources

Data Frame Combination Rules yarrrml-tutorial

cm-r14
A resource map may contain data with different levels of
iteration of a source

Flattening Strategy
Partially covered via MTL.
A custom flattening strategy
may be required.

cm-r15 A resource map may contain functions Data Transformation Rules yarrrml-tutorial

cm-r16 A subject can only be expressed as a blank node or an IRI Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r17 A predicate can only be expressed as an IRI Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r18
An object can only be expressed as a blank node, an IRI,
a literal, a container or a list

Schema Transformation Rules
rml-csv, rml-xml, rml-json,
r2rml, rml-star

cm-r19 A named graph can only be expressed as an IRI or blank node Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r20 A datatype tag can only be expressed as an IRI or a List Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r21 A language tag can only be expressed as a Literal or a List Schema Transformation Rules rml-csv, rml-xml, rml-json, r2rml

cm-r22 A statement map can be subject to a condition Data Transformation Rules csv-multiple-values

cm-r23
A statement map can be linked to another statement map
with none, one or several conditions

Data Frame
Combination Rules

yarrrml-tutorial

cm-r24
The condition to link statements may be any
boolean condition

Data Frame
Combination Rules

yarrrml-tutorial

cm-r25 A function may have nested functions Data Transformation Rules yarrrml-tutorial

cm-r27 A frame can have nested frames to access multi-value references Flattening Strategy
Partially covered via MTL.
A custom flattening strategy
may be required.

cm-r29
A statement map can have objects of type literal using data
from different sources using combined frames

Schema Transformation Rules yarrrml-tutorial

cm-r30
A statement map can have datatype and language tags using
data from different sources using combined frames

Schema Transformation Rules yarrrml-tutorial

Table 2
Qualitative evaluation of the mapping-template tool.
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syntax from the one used to generate plain RDF triples. Indeed, to generate RDF-star, a user knowing MTL should
only be able to write RDF-star, while a user knowing RML should learn RML-star. The flexibility of the generated
output also simplifies the generation of RDF collections and containers (C4 and cm-r18).

The Mapping Template Language does not directly support a declarative Data Source/Sink Specification (cm-
r1, from cm-r2 to cm-r7). However, the integration of the mapping-template within Chimera enables the
usage of the Apache Camel DSL and the available components to specify heterogeneous conversion pipelines as
shown in the Chimera tutorial24. The definition of iterators in case of scenarios associated with complex nested data
(C2, cm-r14, cm-r27) is delegated to the specific Reader or to the definition of flattening strategies via custom
functions.

Finally, the flexibility of the approach based on templates enables the definition of mapping rules towards a
generic output without requiring an extension of the syntax. The example csv-to-json demonstrates the def-
inition of mapping rules for non-RDF output generating JSON data from an input CSV data source. Similarly, it
is possible to generate a custom output considering different formats as input. An example template performing a
lowering operation from RDF to CSV is available in the Chimera tutorial24.

The evaluation summarised in Table 2 demonstrates how the mapping-template tool can (i) cover the core
requirements identified for RDF knowledge graph construction (20 requirements fully covered, and 8 indirectly or
partially) and (ii) generalise the mapping process towards non-RDF outputs.

To complement the qualitative evaluation, we also tested the compliance of the mapping-template tool with
respect to the new RML test cases as part of track 1 of the Knowledge Graph Construction Challenge 2024 [63]. In
particular, we focused on the evaluation of compliance considering the RML Core module, comprising all the core
features of RML and targeting five different types of data sources: CSV, XML, JSON, MySQL and Postgres. For
each test, the tool made available by the challenge organisers was used to automatically validate the obtained result
against the expected one. All the MTL templates and outputs generated for each test case are made available online
together with the configuration used to run the challenge tool25. As a result of the challenge, the tool was able to pass
219 over 238 and we identified and solved the following errors: (i) the SPARQL query accessing the RML mapping
rules was not able to detect all inconsistencies in the provided RML, therefore, we introduced the validation via the
RML SHACL shapes [38] of the input RML to automatically discard invalid mapping files; (ii) the need for adding a
base IRI could not be evaluated only based on the mapping rules but its addition should consider the value extracted
from the input data sources while processing the mapping rules; (iii) following R2RML, the RML spec mandates
the automatic processing of certain values considering their datatype in the SQL database, therefore, it is needed
to retrieve the type of columns when processing the mapping rules and to apply a custom function to the value
according to the identified type (e.g., conversion from binary to Hex); (iv) the different conventions in MySQL and
Postgres (e.g., regarding case sensitivity in table names) may cause issues in accessing the data sources for certain
test cases, therefore, a specific logic is required to handle the two databases. The current version of the tool is able
to pass all the 238 test cases defined by the RML Core module specification.

6. Quantitative Evaluation

This section presents a quantitative evaluation of the tool, demonstrating that the generic mapping approach
proposed does not affect performances and can be comparable with state-of-the-art mapping processors considering
an RDF graph construction task. Moreover, we discuss the advantages and drawbacks of adopting a template engine
to execute the mapping rules as done for the mapping-template tool. In the presented diagrams the average
metric is reported considering a logarithmic (log10) scale.

As a preliminary test for the performance and scalability of the mapping-template tool, we considered the
GTFS-Madrid-Bench [13] following the approach by Arenas et al. in [4]. The benchmark provides a set of (R2)RML
mappings and a generator to create input data sources in different formats and sizes. We considered three data
formats (CSV, XML and JSON) and three scaling factors (1,10,100) comparing the mapping-template tool

24https://github.com/cefriel/chimera-tutorial
25https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1

https://github.com/cefriel/chimera-tutorial
https://github.com/cefriel/mapping-template-eval/tree/main/kgc-challenge-2024/track1
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Fig. 4. Results of the quantitative evaluation comparing metrics using the GTFS Madrid Benchmark.

with the morph-kgc v2.3.126 processors. We selected morph-kgc for the evaluation considering its state-of-the-
art performance and scalability results [6]. The morph-kgc processor was executed with parallel (morph-kgc-
p) and sequential processing (morph-kgc). We adopted a set of RML mappings simplifying the join operation for
the GTFS shapes file [4]. A set of templates implementing the same mapping rules was generated for the mapping-
template tool. In this first set of templates, we defined a join operation between two data frames as specified by
the join condition in RML. An additional set of templates, compared in the evaluation as mapping-template-
nj, is defined to test the performances of the template approach using optimised mappings without join operations.

We consider the execution time (with a timeout of 24 hours) and the maximum memory used (each processor
is run within a Docker container with a memory limit set at 64GB) as metrics for the evaluation. The experiments
were executed on a virtual machine with 12 Intel(R) Xeon(R) E-2136 CPU @ 3.30GHz, 128 GB RAM and SSD.

Figure 4 reports the metrics registered for each configuration, each test was executed three times. The results
show that the mapping-template tool completes the task with a lower execution time while registering similar
memory consumption for all three data formats. The morph-kgc with parallel processing ran out of memory for
the input data with scale 100. Interestingly, while the introduction of join conditions tends to affect the performance
of processors based on RML [55, 66], the difference in the metrics for the mapping-template tool was limited
in the performed evaluation. The results obtained can be motivated by the fact that the tool benefits from the efficient
and optimised execution of templates provided by the Velocity Engine. However, it is also important to notice that
the MTL allows the user to optimise the mapping rules according to the specific mapping scenario. For example, the
number of data frames extracted from the input data sources can be minimised. Finally, it should be noted that, even
if the inputs and mappings used for the evaluation do not generate duplicated triples, the morph-kgc execution
time could be penalised by the fact that its implementation inherently guarantees the removal of duplicated triples
before serializing the output.

To better investigate and compare the performances of the mapping-template tool with other mapping pro-
cessors, we participated in track 2 for the Knowledge Graph Construction Challenge 2024 [63]. This track focused
on the comparison of performances by requiring each tool to transform to RDF a set of input data sources according
to a specific set of RML mapping rules. The first part of the challenge was based on the GTFS-Madrid-Bench to
test the behaviour of the tools with different scales of the same data sources (1, 10, 100, 1000) and considering

26https://github.com/oeg-upm/morph-kgc

https://github.com/oeg-upm/morph-kgc
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Fig. 5. Results using the GTFS Madrid Benchmark for the KGCW Challenge 2024.

heterogeneous mixes of data source types (tabular, files, nested, mixed). The second part of the challenge focused
on the different parameters that may affect the mapping process [12] and defined different test cases by varying the
number of data records, data properties, duplicate values, empty values, predicates and objects, join operations27.
The organisers made available a tool [60] for the reproducible execution of the challenge, the collection of the met-
rics and the obtained results. Differently from the first edition of the challenge, each participant was provided with
the same virtual-machine with the following characteristics: 4 vCPU, 16 Gb RAM, 130 Gb HD, Ubuntu OS. The
complete specification of the test cases of the challenge and the set of raw results obtained by each tool is made
available on Zenodo by the organisers [63].

We participated in the challenge prior to the development of direct support for RML mappings in the mapping-
template tool. For this reason, we manually created a corresponding MTL template for a limited set of test cases
to execute the same knowledge graph construction task28. Besides the penalisation due to the limited set of test cases
executed, the mapping-template tool reached third place in the overall ranking. In particular, the mapping-
template tool obtained the best results in terms of execution time and CPU usage while performing not as well in
terms of memory consumption. To obtain a full comparison of performances, we complemented the results obtained
for the challenge by running the same test cases with the new version of the mapping-template and providing
the RML mapping files directly as input. The configuration for the evaluation and the raw results are made available
online3. In the following paragraphs, we report and discuss the results of the challenge and one of the additional
tests executed (indicated as mapping-template-rml). Each test was executed 5 times, and we report here the
results of the other three mapping engines executing both parts of track 1: FlexRML [29], RPT/Sansa [59] and
RML-Streamer with the RML-view-to-CSV [65].

Figure 5 provides the result for the first part associated with the GTFS-Madrid-Bench. It can be noted that the
mapping-template-rml performance is not comparable with the one obtained by the mapping-template
directly executing MTL mappings. This is due to the need, in the general case of translating RML to MTL, to

27For join operations also different type of join were tested but we do not report here the results since we did not obtain notable differences.
28We did not cover the test cases varying the number of join and mappings due to the presence of many different mapping files to be adapted.

As a result, Figure 8 does not report data for the mapping-template.
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Fig. 6. Results comparing mapping-template mapping rules for GTFS Scale 1 for the KGCW Challenge 2024.

Fig. 7. Results for Track 2 - Knowledge Graph Construction Parameters of the KGCW Challenge 2024 (Empty, Duplicates, Properties).

introduce additional checks in the resulting mapping files to ensure the correctness of the generated output during
its execution. Indeed, the MTL template can be simplified considering a specific mapping scenario, as we did
when we manually defined the templates, but not in the general case. In the case of the heterogeneity tests, the
mapping-template-rml was not able to run three tests due to the adoption of a JSON file for the Shapes file,
causing out-of-memory errors due to the difficulties in optimising multiple accesses with JSONPath to the input
file. Figure 6, report the GTFS-Madrid-Bench results for scale-1 for the mapping-template by adding also
the metrics obtained for the case in which an MTL template generated from RML is directly executed with the
tool, i.e., removing the translation overhead. This diagram shows, even with small-input files, that the difference of
performances can not be attributed to such overhead.

Figure 7 and 8 report the results for all the other test cases associated with different parameters affecting the
KG construction. The same trends commented on above can be observed for the test cases considering the different
parameters. Overall, it emerges how the mapping-template is able to offer very good execution times while not
managing to optimise memory consumption. Moreover, the tool works better when the size of the input is limited.
The results obtained by executing directly the MTL templates demonstrate the advantages that can be achieved by
optimising the mapping template rules for a specific mapping scenario.
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Fig. 8. Results for Track 2 - Part 1 Knowledge Graph Construction Parameters of the KGCW Challenge 2024 (Mapping, Records, Join 1-1).

7. Adoption cases of the mapping-template tool

The mapping-template tool has already been adopted to support different use cases. The integration within
the Chimera framework enables its adoption for production-ready scenarios considering knowledge conversion
among heterogeneous information systems. In particular, we used the tool to implement an any-to-one mapping
approach for interoperability leveraging a reference ontology as a global conceptual model [31]. Such an approach
can adopt (R2)RML for the lifting towards the reference ontology and the mapping-template tool for the low-
ering from RDF to the target representation. However, in our experience with the tool, it became clear that adopting
a single approach for both data transformations can facilitate the definition of the mappings by external stakeholders.
A preliminary feedback from Chimera users suggested a preference for the approach based on templates, because of
developers’ familiarity with similar technologies. In the EIT Digital SNAP project29, the tool supported the lowering
of transportation data from an RDF representation according to a reference ontology to the standards mandated by
the European Commission in XML format [54]. In the Horizon 2020 SPRINT project30, the tool was used for the dy-
namic definition of converters for dataset conversion and service mediation [55] to support data exchanges between
transportation operators. In the Horizon 2020 TANGENT project31, the tool was used to implement the project
solution for data harmonisation and fusion [31, 56]. The data are retrieved from heterogeneous data services from
different stakeholders, lifted to RDF according to a common suite of ontologies, and then converted to a predefined
set of JSON schemas feeding applications for the dynamic management of multimodal traffic. Within TANGENT,
we also tested the tool for the definition and execution of a set of templates facilitating the serialisation of a portion
of the reference conceptual model from CSV files to OWL ontologies. In the Horizon Europe SmartEdge project [3],
we are further developing the tool to increase its maturity level, support the mediation of data exchanges between
different IoT nodes and improve performance and scalability for execution on resource-constrained devices.

29https://snap-project.eu
30http://sprint-transport.eu/
31https://tangent-h2020.eu/

https://snap-project.eu
http://sprint-transport.eu/
https://tangent-h2020.eu/
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8. Conclusions and Future Work

In this paper, we presented a workflow and the related mapping-template1 tool for knowledge conversion
between different data representations. In particular, we extend the focus from approaches that address only the
lifting problem (to RDF) to solutions that address both the lifting and lowering problems (both to/from RDF), as
well as generic conversions between different data formats and models to support integration requirements among
heterogeneous information systems. Our workflow is soundly based on the literature about declarative RDF graph
construction and brings together different contributions to support the definition of a generalised declarative map-
ping process. The tool implements the proposed workflow by adopting a template-based mapping language to over-
come some of the limitations of the state-of-the-art approaches such as the difficulties in extending and maintaining
a fully declarative specification to define the desired output (e.g., the effort for developers in adapting existing map-
ping processors and for the users in learning the new syntax for RML-star [26]). We also presented a preliminary
qualitative and quantitative evaluation. We showed how the proposed approach can cover the requirements for RDF
graph generation and we also analysed the performance of our implementation on an RDF graph construction task.

The need for the mapping-template tool is motivated by our experience and difficulties in applying existing
solutions to practical use cases in the mobility and industrial markets, in which we validated our approach. The pre-
sented tool is maintained as a company asset by Cefriel to support its value proposition on KG construction and data
interoperability both in customer projects and research projects. We publicly released the mapping-template
with an open-source license on GitHub, where we also provide a guide to create template-based mappings and exam-
ples considering different mapping scenarios. Furthermore, we integrated the tool within the Chimera14 framework
to support enterprise integration practices and we provide an end-to-end tutorial implementing a data conversion
pipeline. To ease its adoption by the community and to ensure long-term sustainability, we also released the soft-
ware tool on Maven Central.

Our presented resource is of interest for the knowledge graph construction community, but also for the devel-
opers’ community in general, to address data heterogeneity problems. For an average developer, without a deep
understanding of RDF, our template-based approach appears to be less verbose and simpler than RML-based so-
lutions. In future work, we plan to perform a user study to compare the Mapping Template Language with other
declarative mapping languages for RDF generation. For example, we would like to investigate the preferred ap-
proach for users with different technical expertise (e.g., no developer background). Moreover, we would like to
investigate a better formalisation of MTL to enable the definition of alternative implementations, e.g., in Python
using the Jinja template engine32.
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