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Abstract. Vast amounts of heterogeneous knowledge are becoming publicly available in the form of knowledge graphs, often
linking multiple sources of data that have never been together before, and thereby enabling scholars to answer many new research
questions. It is often not known beforehand, however, which questions the data might have the answers to, potentially leaving
many interesting and novel insights to remain undiscovered. To support scholars during this scientific workflow, we introduce an
anytime algorithm for the bottom-up discovery of generalised multimodal graph patterns in knowledge graphs. Each pattern is
a conjunction of binary statements with (data-) type variables, constants, and/or value patterns. Upon discovery, the patterns are
converted to SPARQL queries and presented in an interactive facet browser together with metadata and provenance information,
enabling scholars to explore, analyse, and share queries. We evaluate our method from a user perspective, with the help of domain
experts in the humanities.
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1. Introduction

In only a short span of time, knowledge graphs have transitioned from an academic curiosity to an attractive
data model for storing and publishing scientific data [13]. Amongst the multitude of adopters of this data model are
many of the world’s galleries, libraries, archival institutions, and museums [6, 12, 39], as well as various scientific
communities including linguistics, archaeology, humanities, and history [7, 22, 24]. The combined efforts of these
institutes and communities have resulted in a considerable number of publicly-available knowledge graphs which,
together, surmount to vast amounts of interconnected heterogeneous knowledge. Much of this knowledge used to
be stored in analogue or digital silos, and has never been brought together before. Now linked to one another, this
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Figure 1. An example of a subgraph in the civil registry domain (left) and a possible graph pattern (right). Circles and squares represent entities
and classes, respectively, and attribute values are within quotation marks. The shaded area indicates the structural component of the pattern,
whereas the distribution conveys the non-structural component.

federative network of knowledge offers great opportunities for scholars, who can now potentially ask and answer
many new research questions.

Drafting research questions is an essential step in the scientific research workflow. Such questions can either
be derived from the scholarly literature or from patterns in data. However, without study, it is often not known
beforehand which questions these data might have the answers to. Even if accompanied by rich metadata, these
alone are often not enough to guide scholars in this process, limiting them to insights from the literature or sparks
of their own imagination. This may result in many potentially interesting and novel insights to remain unstudied,
due to possible biases or blind spots in the literature and the scholars’ thinking. This work aims to support scholars
during this early stage of the scientific workflow, by highlighting potentially interesting patterns in their data that
may form the building blocks for new research questions, and which can be used as evidence for already existing
lines of research.

Pattern detection on graph-shaped data can take on various forms. On the most fundamental level, graph patterns
are recurrent and statistically significant subgraphs in which some or all of the vertices have been replaced by
unbound variables [19]. Generalised graph patterns take this a step further, by having special variables that cover
an entire set of vertices, such as all members of a certain class [14]. Scholars can use such patterns to explore
structural regularities in the graph; other regularities, such as those between the various numerical, temporal, and
textual attributes values are generally not considered, however, despite their prevalence in many knowledge graphs.
This is particularly evident in the soft sciences where measurements, dating, and note taking are commonplace [37].
Since these multimodal data often contain insightful and unique information about the subject they belong to, it
becomes all the more important to treat them as first-class citizen. By doing so, we can integrate non-structural
regularities into generalised graph patterns and obtain more expressive patterns that offers scholars a more fine-
grained view of their data.

Figure 1 illustrates the merit of combining structural and non-structural regularities. The left side of the figure
depicts a civil record about an unemployed woman, named Jane, who died at an age of 23.6 years old, whereas, on
the right, a graph pattern is shown that covers this record. The depicted pattern likewise covers other records about
unemployed women, provided that they died at an age that falls within the learned distribution2. This distribution
is an example of a non-structural regularity; without it, the pattern would have been limited to unemployed women
whose age of death is on record, irrespective of the value. For other attributes, in this example the person’s name,
the variation between values might be too great to constitute a regularity, hence it being excluded from the pattern.

In this work, we introduce an algorithm for the bottom-up discovery of generalised multimodal graph patterns
in knowledge graphs. The patterns are generated directly from the graph, leveraging both statistics and semantics
to guide the discovery process, and get more precise with each following iteration. This gives our algorithm the
anytime property, as scholars can terminate the process at their leisure and still obtain potentially interesting, albeit
more generic, patterns. Additionally, special attention is given to the multimodal nature of many knowledge graphs,
by allowing the combination of structural regularities with those between numerical, temporal, and textual attributes.

2We maintain µ± σ as the range for a match.
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Moreover, to mitigate the curse of dimensionality, our algorithm incorporates smart pruning strategies and other
optimization techniques.

We evaluate our method and the patterns it yields from a user perspective, by asking feedback from the target
community via a focussed questionnaire. To lessen the semantic gap, the patterns are automatically converted to
SPARQL queries upon discovery, improving their interpretability and familiarity. As a final step, the queries are
presented in an interactive facet browser together with metadata, provenance information, and graph visualizations,
enabling scholars to explore and analyse the patterns, as well as reproduce and share relevant data selections.

To summarize, our main contributions are a) a novel anytime algorithm for the bottom-up discovery of generalised
multimodal graph patterns in knowledge graphs, b) the natural integration of various non-structural regularities into
generalised graph patterns, and c) an extensive evaluation together with domain experts.

2. Related work

Pattern detection methods generally fall in one of two categories: the symbolic approaches, which employ some
form of (logical) rule mining, and the non-symbolic approaches, which often involve (graph) neural networks in
an unsupervised learning setting. The method described in this paper falls into the first category, and is specifically
chosen for its explainability and deterministic nature.

Rule mining for graphs

A considerable body of literature is available on rule mining for relation data. Many of these approach the problem
from either an inductive or frequentist school of thought. Methods that belong to the former (e.g. [27, 28, 34])
generally apply inductive logic programming, which involves learning logical rules that explain all true arcs and no
false ones [26]. This technique is less suited for knowledge graphs, however, due to challenges with scalability and
the need for a closed world [29]. In contrast, frequentist approaches emphasize (relative) coverage, and typically
involves the mining of association rules or frequent substructures. This work falls under the umbrella of frequentist
approaches, by introducing a method to discover statistically relevant substructures in knowledge graphs.

Frequent subgraph mining is a mature field of research which involves finding all subgraphs that occur more
than some predefined number of times [15]. These subgraphs, and the graphs from which they are mined, are
assumed to be labelled simple graphs. For knowledge graphs, in which the vertices and arcs have types, it is therefore
more interesting to look for generalised subgraphs, for example by abstracting away to the level of the classes [3,
21, 31], or by generalising over controlled vocabularies and taxonomies [5, 32]. To discover the subgraphs, these
methods commonly employ a bottom-up approach, similar to our method, that begins with the most basic rules and
incrementally adds new arcss until some condition is reached or the search space has been exhausted.

Closely related to subgraph discovery is graph-based association rule mining, which aims at finding rules that
imply frequent co-occurrences between subgraphs. Such rules can be found by adapting the Apriori algorithm for
graph data, in which case so-called item sets of correlated arcs are sought, which are then clustered hierarchically
to induce an ordering on frequency [2, 35, 41]. Other methods are specifically tailored to graphs and use a bottom-
up approach comparable to many subgraph mining methods [8, 23, 42]. In some cases, background knowledge is
levered to infer implicit knowledge [25, 30].

Many methods employ optimization and smart pruning strategies to reduce the search space to a more manageable
size, for example by cutting unviable branches at an early stage or by avoiding duplicate subgraphs found via
different paths [9, 20, 42]. Similar strategies are being used by our method.

Query generation

To the best of our knowledge, generating queries directly from the data has received little attention. Instead, most
literature explores query log mining [43], top-down query construction [11], or the use of language models [40]
for this purpose. A notable exception is F. Shen et al [38], who cluster biomedical data on semantic closeness of
the relationships and convert these clusters into SPARQL queries. Some studies have also looked into the conver-
sion of SPARQL queries into other formats, including logical formulae [33, 36]. Our approach performs a similar
transformation, but in the other direction: from formulae to queries.
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3. Perquisites

Central to our approach are knowledge graphs and SPARQL queries. This next section will briefly introduce these
concepts.

3.1. Knowledge graphs

A knowledge graph G = (R,P ,A) is a labelled multidigraph with R and P denoting the set of resources
(vertices) and predicates (arc types), respectively, and with A ⊆ P × E × E ∪ P × E × L representing the set of
all assertions (arcs) that make up the graph. The set of resources R = E ∪ L can be further divided into the set of
entities, E , which represent unique things, tangible or otherwise, and the set of literals, L, which represent attribute
values such as text and numbers, and which belong to exactly one entity. Literals can optionally be annotated with
their datatype (or language tag, from which the datatype can be inferred) which itself is an entity.

An example of a knowledge graph is depicted in Figure 1-left, showing a small graph from the civil registry
domain. This particular graph contains seven entities, two of which are classes, and two literals: a number and
a string. These elements are linked to each other by exactly eight assertions, two of which represent the same
predicate: has_type.

There are various data models available to model knowledge graphs with. In this work, we consider the Resource
Description Framework (RDF)3, which is a popular choice for this purpose. However, our approach can be adapted
to other data models with minor changes.

3.2. SPARQL queries

SPARQL4is a query language for RDF-encoded knowledge graphs that supports searching for graph patterns. A
typical SPARQL query consists of three parts: 1) a prologue, in which the namespaces are defined, 2) a SELECT
clause, which specifies the return variables, and 3) a WHERE clause, which contains the graph pattern we are to
match against. SPARQL also provides many other capabilities, but these are out of the scope of this paper.

Graph patterns in a SPARQL query are similar to their logical counterpart except that the clauses are written
in infix notation—R × P × R—and that the conjunctions between them are implicit. Additionally, variables are
prepended by a question mark (?), and the FILTER keyword can be used to constrain the result set. An example is
listed in Listing 1-right, showing the SPARQL query corresponding to the graph pattern in Figure 1-right.

4. Defining generalised multimodal graph patterns

Generalised multimodal graph patterns are recurrent and statistically significant subgraphs in which some or all
of the resources have been replaced by special variables. This allows for graph patterns that abstract away from the
level of the individual resources by modelling structural regularities between and non-structural regularities within
sets of resources. From now on, we will refer to such patterns as graph patterns or simply as patterns unless the
meaning is not evident from the context.

Formally, a graph pattern ϕ = ci ∧ c j ∧ . . . ck is a conjunction of k clauses, with k ⩾ 1, where each clause
c = p(a, b) is a binary predicate that represents the relationship p ∈ P between the elements a and b. Here, a and b
can be constants that represent actual resources in the graph, in which case p(a, b) corresponds to an assertion in A,
or they can be variables, representing a set of entities or literals. In either case, we will refer to a and b as the head
and tail of a relationship, respectively.

In this work we consider three different kinds of variables, namely object-type, data-type, and value-range vari-
ables. The set of resources that each variable covers is called its domain. For each of the three variable types, we
define their domain as follows.

3The RDF specification is available at www.w3.org/TR/rdf11-concepts
4The SPARQL specification is available at www.w3.org/TR/sparql11-query

www.w3.org/TR/rdf11-concepts
www.w3.org/TR/sparql11-query
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ϕ = has_gender(vi,Female)

∧ has_occupation(vi,H.0-2)

∧ has_subject(v j, vi)

∧ has_type(v j,Death_Certificate)

∧ at_age(v j,N (24.5, 1.32))

SELECT ?vi ?v j
WHERE {

?vi has_gender Female .
?vi has_occupation H.0-2 .

?v j has_subject ?vi .
?v j has_type Death_Certificate .
?v j at_age ?vk .

FILTER (
?vk >= "23.35"^^int

&& ?vk <= "25.65"^^int
)

}

Listing 1: The graph pattern from Fig. 1-right in logical notation (left) and as SPARQL query (right). Variables vi

and v j correspond to the two unbound resources in the figure. Note that, for brevity, the namespaces have been
omitted.

Object-type: Let TE be the set of object types in G, and T (e, t) a binary predicate that holds if entity e ∈ E is of
type t. The domain of an object-type variable of type t ∈ TE can now be defined as the set of entities Et ⊆ E
such that ∀e ∈ Et : T (e, t).

Data-type: Let TL be the set of datatypes in G, and T (ℓ, t) a binary predicate that holds if literal ℓ ∈ L is of
datatype t. The domain of a data-type variable of type t ∈ TL can now be defined as the set of literals Lt ⊆ L
such that ∀ℓ ∈ Lt : T (ℓ, t).

Value-range: Let predicate p ∈ P represent a relationship with value space S ⊆ L such that ∀ℓ ∈ L,∃e ∈ E :
p(e, ℓ) =⇒ ℓ ∈ S . The domain of a value-range variable can now be defined as the set of attribute values
SF ⊆ S that fall within a distribution F defined on S.

Both object-type and data-type variables allow for a generalisation over structure. Examples of the former are
the object types Person and Occupation, which cover all people and jobs, whereas the datatypes String and
Float encompass all text and real-valued attribute values. Value-range variables offer a further generalisation over
attribute values, for example by fitting one or more Gaussian distributions on a collection of years, or by defining a
uniform distribution over a set of characters (encoded as regular expression, e.g. "ˆ[:alnum:]{3,6}$").

The clauses in a pattern are subject to several rules to safeguard their logical and semantic validity. Firstly,
the head of a clause must be an object-type variable, for else the pattern is bound to a specific resource, making
generalisation impossible. Secondly, for all-but-one object-type variables in the head of a clause there must exist
a clause which has the same variable in the tail position, thus ensuring a connected graph pattern. Third and final,
the tail of a non-terminal clause must be an object-type variable: ending such as clause with a data-type variable, a
value-range variable, or a literal is semantically invalid, whereas ending it with an entity is nonsensical since any
continuation from that point onwards will not result in a reduction of the pattern’s domain. In contrast, the tail of a
terminal clause can be a resource or any kind of variable.

We organize graph patterns based on depth, length, width, and support. The depth of a pattern equals the longest
path between any two elements, whereas the length and width equal the number of clauses in total and the maximum
number of clauses with the same head, respectively. The support value equals the number of occurrences of a pattern
in a specific dataset. An example graph pattern is depicted in Figure 1-right, which has a depth of four hops, a length
and width of five and three clauses, respectively, and with an unknown support value. The logical equivalent of this
pattern is listed in Listing 1-left.

5. Discovering graph patterns

Our algorithm employs a two-phase approach for discovering graph patterns. During the first phase, the algo-
rithm generates all possible single-clause patterns that satisfy the minimal requested support. These so-called base
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Procedure 1 The procedure (simplified) for computing all base patterns with a minimal support value. Only the
case with a single object-type variable (υt

ot) is shown (line 12); the other cases, which have variables on both sides
of the clause, are similar but require an extra step to calculate the domain and/or range.

1: function COMPUTEBASEPATTERNS(G, suppmin)
2: Ω := empty list
3: Ω.addItem(empty map)
4: for type t in {t | ∃e ∈ E : type(e, t)} do
5: B := empty set
6: Et := {e ∈ E | type(e, t)}
7: if |Et| ⩾ suppmin then
8: for p ∈ P do
9: U := {p(e, r) | ∃e ∈ Et,∃r ∈ R : p(e, r) ∈ A)}

10: for p(·, r) ∈ U do ‘
11: if |p(·, r) ∈ U| ⩾ suppmin then
12: ϕ := p(υt

ot, r)
13: B := B ∪ {ϕ}
14: Ω(0, t) := B
15: return Ω

patterns form the building blocks for more complex graph patterns, which are generated during the second phase
by extending previously discovered graph patterns with appropriate base patterns. Since all complex graph patterns
are a combination of base patterns, and since generating and evaluating new patterns involve simple set operations,
minimal further resource-intensive computation is necessary after completing the first phase. By also providing each
pattern with a description of its domain (e.g. via a set of integer-encoded resources) we no longer require to keep
the original graph in memory while retaining the minimal information necessary to derive the domain and support
for new patterns.

New graph patterns are generated breadth first, by first computing all possible patterns of minimal size and by
then iteratively combining these to form ever more complex patterns. This gives our algorithm the anytime property,
as users can terminate a run at their leisure while still obtaining potentially-interesting, albeit less complex, results.
Our algorithm is also embarrassingly parallel, as each new pattern effectively starts a separate branch which can be
computed independent from any of the other branches.

Please note that, for the purpose of conciseness, all procedures shown are simplified by leaving out pruning points
and other optimization techniques.

5.1. Constructing base patterns

Base patterns are generated by generalising over all assertions of which the entity in the head position is of the
same type, as shown in Procedure 1. This type-centric approach is chosen because the members of a class are likely
to possess similar characteristics and, by extension, are also likely to share similar regularities. By replacing the
specific head entities in these assertions by their corresponding object-type variables, we obtain clauses of the form
p(υt

ot, r) which represent a relationship p between an entity of type t and a resource r. After computing the domain
and support, each clause that enjoys a sufficiently high score is made into a pattern, ϕ = p(υt

ot, r), and added to
polytree Ω as root.

For brevity, the pseudocode in Procedure 1 omits the computation of clauses with a variable in the tail position.
Similar steps can be used, however, to generate the remaining three cases: for object-type and data-type variables,
we simply need to keep count of the various types of entities and literals, respectively, and, when this count meets the
minimal requested support, create a new base pattern ϕ = p(υt

ot, υ
t′
ot) or ϕ = p(υt

ot, υ
t′
dt), with υt′

dt a data-type variable
of type t′, which then gets added to Ω. For value-range variables, however, a few additional steps are needed.

Value-range variables are generated by defining one or more distributions over all the literal values that occur
on the right-hand side of a relationship p with entities of type t. For numerical data, this involves fitting multiple
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Procedure 2 The procedure (simplified) to iteratively discover more complex graph patterns, by matching possible
endpoints (line 9) with appropriate base patterns (line 11). Function ∆(·) returns the depth of an element.

1: function DISCOVER(G, suppmin, dmax)
2: Ω := ComputeBasePatterns(G, suppmin)

3: d := 0
4: while d < dmax do
5: for type t in Ω.types() do
6: O := empty set
7: for ϕ ∈ Ω(d, t) do
8: C := empty set
9: I := {c = p(·, υt

ot) | c ∈ ϕ ∧∆(υt
ot) = d}

10: for ci = pk(·, υt
ot) ∈ I do

11: J := {c = p(υt
ot, ·) | c ∈ Ω(0, t)}

12: for c j = pl(υ
t
ot, ·) ∈ J do

13: C := C ∪ {(ci, c j)}
14: O := O ∪ Explore(ϕ, C, suppmin)

15: Ω(d + 1, t) := O
16: d := d + 1

17: return Ω

Gaussian mixture models with various seeds and different number of modes, and by then evaluating these fits
using the Bayesian Information Criterion (BIC). For temporal data, such as dates, months, and durations, the same
procedure is followed but now the values are first converted into seconds (Unix time). Additionally, in either case
the values are standardized, shuffled, and augmented with a tiny amount of Gaussian noise to improve the fit. The
fitted distributions F1, F2, . . . , Fn are made into value-range patterns p(υt

ot, υ
Fi
vr ) if the number of literal values they

cover meets the minimal requested support.
The final variant of a value-range variable targets textual data, including natural language and arbitrary strings,

and involves the generation of hierarchical regular expressions. This is accomplished by first generating regular
expressions for each value separately, clustering these by similarity, and by then generalising the expressions until
they cover (almost) all members. We align these expressions with our earlier definition of a domain by regarding
them as uniform distributions to specific character sets.

5.2. Combining graph patterns

Going from the base patterns to more complex patterns involves the generation of candidate extensions C, which,
if deemed favourable, are appended to their parents’ set of clauses to form new graph patterns ψ′. These new patterns
are then added to Ω as children to their parents, provided that they meet the minimal requested support. Procedure 2
and 3 outline this process.

Each of the candidate extensions is a pair of clauses (ci, c j), where ci = pk(·, υt
ot) is one of the parent’s outer

clauses—a candidate endpoint—and c j = pl(υ
t
ot, ·) is a suitable base pattern. Both clauses are ensured to hold

the same object-type variable, thus providing a semantically valid connection. Depending on the element in the tail
position of clause c j, the extension, if added, will be terminal or non-terminal. If a pattern has no further non-terminal
clauses it will be omitted from future iterations of the algorithm.

There are often multiple extensions possible per pattern within the same iteration. To exhaustively explore
the space of multiple extensions, our algorithm evaluates each of these extensions separately, as well as their k-
combination (without repetition) with k ranging from two to the number of candidate extensions |C|. Note that,
since not all combinations are accepted, the actual maximum value for k will generally be less than |C| in practice.

For each new pattern we compute the domain and associated support score. Since patterns carry a description
of their own domain, we can easily compute the domain of a newly derived pattern by taking the intersection of
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Procedure 3 The produce (simplified) to evaluate the candidate extensions, and all legal combinations thereof.
Function supp(·) returns the support value for a given pattern.

1: function EXPLORE(ϕ, C, suppmin)
2: O := empty set
3: Q := empty queue

4: Q.enqueue(ϕ)
5: while Q ̸= ∅ do
6: ψ := Q.dequeue()
7: for ci, c j ∈ C do
8: ψ′ := ψ ∧ c j ▷ ψ = c1 ∧ c2 ∧ . . . ∧ ci

9: if supp(ψ′) ⩾ suppmin

10: then
11: O := O ∪ {ψ′}
12: Q.enqueue(ψ′)

13: return O

its parent’s domain with that of the recently-added clause, and by then propagating this change through the other
clauses in the pattern. Figure 2 illustrates this principle, by showing how adding a new clause reduces the domain
of the pattern as a whole.

5.3. Search optimization

Smart pruning techniques and other optimizations are used to reduce the search space by avoiding duplicate, in-
valid, and/or poorly supported patterns and clauses. We provide a brief description of the most important techniques
next.

– Since every added clause makes a pattern more specific, it must follow that the corresponding domain should
be a proper subset of that of its parent. Hence, patterns that have the same domain as their parent are pruned
and disallowed from becoming a parent themselves. The sole exception are clauses with an object-type variable
as tail, which are kept for one iteration more in case they might farther a pattern that does reduce the domain.

– Patterns that were not extended during the current iteration are omitted from future iterations. The intuition
behind this is that future iterations necessarily involve more specific patterns; if the patterns did not meet the
minimal support during the current iteration, then it follows that this will also be the case for future iterations.
The same holds for base patterns.

– Candidate extensions that do not meet the minimal required support are omitted from future iterations. Since
the domain of an extension will stay unchanged during the entirety of a run, it follows that adding them can

Figure 2. Updating the domain of a pattern ϕ after adding clause p(b, c). Domains are depicted as sets with integer-encoded resources, whereas
the maps between resources represent assertions in the graph. Since resource 6 is not connected to any of the resources in the domain of c, adding
p(b, c) thus reduces the domain of b (by removing resource 6), which, in turn, reduces that of a (by removing resource 3).
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Figure 3. A screenshot of the facet browser showing a graph pattern encoded as SPARQL query and visualized as a graph.

never result in a pattern with a sufficiently high support score. Base patterns for which this is the case are
already filtered during their creation.

– Duplicate patterns (which might occur via different routes) are pruned early on by creating a cheap proxy—
the logical formula as string—and checking this against a hash table before creating the actual object and
computing its domain.

– Patterns that only have terminal clauses or no appropriate object-type variables are disallowed from becoming
a parent, whereas patterns which exceed the maximum allowed length, width, or depth are pruned early on for
obvious reasons.

5.4. Pattern browser

A simple facet browser (Fig. 3) was created to assist scholars with the exploration and analysis of the discov-
ered patterns. Build upon open web standards, the pattern browser facilitates the filtering of patterns over various
dimensions, including support, depth, length, and width, as well as provide full-text search capabilities. The filtered
selection can be saved in a separate file, which itself can be opened in the pattern browser for further analysis. Alter-
natively, the saved selection can be shared with others or published on the web, facilitation reuse and reproducibility.

Metadata is stored together with the patterns and can be viewed directly from the pattern browser. Amongst
others, these data include provenance information and hyperparameter settings from the process that created the
patterns. Additional data is appended to the provenance information upon saving a filtered selection, allowing users
to trace back all performed actions. Both patterns and metadata are stored using RDF.

6. Evaluation

We evaluate our algorithm and the patterns it produces from a user-centric perspective, by conducting a user study
amongst a select group of domain experts from the humanities. The primary goal of this user study is to ascertain the
perceived interestingness of the discovered patterns, as well their interpretability. For this purpose, graph patterns
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SELECT ?vi ?v j
WHERE {

?vi has_gender Male .
?vi has_occupation H.61220 .
?vi has_age ?vk .

?v j has_subject ?vi .
?v j has_type Mariage_Certificate .

FILTER (
?vk == "29"^^int

)
}

"In this population sample, 1,238 out of
100,000 records are about 29 year old
married men who work in agriculture."

SELECT ?vi
WHERE {

?vi has_gender Female .
?vi has_firstName ?v j .
?vi has_familyName ?vk .

FILTER (
REGEX(?v j, "[a-z]{2,14}\s[a-z]{2,14}")
&& REGEX(?vk, "[a-z]{3,16}")

)
}

"In this population sample, 13,632 out of 100,000 records
are about women with two first names between 2 and 14
characters each, and with a family name between 3 and 16
characters."

Listing 2: Two graph patterns that were discovered in the civil registry dataset, encoded as SPARQL queries,
together with their natural language description. Note that, for brevity, the namespaces have been omitted.

were discovered within a domain-specific knowledge graph and presented to experts to assess. The implementation
of our algorithm that was used to generate these patterns is available online5. All runs of this algorithm were
performed on the DAS-6 supercomputer [1].

6.1. Dataset

The knowledge graph used in our experiments contains the civil records from Dutch citizen who were alive
between 1811 and 1974. Each record includes information about a person’s pedigree, marital status, occupation,
and location, as well as various important life events including birth, death, and becoming a parent. Due to the
sensitivity of these data we are prohibited from sharing this dataset, unfortunately.

In its entirety, the dataset contains the records from over 5.5 million people. For experimental purposes, a subset
was created by randomly sampling 100 thousand individuals together with their context, resulting in a graph with just
over one million assertions between roughly 635 thousand resources. We believe that these numbers are sufficiently
large enough for the same patterns to emerge as those present in the original dataset.

Two example patterns that were found during these experiments are listed in Listing 2, together with their de-
scription in natural language. The left-hand pattern covers the set of all 29 year old men who are married and who
work in the agricultural sector, which accounts for 1,238 individuals in the dataset. The graph pattern on the right
accounts for 13,632 people, and encompasses all women with two first names between two and 14 characters each,
and with a family name between three and 16 characters.

6.2. User study

The user study took the form of an online questionnaire, lowering the barrier for participation and allowing for a
cross-border audience. To ensure a good fit between this audience and the topic at hand it was decided to make the
questionnaire open to invitation only. While this resulted in a lower number of participants, we are confident that
their responses are more valuable.

The questionnaire was split into four sections. In the first section, participants were asked about their familiarity
with the core concepts surrounding this research. The answers to these questions allowed us to weight the partici-
pants’ responses on later questions. The second and third sections involved questions about the graph patterns and

5See gitlab.com/wxwilcke/hypodisc

gitlab.com/wxwilcke/hypodisc
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Figure 4. Responses (Kendall’s W = 0.14) about the perceived novelty, validity, utility, and interpretability of the presented graph patterns
(top) and the responses (Kendall’s W = 0.11) about the perceived helpfulness, intuitiveness, understandability, and pleasantness of the pattern
browser (bottom). All responses were measures on a 5-point Likert scale.

the pattern browser, respectively, whereas the last section asked several overarching questions about the perceived
usefulness of our method and the patterns it yields. In all cases (save for open questions) the responses were recorded
using a five-point Likert scale ranging from Strongly Disagree (negative) to Strongly Agree (positive).

To assess the graph patterns on interestingness, participants were presented with several hand-picked patterns
in SPARQL format, and asked to rate each one on novelty, validity, and utility (all of which are dimension of
interestingness [10]) as well as on interpretability. A similar setup was used for the pattern browser, but instead
using screenshots and rated on helpfulness (in analysing the patterns), intuitiveness (of the interface), pleasantness
(of the colour scheme), and understandability (of the displayed information).

To determine the agreement and reliability amongst participants, we employ Kendall’s coefficient of concordance
W for its suitability to evaluate ordinal data with multiple ratings over multiple items [17]. For similar reasons, we
use Kendall rank correlation coefficient τ to measure dependencies between responses [16]. We furthermore employ
factor analyses to obtain a better understanding of the interactions between criteria.

6.3. Results & discussion

A total of 13 out of the 42 experts on social and economic history to whom we reached out took part in the
user study, corresponding to a fair response rate of 31%. Table 1 lists their familiarity with the domain, knowledge
graphs, SPARQL, and database terminology. The responses suggest that the participants only moderately align with
the domain, as both the median and mode scores are neutral. Similar for their familiarity with knowledge graphs,
albeit with a lower median of disagree. Even less familiar do the participants seem to be with SPARQL and database
terminology, having a median of disagree and mode of strongly disagree for the former, and a median and mode
of disagree for the latter. Together, these responses suggest a possible gap between the technical background and
experience of the participants and the skills required to fully comprehend the method and the patterns it yields.
While this discrepancy might not be evenly spread amongst the participants, as suggested by the relatively low
agreement (W = 0.29), it may have induced a degree of uncertainty in the participants and in the answers they have
provided. This is further corroborated by the self-reported confidence (Table 5), with roughly half of the participants
(46%) giving themselves the lowest score (W = 0.85).

Figure 4-top shows the responses about the presented graph patterns. Overall, the provided scores suggest that the
participants were critical about the discovered patterns, with 52% to 64% believing the patterns to be uninteresting
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Table 1

Familiarity of the participants (Kendall’s W = 0.29) with the domain, knowledge graphs,
SPARQL, and database terminology. Last column shows correlation (Kendall’s τ) with
perceived utility (Tab. 2).

Familiarity Median Mode τ

Domain neutral neutral -0.37
Graphs disagree neutral 0.42
SPARQL disagree strongly disagree 0.51
DB Terms disagree disagree 0.77

Table 2

Utility of the patterns (Kendall’s W = 0.54)
as perceived by participants in relative num-
bers.

Score Portion

fully agree 0.00
agree 0.15
neutral 0.24
disagree 0.15
fully disagree 0.46

against 8% to 28% deeming the opposite. However, the number of people who were very negative differ considerably
from roughly one out of three to two out of three negative responses. This is supported by the low agreement
(W = 0.14) amongst raters, which indicates a wide range of opinions. Looking at the underlying criteria, we
observe that the participants seem the most positive (28%) about the utility of the patterns, followed by their novelty
(17%). The patterns’ validity, however, scores poorly with only few participants being positive (8%). This last score
is particularly interesting since the patterns are generalisations of the original data, rather than predictions, and are
therefore as valid as the data they are discovered on. That the patterns were nevertheless deemed invalid by most of
the participants suggests that there are either problems with the chosen dataset (which is unlikely, it being a curated
dataset) or that there was a mismatch between the experts’ expectations and the output of our method. This latter
reason seems more probable, since only few participants were positive about interpretability (17%).

An analysis of the factor loadings belonging to these responses (Table 3) shows a clear separation between criteria,
with utility (0.90λ1) and validity (0.88λ1) on one hand, and interpretability (0.97λ2) on the other. This suggests that
both utility and validity contribute to the same latent component, which we can perhaps interpret as an indication of
effectiveness, whereas interpretability measures an entirely different component of its own. Less clear cut is novelty,
which enjoys significant cross loadings on both components (−0.54λ1 + 0.40λ2) which suggests that this criterion
is a poor indicator for the dimensions on which the participants assess the usefulness of the patterns. Rather, novelty
appears to be a combination of low effectiveness and high interpretability, suggesting that it is a product of our
method as opposed to an inherent characteristic. This creates a peculiar paradox, where users rate the effectiveness
based on the method’s ability to discover known and useful patterns, but value novel insights for their perceived
validity and utility as long as they are easy to understand.

Participants were largely divided about the pattern browser (Figure 4-bottom), with 31% to 46% seeing the tool
as beneficial and user friendly against 38% to 46% thinking otherwise. This large range is again supported by
the low agreement between participants (W = 0.11). In terms of helpfulness and understandability the number of
(very) positive reactions are largely in balance with the (very) negative reactions; the helpfulness scores the most
positive with almost half of the participants (46%) deeming the browser beneficial for analysing patterns, while
a large portion (38%) of participants is also relatively positive about how the browser conveys the patterns in an
way that is understandable. Respondents were more critical of the browser’s intuitiveness and pleasantness. While
a comparable number of participants assessed the intuitiveness as either positive or negative, there were none who
were very positive. Conversely, only few negative respondents were very negative (8%) about the pleasantness of
the colour scheme used by the interface, whereas most positive participants were very positive (23%).

The factor loadings that belong to these responses are listed in Table 4, and indicate a strong divide between
pleasantness (0.99λ2) and the other three criteria: intuitiveness (0.61λ1), helpfulness (1.00λ1), and understandability
(0.85λ1). A likely explanation is that pleasantness measures purely the visual appearance of the browser, whereas
the remaining three are a measure of the browser’s usefulness. Intuitiveness stands out, however, by also providing a
moderate contribution (0.29λ2) to the visual component. This might be explained by that this criterion, like novelty,
is a product of the other dimensions rather than an inherent characteristic, suggesting that intuitiveness stems from
whether users deem the browser intelligible and easy to use.

Table 2 lists the overall utility of the graph patterns and browser as perceived by the participants, and suggests an
overall critical opinion with 15% of the experts agreeing that the patterns and/or browser can be useful. Different
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Table 3

Factor loadings of the responses on the presented graph pat-
terns, averaged over participants, using an oblique rotation
(BentlerQ[4]) with two components which, together, account
for 87% of the total variation.

Criterion λ1 λ2

Novelty -0.54 0.40
Validity 0.88 -0.05
Utility 0.90 0.14
Interpretability 0.03 0.97

Table 4

Factor loadings of the responses on the pattern browser, us-
ing an oblique rotation (Simplimax[18]) with two components
which, together, account for 86% of the total variation.

Criterion λ1 λ2

Intuitiveness 0.61 0.29
Pleasantness 0.02 0.99
Helpfulness 1.00 -0.16
Understandability 0.85 -0.02

Table 5

Confidence of the participants (W = 0.85) in
relative numbers.

Score Portion

fully agree 0.00
agree 0.00
neutral 0.38
disagree 0.15
fully disagree 0.46

from the other responses, this opinion enjoys a much higher, albeit still moderate, agreement (W = 0.54). Correla-
tion tests with the participants’ familiarity scores show a substantial positive correlation (τ = 0.77) between having
a strong negative opinion and having little experience with database terminology, and moderate positive correlation
with the unfamiliarity with SPARQL (τ = 0.51) and knowledge graphs (τ = 0.42). This suggests that scholars who
possess a more inductive, data-focussed, mindset were more positive about our approach, whereas more deductive,
theory-minded, scholars were most critical.

Remarks left by the experts shed some light on the results. While a variety of reasons were given, the large
majority of these can be summarized as "missing the context". According to these experts, it is difficult to infer
anything useful from the patterns if presented in isolation. Rather, more detailed information should be provided on
the data and the domain they cover. Other insight that can be gained from the remarks is the strong preference for
a natural language representation, rather than the SPARQL format or graph visualization, despite the likely loss of
precision due to the translation. A final common remark is the degree of interestingness, which still varies too much.

7. Conclusion & future work

This work introduced an anytime, bottom-up, and easily parallelizable algorithm to efficiently discover gener-
alised multimodal graph patterns in knowledge graphs. To facilitate further filtering and analysis, the discovered
patterns are converted to SPARQL queries and presented in a simple facet browser. An evaluation of the patterns
and the browser was held in the form of a user study amongst a select group of domain expert. While reactions
were mixed, further analysis suggested that the most critical experts acted from a feeling of uncertainty caused by
their unfamiliarity with the technical skills required to fully comprehend the patterns and the method that generated
them. Rather, this group expressed their preference for more context and natural language explanations, finding it
challenging to interpret the patterns otherwise. Conversely, the experts who did posses appropriate technical back-
grounds were more positive in general, particularly where utility is concerned.

Further analysis also revealed a peculiar, yet interesting, paradox that suggests that many experts set out to find
interesting new patterns, yet rated novel patterns more negatively because they do not conform to the current schol-
arly literature or the experts’ own beliefs. This effect might be a form of confirmation bias or simply a distrust of
new technologies, yet poses an intriguing conundrum since the most straightforward solution (emphasizing existing
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knowledge) would invalidate the method’s entire reason for being. On the other hand, since the perception of novelty
appears to emerge from other characteristics rather than being an intrinsic characteristic of a pattern itself, as sug-
gested by our findings, it can be argued that the primary goal should not be about finding novel patterns, but rather
about discovering explainable connections between patterns that are already known and validated. Developing such
methods would be an interesting exercise for future work.

There are several other natural directions to follow up on in future work. First and foremost is the improvement
of the measure of interestingness, and how to steer away from uninteresting patterns. This is a common and difficult
problem with pattern mining which is largely the result of an algorithm’s reliance on statistics. Expanding the
method’s ability to exploit background information might help counter this by making more informed decisions
when exploring the search space, for example by favouring patterns that contain elements from a domain-specific
taxonomy. Another possible solution to avoid uninteresting patterns might be to more actively involve the users in
the discovery process, by asking them to score candidate patterns as they are discovered. This would enable scholars
to fine-tuning the output to their own expectations, further increasing explainability and transparency. These scholars
can be supported by a meta model that learns to differentiate between patterns that are interesting and those which
are not, and which, once satisfactory, can be shared with fellow researchers.

Future work might also consider further improving how scholars can inspect and analyse the discovered patterns,
for example by developing an interactive dashboard which provides detailed information about the context on vari-
ous levels of granularity. This information could include general statistics about the relevant classes and predicates,
as well as provide an overview of their semantics, their members, and other closely related elements. To increase
interpretability, the patterns themselves can perhaps be offered as natural language explanations, which could be
generated automatically by leveraging the annotations in the graph if provided, or by employing a large language
model trained on similar data.
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