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Abstract. Understanding complex societal events reported on the Web, such as military conflicts and political elections, is
crucial in digital humanities, computational social science, and news analyses. While event extraction is a well-studied problem
in Natural Language Processing, there remains a gap in semantic event extraction methods that leverage event ontologies for
capturing multifaceted events in knowledge graphs since existing methods for event extraction often fall short in the semantic
depth or lack the flexibility required for a comprehensive event extraction.

In this article, we aim to compare two paradigms to address this task of semantic event extraction: The fine-tuning of traditional
transformer-based models versus the use of Large Language Models (LLMs). We exemplify these paradigms with two newly
developed approaches: T-SEE for transformer-based and L-SEE for LLM-based semantic event extraction. We present and
evaluate these two approaches and discuss their complementary strengths and shortcomings to understand the needs and solutions
required for semantic event extraction.

For comparison, both approaches employ the same dual-stage architecture; the first stages focus on multilabel event classifi-
cation, and the second on relation extraction. While our first approach utilises a span prediction transformer model, our second
approach prompts an LLM for event classification and relation extraction, providing the potential event classes and properties.
For evaluation, we first assess the performances of T-SEE and L-SEE on two novel datasets sourced from DBpedia and Wiki-
data, containing over 80, 000 Wikipedia sentences and semantic event representations. Then, we perform an extensive analysis
of the different types of errors made by these two approaches to discuss a set of phenomena relevant to semantic event extraction.

Our work makes substantial contributions to (i) the integration of Semantic Web technologies and NLP, particularly in the
underexplored domain of semantic event extraction, and (ii) the understanding of how LLMs can further enhance semantic event
extraction and what challenges need to be considered in comparison to traditional approaches.

Keywords: Event Extraction, Transformer Models, Large Language Models, Event Knowledge Graph

1. Introduction

Event extraction aims to identify and classify events and their relations in text, including Web sources such as so-
cial media, news websites, and online encyclopedias like Wikipedia. Typically, this extraction process is conducted
without relying on pre-existing knowledge structures or further structuring of extracted data. In contrast, the goal of
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semantic event extraction is to leverage an existing event ontology to lift unstructured text into a structured represen-
tation capturing the essence of the event, including its type (e.g., presidential election) and relations to
entities (e.g., <US presidential election 2020, successful candidate, Joe Biden>). Specif-
ically, semantic event extraction aims at enriching knowledge graphs to make event information more accessible,
i.e., by adding events that are not yet contained in the knowledge graph because (i) the input texts are about recent
events or (ii) the events of that type are considered out of domain (e.g. if the knowledge graph only contains more
coarse-grained event types). Practical applications of event knowledge graphs include event-centric visualisations
[1, 2], biography generations [3], event narrativisation [4] and question answering over event-related information
[5].

Semantic extraction operates at a critical juncture of the Semantic Web and Natural Language Processing (NLP)
technologies:

– The Semantic Web offers rich event ontologies such as LODE [6] and the Simple Event Model [7] to represent
events. However, cross-domain knowledge graphs such as DBpedia [8] and Wikidata [9] typically focus on
named events, such as political summits and natural disasters and lack adaptability to diverse expressions in
text-based event descriptions. In addition, relation extraction and link prediction for knowledge graph popula-
tion typically suffer from noisy data [10–12] and require the presence of the related entities in the knowledge
graph [13] and are thus not applicable for extracting relations of newly identified events.

– NLP employs named entity recognition and event extraction techniques to identify finer-grained, transient
events like individual meetings or transactions [14] from text. However, traditional NLP methods often decon-
struct the task of semantic event extraction into smaller sub-tasks such as event detection [15, 16], and argument
extraction [17–19] with each garnering their specific benchmark datasets [20, 21] typically not bound to se-
mantic event ontologies.

This divergence results in a critical gap, creating a need for semantic event extraction, blending structured,
ontology-based classification with the adaptability to handle a wide range of event types – from transient inter-
actions to significant historical occurrences.

Although some efforts have been made towards semantic event extraction [22, 23], Guan et al. denote that the
construction of event knowledge graphs still suffers from the unsatisfactory performance of existing event extraction
methods, especially for argument extraction [24]. Most methods still fall short in delivering an integrative approach
that works across various domains and effectively accommodates sufficiently rich and diverse ontologies [25–27]
centring instead around aged NLP benchmark datasets such as ACE05 [28] or conversely on highly specific do-
mains [29, 30].

Example: As an example of semantic event extraction, consider the event represented in Fig. 1. The text on the
left is extracted from the Wikipedia article regarding the “2017 UEFA European Under-21 Championship Final”.
We aim to extract relevant event information1 from that text, such as the final match itself or, potentially, other events
mentioned in the text, and enrich an event knowledge graph with newly extracted events and event relations. The
right-hand side of the figure illustrates a knowledge graph representation of an extracted event. This representation
includes an event class (final), an event description derived from the text, the precise location of the game, the
date, and other relations.

In this article, we introduce two approaches for semantic event extraction, which follow the same structure but
two different paradigms: Transformer-based architectures and Large Language Models (LLMs).2

Transformer-based Semantic Event Extraction (T-SEE): T-SEE benefits from the strengths of both Semantic
Web and NLP techniques and is trained and evaluated on two new datasets, specifically created as a resource for
semantic event extraction. T-SEE disentangles the complexities of the task into two manageable sub-tasks:

1Given an event and its event class, we consider any information that can be expressed with a property typically used on the respective event
class as relevant (e.g., the type of sport of a final).

2While LLMs also employ transformers, in this article, we refer to the “traditional” use of transformers, which are fine-tuned to a specific
target task, and compare them to pre-trained LLMs prompted for the target task.

http://www.wikidata.org/entity/Q858439
http://www.wikidata.org/entity/Q22923830
http://www.wikidata.org/prop/direct/P991
http://www.wikidata.org/entity/Q6279
https://en.wikipedia.org/wiki/2017_UEFA_European_Under-21_Championship
http://www.wikidata.org/entity/Q1366722
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The 2017 UEFA European Under-21
Championship Final was a football match
that took place on 30 June 2017 at
the Stadion Cracovia in Poland to
determine the winners of the 2017 UEFA
European Under-21 Championship. 


type

country

sport

description
location

<final, sport>
<final, point in time>
<final, location>

part of point

in tim
e

final

30 June
2017

football

"The 2017 ... Final was a football
match that took place ..."

Poland Stadion
Cracovia 

<final, country>

<final, part of>

Queries:

Fig. 1. Example of semantic event extraction for an event mentioned in the Wikipedia article “2017 UEFA European Under-21 Championship
Final” using classes and properties in Wikidata. The figure shows a text (top-left), a set of queries consisting of an event class and a property
(bottom-left), and the extracted event triples (right).

– Event Classification: Approached as a multilabel classification problem, T-SEE determines the most appropri-
ate event labels given a text from a pre-defined set of event classes. In our example, T-SEE applies multilabel
classification to categorise the event into final.

– Relation Extraction: Utilising a span prediction transformer model, we target class-specific relations to con-
struct a nuanced representation of events. In our example, we extract relations such as (NewEvent, country,
Poland) employing a set of queries. Here, a query consists of an event class (e.g., final or conflict)
and a property (e.g., location or sport) and is used to extract the respective information (e.g., the location
of the final) within the given text.

LLM-based Semantic Event Extraction (L-SEE): With L-SEE, we examine the application of LLMs for
semantic event extraction. Given the current prominence of LLMs in various NLP tasks [31, 32], it is pertinent
to assess their utility and performance in extracting structured event information from text. In analogy to T-SEE,
L-SEE also performs event classification followed by relation extraction, both through specific prompts.

Evaluation: To train T-SEE and to evaluate T-SEE and L-SEE, we provide two new semantic event extraction
datasets created from DBpedia and Wikidata, containing over 80, 000 Wikipedia sentences and semantic event
representations. Through a subsequent manual error analysis, we not only aim to gauge the capabilities of LLMs
against transformer-based methods but also to identify specific challenges and areas where LLMs might offer novel
insights or complement existing approaches.

In this way, we aim to contribute to the ongoing discourse on the potential and limitations of leveraging LLMs
for information extraction and knowledge engineering, particularly in cases where LLMs may uncover information
beyond the predefined ground truth or existing knowledge graphs.

Contributions: In summary, our contributions are:

– We outline the underexplored area of semantic event extraction, situated at the Semantic Web and NLP inter-
section.

– We present T-SEE and L-SEE, our approaches for semantic event extraction following comparable pipelines,
where T-SEE uses a transformer-based architecture and L-SEE uses an LLM.

– We provide two new semantic event extraction datasets created from Wikipedia, Wikidata, and DBpedia:
Wikidata-SEE and DBpedia-SEE.

– We demonstrate the efficacy of T-SEE and L-SEE through empirical evaluations against existing methods.
– We perform an extensive manual annotation of the predictions of T-SEE and L-SEE to identify typical error

types and compare the strengths and shortcomings of these two paradigms.
– We make the code3 and the data4 available online.

3https://github.com/t-kuculo/T-SEE
4https://zenodo.org/records/10818676

https://en.wikipedia.org/wiki/2017_UEFA_European_Under-21_Championship
https://en.wikipedia.org/wiki/2017_UEFA_European_Under-21_Championship
http://www.wikidata.org/entity/Q1366722
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/entity/Q36
https://github.com/t-kuculo/T-SEE
https://zenodo.org/records/10818676
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Structure: The remainder of this article is structured as follows: In Section 2, we define the task of semantic event
extraction. Then, we introduce T-SEE (Section 3) and L-SEE (Section 4). After an automated evaluation of these
approaches on a test set (Section 5), we perform our error analysis and discussion in Section 6. After presenting
related work (Section 7), we conclude in Section 8.

2. Problem Statement

We formally define the problem of semantic event extraction to bridge the gap between granular, structured
information and the adaptability required to capture a wide variety of events.

In the context of this work, an event is an occurrence of societal importance, typically happening at a specific
time and location, involving a set of participants. Examples of events include military conflicts, such as the Second
World War, political shakeups, such as Brexit, but also more fine-grained events, such as the battles and air raids in
the Second World War or specific football games.

We model information regarding entities (representing real-world events and real-world objects such as persons
or locations) and their relations in an event knowledge graph. The classes and properties within the knowledge graph
are defined by an event ontology:

Definition 1 (Event Ontology). An event ontology O = (P,C) defines the properties (P) and classes (C) in an event
knowledge graph, where:

– P is a set of properties describing the types of relations that can hold between two entities and
– C is a set of event classes. An event class can be a sub-class of another event class.

Classes and properties in an event ontology are uniquely identified by an Internationalized Resource Identifier
(IRI).5 Specifically, the property ptype ∈ P (typically identified via the property IRI rdf:type) assigns an event
class to an event.

Other example properties describe the location and number of participants of events. Examples of
event classes include final as a sub-class of sporting event.

Based on an event ontology, we formally define an event knowledge graph as follows:

Definition 2 (Event Knowledge Graph). An event knowledge graph GO = (E,V, L,R) models entities, events,
literals, and their relations following an event ontology O = (P,C):

– E is a set of nodes representing real-world entities.
– V ⊂ E is a subset of nodes representing real-world events.
– L is a set of literals such as numbers or texts.
– R ⊆ E × P× (E ∪ L ∪C) is a set of relations.

In a relation (e, ptype, c) ∈ R where e ∈ V is an event, we require that c ∈ C is an event class. This way, we model
the class assigned to an event.

We define the task of semantic event extraction as follows:

Definition 3 (Semantic Event Extraction). Given an event ontology O = (P,C), an event knowledge graph GO =
(E,V, L,R), and a text t, the task of semantic event extraction is to detect a set of events described in t that are not
yet represented in GO. For each such event et, the task includes:

1. Identifying its event class relation (et, ptype, c) (event classification), and
2. Extracting a set of relations from t (relation extraction), with each relation being of the form (et, p, o), where

p ∈ P is the property connecting et to o ∈ E ∪ L ∪C.

These relations, and the classes they involve, must adhere to the properties and classes of O.

5Relevant prefixes and namespaces of IRIs used in this article include: wd: http://www.wikidata.org/entity/,
wdt: http://www.wikidata.org/prop/direct/, dbr: https://dbpedia.org/resource/, dbo: https://dbpedia.org/ontology/
and rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/prop/direct/P1132
http://www.wikidata.org/entity/Q1366722
http://www.wikidata.org/entity/Q16510064
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Fig. 1 illustrates an example text (t) taken from the Wikipedia article regarding the “2017 UEFA European Under-
21 Championship Final”. The semantic event extraction leads to the creation of a new event et, which is typed as the
event class final and assigned to relations with properties of the event ontology O (e.g., location and point
in time). These relations can be serialised as RDF triples to be used in downstream applications.

2.1. Assumptions

To perform semantic event extraction given the defined problem statement, we propose methodologies that em-
ploy transformers and LLMs based on the following assumptions:

Tasks and Models
– Task Representation: Following Definition 3, we frame semantic event extraction as a two-step task: event

classification followed by relation extraction. This decomposition is assumed to be effective and meaningful
for capturing events and their relations. Further, we directly intertwine the tasks of event detection and event
classification: event classification detects and classifies events at the same time, i.e., there are no events without
event class.

– Task Dependency: Relation extraction depends on the results of event classification. This dependency is in-
tentional, as event classes determine which relations to extract. Consequently, we assume errors to propagate
across the entire pipeline, so any misclassifications naturally affects relation extraction results. This error prop-
agation needs to be reflected during evaluation.

– Model Selection: We assume that both transformer-based models and LLMs are suitable for semantic event
extraction.

* Transformers: Fine-tuned transformer models (e.g., BERT) are assumed to generalize effectively for event
classification and relation extraction when trained on high-quality, ontology-aligned datasets.

* LLMs: LLMs are assumed to generate structured outputs reliably when prompted with event ontologies.
However, we acknowledge LLMs’ sensitivity to prompt design and their tendency to hallucinate relations
not present in training data, requiring careful validation.

Data
– Event Ontology Scope: The selected event ontology must comprehensively define event classes and properties

for the target domain. We assume the event ontology is extracted from a knowledge graph (e.g., Wikidata) and
filtered to exclude overly specific or metadata-like entries. As described in our evaluation setup in Section 5.1.1,
we use two event ontologies for training and evaluation, extracted from DBpedia and Wikidata.

– Data Availability: Training data must consist of texts annotated with events, classes, and relations aligned with
the event ontology. As described in our evaluation setup in Section 5.1, we use two datasets for training and
evaluation. They contain triples from DBpedia and Wikidata, respectively, both linked to texts from Wikipedia.
An example of a text annotated with Wikidata triples is given in Table 1.

– Annotation Quality: In order to generate such large-scale datasets, we assume distant supervision during
dataset creation to link triples to Wikipedia texts, acknowledging potential noise in annotations. Consequently,
even despite a cautious dataset creation process, ground truth annotations may still contain omissions or inac-
curacies, particularly in large-scale datasets. Further, annotations can vary regarding granularity (e.g., dbo:
SportsEvent vs. dbo:TennisTournament) and completeness. This assumption motivates to perform
manual validation of the evaluation results as we do in Section 6.

Evaluation
– Setup: As described above, the evaluation setting requires a training and evaluation dataset and needs to assess

the quality of event classification, relation extraction and their combination in semantic event extraction.
– Metrics: Metrics must reflect pipeline-wide performance, including error propagation. Therefore, we compute

precision, recall and F1 scores for the tasks of event classification and relation extraction in isolation and in
combination. For LLM-based methods, we additionally assume consistency metrics (e.g., Fleiss’ κ) to account
for stochastic outputs.

https://en.wikipedia.org/wiki/2017_UEFA_European_Under-21_Championship
https://en.wikipedia.org/wiki/2017_UEFA_European_Under-21_Championship
http://www.wikidata.org/entity/Q1366722
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/prop/direct/P585
http://www.wikidata.org/prop/direct/P585
https://dbpedia.org/ontology/SportsEvent
https://dbpedia.org/ontology/SportsEvent
https://dbpedia.org/ontology/TennisTournament
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Table 1
Example of an annotated text as required in a dataset required for training and evaluating a semantic event extraction model. This example is
based on Fig. 1 using Wikidata as the target event ontology. The given text t mentions two events (here, marked in bold for convenience).

et1 et2

t The 2017 UEFA European Under-21 Championship Final was a football match that took place on 30 June 2017 at the
Stadion Cracovia in Poland to determine the winners of the 2017 UEFA European Under-21 Championship.

C final season

R

• (NewEvent1, sport, football)
• (NewEvent1, country, Poland)
• (NewEvent1, ptype, final)
• (NewEvent1, point in time, “2017-07-30”)
• (NewEvent1, location, Stadion Cracovia)
• . . .

• (NewEvent2, country, Poland)
• (NewEvent2, point in time, “2017”)
• (NewEvent2, ptype, season)

– Error Analysis: We assume manual error analysis is critical to identify phenomena like event ambiguity, type
misalignment, and annotation discrepancies, which automated metrics may overlook.

3. T-SEE: Transformer-based Semantic Event Extraction

In this section, we present T-SEE (Transformer-based Semantic Event Extraction), an approach for semantic
event extraction based on a transformer architecture. The design of T-SEE is guided by two goals:

1. Through a 3-step procedure of event classification, relation extraction and event modelling, we ensure compa-
rability with L-SEE, our LLM-based approach presented in the next section (Section 4).

2. To allow seamless integration into the Semantic Web, the whole architecture of T-SEE needs to be guided
through an event ontology, its RDF classes and properties.

Fig. 2 offers a visual summary of T-SEE following these goals. Given an event ontology O, we generate a set
of queries Q during the preprocessing phase (query generation) as a basis of the query-based relation extraction.
T-SEE then carries out a three-step process to extract and semantically represent events from a given text t:

1. Event classification: We formulate event classification as a multilabel classification problem and apply it to a
given text t to identify event mentions and their classes. This enables us to classify all event mentions within
the text concurrently.

2. Query-based relation extraction: For each identified event, we extract its relations using a transformer-based
extraction model and a subset of Q, i.e., selected queries used to extract relevant relations of the detected
events. After the appropriate queries have been selected, we train our relation extraction model on pairs of
event classes and properties.

3. Event modelling: We transform the extracted event information into triples and add them to the event knowl-
edge graph GO.

With this process, T-SEE focuses on event classification and subsequent event relation extraction, aiming to
generate a robust and comprehensive representation of event knowledge. We build on three key factors: (i) the
inherent strengths of transformer models, including their capacity to encapsulate complex semantic relationships
within the text; (ii) the use of task-specific fine-tuning of these models that allows us to tailor their powerful general
language understanding capabilities to our specific extraction tasks, and (iii) the structural guidance provided by
an event ontology, which not only aligns the model’s understanding of events with existing schemas but also offers
adaptability accommodating emerging event types, such as "pandemic".

In the following, we describe T-SEE’s steps in more detail, along with its algorithm and a running example for a
more intuitive understanding.

http://www.wikidata.org/entity/Q1366722
http://www.wikidata.org/entity/Q27020041
http://www.wikidata.org/entity/P641
http://www.wikidata.org/entity/Q2736
http://www.wikidata.org/entity/P17
http://www.wikidata.org/entity/Q36
http://www.wikidata.org/entity/Q1366722
http://www.wikidata.org/entity/P585
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/entity/Q738643
http://www.wikidata.org/entity/P17
http://www.wikidata.org/entity/Q36
http://www.wikidata.org/entity/P585
http://www.wikidata.org/entity/Q27020041
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Fig. 2. Overview of T-SEE, showing how it extracts and models a single event. Inputs to the models are shown below the horizontal lines.

Algorithm: Algorithm 1 provides an overview of T-SEE. The algorithm embodies the three main inference steps
explained earlier: event classification, query-based relation extraction, and event modelling.

Algorithm 1 Transformer-based Semantic Event Extraction (T-SEE)

1: Input
2: t Text
3: O Event ontology
4: R The relations in an event knowledge graph GO

5: Q Set of queries
6: ECM Event Classification Model (trained)
7: REM Relation Extraction Model (trained)
8:
9: Rt = {(et, ptype, c)} ← ECM.classi f yEvents(t,O) ▷ Event classification (Section 3.2)

10:
11: for each (et, ptype, c) ∈ Rt do ▷ Query-based relation extraction (Section 3.3)
12: Ret ← {}
13: for each q = ⟨c, p⟩ ∈ getQueries(Q, c) do
14: result← REM.getQueryResult(t, q)
15: Ret ← Ret ∪ REM.createRelations(et, p, result)
16:
17: R = R ∪ (et, ptype, c) ▷ Event modelling (Section 3.4)
18: ∪ (et, pdescription, t) ∪ Ret

Example: We exemplify each of the steps based on the example illustrated in Fig. 3, where the text t pertains
to protests in Tehran. T-SEE extracts two events (et1 and et2 ), their classes6 (conflict and revolution)
and relations. This example demonstrates how T-SEE’s relation extraction model is capable of extracting different
relations for each detected event, for instance, (et1 , pparticipant,Government of Iran)7 and (et2 , plocation,Tehran).

3.1. Ontology-guided Query Generation

The query generation step is a preprocessing step that creates a set of queries Q used later as input to the query-
based relation extraction model. The generation of Q is guided by an event ontology O, such that each query
q = ⟨c, p⟩ ∈ Q comprises the event class c and a corresponding property p as defined in the event ontology. For

6As our event ontology O in this example, we select an event ontology extracted from Wikidata.
7For readability of the example relations, we represent selected entities and classes through their labels.
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et  , type, revolution
et  , location, Tehran
⋮
et  , country, Iran

et  , type, conflict
et  , participant, Government of Iran
⋮
et  , country, Iran

Queries for       
 <revolution, location>

⋮
 <revolution, country>

et  :
conflict

et  :
revolution

Queries for       
 <conflict, participant>

⋮
 <conflict, country>

Text t: Amidst a revolution in Tehran, continuing conflicts on the streets per-
sist as the Iranian government violently reacts to the Mahsa Amini protests.

Events

2et

1

et 1

2

1

1

1

2

2

2

Fig. 3. Example of event classification and query-based relation extraction on a sentence in the Wikipedia article “Mahsa Amini protests”.

each considered event class in O8, a set of queries is added to Q. These queries are then used in T-SEE’s query-based
relation extraction step.

Given an event ontology O = (P,C) and an event knowledge graph GO = (E,V, L,R), we create these queries
as follows: For each event class c ∈ C, we select a set of properties that are used together with events of this class
in GO: {p | (e, p, x) ∈ R ∧ (e, ptype, c) ∈ R}. To avoid the inclusion of inappropriate queries (e.g., infrequent event
classes and metadata properties), additional constraints can be applied to remove queries from Q. We describe our
constraints in Section 5.1 and make our sets of event classes, properties, and queries available9.

3.1.1. Example
Fig. 4 shows an example Wikidata SPARQL query to extract Wikidata properties commonly (more than 50 times)

used on entities classified as wd:Q180684 (conflict). It returns 22 properties, including wdt:P17 (country) and
wdt:P710 (participant).

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?property WHERE {
?s ?property ?o .
?s wdt:P31 wd:Q180684 . # instance of conflict
FILTER(STRSTARTS(STR(?property ), STR(wdt:))) .

} GROUP BY ?property HAVING(COUNT(?s) > 50)

Fig. 4. SPARQL query on Wikidata to extract Wikidata properties commonly (more than 50 times) used on entities classified as “conflict”.

Using such SPARQL queries, we can generate queries used by T-SEE. Table 2 provides examples of four such
queries for two Wikidata event classes, each together with their properties.

3.2. Event Classification

Given a text t, the goal of T-SEE’s event classification step is to identify a set of events that occur in t and to
detect their event classes, i.e. the set of relations Rt = {(et, ptype, c)} (line 9 in Algorithm 1). To do so, we propose
a multilabel event classification model based on a transformer architecture [33], which allows for the efficient and
effective processing of input texts.

Specifically, the input to our event classification model is a sequence of tokens derived from t representing one or
more event mentions in the text. The model processes the input sequence using a series of self-attention mechanisms,

8We consider all event classes and properties in the event ontology O that appear in the training data.
9https://github.com/t-kuculo/T-SEE/blob/main/processing/filtered_wikidata_event2.schema

https://en.wikipedia.org/wiki/Mahsa_Amini_protests
http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/prop/direct/P710
https://github.com/t-kuculo/T-SEE/blob/main/processing/filtered_wikidata_event2.schema
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Table 2
Example queries extracted from the Wikidata ontology.

Event class (c) Property (p) Query (q = ⟨c, p⟩)

conflict (wd:Q180684)
participant (wdt:P710) <conflict, participant>
country (wdt:P17) <conflict, country>

revolution (wd:Q10931)
location (wdt:P276) <revolution, location>
country (wdt:P17) <revolution, country>

allowing it to capture complex relationships between contextual and semantic information of the input t [33]. The
output of the transformer-based architecture is a sequence of hidden states, which encodes the relevant information
from the input sequence.

The hidden states are then passed through a dropout layer to reduce the number of connections between the
pre-trained layers and the downstream layers, effectively forcing the downstream layers to learn more robust and
generalisable representations of the input data. Finally, a fully-connected layer and a Sigmoid activation function
are used in the output layer, generating a probability distribution over the possible event classes in the input text.

Additionally, we conduct threshold optimisation on a validation set. Prior work on multilabel classification, such
as binary relevance methods [34], often employs a fixed decision threshold (usually 0.5) to convert predicted prob-
abilities into class labels. However, this may not be optimal for all classes, especially in cases with imbalanced data
or differing class complexities. To address this issue, we utilise an optimisation strategy that fine-tunes individual
decision thresholds for each label, aiming to maximise the F1 score.

3.2.1. Example
In our example, the event classification model receives the whole text shown in Fig. 3 (“Amidst a revolution in

Tehran, continuing conflicts on the streets persist as the Iranian government violently reacts to the Mahsa Amini
protests.”) as an input and returns two event classes (conflict and revolution) corresponding to the two
events in the text.

3.2.2. Training
To train T-SEE’s event classification model, a corpus that contains texts and event class labels corresponding to

the events represented in each individual text is required. Specifically, we utilise two datasets that contain sentences
from Wikipedia, annotated with events and their relations from Wikidata and DBpedia, respectively. These datasets
are described in detail in Section 5.1. The multilabel classification model is fed the tokenised input texts and uses a
focal loss function [35].

3.3. Query-based Relation Extraction

Given the text t and the set Rt = {(et, ptype, c)} of detected events together with their predicted event classes,
the goal of relation extraction is to detect, extract, and assign relations found in t to the matching events. T-SEE
utilises a subset of the generated queries Q that can be matched to the predicted event classes of the extracted events
in Rt. Specifically, given Rt = {(et, ptype, c)}, we select those queries in Q which ask about these event classes:
Qt = {q = ⟨c, p⟩ ∈ Q | ∃(et, ptype, c) ∈ Rt} (line 13 in Algorithm 1). Together with t, these queries serve as input
to our query-based relation extraction model.

We leverage BERT [36] as the base of T-SEE as it provides a nuanced understanding of semantics, capturing
the meaning and context of words and sentences in text. BERT is known for its proficiency in capturing long-range
dependencies, a crucial aspect of comprehending the complexities of textual narratives. In addition, BERT incor-
porates a Next Sentence Prediction loss, which is specifically designed to model the coherence between sentences.
This element of coherence is particularly valuable for relation extraction tasks. By understanding the continuity of
text, the model is empowered to decipher the intricate relationships between entities that might be scattered across
the text.

Specifically, we encode the text t and a query q as fixed-length vectors. The decoded results then correspond to a
probability distribution over token spans that represent possible relation values.

http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/prop/direct/P710
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/entity/Q10931
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/entity/Q10931


10 T. Kuculo et al. / Transformer-Based Architectures versus Large Language Models in Semantic Event Extraction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

As shown in line 14 of Algorithm 1, each selected query q = ⟨c, p⟩, and context represented by the text t are
passed through our query-based relation extraction model, generating results and their associated confidence scores.
Together with the respective event and the property p, each result resembles a relation.

3.3.1. Example
For our predicted event classes conflict and revolution, the queries in Q cover a variety of Wikidata prop-

erties such as participant and location. As shown in Fig. 3, given the query <revolution, location>,
we infer its result Tehran, i.e., the relation (et2 , plocation,Tehran). This process is repeated for each query-context
pair, creating, for each accepted result, a relation.

3.3.2. Training
To train our query-based relation extraction model, we use a corpus of texts with event mentions and their relations

with properties in the event ontology O. As in [37], the model is jointly trained using a span extraction loss and a
logistic regression loss for an additional classifier that predicts answerability [38, 39]. During training, the model is
rewarded for selecting token spans that correspond to correct relation values between an event of a given event class
label and entities or literals that occur in the text.

3.4. Event Modelling

In the event modelling step, we materialise the extracted event information as triples and enrich the event knowl-
edge graph with them (line 17 - 18). Precisely, for each text t, and each of the event class relations (et, ptype, c) ∈ Rt,
we create the following relations:

– Type relation for et: (et, ptype, c)
– Description of et: (et, pdescription, t)
– Relations extracted with our query-based relation extraction

This process is repeated for all texts in an input corpus and the events extracted within them, after which the
ontology-mapped relations can be transformed into RDF triples. As described in Definition 3, the event modelling
step creates new triples of events not yet represented in the target knowledge graph GO. Event classes, properties
and their values were identified in the extraction process guided by the event ontology O.

For representing the provenance and explicitly providing the source of the semantic event representation, further
information could be added, e.g., a URL pointing to the source text and a description of the extraction method. To do
so, sources can be directly linked to a source statement in Wikidata10. Another option would be to use the PROV-O
ontology [40].

3.4.1. Example
Fig. 3 illustrates relations extracted for the example events conflict and revolution. Given the conflict

event, the following relations are created:

– (et1 , ptype,conflict)
– (et1 , pdescription,“Amidst a revolution in Tehran, continuing conflicts on the streets persist as the Iranian govern-

ment violently reacts to the Mahsa Amini protests.”)
– (et1 , pparticipant,Government of Iran)
– (et1 , pcountry, Iran)

We provide examples of generated RDF triples in Section 5.6.

4. L-SEE: LLM-based Semantic Event Extraction

In this section, we present L-SEE (LLM-based Semantic Event Extraction), an approach for semantic event
extraction based on a Large Language Model. As LLMs continue redefining the boundaries of NLP, their application

10https://www.wikidata.org/wiki/Help:Sources

http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/entity/Q10931
http://www.wikidata.org/prop/direct/P710
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/entity/Q10931
http://www.wikidata.org/prop/direct/P276
http://www.wikidata.org/entity/Q3616
http://www.wikidata.org/entity/Q3616
http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/entity/Q10931
http://www.wikidata.org/entity/Q180684
http://www.wikidata.org/entity/Q180684
https://www.wikidata.org/wiki/Help:Sources
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in semantic event extraction presents a compelling approach for assessing their standalone capabilities and potential
synergies with pipeline-based methodologies that decompose event extraction into event detection and argument
extraction, as commonly employed in state-of-the-art approaches in foundational work [41] and retained in recent
studies [42–44].

Fig. 5 offers a visual summary of L-SEE whose bottom part is analogous to T-SEE in Fig. 2. Given an event
ontology O, the set of all event classes C is extracted beforehand. As in T-SEE, L-SEE then carries out a three-step
process to extract and semantically represent events from a given text t:

1. Event classification: We perform event classification as a multilabel classification problem by prompting an
LLM to detect events and their classes in a text t given C.

2. Relation extraction: We prompt the LLM to extract relations of all identified events.
3. Event modelling: We transform the extracted event information into triples and add them to the event knowl-

edge graph GO.

Event
Modelling

Event et, its type c,
description t and relations

Text t Event
Relations

Event
ontology O

Event
Classification

et t

c

<et, p1, ...>
<et, p2, ...>et et

Relation
Extraction

Event
Classification

Prompt

Text t,
all Event

Classes C

Text t, events
classes Ct and
properties PC *

Relation
Extraction

Prompt

Event class
relations Rt

= {(et, ptype, c)}

1
2

t

Fig. 5. Overview of L-SEE, showing how it extracts and models a single event. Inputs to the prompts are shown below the horizontal lines. * Ct

refers to all classes of the events detected in the text. PCt is the set of properties used together with these event classes in the relations R of the
target knowledge graph.

Algorithm: Algorithm 2 provides an overview of L-SEE and its three steps: event classification, relation extrac-
tion and event modelling.

Algorithm 2 LLM-based Semantic Event Extraction (L-SEE)

1: Input
2: t Text
3: O = (P,C) Event ontology
4: R The relations in an event knowledge graph GO

5: LLM Large Language Model (pre-trained)
6:
7: Rt = {(et, ptype, c)} ← LLM.classi f yEvents(t,C) ▷ Event classification (Section 4.1)
8: Ct = {c | (et, ptype, c) ∈ Rt}
9:

10: PCt ← getPropertiesO fClasses(O,Ct)
11: Ret ← LLM.getRelations(t,Ct, PCt) ▷ Relation extraction (Section 4.2)
12:
13: for each (et, ptype, c) ∈ Rt do
14: R = R ∪ (et, ptype, c) ▷ Event modelling (Section 4.3)
15: ∪ (et, pdescription, t) ∪ Ret



12 T. Kuculo et al. / Transformer-Based Architectures versus Large Language Models in Semantic Event Extraction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.1. Event Classification

For event classification (line 7 in Algorithm 2), L-SEE guides the LLM with a precise prompting mechanism to
identify and categorise events in the text t, given the set C of event classes in the target event ontology. This step
builds upon the LLM’s ability to discern events of significance akin to those warranting dedicated Wikipedia entries,
ensuring the extraction of events with substantial relevance.

The event classification LLM prompt template is shown in Fig. 16 in the Appendix, where C is formatted like
[’conflict’, ’revolution’]. In detail, the event classification LLM prompt template consists of the fol-
lowing parts:

1. Instruction: Explicitly defines event classification and the operational definition of an "event".
2. Example: Illustrates the task with a one-shot example, including a sample text, identified event classes, and

explanations to clarify expectations.
3. Output options: Explicitly lists the full set of potential outputs, i.e., the set of all event classes C in our target

event ontology.
4. Task: Specifies the input text t for classification.

4.2. Relation Extraction

For relation extraction (line 11 in Algorithm 2), L-SEE prompts the LLM a second time, now to extract the
relations of each identified event, given the event classes Ct = {c | (et, ptype, c) ∈ Rt} identified in the previous step
together with the set of properties PCt used on these classes (extracted as described in Section 3.1, i.e., PCt = {p |
(e, p, x) ∈ R ∧ (e, ptype, c) ∈ R ∧ c ∈ Ct}).

The relation extraction LLM prompt template is shown in Fig. 17 in the Appendix. For our condensed exam-
ple in Table 2, Ct and PCt would be added to the prompt formatted as { ’conflict’: [’participant’,
’conflict’], ’revolution’: [’location’, ’country’] }. In detail, the relation extraction
LLM prompt template consists of the following parts:

1. Instruction: Defines the task (relation extraction), specifies expected property-value formats (e.g., tempo-
ral or spatial attributes), and mandates valid JSON output. Semantic constraints enforced through data type
conventions ensure consistency for downstream processing.

2. Example: Provides a one-shot demonstration with a text snippet, event classes, properties, and a corresponding
JSON output to model structured responses.

3. Task: Presents the input text t, the event classes Ct and properties PCt , requiring the LLM to populate these
properties with text-derived values.

4.3. Event Modelling

The event modelling step (line 14 - 15 in Algorithm 2) follows the procedure outlined in T-SEE, as detailed
in Section 3.4. This process results in the creation of RDF triples that represent newly identified events and their
relations.

5. Evaluation

In this section, we introduce two new datasets for semantic event extraction and compare T-SEE and L-SEE to
event extraction baselines. Finally, we show an example of the generated RDF triples and compare the consistency
of LLM outputs over different executions.
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5.1. Datasets

We introduce two new large-scale datasets that currently stand as the largest and most diverse datasets for the task
of semantic event extraction and follow our assumptions states in Section 2.1: DBpedia-SEE and Wikidata-SEE.
They are available online.11 DBpedia-SEE and Wikidata-SEE serve as training and test corpora for semantic event
extraction based on event ontologies of DBpedia and Wikidata. To comply with the definition of semantic event
extraction in Definition 3, each dataset belongs to an event ontology GO and contains a set of texts, where each text
t is annotated with a set of events, their classes and relations.

5.1.1. Event Ontology Extraction
In the first step, we extract relevant event classes and their properties from DBpedia and Wikidata to create two

event ontologies. The main reason why we extract event ontologies from DBpedia and Wikidata instead of using
event ontologies such as LODE [6] and the Simple Event Model [7] is that we do not only require an event ontology
but also a large corpus of events modelled with such ontology, as available in the DBpedia and Wikidata knowledge
graphs. Further reasons are as follows: (i) we focus on cross-domain knowledge graphs, with DBpedia and Wikidata
being well-established cross-domain knowledge graphs yet inherently incomplete and bear potential for extension
[45], (ii) as described in Section 1, we focus on named events and (iii) to create our evaluation datasets (see next
Section 5.1.2), we utilise Wikipedia links which can be directly mapped to Wikidata and DBpedia entities.

Filtering Protocols and Thresholds. To ensure the quality and relevance of the event classes and properties ex-
tracted from Wikidata and DBpedia, we apply stringent filtering protocols. Specifically, we restrict event classes
and properties to those used in the context of events and apply a minimum threshold for event classes (100 appear-
ances) and properties (50 appearances). These thresholds serve two key methodological purposes. First, by requiring
a minimum frequency, we ensure that classes and properties are sufficiently represented across the training, vali-
dation, and test splits, thereby improving the statistical reliability of our evaluation. Second, consistent filtering
avoids scenarios where very rare or highly specialised event classes (e.g., classes associated with only few events
such as City of Cardiff Council election in Wikidata) might skew macro-averaged metrics or lead
to overfitting on sparse patterns. We arrived at these particular numbers by analysing the frequency distributions of
event-related resources in DBpedia-SEE and Wikidata-SEE, finding that they effectively preserve the majority of
relevant classes and properties while excluding rarely used or metadata-like entries. We acknowledge that different
use cases or domain-specific requirements might call for alternative cutoffs, but this balance between coverage and
reliability is well-suited to our current scope.

While we try to keep manual interventions minimal and to be as consistent as possible in our annotations, for the
remaining events and properties, we need to manually filter out overly specific event classes and metadata properties.
Specifically, for Wikidata, we filtered out the following three types of event classes and properties:

– Event classes specifically about a country (we still consider their parent classes. For example, instead of "UK
Parliamentary by-election", there still is "by-election"). Examples are:

* Turkish general election (wd:Q22333900)
* Spanish Grand Prix (wd:Q9208)
* Sydney International (wd:Q248952)

– Classes that are wrongly categorised as event classes in Wikidata. Examples are:

* communications satellite (wd:Q149918)
* space telescope (wd:Q148578)
* crewed spacecraft (wd:Q7217761)

– Properties that do not represent real-world relations (e.g., identifiers). An example is:

* X username (wdt:P2002)

11https://zenodo.org/records/10818676

http://www.wikidata.org/entity/Q56024038
http://www.wikidata.org/entity/Q22333900
http://www.wikidata.org/entity/Q22333900
http://www.wikidata.org/entity/Q9208
http://www.wikidata.org/entity/Q9208
http://www.wikidata.org/entity/Q248952
http://www.wikidata.org/entity/Q248952
http://www.wikidata.org/entity/Q149918
http://www.wikidata.org/entity/Q149918
http://www.wikidata.org/entity/Q148578
http://www.wikidata.org/entity/Q148578
http://www.wikidata.org/entity/Q7217761
http://www.wikidata.org/entity/Q7217761
http://www.wikidata.org/prop/direct/P2002
http://www.wikidata.org/prop/direct/P2002
https://zenodo.org/records/10818676
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Table 3
Statistic of the extracted DBpedia and Wikidata event ontologies.

DBpedia-SEE Wikidata-SEE

Event Classes 19 60

most occurrences dbo:MilitaryConflict (23, 264) wd:Q27020041 (sports season) (5, 901)
least occurrences dbo:MixedMartialArtsEvent (104) wd:Q1079023 (championship) (55)

Properties 29 17

most occurrences dbo:place (17, 618) wdt:P585 (point in time) (31, 378)
least occurrences dbo:previousMission (72) wdt:P571 (inception) (20)

Statistics of the resulting DBpedia and Wikidata event ontologies are shown in Table 3. For example, the Wiki-
data event ontology has 60 event classes and 5, 901 events typed as sport season. We consider the two event
ontologies independently from each other and do not align them.12 This way, we are able to evaluate semantic
event extraction on two distinct datasets and thus demonstrate the generalisability of our models. Further, both the
DBpedia [47, 48] and Wikidata [48–50] ontologies have been successfully used to represent events in other works.

5.1.2. Extraction of Event Triples
To extract texts and the RDF triples representing mentioned events, we follow a distance-label generation pro-

cess.13 The individual texts are sentences extracted from articles in the English Wikipedia describing events14. Event
classes and relations are extracted by exploiting existing links to events and their DBpedia or Wikidata representa-
tions.

Fig. 6 illustrates the distance-label generation process at an example: The Wikipedia article “Turkish involvement
in the Syrian civil war” has a link to the event “Operation Euphrates Shield” which has a relation to Syria and is
also mentioned in the same text. Consequently, we select the text, the event class military operation15, and
the country relation to Syria.

Fig. 6. Example illustrating how we label texts with events and relations. The Wikipedia text on the left links to the Wikidata event on the right
side, which also has a relation to an entity mentioned in the text: <country, Syria>.

5.1.3. Statistics
As delineated in Table 4, DBpedia-SEE includes 42, 648 texts, and Wikidata-SEE contains 37, 988 texts, where

each text contains at least one annotated event and its corresponding relations. Together, these datasets feature over
80, 636 uniquely annotated events and 111, 663 relation instances, making them the most extensive repositories for
training and evaluating event extraction models to date.

12A discussion about the task of event ontology alignment involving Wikidata is given by Guo et al. [46].
13We follow approaches such as [51, 52] that associate text with RDF triples from a knowledge graph.
14Event articles typically contain descriptions of related events.
15If an event has multiple event classes, we select the most infrequently used event class among them in order to add fine-grained event classes

to the dataset.

https://dbpedia.org/ontology/MilitaryConflict
http://www.wikidata.org/entity/Q27020041
https://dbpedia.org/ontology/MixedMartialArtsEvent
http://www.wikidata.org/entity/Q1079023
https://dbpedia.org/ontology/place
http://www.wikidata.org/prop/direct/P585
https://dbpedia.org/ontology/previousMission
http://www.wikidata.org/prop/direct/P571
http://www.wikidata.org/entity/Q27020041
https://en.wikipedia.org/wiki/Turkish_involvement_in_the_Syrian_civil_war
https://en.wikipedia.org/wiki/Turkish_involvement_in_the_Syrian_civil_war
https://en.wikipedia.org/wiki/Operation_Euphrates_Shield
http://www.wikidata.org/entity/Q645883
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/entity/Q858
http://www.wikidata.org/prop/direct/P17
http://www.wikidata.org/entity/Q858
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Table 4
Statistic of our datasets for semantic event extraction.

DBpedia-SEE Wikidata-SEE

Texts 42, 648 37, 988

Events 42, 726 38, 014

Relations 47, 666 63, 997

5.1.4. Comparison to Existing Datasets
DBpedia-SEE and Wikidata-SEE distinctly surpass existing benchmarks for the task of semantic event extraction

due to their use of RDF annotations, their focus on general-domain events with societal impact and the coverage
of both event detection and relation extraction annotations. Datasets such as SuicideED [53], SCIERC[54] and
GENIA [55] only cover very domain-specific events. MAVEN [20] and MINION [56] only provide annotations for
event detection, not relation or argument extraction. The existing larger event datasets like GDELT [57, 58] are less
structured and not in RDF16. In a comparison to the ACE05 [28] dataset typically used for event extraction, our
datasets DBpedia-SEE and Wikidata-SEE:

– are freely available

* ACE05 is only available for $4, 000.00 to non-members of the Linguistic Data Consortium.

– have wider coverage of event domains

* e.g., ACE05 does not have sport-related events

– use RDF classes and properties
– have a large number of event classes and properties

* DBpedia-SEE: 19 event classes and 29 properties
* Wikidata-SEE: 60 event classes and 17 properties
* ACE05: 33 event classes and 22 arguments

– provide a large number of texts

* DBpedia-SEE: 42, 648 texts
* Wikidata-SEE: 37, 988 texts
* ACE05: 599 texts

These attributes amplify the datasets’ potential for semantic event extraction, which can not be performed with
other existing datasets.

5.1.5. Data Preparation and Experiment Design
With our distantly labelled datasets DBpedia-SEE and Wikidata-SEE, we are able to i) train T-SEE and the

baselines on large-scale datasets and (ii) evaluate their performance in the semantic event extraction of events which
already exist in DBpedia or Wikidata. We exclude links to existing events when running the experiments to simulate
the situation in which the events do not yet exist in the target knowledge graph.

In our experiments, we split the datasets into training, test, and validation sets using 70:15:15 splits.

5.2. Evaluation Setup

Next, we describe our evaluation setup, i.e., baselines and metrics.

16Instead of concise event mentions, GDELT considers whole articles as texts and does not provide relation types between events and entities.
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5.2.1. Baselines
We compare T-SEE against two baselines:

– Text2Event [59]: A state-of-the-art method for event extraction using a sequence-to-structure generation
paradigm.

– EventGraph [60]: A method for event extraction using semantic graph parsing that has shown state-of-the-art
results for the task of argument role classification.

The selection of baselines for our study is carefully considered but constrained by the availability and adaptability
of existing event extraction methodologies due to the following reasons: (i) Despite their valuable contributions,
several works do not provide any accessible implementations [61–63], which is a critical barrier to replication and
further research. (ii) The usability of many event extraction frameworks is hampered by a lack of comprehensive
documentation and a dependency on specific or proprietary datasets, notably the ACE05 dataset [64–67]. Other
methodologies like DEGREE [66] and the question-answering paradigms by [67] and [65] necessitate additional,
task-specific inputs such as argument and description queries, complicating their integration into diverse research
settings. Similarly, [64] and ChatIE [68] are hindered by very limited documentation and strict data formatting
requirements.

(iii) CLEVE [27] cannot be adapted to our definition of semantic event extraction due to its presupposition of
argument type knowledge.

(iv) Frameworks like AllenNLP (on which DyGIE++ [41] is built) have been discontinued, and (v) the substantial
computational resources required for models like the 10-billion parameter Deepstruct [69] model further limit their
viability.

Given these considerations, we have chosen Text2Event and EventGraph as our baselines. These method-
ologies have demonstrated strong performance in the event extraction task (e.g., they both outperform Deepstruct
event classification [59, 60, 69]), provide publicly available code, and are adaptable to our task definition.

5.2.2. Metrics & Setting
To evaluate T-SEE’s and L-SEE’s performance on semantic event extraction, we assess their performances both

on event classification and relation extraction.
We judge the accuracy of event classification using precision, recall, and F1 scores to assess if events with correct

classes were extracted.
Analogously, we use the same metrics for evaluating relation extraction, where relations are only considered to

be correct if connected to a correctly classified event via the correct property and to the correct entity or value.
In this section, we report the results of L-SEE as L-SEE* since we only consider those texts for which the output

of the LLM was formatted syntactically correctly and in a consistent way allowing us to use automatic evaluation.
Consequently, L-SEE is not evaluated on an identical dataset as T-SEE and the baselines, but on a smaller dataset
(5, 602 of the full 6, 407 texts for DBpedia-SEE and 3, 958 texts of the original 5, 711 for Wikidata-SEE).

5.3. Event Classification

Table 5 shows the evaluation results of T-SEE, L-SEE and the baselines on the tasks of event classification.
In general, we observe that T-SEE performs well on event classification, reaching F1 scores of 0.92 and 0.85.
T-SEE and Text2Event outperform by a notable margin EventGraph. While Text2Event performs better
than T-SEE on DBpedia-SEE, T-SEE performs better on the more diverse Wikidata dataset. This performance of
T-SEE may be attributed to its capability of dealing with rich event ontologies, given that Wikidata-SEE has three
times more event classes than DBpedia-SEE.

The performance of L-SEE closely follows that of the baselines on DBpedia-SEE. However, we do see a notable
drop-off in the case of Wikidata, likely correlated with the larger number of fine-grained event classes notable to
Wikidata.
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Table 5
F1 scores for event classification on DBpedia-SEE and Wikidata-SEE.

Approach
DBpedia-SEE Wikidata-SEE

P R F1 P R F1

Text2Event 0.94 0.94 0.94 0.84 0.84 0.84

EventGraph 0.75 0.69 0.72 0.77 0.52 0.62

T-SEE 0.92 0.92 0.92 0.85 0.85 0.85
L-SEE* 0.88 0.89 0.89 0.53 0.58 0.55

Table 6
Precision (P), recall (R) and F1 scores for relation extraction on DBpedia-SEE and Wikidata-SEE.

Approach DBpedia-SEE Wikidata-SEE
P R F1 P R F1

Text2Event 0.74 0.75 0.74 0.75 0.77 0.76
EventGraph 0.72 0.57 0.64 0.85 0.16 0.27

T-SEE 0.75 0.76 0.75 0.75 0.77 0.76
L-SEE* 0.28 0.52 0.37 0.37 0.37 0.37

5.4. Relation Extraction

Table 6 presents the relation extraction performance of T-SEE and our baselines. While it is evident that
EventGraph lags behind Text2Event and T-SEE, it demonstrates a notable precision in its extractions (0.85
in Wikidata-SEE), albeit with a significantly lower recall (0.16). This suggests that EventGraph is highly accurate
in the instances it chooses to label, but it misses many relevant relations. In contrast, T-SEE consistently matches or
outperforms all baseline performances across both datasets, demonstrating its robustness in the relation extraction
task.
L-SEE shows a notably lower performance compared to both T-SEE and the baselines. This is likely associated

with the relatively higher complexity of the relation extraction task compared to the event classification task. It
should also be noted that as L-SEE is untrained, it relies more on the natural language understanding abilities it
acquired through pre-training than other evaluated baselines. As such, it is also more likely to fail when the property
labels are inadequately descriptive as to what purpose they are meant to fulfil. We go into further detail about the
nature of these errors and the limitations of L-SEE in Section 6.

5.5. Cascading Errors

Given the sequential structure of T-SEE’s and L-SEE’s approach, where event classification precedes relation
extraction, inaccuracies in the initial phase of event classification might negatively influence the subsequent relation
extraction performance. Therefore, we analyse the impact of cascading errors by comparing the F1 scores for relation
extraction in isolated and end-to-end settings at the example of T-SEE.

For T-SEE on DBpedia-SEE, the isolated setting shows a precision score of 0.81, recall of 0.82, and an 0.82
F1 score, indicating the model’s performance in an ideal scenario with perfect event classification. However, in the
end-to-end setting, the scores decrease to the precision of 0.75, recall of 0.76, and an F1 score of 0.75. This drop in
performance suggests that errors in the event classification phase cascade down, as expected, affecting the model’s
ability to extract relations accurately.

Similarly, on Wikidata-SEE, T-SEE demonstrates high scores in the isolated setting with the precision of 0.87,
recall of 0.88, and an F1 score of 0.88. In contrast, the end-to-end setting yields lower scores: Precision 0.75, Recall
0.77, and F1 0.76. This reduction further underscores the presence of cascading errors. However, the effect is limited
and does not prevent T-SEE from outperforming or matching the baselines in both datasets.
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5.6. Example Result

Finally, we provide example RDF triples of an event extracted with T-SEE. Fig. 7 shows the RDF triples created
from an event which we extracted from the Wikipedia article “1991 Monte Carlo Open”17 using T-SEE. As we can
see, T-SEE successfully extracted an event of the fine-grained event class recurring tennis tournament
and several relations, including properties such as season starts, located in the administrative
territorial entity and part of.

@base <http://example.org/>.
@prefix wd: <https://www.wikidata.org/entity/>.
@prefix wdt: <https://www.wikidata.org/prop/direct/>.
@prefix so: <https://www.w3.org/2000/01/rdf-schema#>.

:E1 a wd:Q47443726 (recurring tennis tournament);
so:description "It was ... part of the ATP Super 9 of the 1991 ATP Tour. It took place at

the Monte Carlo Country Club in Roquebrune-Cap-Martin, France, near Monte Carlo, Monaco,
from 22 April through 28 April 1991."@en ;

wdt:P4794 (season starts) wd:Q118 (April) ;
wdt:P17 (country) wd:Q142 (France) ;
wdt:P131 (located in the administrative territorial entity)

wd:Q45240 (Monte Carlo) ;
wdt:P276 (location) wd:Q3861317 (Monte Carlo Country Club) ;
wdt:P361 (part of) wd:Q300008 (ATP Tour) .

Fig. 7. Example of RDF triples generated from the Wikipedia article “1991 Monte Carlo Open” using the Turtle syntax.

5.7. Consistency Analysis

To address the variability of the LLM in generating outputs for identical inputs, we evaluate the consistency of
L-SEE across multiple executions of its LLM prompts. This analysis is essential for assessing the robustness of
L-SEE, as LLMs inherently introduce stochasticity due to their sampling mechanisms during generation. Specifi-
cally, we repeatedly process the same set of inputs (i.e., prompts) through the LLM under identical conditions and
observe the outputs generated in each iteration. To quantify consistency, we use Fleiss’ κ, a metric that measures
inter-rater agreement [70], adapted here to measure agreement between outputs from different executions of an
LLM.18

Our analysis reveals a high level of consistency for both event ontologies, as summarised in Table 7. For DBpedia-
SEE, we observe an average Fleiss’ κ of 0.991 for event classification and 1.000 for relation extraction, indicating
near-perfect agreement across runs. For Wikidata-SEE, Fleiss’ κ for event classification is 0.881, reflecting slightly
reduced but still strong consistency. These scores confirm the robustness of L-SEE, which yields highly similar
results across iterations.

Table 7
Consistency analysis results of L-SEE for event classification and relation extraction.

Task DBpedia-SEE Wikidata-SEE

Event Classification (Fleiss’ κ) 0.991 0.881

Relation Extraction (Fleiss’ κ) 1.000 1.000

17https://en.wikipedia.org/w/index.php?title=1991_Monte_Carlo_Open&oldid=1101607800
18To allow consistent Fleiss’ κ computation, in this consistency analysis, we only consider cases where valid JSON output is generated and

we do not consider cases where multiples values are assigned to the same property.

https://www.wikidata.org/entity/Q47443726
http://www.wikidata.org/prop/direct/P4794
http://www.wikidata.org/prop/direct/P131
http://www.wikidata.org/prop/direct/P131
http://www.wikidata.org/prop/direct/P361
https://en.wikipedia.org/w/index.php?title=1991_Monte_Carlo_Open&oldid=1101607800


T. Kuculo et al. / Transformer-Based Architectures versus Large Language Models in Semantic Event Extraction 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The few cases demonstrating disagreement across LLM executions for event classification and relation extraction
can be attributed to the design and complexity of the two tasks and the event ontologies. There is a stronger agree-
ment for DBpedia-SEE compared to Wikidata-SEE due to the lower number of classes and properties (see Table 3):
with a lower number of event classes to select from, there naturally is a higher chance of agreement. This also
explains the consistency observed for relation extraction where the prompts include a small number of properties
(PCt ) that have been identified to be relevant given the already detected event classes Ct.

5.8. Implementation

In order to implement our multilabel classification model, we leverage a pre-trained uncased BERT base model19.
The model is fine-tuned for 30 epochs using the focal loss function with a gamma of 2, and the Adam optimiser,
with a learning rate of 1e − 5 and a Dropout layer with a probability of 0.3. We apply early stopping based on
validation-set performance, with training capped at 30 epochs. Continuing beyond this point did not improve the
validation metrics. For the relation extraction model, we utilise the same BERT model and fine-tune it on the relation
extraction task. Similarly to the classification model, we train the model for 30 epochs with the Adam optimiser and
a learning rate of 3e− 5 and again employ early stopping up to 30 epochs.
Text2Event and EventGraph are trained for 40 epochs using a batch size of 30 and their original training

settings.
To generate the training data, we extract Wikipedia articles using the MWDumper20. For entity linking, we use

the Spacy Entity Linker21, a named entity linking tool specifically designed for Wikidata.
For L-SEE, we use gpt-3.5-turbo-110622, a version of GPT-3.5 Turbo that supports a 16K context and

supports improved instruction following, JSON mode, and parallel function calling. We pick this version as it has
shown a 38% improvement in format following tasks such as generating JSON, XML and YAML.

6. Comparison of T-SEE and L-SEE

A significant finding of our evaluation is the worse performance of L-SEE compared to T-SEE on the task of
relation extraction (Section 5.4). This leads to the question of whether LLMs are not suited for the task of semantic
event extraction at all, in contrast to fine-tuning a transformer-based architecture. To answer this question, this
section delves into a manual evaluation and a multifaceted error analysis, followed by a discussion.

6.1. Manual Evaluation

In this section, we aim to understand the differences between the two paradigms of transformer-based architec-
ture versus using LLMs for semantic event extraction. Therefore, on top of the automatic evaluation performed in
Section 5, we perform a comparison of T-SEE and L-SEE based on a manually annotated subset of the test dataset
used in the automatic evaluation.

We create DBpedia-SEE100 – a subset of DBpedia-SEE with 100 randomly selected texts, their events and re-
lations. We ensure that L-SEE successfully performs semantic event extraction on these texts without syntactical
errors. For each text in DBpedia-SEE100, we manually annotate the semantic event representations generated by
T-SEE and by L-SEE with respect to each other and the ground truth. For example, given a text t, if T-SEE gen-
erates a relation r that is not in DBpedia-SEE100, we manually assess whether r is correct and expressed in t. If this
assessment is positive and r is also missing in L-SEE, we denote a true positive for T-SEE and a false negative for
L-SEE.

19https://huggingface.co/bert-base-uncased
20https://www.mediawiki.org/wiki/Manual:MWDumper
21https://github.com/egerber/spaCy-entity-linker
22https://platform.openai.com/docs/models#gpt-3-5-turbo

https://huggingface.co/bert-base-uncased
https://www.mediawiki.org/wiki/Manual:MWDumper
https://github.com/egerber/spaCy-entity-linker
https://platform.openai.com/docs/models#gpt-3-5-turbo
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Table 8 shows the results of evaluating T-SEE and L-SEE on DBpedia-SEE100 before and after our manual
assessment. The results before manual assessment confirm our results given in Table 5, where T-SEE and L-SEE
both perform well on event classification (F1 scores of 0.92 and 0.89), but L-SEE is clearly outperformed by
T-SEE for relation extraction (F1 scores of 0.72 and 0.39), mainly due to 200 false positive extracted relations. This
indicates a considerably better ability of T-SEE to accurately identify and categorise relationships within the data
under controlled conditions.

Table 8
Evaluation of T-SEE vs. L-SEE on DBpedia-SEE100 before and after manual assessment. TP: true positives, FP: false positives, FN: false
negatives.

TP FP FN F1

Task Approach Before After Before After Before After Before After

Event Classification
T-SEE 92 90 7 12 10 9 0.92 0.90
L-SEE 91 100 11 2 11 2 0.89 0.98

Relation Extraction
T-SEE 83 103 33 23 32 114 0.72 0.58
L-SEE 77 178 200 99 38 29 0.39 0.74

After manual assessment, L-SEE shows a remarkable improvement in event classification, achieving an almost
perfect F1 score of 0.98, suggesting that with manual verification of the ground truth, the LLM’s capabilities are
more effectively utilised. Regarding relation extraction, while L-SEE improves performance (F1 score of 0.74),
T-SEE experiences a significant drop in effectiveness (F1 score of 0.58), indicating challenges in adapting to the
intricacies of manually annotated samples and the complexity of real-world data.

These results underscore the strengths and limitations of both methodologies. While T-SEE demonstrates supe-
rior performance in a controlled environment, particularly in relation extraction tasks, L-SEE shows remarkable
adaptability and potential in handling complex, real-world scenarios when supplemented with manual verification
and annotation processes: not being constrained by any limitations in training data, L-SEE is able to extract more
than double the amount of relations. This highlights the importance of context and the level of detail in ground truth
annotations when evaluating and comparing data extraction methodologies.

6.2. Error Taxonomy

To understand the differences in behaviours between T-SEE and L-SEE, we manually annotate the specific
errors that occur when performing semantic event extraction on DBpedia-SEE100. While doing so, we create an error
taxonomy presented in this section. Later, to contextualise said error taxonomy, we present examples of generated
RDF triples and the errors in them.

Our manual annotation process has unveiled a structured classification of errors, which we have divided into three
principal categories:

Extraction Inaccuracies Errors arising from the model’s inability to accurately interpret information within texts:

– Omissions or Missing Events/Relations: The event or its relations are not extracted.
– Type misalignment: An inappropriate type of entity or value is selected for a given property.
– Granularity mismatch: The model’s predictions lack the specificity of the ground truth, e.g., categorising an

event broadly as dbo:SportsEvent rather than the more specific dbo:TennisTournament.
– Erroneous extraction: The extraction of incorrect properties or values, leading to a misrepresentation of the

factual content.

Annotation Discrepancies Errors stemming from inconsistencies, errors or omissions in the ground truth:

– Imprecise event class: The model’s predictions provide a more detailed event classification.
– Imprecise property: The model predicts property values with greater accuracy than the ground truth, such as

specifying the exact match score when the ground truth only acknowledges the victory.

https://dbpedia.org/ontology/SportsEvent
https://dbpedia.org/ontology/TennisTournament
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– Annotation error: The presence of omissions or inaccuracies within the ground truth itself, such as neglecting
to annotate the specific date of a match or other pertinent details.

Other Anomalies Errors arising from other sources:

– Event ambiguity: The model struggles to distinguish between multiple distinct events described within a single
sample, which may lead to conflated or mixed property assignments.

– Processing error: T-SEE and L-SEE match spans of text to specific entities, relying on an external entity
linking component and a date parsing module which are prone to errors.

6.2.1. Examples of Errors
We provide four semantic event representations generated by L-SEE as examples of the identified error types in

the error taxonomy. For each of the examples, we provide the input text t, selected RDF triples describing an event
e in the ground truth as well as selected triples generated by L-SEE.23. Errors are marked in red, relations only in
the ground truth are marked in blue, and relations only in the prediction are marked in green.

Example 1 (Fig. 8) – ground truth extracted from dbr:Black_Monday_(1360):

– Omission: L-SEE failed to extract the dbo:commander relation.
– Annotation error: On the other hand, L-SEE accurately extracts a relevant date and territory for the event,

however, these are not contained within the ground truth.

Text: This was in part caused by Black Monday (1360), the freak storm that devastated the English army and
forced Edward III into peace talks.

Ground Truth
:MilitaryConflict1 dbo:commander dbr:Edward_III_of_England .

Prediction
:MilitaryConflict1 dbo:date "1360-01-01"ˆˆxsd:date ;

dbo:territory dbr:England .

Fig. 8. Example of an omission error and an annotation error.

Example 2 (Fig. 9) – ground truth extracted from dbr:Al-Qusayr_offensive:

– Type misalignment: The commanders are incorrectly identified and assigned to group entities instead of in-
dividuals. Specifically, L-SEE detects two commanders extracting "Syrian Army" and the "Lebanese militia
Hezbollah".

– Processing error: in the entity linking process, "Lebanese militia Hezbollah" is wrongly linked to three entities.

23For brevity, we skip ptype and pdescription relations. The event class is indicated by its URL (e.g., :MilitaryConflict1 is an event
classified as dbo:MilitaryConflict).

https://dbpedia.org/resource/Black_Monday_(1360)
https://dbpedia.org/ontology/commander
https://dbpedia.org/resource/Al-Qusayr_offensive
https://dbpedia.org/ontology/MilitaryConflict
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Text: The second of two battles in al-Qusayr started on 19 May 2013, as part of the larger al-Qusayr offensive,
launched in early April 2013 by the Syrian Army and the Lebanese militia Hezbollah, during the Syrian civil
war, with the aim of capturing the villages around the rebel-held town of al-Qusayr and ultimately launching
an attack on the town itself.

Ground Truth
:MilitaryConflict2 dbo:place dbr:Al-Qusayr,_Syria ;

dbo:isPartOfMilitaryConflict dbr:Syrian_Civil_War .

Prediction
:MilitaryConflict2 dbo:place dbr:Al-Qusayr,_Syria ;

dbo:commander dbr:Syrian_Army ;
dbo:commander dbr:Lebanon ;
dbo:commander dbr:Militia ;
dbo:commander dbr:Hezbollah ;
dbo:isPartOfMilitaryConflict dbr:Syrian_Civil_War .

Fig. 9. Example of type misalignment and processing errors.

Example 3 (Fig. 10) – ground truth extracted from dbr:2016_Wuhan_Open:

– Imprecise event class: L-SEE identifies a more precise event class (dbo:TennisTournament versus dbo:
Tournament).

– Erroneous extraction and event ambiguity: The same tennis tournament did not happen in Wuhan and in Bei-
jing; L-SEE fails to distinguish between the tournaments Wuhan Open and China Open.

Text: However, she rebounded in the Asian swing by reaching the quarterfinals of Wuhan and the semifinals
of Beijing.

Ground Truth
:Tournament1 dbo:location dbr:Wuhan .

Prediction
:TennisTournament1 dbo:location dbr:Wuhan ;

dbo:location dbr:Beijing .

Fig. 10. Example of an imprecise event class, an erroneous extraction and event ambiguity.

Example 4 (Fig. 11) – ground truth extracted from dbr:1959_Ontario_general_election:

– Event ambiguity: The date "1961-01-01" indicates confusion between multiple events. Specifically, this is
because the event annotated in the ground truth is derived from the link tied to the string "previous election",
referring to dbr:1959_Ontario_general_election.

– Erroneous extraction: The use of dbo:secondLeader to indicate a chronological successor is highlighted
in red, illustrating a misunderstanding of the property, as dbo:secondLeader is meant to instead describe
second ranking in a competition.

– Annotation error: The relation using the dbo:affiliation property is missing in the ground truth.

https://dbpedia.org/resource/2016_Wuhan_Open
https://dbpedia.org/ontology/TennisTournament
https://dbpedia.org/ontology/Tournament
https://dbpedia.org/ontology/Tournament
https://dbpedia.org/resource/1959_Ontario_general_election
https://dbpedia.org/resource/1959_Ontario_general_election
https://dbpedia.org/ontology/secondLeader
https://dbpedia.org/ontology/secondLeader
https://dbpedia.org/ontology/affiliation


T. Kuculo et al. / Transformer-Based Architectures versus Large Language Models in Semantic Event Extraction 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Text: The Ontario Progressive Conservative Party, led by John Robarts, who had replaced Leslie Frost as
PC leader and premier in 1961, won a seventh consecutive term in office, and maintained its majority in the
legislature, increasing its caucus from the 71 members elected in the previous election to 77 members in an
enlarged legislature.

Ground Truth
:Election1 dbo:country dbr:Ontario ;

dbo:firstLeader dbr:Leslie_Frost .

Prediction
:Election1 dbo:startDate "1961-01-01"ˆˆxsd:date ;

dbo:country dbr:Ontario ;
dbo:secondLeader dbr:John_Robarts ;
dbo:affiliation dbr:Progressive_Conserv._Party_of_Canada ;
dbo:firstLeader dbr:Leslie_Frost .

Fig. 11. Example of event ambiguity, erroneous extraction and an annotation error

6.3. Error Analysis

On the basis of our error taxonomy, we annotated each semantic event representation generated by T-SEE and
L-SEE with the set of errors occurring in them.

First, we categorise errors into extraction inaccuracies, annotation discrepancies, and other anomalies to clarify
our approaches’ error landscapes. Fig. 12 visualises these error profiles for T-SEE and L-SEE, highlighting the
challenges in semantic event extraction. In general, we register fewer errors for T-SEE than L-SEE across all three
error categories, which results from T-SEE’s capability to mimic the dataset characteristics. On the other hand,
we annotate 180 annotation discrepancies for L-SEE, more than its 107 extraction inaccuracies. Since annotation
discrepancies represent cases where the model extracts valid triples which are not covered in the ground truth, this
analysis demonstrates how L-SEE is capable of semantic event extraction without being closely attached to the
characteristics of training data and, implicitly, the data coverage in the target knowledge graph.
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Fig. 12. Distribution of error categories for T-SEE and L-SEE.

Fig. 13 provides a detailed analysis of the error types. As can be seen in the figure, different error types manifest
with varying frequencies across L-SEE and T-SEE.
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Fig. 13. Distribution of error types for T-SEE and L-SEE grouped by category.

For L-SEE, the most prevalent error type are Annotation Errors, with a count of 167, reflecting instances where
L-SEE identifies relevant semantic relations not annotated in the ground truth. Following closely is the Erroneous
Extraction category, with 91 instances, which encompasses errors related to the incorrect identification of properties
or values. A notable portion of these errors can be attributed to Processing Errors, amounting to 28 instances, where
the entity linking and date extraction methods utilised by L-SEE falter in accurately extracting dates or correctly
linking entities, leading to inaccuracies in the relation extraction.

Misunderstanding and Type Misalignment errors, with 7 and 34 instances respectively, further contribute to the
Erroneous Extraction count. These errors emerge when L-SEE misinterprets the intended meaning of properties
or incorrectly aligns relations with inappropriate entities or values. For instance, the common misunderstanding of
the dbo:secondLeader property (Example 4) exemplifies how more careful prompting approaches may lead to
better performance. For an example of a type misalignment error, we may observe instances where in the absence
of precise time expressions in the the text, L-SEE assigns imprecise values such as "yesterday" to date relations.

Conversely, T-SEE demonstrates a lower overall error frequency, with Annotation Errors again emerging as the
dominant error type, albeit with a substantially lower count of 22. This suggests a more precise alignment with the
ontology. Notably, T-SEE exhibits no Type Misalignment errors and only 1 Event Ambiguity error. However, both
methodologies encounter Omissions and Processing Errors, with L-SEE facing 16 and 28 instances respectively,
and T-SEE experiencing 11 and 9 instances.

Upon a more nuanced examination, especially after correcting for annotation errors, the performance landscape
shifts. Initially, T-SEE appears to outperform L-SEE due to its lower error rates. However, this might also indicate a
tendency of T-SEE to conform to the existing annotations, potentially overlooking unlabelled but present relations.
This could imply that while T-SEE is more aligned with the given annotations, it may also be less inclined to explore
beyond them, possibly fitting to annotation noise rather than capturing the full spectrum of semantic relations.

In summary, while T-SEE shows precision in alignment with the current ontology, L-SEE’s broader extraction
attempts, despite higher initial error rates, may offer a more comprehensive understanding of the underlying seman-
tic structures, especially when considering the corrected annotation context. This dichotomy highlights the balance
between precision and recall in semantic event extraction and underscores the importance of continuous refinement
in both methodologies to enhance their efficacy and reliability.

https://dbpedia.org/ontology/secondLeader


T. Kuculo et al. / Transformer-Based Architectures versus Large Language Models in Semantic Event Extraction 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

6.3.1. Formatting and Ontology Errors
As indicated in Section 5.2.2, for 805 of the texts in the complete dataset DBpedia-SEE, L-SEE could not

generate RDF triples due to formatting issues, including:

– Misformatted output: The LLM-generated JSON strings of 606 texts were not in proper JSON syntax and could
not be processed.

– Non-existing event classes: In 401 cases, an event class was identified which is not part of the event ontology
and the prompt. An example is the extraction of an event typed as dbo:SyrianCivilWar, while only dbo:
CivilWar exists in the DBpedia ontology.

– Invalid properties: In 1, 191 cases, a property was identified which is not part of the event ontology (e.g., dbo:
percentageOfPopularVote, dbo:delayReason). Despite these being errors, they often demonstrate
L-SEE capability to suggest relevant attributes for specific scenarios adaptively.

6.4. Effect of Text Characteristics on Semantic Event Extraction

To get a sense of L-SEE performance across a variety of syntactic and semantic phenomena, we dissected
DBpedia-SEE into multiple subsets, each representing distinct text characteristics. The subsets are generated em-
ploying specific strategies, each tailored to highlight a particular aspect of the dataset, ranging from event co-
occurrences to the complexity of the document structure.

6.4.1. Text Characteristics
We employ a collection of strategies to generate meaningful subsets of the dataset, each aimed at isolating dif-

ferent factors that could influence L-SEE’s performance. Specifically, we ranked the entire dataset based on the
presence and frequency of certain linguistic, syntactic, or semantic phenomena. From this ranking, we then selected
the top 100 samples for each subset to focus our analysis on the most pronounced examples of each phenomenon.

Semantic Diversity: We assess samples for semantic diversity. The semantic diversity of a text is measured by the
variety of verb phrases and their arguments, approximated by the count of unique verb lemmas in the text.
Samples with high semantic diversity are chosen for this subset, aiming to test the model’s understanding of
varied semantic contexts and its ability to extract a broad range of event semantics.

Sentence Length: This strategy sorts the samples by the length of the text. Samples are then selected from the
sorted list, prioritising those with the longest texts.

Geographical Diversity: Samples of this subset are generated based on the count of geographical entities identified
by the Spacy NLP pipeline (i.e. "GPE" and "LOC" labelled entities) in each text. To assess the model’s pro-
ficiency in dealing with texts containing diverse geographical references, we select samples with the highest
counts of such entities.

Temporal Event Distribution: We identify texts with temporal expressions using the Spacy library and extract
where they are most frequently occurring. As temporal expressions can be crucial for event understanding,
this subset evaluates L-SEE’s capability to understand and integrate temporal information.

Named Entity Diversity: This subset focuses on the diversity of named entities. We again utilise the Spacy library
to extract named entities and then sort and select samples with the widest range of entities. This subset tests
the model’s ability to accurately recognise and categorise entities in the context of events.

Complex Sentence Structures: Samples with intricate syntactical constructions are selected to challenge L-SEE’s
parsing abilities, as complex structures can obscure event boundaries and relations, making extraction more
difficult. This set is generated by measuring the depth of the syntactic parse tree of each text, with depth
representing the maximum distance from any token to the root of the tree. Samples with the most complex
sentence structures, i.e., the deepest parse trees, are selected for this subset.

In the following, we detail the outcomes of this analysis, demonstrating L-SEE’s efficacy and limitations across
varying text characteristics.

https://dbpedia.org/ontology/CivilWar
https://dbpedia.org/ontology/CivilWar
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6.4.2. Results
L-SEE’s performance was evaluated across the subsets using precision, recall, and F1 scores for both event

classification and relation extraction. Figures 14 and 15 show the results of this analysis, detailed in the following.
For comparison, we also include the full dataset performance in our analysis. The distinctly strongest relation

extraction performance on the full dataset suggests that we have successfully sampled parts of our data that L-SEE
finds difficult to deal with.
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Fig. 14. L-SEE performance in event classification across various data subsets.
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Fig. 15. L-SEE performance in relation extraction across various data subsets.

Semantic Diversity L-SEE exhibits moderate performance in the semantic diversity subset, with macro metrics
reflecting challenges in consistently classifying a wide range of semantically varied events. However, micro
metrics indicate better performance in frequent semantic contexts. The significantly lower performance in
relation extraction highlights that there may be difficulties in mapping complex semantic relationships accu-
rately.

Sentence Length The results suggest that longer sentences pose significant challenges, with lower macro metrics
for event classification and even more pronounced difficulties in relation extraction. This indicates that L-SEE
may have limitations in maintaining context and coherence over sentences.

Geographical Diversity L-SEE performs relatively well in event classification, suggesting a good grasp of geo-
graphical contexts. However, the lower relation extraction scores point to challenges in accurately extracting
relationships when the diversity of geographical entities is high.

Temporal Event Distribution L-SEE displays reduced event classification accuracy in this subset. However, re-
lation extraction metrics remain comparatively stable. Given the lower event classification performance, this
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stability in relation extraction, despite potential cascading errors from misclassifications, may indicate a rela-
tively stronger inherent capability of the model in isolating and extracting relations in the context of tempo-
rally complex texts.

Named Entity Diversity We observe notable difficulties, highlighting L-SEE’s struggle with diverse named enti-
ties. The discrepancy between macro and micro metrics points to L-SEE’s poorer handling of less frequent
event types when the diversity of entity mentions is high.

Complex Sentence Structures L-SEE’s strongest performance is observed in the subset with complex sentence
structures, indicating effective parsing of intricate syntactic constructions. However, the lower relation extrac-
tion metrics suggest that while L-SEE can identify events within complex sentences, accurately extracting
the relations remains challenging.

This analysis underscores L-SEE’s strengths in contextual integration and syntactic navigation but also points at
significant areas for improvement. Future work should conduct further analysis focusing on how improved prompt-
ing strategies may help in robustness and accuracy across these diverse linguistic and contextual scenarios.

6.5. Discussion

With our comparison of T-SEE and L-SEE in this article, we aim at a deeper understanding of the suitability
of two different paradigms – transformer-based architectures and the use of LLMs – for semantic event extraction.
Following our evaluation results and analysis, we identify five core phenomena to be considered when deciding
between these paradigms:

Mimicry of dataset characteristics: Our analyses, e.g., in Table 6, Table 8 and Fig. 12, clearly demonstrate
that the results of methodologies fine-tuned on the target datasets (T-SEE, Text2Event and EventGraph) are
much more aligned to the expected RDF triples in the test sets than triples generated by an LLM (L-SEE). From
this behaviour, we infer the following: (i) In a controlled setting where mimicking the characteristics of the training
data is desired, transformer-based approaches are preferable over the use of LLMs. (ii) However, transformer-based
approaches also mimic the flaws of the target datasets and knowledge graphs. For example, if a specific property is
rarely used in an event knowledge graph but still valuable, L-SEE would identify it, while fine-tuned approaches
might miss it. An example is the property dbo:country on the event class dbo:Election, which is only used
in approximately 25% of DBpedia’s dbo:Election events.

Distantly-labelled datasets: Training a transformer-based architecture requires the availability of large training
data, i.e., texts annotated with RDF triples. Therefore, we opted for the automated extraction of two new datasets.
The use of distantly-labelled datasets without human annotations such as DBpedia-SEE and Wikidata-SEE for se-
mantic event extraction or datasets for relation extraction [52, 71–73] overcomes the issues of training data dimen-
sionality but always comes with questions regarding dataset quality.24 Specifically, we identified a large number of
false positives when evaluating L-SEE (Table 8), resulting from incomplete knowledge graphs or faulty alignment
between texts and RDF triples in the distant labelling process. Consequently, the evaluation of different approaches
on a distantly-labelled dataset requires careful investigation of the outputs beyond solely providing scores of the
evaluation metrics.

Ontology Guidance: We took care of carefully guiding both our approaches through our event ontologies. By
fine-tuning a transformer-based architecture, adherence to the ontology can be enforced, e.g., by explicitly classi-
fying into the event classes pertinent to the event ontology. For an LLM, in contrast, while we prompted for the
specific event classes and properties, we still observed cases of invalid event classes or properties as discussed in
Section 6.3.1. Also, our examples demonstrated cases of type misalignment and a misunderstanding of the semantic
definition of a property (dbo:secondLeader in Example 4), demonstrating the need to control the outputs of
an LLM. The improvement in the precision of LLM-based semantic event extraction is a major future direction for
LLM-based semantic event extraction, e.g., through the provision of property descriptions within the prompt.

24Note that even human annotators frequently disagree when providing annotations for NLP tasks [74].

https://dbpedia.org/ontology/country
https://dbpedia.org/ontology/Election
https://dbpedia.org/ontology/Election
https://dbpedia.org/ontology/secondLeader
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Complexity: Setting up a transformer-based architecture and its fine-tuning requires the availability of rich train-
ing data, computing and time resources. Setting up an LLM, in contrast, requires access to an LLM and careful
prompt engineering, i.e., potentially easier-to-obtain resources.

Real-world applications: Given the capability of LLMs to adapt to different inputs and data characteristics,
we assume that LLM-based approaches are well-suited under more complex, real-world conditions and to explore
low-resource scenarios.

7. Related Work

Knowledge graphs have, as a form of structured human knowledge, drawn a lot of research attention from both
academia and the industry [75]. With a great deal of event information worldwide, it is essential to bring entities and
events together through event-centric knowledge representations [24], with event extraction and relation extraction
being key technologies for accessing event knowledge [14].

7.1. Event Knowledge Graphs

Event knowledge graphs represent knowledge about happenings with societal impact in an event ontology and
interlink them with connected entities [24]. We distinguish between two types of event representations as follows:

– Named events: The predominantly entity-centric information of popular cross-domain knowledge graphs such
as DBpedia, YAGO, and Wikidata represent events as named events such as “Brexit” and “World War II”.
Named events are also the core component of EventKG [76], a multilingual event-centric temporal knowledge
graph, part of the Open Event Knowledge Graph [77] that integrates event-related data sets from multiple
application domains. GDELT [57] and ICEWS are two datasets of global political events encoded using the
CAMEO framework [78], i.e., not in RDF.

– Unnamed events: Works that address unnamed events specifically deal with the identification of texts describing
events and with the semantic annotation of these texts. For example, Rospocher et al. [22] build knowledge
graphs from news articles, and Zhang et al. [79] develop a large-scale English event knowledge graph extracted
from several sources such as reviews, news, and social media. For the task of event modelling, [80] proposes a
weakly-supervised approach to extract event relation tuples from text and build an event knowledge base, not
focusing on event-entity relations.

All event knowledge graphs require the availability of an event ontology, with popular examples including LODE
[6], the Simple Event Model [7] and more as discussed by Pyriani et al. [81]. Relevant patterns for event represen-
tation are presented in [82, 83], focusing on the spatio-temporal extent of events, the role of their participants and
recurring events. In this article, we extracted event ontologies from their vocabularies to allow the population of the
well-established cross-domain knowledge graphs DBpedia and Wikidata.

With T-SEE, we aim to bring together the complementary strengths of the Semantic Web and NLP perspectives
by performing event extraction that can be adapted to different event ontologies.

7.2. Event Extraction

Event extraction (EE) is a critical task in constructing and populating entity-centric knowledge graphs, with recent
advancements significantly diversifying the methodologies employed [30, 59, 84]. Earlier approaches have relied on
sentence-level pipelines for extracting event triggers and their corresponding argument roles [65, 85, 86], employing
sequence-to-structure generation paradigms like Text2Event [59] and multi-task frameworks such as DyGIE++ [41],
which utilise contextualised embeddings and dynamic span graph updates. Other studies have extended the scope
to document-level EE [87, 88] or ventured into open-domain EE without predefined event classes [89, 90], which,
while broadening the applicability, faces challenges due to the absence of a well-defined event ontology.

Innovations in the field have introduced contrastive pre-training frameworks like CLEVE [27], which capitalise on
large unsupervised datasets and their semantic structures to enhance EE’s efficacy, demonstrating marked improve-
ments in both supervised and unsupervised settings. Similarly, EventGraph [60] has presented a joint framework that
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conceptualises events as graphs, facilitating the simultaneous detection and extraction of multiple events and their
intricate interrelations, thereby achieving state-of-the-art results in event trigger and argument role classification.

Deepstruct, on the other hand, tries to leverage the structural understanding capabilities of language mod-
els through task-agnostic pretraining, allowing for zero-shot knowledge transfer across a wide array of structure
prediction tasks and setting new benchmarks on numerous datasets [69]. With DEGREE [66], authors propose
a data-efficient, generation-based model for EE that capitalises on semantic guidance from manually designed
prompts and the joint prediction of triggers and arguments, showcasing robust performance in low-resource settings.
ONEEE [91], on the other hand, utilises a one-stage framework for fast overlapping and nested event extraction.

A notable shift in EE methodology is the adoption of a question-answering paradigm [65], which mitigates the
prevalent issue of error propagation seen in conventional approaches by facilitating end-to-end argument extraction,
including for roles not encountered during training. Following this line, QGA-EE [67] has refined the QA-based
approach by integrating context-aware question generation, thus accommodating multiple arguments for identical
roles and surpassing prior single-task models in performance metrics.

In light of the new methodologies and progress in event extraction, the research community has also focused on
the specific subtasks of event extraction. For example, with PAIE [92], authors devise a prompt tuning approach
to document-level event argument extraction similar to the already established question-answering paradigm in
event extraction work. Older work on event argument extraction, such as HMEAE [18], a hierarchical approach to
argument extraction utilising concept correlation among argument roles, have, in turn, inspired approaches such as
DEGREE that aim to resolve issues such as poor handling of the encoding of the labels semantics and other weak
supervision signals.

Prompt-based approaches have been explored for event argument extraction, leveraging the ability of pre-trained
language models to generate structured outputs. For example, Peng et al. (2024) propose Event Co-occurrences
Prefix Event Argument Extraction (ECPEAE), which incorporates co-occurrence information of multiple events in
a sentence to improve argument extraction accuracy [93]. This method uses a co-occurrence event prefix module
to encode template information for all events in the input, enabling the model to leverage causal relationships
between events. While ECPEAE focuses on sentence-level event interactions, T-SEE’s pipeline explicitly integrates
event ontologies and RDF triples for knowledge graph population, aligning with broader semantic event extraction
goals. Other recent work includes Hyperspherical Multi-Prototype Learning [94], which enhances event argument
extraction via optimal transport.

The other subtask of event extraction, event detection, has also received attention with the DRC framework [95]
trying to compete with trigger-based models as a way of exploring methods of event detection robust to less anno-
tated real-world domains, an area we examine in our work as well. Similarly, recent work has introduced retrieval-
augmented prompting for event detection, leveraging LLMs to improve performance in both high- and low-resource
settings [44]. This approach constructs automatic retrieval-augmented prompts to provide LLMs with structured
extraction guidelines, enhancing their ability to detect events without relying solely on trigger words. These ad-
vancements align with our exploration of methods for event detection in less-annotated domains.

Other research exploring ontology and schema-based approaches to event extraction has yielded promising inno-
vations. Notably, Huang et al. (2024) introduce a multi-graph representation for event extraction, using graph neural
networks to model event interactions and improve extraction accuracy [96]. This graph-based approach contrasts
with L-SEE’s pipeline structure, which prioritises ontology-guided classification and relation extraction. Shiri et al.
(2024) propose a schema-aware event extraction method using LLMs, decomposing the task into event detection
and argument extraction while incorporating dynamic schema-aware retrieval examples [44]. This approach uses dy-
namic retrieval to fetch task-specific examples for each query, enhancing LLM understanding but requiring external
data. In contrast, L-SEE employs dynamic prompt generation from a static ontology, enabling targeted extraction
of event classes and properties without relying on retrieval mechanisms. Our approach achieves a critical balance:
leveraging the flexibility of ontology-driven prompting while maintaining simplicity through independence from
external data sources. Similarly, COfEE [97] uses a static ontology for schema-guided augmentation in supervised
models. Unlike L-SEE, which leverages LLMs’ contextual understanding with ontology-guided prompts, COfEE
relies on static schema augmentation. L-SEE’s ontology-driven prompting enables adaptability to diverse event
types while avoiding the computational overhead of retrieval-augmented generation.
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These developments reflect a broader trend towards more adaptable, efficient, and comprehensive models for
event extraction, underlining the field’s evolution towards leveraging advanced language model capabilities and
innovative problem-solving frameworks.

7.3. LLM-based Information Extraction

The field of Information Extraction (IE) has traditionally relied on rule-based and statistical methods to extract
structured information from text. However, the emergence of Large Language Models (LLMs) has opened up new
avenues for tackling IE tasks with remarkable capabilities in understanding and generating natural language. This
section reviews recent advancements in using LLMs for IE, particularly focusing on unstructured information ex-
traction and event extraction.

General Information Extraction with LLMs
A few years ago, LLMs were still in their early stages of development, with limited capabilities for tackling

complex tasks like information extraction. While early works explored LLM-based approaches for IE (e.g., [98]),
these models faced challenges due to limited model capacity, data inefficiency, and limited adaptation. However,
significant advancements in recent years have addressed these challenges, driven by the rise of the transformer
architecture [33] enabling long-range dependencies. Large-scale pre-training pushed things further with BERT
[36] and GPT-3 [99], allowing LLMs to learn general language understanding capabilities and adapt to specific
IE tasks through fine-tuning with smaller labelled datasets. Finally, the growing availability of powerful computing
resources like GPUs and TPUs [100] has enabled the training of larger and more complex LLM models, further
enhancing their ability to handle complex information extraction tasks.

Unstructured Information Extraction with LLMs
In 2022, Dunn et al. showed how a pre-trained LLM can extract structured information from scientific abstracts

[32]. In 2023, Polak et al. [101] expanded on the early promises of unstructured information extraction with Chat-
Extract, demonstrating that a significant amount of up-front effort, expertise, and coding may be fully automated
using an advanced conversational LLM. By leveraging prompts and follow-up questions, ChatExtract achieves high
accuracy and efficiency in extracting materials data, showcasing the potential of LLMs for automated knowledge
extraction from scientific literature.

In the same year, Wei et al. proposed ChatIE, a multi-turn QA framework for zero-shot information extraction
demonstrating good performance across a number of datasets, three tasks, and two languages [68]. Li et al. system-
atically analysed ChatGPT across seven detailed information extraction tasks [102] including event extraction. The
authors show that while ChatGPT underperforms in standard IE tasks compared to BERT-based models, it excels
in OpenIE settings, as confirmed by human evaluators. However, a notable concern is the model’s overconfidence
in its predictions, leading to calibration issues. This is further confirmed in the comprehensive survey by Liu et
al. [103], in which the authors evaluate the capabilities and applications of ChatGPT (versions 3.5 and 4) against
the backdrop of current state-of-the-art models in natural language processing. The paper highlights ChatGPT’s
advancements in large-scale pre-training, instruction fine-tuning, and reinforcement learning from human feedback,
which collectively enhance its adaptability and performance across a myriad of NLP tasks. A detailed comparison of
ChatGPT with existing state-of-the-art models reveals that while ChatGPT excels in multitask learning and shows
promising results in some NLP tasks, it falls short in multilingual capabilities and specialised tasks when compared
to dedicated models. Moreover, stability and consistency emerge as areas where ChatGPT does not yet match the
performance levels of state-of-the-art models, which could impact its reliability in critical applications.

7.3.1. LLM-based Event Extraction
LLMs have recently been utilised for the task of event extraction. In general, as already mentioned, Li et al. [102]

evaluate the performance of ChatGPT on a number of information extraction tasks, revealing an increasingly worse
performance as the complexity of the evaluated task increases, where the worst performance is reported on the task
of event extraction.

A comparison between LLMs and traditional methods have been conducted on several tasks related to EE: In
[104], authors explore prompt-based learning with GPT-4 for detecting factual events in literary narratives. The
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study concludes that while BiLSTM with BERT embeddings excels in event detection within literary texts, GPT-4
shows promise in prompt-based learning approaches, particularly in few-shot settings. Sharif et al. [105] conducted
an in-depth analysis of ChatGPT’s performance on the task of characterising information-seeking events, where
ChatGPT underperformed compared to transformer models like XLNet, especially in domain-specific contexts re-
quiring extensive knowledge.

Zhan et al. introduce GLEN [106], a large-scale general-purpose event detection dataset that significantly expands
the ontology of event types. While InstructGPT underperformed compared to other baselines in their experiments,
the authors attribute this to the limited input length and lack of fine-tuning, with only 57.8% of generated event types
matching the ontology, similarly to our observations (Section 6.3.1). In 2024, Zhang et al. present ULTRA [107], a
framework utilising hierarchical modelling and pairwise refinement for document-level event argument extraction.

Peng et al. (2024) introduce CsEAE, a model that combines small language models (SLMs) and LLMs for
document-level event argument extraction [108]. CsEAE incorporates co-occurrence-aware and structure-aware
modules to handle semantic boundaries between events and reduce interference from redundant information. The
authors also demonstrate that insights from SLMs can enhance LLM performance via supervised fine-tuning
and prompt engineering. This work aligns with L-SEE prompting strategies and highlights the potential for co-
occurrence-aware designs to improve LLM-based event extraction.

Liu et al. (2024) propose EventRL, a framework that enhances LLM-based event extraction using reinforcement
learning with outcome supervision [109]. EventRL improves extraction accuracy by rewarding the LLM based
on its alignment with human-annotated triggers and arguments. While EventRL focuses on refining LLM outputs
through external feedback, L-SEE leverages ontology-guided prompting to structure LLM responses internally.
Both approaches aim to improve LLM reliability, but EventRL uses post-hoc correction, while L-SEE prioritizes
upfront guidance. These methods address complementary aspects of LLM-based extraction: EventRL mitigates
hallucinations via feedback, while L-SEE ensures semantic consistency with knowledge graphs through ontology
integration.

While the early attempts at utilising LLMs for the complex task of event extraction have shown mixed results,
with LLMs often underperforming in comparison to traditional methods, especially in domain-specific contexts,
there is a clear trajectory of improvement. As LLMs continue to evolve, gaining the ability to handle larger context
windows and as researchers refine their prompting techniques — such as breaking down the task into simpler sub-
tasks as demonstrated in L-SEE — the gap between LLMs and traditional methods is expected to narrow. The
advancements in hierarchical modelling, pairwise refinement, and modules like LEAFER [107] for argument span
refinement indicate the potential for LLMs to improve and catch up to traditional event extraction methodologies in
the near future.

7.3.2. LLM-based Knowledge Graph Population
The use of LLMs for the population of knowledge graphs has also been explored recently. For example, Mi-

hindukulasooriya et al. experimented on ontology-driven triple extraction from sentences [110], while Yao et al.
performed instruction tuning for the tasks of triple classification, relation prediction and entity link prediction [111].
In another innovative approach, AutoKG leverages a multi-agent-based approach employing LLMs and external
sources for KG construction and reasoning [112]. Zhang et al. propose KoPA, which ingests entity and relation
embeddings into LLMs [113].

These papers about LLM-based information extraction present a glimpse into the rapidly evolving field of LLM-
based IE. While promising results have been achieved, further research is needed to address challenges such as
factual correctness, bias mitigation, and adapting LLMs to specific domains and tasks. As research progresses,
LLMs are set to play a key role in the future of information extraction, enabling efficient and accurate knowledge
extraction from vast amounts of unstructured text data.

8. Conclusion

In this article, we compared two paradigms for semantic event extraction: Fine-tuning transformer-based archi-
tectures as exemplified by our approach T-SEE and prompting Large Language Models (LLMs), exemplified by
our approach L-SEE.
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Both approaches consist of two main steps: event classification and relation extraction, where T-SEE frames
event classification as a multi-label classification task, and conducts relation extraction with a span prediction trans-
former model. L-SEE provides an LLM with two different prompts which include the event classes and properties
in the target event ontology.

In our evaluation, we first introduced two new datasets for semantic event extraction. Then, we compare T-SEE
and L-SEE to two state-of-the-art baselines, with T-SEE outperforming or matching them and setting a new bench-
mark for transformer-based methods in semantic event extraction. Finally, we specifically focused on the different
characteristics of T-SEE and L-SEE, highlighting T-SEE’s adaptation to the precise characteristics of the training
and test data, while L-SEE performs clearly worse on the test data. However, our subsequent analysis revealed its
capability of extracting relevant knowledge that is often overlooked by distantly-labelled datasets.

Consequently, we derive a set of phenomena to be regarded when performing semantic event extraction, including
the role of distantly-labelled datasets and the event ontology.

In future work, we plan to further improve T-SEE and L-SEE, e.g., by bringing event classification, relation
extraction and other tasks like named entity recognition even closer together in joint multi-task learning frameworks
and to extend them to encompass multilingual and document-level semantic event extraction. In addition, we aim
to enhance metrics and datasets, allowing a fair comparison between semantic event extraction methods employing
transformer-based architectures and LLMs.
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Appendix A. Prompts of L-SEE

This appendix shows the prompts used by L-SEE as described in Sections 4.1 and 4.2.

A.1. Prompt for Event Classification

Fig. 16 shows the LLM prompt template we use for L-SEE’s event classification as described in Section 4.1.

LLM Prompt for Event Classification

Prompt:
Your task is to analyse the sentence and classify events that are in the sentence.
An event is identified by an action or a mention of an event.
You will only consider events that are likely to have their own Wikipedia page.

Note: The events that you should identify are links in Wikipedia, they may not be referred to directly by
name in the sentence but a specific word or phrase in the sentence may link to the event. E.g., in "Senator
McCain also got 10% higher approval rating compared to 2010", 2010 is a link to the event "United States
Senate elections, 2010" even though it is not mentioned directly in the sentence.

For example, in the sentence "John married Mary in Paris on 12th December 2020 during the Parisian
Unrests", the events are "marriage" and "unrests". However, "married" is not to be considered an event as
it is unlikely to have its own Wikipedia page.

You are to select event types from the following list of event types and return it as a list of strings of event
types:

{All Event Classes C}

This is your task:

Sentence:
{Text t}

Fig. 16. Illustration of a structured prompt provided to the LLM for event classification.
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A.2. Prompt for Relation Extraction

Fig. 17 shows the LLM prompt template we use for L-SEE’s relation extraction as described in Section 4.2.

LLM Prompt for Relation Extraction

Prompt:
Your task is to extract the properties of the events that are in a given sentence and their values. You will only consider
properties that are likely to be associated with the given event classes. Extract the properties of the events and return a
JSON object with the event classes as the keys and the properties as the values.
The property values can be dates, entities, or quantities. If there is no specific value for a property, you must not include
it in the JSON object.
The extracted property values must fit their respective property types. For example, if the property is "date", the value
must be able to be formatted as a date (e.g. "12th December 2019" or "2019" in the case of a year).
Similarly, if the property is "location", the value must be a location. If there are multiple values for a property, you must
include all the values in a list.

Consider the following example:

Sentence:
John married Mary on the first day of the start of the COVID-19 pandemic, on 12th December 2019. It was only a few
days later that in the winter of 2019, the German-French War destroyed the cities of Paris and Berlin.

Event classes and their potential properties:
- Pandemic: city, startDate
- MilitaryConflict: city, date, participant

Output:

{
"Pandemic": {

"startDate": ["12th December 2019"]
},
"MilitaryConflict": {

"city": ["Paris", "Berlin"],
"date": ["2019"]

}
}

This is your task:

Sentence:
{Text t}

Event classes and their potential properties:
{Event classes Ct and properties PCt }

Fig. 17. Illustration of a structured prompt provided to the LLM for property extraction.
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