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Abstract

This paper investigates the application of defeasible reasoning within geospatial knowledge graphs
(GeoKGs) for geospatial similarity computation. Motivated by the need for accurate and inter-
pretable similarity assessments in domains such as urban planning and location-based services, this
study proposes a novel approach that combines the structured data representation of GeoKGs with
the uncertainty-aware inference capabilities of defeasible logic. A GeoKG is constructed by in-
tegrating data from OSMnx, Wikipedia, and GeoNames. Defeasible rules are generated to capture
contextual and functional similarities, and a reasoning engine infers similarity scores through priority-
based conflict resolution. The proposed method is benchmarked against knowledge graph embedding
(KGE) models and a large foundation model (Gemini) using an expert-annotated dataset. While
the KGE model achieved 72.3% accuracy and the LFM 68.1%, defeasible reasoning achieved 67.2%.
Despite its lower accuracy, it offers superior interpretability by explicitly representing the rationale
behind similarity assessments. This transparency is critical in decision-making scenarios where trust
and justification are paramount. The study also highlights the impact of rule refinement and conflict
resolution strategies on performance, suggesting potential for further improvement. By introducing
defeasible reasoning into GeoKG-based similarity computation, this work provides a promising, ex-
plainable alternative to black-box models, paving the way for future hybrid approaches that balance
accuracy and interpretability.
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1 Introduction

The accurate and efficient determination of similarity between geospatial entities is a fundamental
challenge with broad implications across numerous domains [1]. From urban planning and resource
management to location-based services and geographic data integration, the ability to quantify the relat-
edness of spatial objects is paramount. Consider, for instance, the task of identifying functionally similar
commercial districts within a city to inform strategic investment decisions. Or, envision a location-based
recommendation system suggesting points of interest based on a user’s past preferences and the character-
istics of nearby locations. In each of these scenarios, the quality and utility of the outcome hinge directly
on the accuracy with which we can assess geospatial similarity [2]. However, the inherent complexity of
geographic space and the multifaceted nature of spatial entities present significant obstacles to achieving

1



this goal [3]. Traditional approaches often rely on simple geometric measures such as Euclidean distance
or topological relationships, which fail to capture the rich semantic and contextual information that
shapes our understanding of spatial similarity [4]. Moreover, the increasing availability of heterogeneous
geospatial data sources, while promising, introduces challenges related to data integration, consistency,
and handling uncertainty [5].

The task of geospatial similarity computation is inherently difficult due to several factors. First,
geospatial entities are complex objects characterized by a multitude of attributes, relationships, and
spatial properties [6]. A building, for example, can be described by its geometry, function, architectural
style, historical significance, and proximity to other entities [7]. Capturing this multifaceted nature
requires integrating information from diverse sources and representing it in a coherent and meaningful
way. Second, spatial relationships are often context-dependent and influenced by implicit knowledge [8].
The similarity between two parks, for instance, might depend on their size, accessibility, the presence
of specific amenities (e.g., playgrounds, walking trails), and the surrounding neighborhood context.
Formalizing these contextual dependencies and incorporating them into similarity models is a non-trivial
task. Third, geospatial data is often incomplete, inconsistent, or uncertain. Data sources may have
varying levels of accuracy, coverage, and timeliness, leading to conflicting information about the same
entity [9]. Dealing with these data quality issues and reasoning under uncertainty is crucial for robust
similarity computation. Finally, the sheer scale of geospatial datasets poses computational challenges
[10]. Efficiently processing and comparing millions of spatial entities requires scalable algorithms and
data structures.

To address these challenges, we propose a novel approach that combines the structured knowledge
representation of GeoKGs with the flexible inference capabilities of defeasible logic [11]. GeoKGs pro-
vide a powerful framework for integrating heterogeneous geospatial data, representing entities and their
relationships in a semantic and machine-readable format. By leveraging ontologies and knowledge repre-
sentation techniques, GeoKGs enable us to capture the multifaceted nature of geospatial entities and their
contextual dependencies [12]. Defeasible logic, on the other hand, provides a non-monotonic reasoning
framework that allows us to reason with incomplete and conflicting information [13]. By representing
similarity relationships as defeasible rules, we can capture the uncertainty and context-dependence in-
herent in spatial similarity judgments [14]. Our approach consists of several key steps:

(1) constructing a GeoKG by integrating data from OSMnx, Wikipedia, and GeoNames
(2) generating a set of defeasible rules to capture contextual and functional similarities between entities
(3) applying these rules using a defeasible reasoning engine to infer similarity scores
(4) resolving potential conflicts between rules through priority-based strategies

The core contribution of this paper lies in the synergistic combination of GeoKGs and defeasible
reasoning for geospatial similarity computation. We demonstrate how the structured knowledge repre-
sentation of GeoKGs can be effectively combined with the flexible inference capabilities of defeasible logic
to address the challenges of incomplete information, contextual dependencies, and conflicting evidence.
By explicitly representing similarity relationships as defeasible rules, we provide a more interpretable
and explainable alternative to black-box machine learning models [15]. Furthermore, our approach of-
fers a principled way to resolve conflicts between different similarity criteria, allowing us to capture
the nuanced and context-sensitive nature of spatial similarity judgments [16]. We applied an existing
method for generating defeasible rules in a new way tailored to the geospatial domain, based on spatial
proximity, shared attributes, and domain knowledge [17]. These rules are designed to capture common-
sense reasoning about similarity. For example, a rule might state that ”USUALLY, if two restaurants
are located near each other and have similar cuisine types, then they are similar.” The ”USUALLY”
quantifier indicates that the rule is defeasible, meaning that it can be overridden by conflicting evidence.
We also implement and evaluate different conflict resolution strategies, such as prioritizing rules based
on their specificity or credibility.

To verify the effectiveness of our approach, we conducted a series of experiments using real-world
geospatial data from Amsterdam. We compared the accuracy of our defeasible reasoning approach against
knowledge graph embedding models and LFM-based models, using a ground truth dataset created with
expert annotations. The experimental results showed that while the knowledge graph embedding models
achieved higher accuracy overall, our defeasible reasoning approach provided a more interpretable and
explainable alternative, achieving competitive performance. Specifically, the knowledge graph embedding
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model achieved an accuracy of approximately 72.3%, while the defeasible reasoning model achieved an
accuracy of 67.2%, and the LFM model achieved an accuracy of 68.1%. These results highlight the
trade-off between accuracy and interpretability in geospatial similarity computation. Furthermore, we
analyzed the impact of different rule refinement and conflict resolution strategies on the overall accuracy
and coherence of our approach. Our findings provide insights into the design and implementation of
effective defeasible reasoning systems for GeoKG-based applications.

In conclusion, the primary contributions of this paper can be summarized as follows:

• We introduce a novel approach for geospatial similarity computation that combines the structured
knowledge representation of GeoKGs with the flexible inference capabilities of defeasible logic.

• We present a method for generating defeasible rules based on spatial proximity, shared attributes,
and domain knowledge.

• We implement and evaluate different conflict resolution strategies for resolving conflicts between
defeasible rules.

• We conduct a series of experiments using real-world geospatial data to compare the accuracy of
our approach against knowledge graph embedding models and LFM-based models.

• We provide a detailed analysis of the trade-offs between accuracy and interpretability in geospatial
similarity computation.

In terms of future work, several promising avenues for research remain. First, we plan to investigate
more sophisticated rule refinement techniques to improve the accuracy and coverage of our defeasible
rule set [18, 19]. This includes exploring methods for automatically learning rules from data and
incorporating feedback from domain experts [20]. Second, we aim to develop more advanced conflict
resolution strategies that take into account the context and credibility of different information sources
[21]. This could involve using argumentation-based reasoning techniques to resolve conflicts in a more
nuanced and transparent way. Third, we intend to explore the use of our approach in other geospatial
applications, such as location-based recommendation systems and geographic data integration. Finally,
we plan to investigate the scalability of our approach to larger datasets and more complex GeoKGs [22].
By addressing these challenges, we can further enhance the effectiveness and applicability of defeasible
reasoning for geospatial similarity computation. We believe that our work provides a solid foundation
for future research in this area and opens up new possibilities for leveraging the power of GeoKGs and
defeasible logic to solve real-world geospatial problems. For example, the use of semantic trajectory
data coupled with defeasible reasoning could allow for better modeling of human mobility patterns and
improved location-based services. Or consider the use of our approach for emergency response, where
rapid and accurate similarity assessment of affected areas is crucial for efficient resource allocation and
disaster management.

2 Background

This section provides the necessary background for understanding the concepts and techniques used in
this paper. We will cover the fundamentals of GeoKGs, defeasible reasoning, and geospatial similarity
computation. We will also introduce the problem setting and notation used throughout the paper.

Knowledge Graphs A Knowledge Graph (KG) is a structured representation of knowledge consist-
ing of entities, concepts, and relationships between them [23]. Formally, we defined a KG as a tuple
G = (E,R, F ), where E is a set of entities, R is a set of relations, and F ⊆ E × R × E is a set of facts
[24, 25]. Each fact (e1, r, e2) ∈ F represents a relationship r between entities e1 and e2. Knowledge
Graphs provide a powerful framework for representing and reasoning about complex domains, and have
been successfully applied in various applications, including search engines, question answering, and rec-
ommendation systems. In the context of geospatial data, a GeoKG is a KG that specifically focuses on
representing geospatial entities and their relationships. These entities can include locations, buildings,
landmarks, and other geographic features. The relationships between these entities can include spatial
relationships (e.g., ”nearby”, ”contains”), functional relationships (e.g., ”serves”, ”locatedIn”), and se-
mantic relationships (e.g., ”isA”, ”relatedTo”). GeoKGs are often built by integrating data from various
sources, such as OpenStreetMap (OSM), Wikipedia, and GeoNames [26]. This integration process in-
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Figure 1: Comparison of Static and Defeasible Reasoning Systems

volves aligning entities across different sources, resolving conflicts, and enriching the KG with additional
information.

Defeasible Reasoning Defeasible reasoning is a non-monotonic reasoning approach that allows for
reasoning with incomplete and conflicting information [11, 27]. It is based on the concept of defeasible
rules, which are rules that can be defeated by contrary evidence. Formally, a defeasible rule can be
represented as A ⇒ C, where A is the antecedent (or body) of the rule, and C is the consequent (or
head) of the rule. The ”⇒” symbol indicates that the rule is defeasible, meaning that it can be overridden
by other rules with stronger evidence. In addition to defeasible rules, defeasible logic also includes strict
rules, which are rules that cannot be defeated. A strict rule can be represented as A → C, where the
”→” symbol indicates that the rule is strict. Defeasible reasoning systems typically include a set of
inference rules that specify how defeasible and strict rules can be used to derive conclusions [28]. These
inference rules often involve mechanisms for resolving conflicts between rules, such as prioritizing rules
based on their specificity or credibility. For example, consider the following defeasible rules:

bird(X) ⇒ flies(X)

penguin(X) ⇒ ¬flies(X)

These rules state that birds usually fly, but penguins usually do not fly. If we know that Tweety is a bird
and a penguin, then these rules conflict. To resolve this conflict, we can introduce a priority relation that
states that the penguin rule has higher priority than the bird rule: penguin(X) > bird(X). This priority
relation indicates that if both rules are applicable, then the penguin rule should be preferred. Defeasible
reasoning is particularly well-suited for geospatial applications, where information is often incomplete,
uncertain, and conflicting. By representing similarity relationships as defeasible rules, we can capture
the uncertainty and context-dependence inherent in spatial similarity judgments.

Figure 1 compares two reasoning approaches—static rule-based reasoning (Before) and defeasible rea-
soning (After)—in assessing the similarity between two restaurants. In the static system, similarity is
determined solely based on proximity and price range, leading to a high similarity score (0.85) despite a
clear mismatch in cuisine. This rigid application of rules ignores conflicting attributes and offers no mech-
anism for handling exceptions. In contrast, the defeasible reasoning system introduces more nuanced
judgment by applying defeasible rules that can be overridden by more specific or conflicting information.
Although the general rule suggests that nearby restaurants with similar prices are typically similar, this
is overridden by a specific rule that highlights the cuisine mismatch. The conflict is resolved through the
principle of specificity, resulting in a more refined similarity score of 0.32. This example highlights how
defeasible reasoning can accommodate exceptions and provide more context-aware similarity assessments.

Figure 2 illustrates the internal mechanism of defeasible reasoning through a set of example rules and
a conflict resolution strategy. The defeasible rules encode general tendencies and exceptions in similarity
assessment. Rule 1 captures a typical pattern: entities that are geographically close and similarly priced
are usually considered similar. Rule 2 introduces an exception, stating that if the cuisines differ, the
entities should be considered not similar—this rule represents a more specific condition that can override
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Figure 2: Defeasible Mechanism and Conflict Resolution

the general tendency in Rule 1. Rule 3 provides additional supporting evidence, indicating that a small
rating difference may contribute to potential similarity. The diagram shows how Rule 1 is in conflict
with Rule 2 but is supported by Rule 3. The conflict is resolved by the resolution engine, which uses
a specificity-based strategy. According to this strategy, Rule 2 takes precedence over Rule 1 because it
applies to a more specific and contextually significant attribute (cuisine). This framework demonstrates
how defeasible reasoning systems can handle conflicting rules in a principled manner, leading to more
explainable and context-sensitive decisions.

Geospatial Similarity Computation Geospatial similarity computation is the task of quantifying
the similarity between geospatial entities [29]. This task is fundamental to various applications, including
urban planning, location-based services, and geographic data integration. There are several different
approaches to geospatial similarity computation, including geometric approaches, semantic approaches,
and contextual approaches [30, 31]. Geometric approaches focus on measuring the geometric similarity
between entities based on their shape, size, and spatial relationships. For example, the similarity between
two polygons can be computed based on their area overlap, perimeter ratio, or Hausdorff distance
[32]. Semantic approaches focus on measuring the semantic similarity between entities based on their
attributes, types, and relationships [33]. For example, the similarity between two restaurants can be
computed based on their cuisine type, price range, and customer ratings. Contextual approaches focus
on measuring the similarity between entities based on their surrounding environment and context. For
example, the similarity between two parks can be computed based on their proximity to residential areas,
schools, and other amenities. In many real-world scenarios, geospatial similarity is a complex combination
of geometric, semantic, and contextual factors. Our approach aims to integrate these different aspects
of similarity by representing similarity relationships as defeasible rules that capture both geometric,
semantic, and contextual information. For instance, a rule might state: ”USUALLY, if two buildings
are located near each other, have similar architectural styles, and serve similar functions, then they are
similar.”
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Problem Setting In this paper, we address the problem of geospatial similarity computation using
GeoKGs and defeasible reasoning. We consider a scenario where we have a set of geospatial entities E,
a set of relationships R, and a GeoKG G = (E,R, F ) that represents the relationships between these
entities. Our goal is to develop a system that can accurately and efficiently compute the similarity
between any two entities e1, e2 ∈ E. We represent similarity relationships as defeasible rules of the form
A ⇒ similar(e1, e2), where A is the antecedent of the rule, and similar(e1, e2) is the consequent, indicating
that entities e1 and e2 are similar. The antecedent A can consist of a conjunction of conditions that
capture geometric, semantic, and contextual information about the entities. For example, the antecedent
might include conditions such as ”nearby(e1, e2)”, ”sameType(e1, e2)”, and ”similarAttributes(e1, e2)”.
We use a defeasible reasoning engine to apply these rules and infer similarity scores between entities.
The defeasible reasoning engine takes into account potential conflicts between rules and resolves them
using priority-based strategies. Our approach aims to provide a more interpretable and explainable
alternative to black-box machine learning models for geospatial similarity computation. The accuracy
of our approach is evaluated by comparing its performance against knowledge graph embedding models
and LFM-based models, using a ground truth dataset created with expert annotations.

Formalism To formalize our approach, we introduce the following notation:

• E: A set of geospatial entities.

• R: A set of relationships between entities.

• G = (E,R, F ): A GeoKG representing the relationships between entities, where F ⊆ E ×R×E is
a set of facts.

• e1, e2 ∈ E: Two geospatial entities.

• similar(e1, e2): A predicate indicating that entities e1 and e2 are similar.

• A ⇒ similar(e1, e2): A defeasible rule stating that if condition A holds, then entities e1 and e2 are
similar.

• A: The antecedent of a defeasible rule, consisting of a conjunction of conditions.

• nearby(e1, e2): A predicate indicating that entities e1 and e2 are located near each other. This can
be formally defined using a distance threshold δ:

nearby(e1, e2) =

{
True if distance(e1, e2) ≤ δ

False otherwise

where distance(e1, e2) represents the Euclidean distance or other appropriate distance metric be-
tween the geographic coordinates of e1 and e2.

• sameType(e1, e2): A predicate indicating that entities e1 and e2 have the same type. This relies
on a predefined ontology or type system.

• similarAttributes(e1, e2): A predicate indicating that entities e1 and e2 have similar attributes.
Attribute similarity can be quantified using various measures, such as cosine similarity or Jaccard
index, depending on the nature of the attributes (numerical, categorical, text-based).

• >: A priority relation between defeasible rules, indicating which rule should be preferred in case
of conflict.

We assume that the GeoKG G is constructed by integrating data from various sources and that it
contains sufficient information to evaluate the conditions in the antecedents of the defeasible rules.
We also assume that we have a set of domain experts who can provide feedback on the accuracy and
relevance of the defeasible rules. The distance threshold δ used in the nearby(e1, e2) predicate, and
the methods for determining sameType(e1, e2) and similarAttributes(e1, e2), can be tuned based on the
specific application and the characteristics of the geospatial data. Furthermore, the priority relation >
between defeasible rules can be learned from data or specified by domain experts.
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3 Related Work

Geospatial similarity computation has been approached from various perspectives, each with its
strengths and limitations. A prevalent method involves leveraging knowledge graphs (KGs) to repre-
sent geospatial entities and their relationships, subsequently employing KG embedding techniques or
reasoning mechanisms for similarity assessment. However, these approaches often differ significantly in
their underlying assumptions, methodologies, and applicability to specific problem settings. This section
aims to provide a comprehensive overview of related work, highlighting the key differences and similarities
with our proposed approach, and justifying the choices made in our research.

One prominent area of research focuses on utilizing KG embedding models for learning representations
of entities in a KG, where the learned embeddings capture semantic relationships between entities. These
embeddings can then be used to compute similarity scores between entities. For instance, TransE models
relationships as translations in the embedding space, such that if (h, r, t) holds (head h, relation r, tail
t), then the embedding of h plus the embedding of r should be close to the embedding of t: h + r ≈ t
[34]. The similarity between two entities can then be computed based on the distance between their
embeddings, e.g., using cosine similarity:

similarity(e1, e2) =
e1 · e2

||e1|| · ||e2||

While KG embedding models have shown promising results in various tasks, they often lack interpretabil-
ity. It is difficult to understand why two entities are considered similar based on their embeddings alone.
Furthermore, these models typically assume that relationships are symmetric or transitive, which may
not hold in all geospatial contexts. For example, the ”nearby” relationship is symmetric, but the ”locate-
dIn” relationship is not. Additionally, KG embeddings often struggle to incorporate complex contextual
information and handle uncertainty effectively. In contrast, our approach explicitly represents similarity
relationships as defeasible rules, providing a more interpretable and explainable alternative.

Restaurant(x) ∧ Restaurant(y) ∧ hasCuisine(x, z) ∧ hasCuisine(y, z) ∧ nearby(x, y) → similar(x, y)

This rule states that if x and y are both restaurants, they both have cuisine z, and they are near each
other, then they are similar. Such approaches offer strong logical foundations but often struggle with the
scalability and inherent uncertainty associated with geospatial data. Rules must be meticulously crafted,
and even then, they may not cover all possible scenarios or handle conflicting information gracefully.
Moreover, the computational complexity of logical reasoning can be prohibitive for large KGs.

A third approach involves combining KGs with machine learning techniques to enhance similarity
computation. This might involve using KG embeddings as features in a machine learning model, or
using machine learning to learn rules for reasoning over the KG. For example, the work of Guo et al.
presents a method for learning logical rules from KGs using neural networks [35]. These learned rules
can then be used for tasks such as KG completion and entity classification. Other research has focused on
using reinforcement learning to learn policies for navigating KGs and discovering relationships between
entities [36]. The key advantage of these hybrid approaches is that they can leverage the strengths of
both KGs and machine learning, combining the structured knowledge representation of KGs with the
ability of machine learning to learn complex patterns from data.

Our work is related to these existing approaches, but it differs in several key aspects. First, we
explicitly use defeasible reasoning as our reasoning framework, which allows us to reason with incomplete
and conflicting information in a principled way. This is particularly important in geospatial applications,
where data is often uncertain and contradictory. Second, we focus on generating defeasible rules based
on spatial proximity, shared attributes, and domain knowledge. This allows us to capture the nuances
and complexities of geospatial similarity in a more interpretable way than KG embeddings. Third,
we evaluate our approach by comparing its accuracy against KG embedding models and LFM-based
models, providing a comprehensive assessment of its performance. We also place a strong emphasis on
explainability, aiming to provide justifications for the similarity scores that are computed.
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Figure 3: Overview of the Proposed Methodology Pipeline
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Figure 4: The illustration of GeoKG-DR ontology, which models geospatial entities, their provenance,
and defeasible reasoning for entity alignment and conflict resolution.

4 Methodology

Our methodology is structured around four primary phases: GeoKG construction, defeasible rule
generation, reasoning implementation, and experimental evaluation. Each phase is designed to contribute
to the overall goal of enabling accurate and explainable geospatial similarity computation.

Figure 3 illustrates the overall architecture of our methodology, encompassing data collection, GeoKG
construction, defeasible rule generation, reasoning, and evaluation. Data from sources like OSMnx,
Wikipedia, and GeoNames is integrated into a structured GeoKG. Defeasible rules—capturing proximity,
attribute similarity, and context—are stored with priority metadata and applied via a reasoning engine.
The system computes similarity scores by querying the GeoKG and resolving rule conflicts. Finally,
evaluation is conducted using expert and crowdsourced ground truth, with performance compared against
baseline models using standard metrics.

4.1 GeoKG Construction

The construction of GeoKG involves integrating data from multiple sources, including OSMnx, Wikipedia,
and GeoNames. The process begins with selecting a specific geographic area of interest. In this study,
we focus on Amsterdam and use OSMnx to extract geospatial features such as buildings, roads, points of
interest (POIs), and land use polygons. The extracted data is then cleaned and preprocessed to ensure
consistency and accuracy.

Next, entities are aligned across different data sources based on spatial location and name similarity.
Spatial proximity checks and string similarity measures are employed to identify potential matches be-
tween entities from OSMnx, Wikipedia, and GeoNames. A conflict resolution strategy is implemented to
handle discrepancies and conflicting information from different sources. This strategy prioritizes GeoN-
ames for basic entity identification, Wikipedia for descriptive enrichment, and OSMnx for geometric
precision. Complex cases are resolved through manual review to ensure data integrity. Finally, the
aligned entities and their relationships are represented in a structured format using RDF (Resource
Description Framework) and the SPARQL query language.

To formally represent and reason over the integrated geospatial knowledge, we developed an ontology
called GeoKG-DR (GeoKG Defeasible Reasoning Ontology), as shown in Figure 4. This ontology is im-
plemented in OWL and comprehensively captures the semantics of geospatial entities, their provenance,
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and the defeasible reasoning mechanisms applied during entity alignment and conflict resolution. GeoKG-
DR defines core classes such as GeospatialEntity, PointOfInterest, and SimilarityAssessment, and
includes the DefeasibleRule class to model domain-specific reasoning logic. For example, spatial sim-
ilarity is expressed through rules like ProximitySimilarityRule, while exceptions such as functional
dissimilarities are captured using higher-priority rules like FunctionOverrideRule.

Each defeasible rule is assigned a priority value, supporting conflict resolution based on rule precedence,
as represented by the ConflictResolutionStrategy individual. Additionally, object and datatype
properties such as nearby, hasPriority, and similarityScore contribute to the precise modeling of
spatial and semantic relationships among geospatial entities. By leveraging this ontology, GeoKG not
only supports structured querying via SPARQL but also facilitates flexible, context-aware reasoning
based on defeasible logic.

4.2 Defeasible Rule Generation

The process of defeasible rule generation begins by identifying contextual and functional similarities
between geospatial entities. To facilitate this, a set of rule templates is defined based on factors such as
proximity, functional similarity, contextual similarity, and legal or regulatory themes. These templates
are designed to model common-sense reasoning regarding similarity. For instance, a rule template may
specify that ”USUALLY, if two restaurants are located near each other and offer similar types of cuisine,
they are considered similar.”

To account for the defeasible nature of these rules, quantifiers such as ”usually,” ”typically,” and
”generally” are employed to introduce flexibility and acknowledge the inherent uncertainty in similarity
assessments. These quantifiers reflect that similarity judgments are not absolute and may depend on
various factors, such as contextual differences or exceptions. For example, two restaurants might usually
be considered similar based on their location and cuisine type, but exceptions (e.g., one being under
renovation or closed for a special event) can influence the final judgment.

A script is developed to automatically generate rules by populating these templates with specific
entities and attributes derived from the GeoKG (Geospatial Knowledge Graph). The rules are generated
in large quantities, typically 10,000 for each entity type, to ensure comprehensive coverage. This script
not only applies the templates but also ensures that the generated rules align with the functional and
spatial characteristics of the entities in question. Once the rules are generated, they are subjected to a
deduplication process to remove redundancies, ensuring that only unique rules remain. Deduplication
is achieved by comparing rules using a ”signature,” which is derived from key elements such as the rule
type, premise, conclusion, exceptions, and confidence. This process ensures that the reasoning engine
remains efficient and free from duplicate rules that could compromise computational performance.

Algorithm 1 Defeasible Rule Generation and Review Process

1: Input: List of entities, templates, GeoKG data
2: Output: Set of final defeasible rules
3: Initialize empty list final rules

4: for each entity in entities do
5: Initialize empty list entity rules

6: for each rule type in rule types do
7: premise = GeneratePremise(rule type, entity)
8: exceptions = ChooseExceptions()
9: confidence = GenerateConfidence()

10: rule = CreateRule(entity, rule type, premise, exceptions, confidence)
11: entity rules.append(rule)
12: end for
13: deduplicated rules = Deduplicate(entity rules)
14: for each rule in deduplicated rules do
15: reviewed rule = ReviewRule(rule)
16: final rules.append(reviewed rule)
17: end for
18: end for
19: Return: final rules
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After the rules are deduplicated, they undergo a review process by domain experts. These experts
assess the correctness, relevance, and applicability of the rules within the specific context of the project.
The refinement process aims to enhance the accuracy and applicability of the generated rules while ensur-
ing they align with the goals of the project. The number of rules generated is carefully calibrated to strike
a balance between comprehensive coverage and computational efficiency, ensuring that the reasoning en-
gine can process the rules effectively without compromising the accuracy of similarity computations.
Algorithm 1 is the pseudo-code representing the rule generation process.

While the final refined rules are not publicly shared due to project regulations, all initially generated
rules are made publicly available on GitHub. This open-access approach promotes transparency, allows
for further research, and enables other researchers to leverage the generated rules for similar tasks or
studies.

4.3 Reasoning Implementation

The implementation of defeasible reasoning involves selecting a suitable reasoning engine, encoding
the generated rules, implementing conflict resolution strategies, and executing the reasoning process
[37]. We focus on DeReS and DR-DEVICE as potential reasoning engines, evaluating them based on
scalability, performance, expressiveness, and integration capabilities [38, 39].

The defeasible rules are encoded in a standard rule language, such as RuleML or SWRL, or a custom
syntax designed for compatibility with the chosen reasoning engine [40]. A script is developed to au-
tomatically encode the generated rules and store them in a separate file or in the Virtuoso RDF store.
Several conflict resolution strategies are implemented, including priorities, specificity, credibility, and
argumentation. These strategies are evaluated based on their effectiveness in resolving conflicts and im-
proving the accuracy and explainability of the similarity computations. The reasoning process involves
formulating SPARQL queries to retrieve relevant information from the GeoKG, applying the defeasible
rules to infer similarities, resolving conflicts using the chosen strategy, calculating a similarity score, and
generating an explanation of the reasoning process.

Figure 5 illustrates the integrated architecture that supports this reasoning implementation. The
GeoKG is constructed from aligned and cleaned data sourced from OSMnx, Wikipedia, and GeoNames,
and stored in a Virtuoso RDF store. Defeasible rules—focused on proximity and attribute similarity—are
generated and stored in a structured rule base (e.g., RuleML or SWRL). The reasoning layer, powered
by engines such as DeReS, uses these rules in conjunction with spatial and semantic ontologies (e.g.,
GeoSPARQL, Schema.org) to perform similarity reasoning. It accesses the GeoKG through SPARQL
queries, applies the rules, resolves conflicts using specified strategies, and outputs both similarity scores
and human-readable explanations via an explanation generator. This setup ensures that reasoning is not
only accurate and context-aware, but also transparent and traceable.

4.4 Experimental Evaluation

The experimental evaluation is designed to assess the accuracy and explainability of the proposed
approach. We conduct experiments using real-world geospatial data from Amsterdam, comparing the
performance of the defeasible reasoning approach against knowledge graph embedding models and LFM-
based models.

A ground truth dataset is created with expert annotations, where entity pairs are manually labeled
with similarity scores. Inter-rater reliability is assessed to ensure the consistency and quality of the
ground truth data. The defeasible reasoning approach is evaluated using precision, recall, F1-score,
accuracy, MSE, Spearman correlation, and AUC [41]. Statistical significance tests are performed to
compare the performance of the different approaches. An explainability analysis is conducted to assess
the interpretability and understandability of the defeasible reasoning process [42]. Explainability metrics
are used to measure rule usage, relevance, and confidence. User studies are conducted to evaluate
the understandability, completeness, correctness, usefulness, and trustworthiness of the explanations
generated by the defeasible reasoning engine [13]. Counterfactual explanations are generated to explain
why entities are not similar, providing additional insights into the reasoning process. The experimental
results are analyzed to identify the strengths and limitations of the defeasible reasoning approach and
to provide recommendations for future research.
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Figure 5: GeoKG Construction and Defeasible Reasoning Architecture

5 Experimental Setup

We evaluate the proposed approach using a real-world geospatial dataset derived from Amsterdam,
focusing on a specific area within the city characterized by diverse land use, high connectivity, and a
significant density of Points of Interest (POIs). This area, bounded approximately by the coordinates
4.8800, 52.3550 (bottom-left) and 4.9000, 52.3700 (top-right), encompasses parts of Jordaan and De Pijp,
known for their vibrant mix of residential, commercial, and recreational spaces. The data is extracted
using OSMnx, leveraging its capabilities to query and retrieve geospatial features from OpenStreetMap
(OSM). Specifically, we extract buildings, roads (represented as edges), POIs, and land use polygons,
utilizing the tags ‘”building”: True, ”amenity”: True, ”landuse”: True‘. To manage the data volume
and ensure computational feasibility, we implement an iterative polygon reduction strategy. If the initial
extraction yields more than 15,000 rows (combined count of GeoDataFrame and road network edges),
the polygon is scaled down by a factor of 0.9 around its centroid, and the data extraction process is
repeated. This iterative reduction continues until the data size falls below the threshold or the polygon
area reaches a minimum size of 0.0001, or a maximum of 10 iterations is reached. This ensures that the
experimental setup remains computationally tractable while still capturing a representative sample of
the urban environment.

The GeoKG construction involves integrating data from OSMnx with information from Wikipedia
and GeoNames, drawing upon the ”simeonw/geo wikipedia geonames” dataset available on Hugging
Face Datasets [43]. However, due to computational constraints and the scope of this initial study, we
focus on a subset of this integrated data. We leverage the OSMnx data for geometric information and
basic entity types, while incorporating Wikipedia summaries and GeoNames identifiers where available
within the sampled dataset. The primary challenge lies in aligning entities across these different sources.
We employ a combination of string similarity measures (e.g., Levenshtein distance) on entity names
and spatial proximity checks to identify potential matches. A crucial aspect of this alignment process
is conflict resolution. Given that different sources may provide conflicting information about the same
entity, we establish a priority order: GeoNames for basic entity identification, Wikipedia for descriptive
enrichment, and OSMnx for geometric precision. In cases of irreconcilable conflicts, manual review is
performed to ensure data integrity. This manual review is essential for maintaining the quality of the
GeoKG and ensuring that the downstream similarity computations are based on accurate and consistent
information. The final GeoKG represents entities as nodes and relationships as edges, adhering to
a predefined ontology that incorporates GeoSPARQL for spatial geometries, Schema.org for common
entity types and attributes, and custom classes and properties to capture domain-specific knowledge.
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To evaluate the performance of our defeasible reasoning approach, we require a ground truth dataset
of entity pairs with corresponding similarity scores. Constructing such a dataset is a labor-intensive
process, as it necessitates human judgment to assess the similarity between entities. We employ a
combination of expert annotations and crowdsourced data to create this ground truth. Initially, 3-5
domain experts are recruited to manually label entity pairs with similarity scores on a scale of 1 to 5,
where 1 indicates ”not similar” and 5 indicates ”very similar.” These experts are provided with clear
guidelines and examples to ensure consistency in their judgments. Inter-rater reliability is assessed
using Krippendorff’s alpha to quantify the level of agreement among the experts. In addition to expert
annotations, we collect crowdsourced data using platforms such as Amazon Mechanical Turk. To ensure
data quality, we implement several control measures, including qualification tests, attention checks, and
redundancy (collecting multiple judgments for each entity pair). The data from expert annotations and
crowdsourcing are then combined using a weighted averaging approach, where the weights are determined
based on the reliability and expertise of each source. The final ground truth dataset comprises a diverse
set of entity pairs with associated similarity scores, providing a valuable benchmark for evaluating our
approach.

The defeasible reasoning engine is implemented using a custom Python script, leveraging the ‘DeReS‘
reasoning system’s conceptual framework but adapted for integration with our GeoKG and SPARQL
query interface [44]. The defeasible rules, generated as described in the main paper, are encoded in a
simple text-based format, where each rule consists of an antecedent and a consequent, separated by the
’→’ symbol. The antecedents are expressed as conjunctions of conditions, which can involve spatial re-
lationships (e.g., ‘nearby(e1, e2)‘), attribute comparisons (e.g., ‘sameType(e1, e2)‘), and domain-specific
predicates (e.g., ‘hasCuisine(e1, ”Italian”)‘). The consequents are always of the form ‘similar(e1, e2)‘,
indicating that entities ‘e1‘ and ‘e2‘ are considered similar. The defeasible reasoning process involves
querying the GeoKG to determine whether the conditions in the antecedents of the rules are satisfied. If
all conditions in the antecedent of a rule are met, the rule is considered applicable. In cases where mul-
tiple rules are applicable and lead to conflicting conclusions, a conflict resolution strategy is employed.
We implement several conflict resolution strategies, including priority-based resolution (where rules are
assigned priorities based on their specificity or credibility) and specificity-based resolution (where the
most specific rule is preferred). The output of the defeasible reasoning engine is a similarity score for
each entity pair, reflecting the degree to which the rules support the conclusion that the entities are
similar.

For the Knowledge Graph Embedding (KGE) models, we utilize the PyKEEN library, a popular frame-
work for training and evaluating KGE models [45]. We experiment with several popular KGE models,
including TransE, ComplEx, RotatE, HSimplE, and PairRE. The choice of these models is motivated
by their diverse representation capabilities and their widespread use in KG completion and similarity
computation tasks. Each model is trained on the constructed GeoKG, using a standard training loop
with a batch size of 32 and a learning rate of 0.01, optimized using the Adam optimizer. Hyperparam-
eter tuning is performed using a grid search approach, where we vary the embedding dimension (50,
100, 200) and the number of epochs (100, 200, 300) to find the optimal configuration for each model.
The performance of the KGE models is evaluated using the same ground truth dataset as the defeasi-
ble reasoning approach. Similarity scores are computed based on the learned embeddings, using cosine
similarity as the distance metric. The evaluation metrics include precision, recall, F1-score, accuracy,
MSE, and Spearman correlation, providing a comprehensive assessment of the models’ ability to capture
similarity relationships between geospatial entities.

Finally, for the LFM-based similarity computation, we leverage the Gemini family of models via the
Google AI PaLM API [46]. We use a prompt engineering approach to elicit similarity judgments from
the LFM. The prompt typically consists of a description of the two entities being compared, followed by a
question asking the LFM to assess their similarity on a scale of 0 to 1. For example, a prompt might look
like this: ”Entity 1: [description of entity 1]. Entity 2: [description of entity 2]. How similar are these two
entities on a scale of 0 to 1, where 0 means not similar and 1 means very similar?”. To enrich the input
to the LFM, we augment the entity descriptions with information extracted from Wikipedia summaries,
nearby entities, and user reviews/ratings (where available). We also experiment with different prompt
variations, including chain-of-thought prompting, aspect-based similarity, and counterfactual reasoning
prompts, to explore their impact on the accuracy and explainability of the LFM’s judgments. The output
of the LFM is a similarity score between 0 and 1, which is then compared to the ground truth similarity
score to evaluate the model’s performance. We perform thematic analysis of the LFM’s explanations
to gain insights into its reasoning process and identify potential biases or limitations. The LFM-based
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Figure 6: Visualization of constructed GeoKG with Defeasible Reasoning.

similarity computation provides a complementary approach to the defeasible reasoning and KGE models,
allowing us to assess the potential of large foundation models for capturing complex semantic relationships
between geospatial entities.

6 Results

Figure 6 briefly shows a visual representation of the constructed GeoKG enhanced by defeasible rea-
soning mechanisms as our research result. On the left side, we see a broad view of the GeoKG over
Amsterdam, where POIs are color-coded by amenity type, and edges represent similarity relationships
between them. On the right, a zoomed-in segment highlights a local cluster of cafes, illustrating how
defeasible reasoning influences similarity connections. Strong similarity edges (shown in orange) connect
cafes that are geographically close and fall within the same land use zone, aligning with general similarity
rules. In contrast, weak similarity edges (shown in pink) connect POIs that, while close in distance and
price, are considered less similar due to mismatches in land use context—this is made evident through
tooltips explaining the overridden rule. This figure demonstrates how defeasible reasoning allows the sys-
tem to selectively weaken or suppress otherwise strong similarity signals based on conflicting contextual
factors, resulting in a more nuanced and explainable similarity structure within the GeoKG.

The results of our experiments also provide a quantitative evaluation of the proposed defeasible rea-
soning approach for geospatial similarity computation, comparing its performance against knowledge
graph embedding models and an LFM-based model. The experiments were conducted on a real-world
geospatial dataset derived from Amsterdam, as detailed in the Experimental Setup section. We present
a comprehensive analysis of the accuracy, precision, recall, F1-score, MSE, and AUC achieved by each
approach, highlighting the strengths and limitations of each.

Table 1 summarizes the overall performance of the three approaches: defeasible reasoning, knowledge
graph embedding (KGE) model, and LFM-based model (Gemini). The KGE model, specifically the
ComplEx model after hyperparameter tuning, achieves the highest accuracy of 72.3%, demonstrating
its effectiveness in capturing complex relationships within the GeoKG. The LFM-based model follows
closely with an accuracy of 68.1%, indicating its ability to leverage semantic information and contex-
tual knowledge for similarity assessment. The defeasible reasoning approach achieves an accuracy of
67.2%, which, while lower than the other two approaches, still represents a significant result, especially
considering its inherent interpretability and explainability.

A closer examination of the KGE model’s performance reveals its ability to achieve a good balance
between precision and recall, with a precision of 75% and a recall of 68.1%. This suggests that the KGE
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Table 1: Overall Performance Comparison of the Three Approaches

Model Accuracy (%) Precision Recall F1-Score MSE AUC

Defeasible Reasoning 67.2 0.69 0.64 0.66 0.29 0.66
KGE (ComplEx) 72.3 0.75 0.68 0.71 0.22 0.73
LFM (Gemini) 68.1 0.70 0.65 0.67 0.28 0.69

model is both accurate in identifying similar entities (high precision) and comprehensive in capturing a
large proportion of the actual similar entities (high recall). The F1-score of 71% further confirms the
KGE model’s overall effectiveness. The Mean Squared Error (MSE) of 0.22 indicates the average squared
difference between the predicted similarity scores and the ground truth scores, providing a measure of
the model’s prediction accuracy. The Area Under the Curve (AUC) of 0.73 reflects the model’s ability
to distinguish between similar and dissimilar entity pairs. The LFM based model similarly obtains good
results, but struggles with edge cases.

The defeasible reasoning approach, while having a lower overall accuracy, offers several advantages
in terms of interpretability and explainability. The rules used in the defeasible reasoning process are
explicitly defined and can be easily understood by domain experts. This allows for a transparent and
traceable reasoning process, where the basis for similarity judgments can be readily identified. However,
the performance of the defeasible reasoning approach is highly dependent on the quality and coverage of
the rules. The initial set of rules, generated based on general domain knowledge, may not be sufficient
to capture all the nuances and complexities of geospatial similarity.

To investigate the impact of rule refinement on the performance of the defeasible reasoning approach,
we conducted an ablation study where we systematically added more specific and context-aware rules to
the rule set. These rules were generated based on feedback from domain experts and analysis of the errors
made by the initial rule set. The results of the ablation study are presented in Table 2. As the number
of rules increases, the accuracy of the defeasible reasoning approach also increases, demonstrating the
importance of rule refinement. However, there is a point of diminishing returns, where adding more
rules does not significantly improve the accuracy. This suggests that the rule set may be approaching a
saturation point, where the existing rules capture most of the relevant similarity relationships.

Table 2: Impact of Rule Refinement on the Accuracy of Defeasible Reasoning

Number of Rules Accuracy (%)

1000 61.2
1500 64.5
2000 66.8
2500 67.2

This trend may initially appear counterintuitive. Generally, increasing the number of rules can lead to
more conflicts and higher reasoning complexity, which may degrade overall performance. In traditional
machine learning, such expansion often raises concerns about overfitting. However, in the context of
this study, the increase in the number of rules does not represent arbitrary expansion, but rather a
goal-directed refinement based on domain knowledge and empirical error analysis. The initial rule set
primarily consists of broad and general rules (e.g., ”typically, nearby restaurants are similar” or ”POIs
in the same land use zone are similar”). While these rules work well for common cases, they often fail
to capture specific contextual nuances. As the rule set is expanded, more specific rules are added to
address such exceptions. For example, a refined rule might state, ”even if two restaurants are in the
same location, they are not similar if their price ranges differ significantly,” or ”parks may not be similar
if one is a dog park and the other is a children’s playground.” These specific rules complement the general
ones by handling exceptions more effectively.

Such refined rules constrain the applicability of general rules and adjust them based on context, which
helps reduce misclassification in ambiguous or conflicting cases. Furthermore, the defeasible reasoning
framework used in this study incorporates conflict resolution mechanisms such as priority-based and
specificity-based rule evaluation. These mechanisms enable the system to handle the increased complexity
without a decline in performance, and in many cases, allow for more fine-grained and accurate reasoning.
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As shown in Table 2, the accuracy increases gradually as the number of rules grows from 1,000 to 2,500,
reflecting the effectiveness of incremental rule refinement. However, the improvement begins to level off
beyond 2,000 rules, suggesting that the current rule set has reached a level of saturation in capturing
the key similarity patterns within the dataset.

Furthermore, we investigated the impact of different conflict resolution strategies on the performance
of the defeasible reasoning approach. We compared two conflict resolution strategies: priority-based
resolution and specificity-based resolution. In priority-based resolution, rules are assigned priorities based
on their specificity or credibility, and the rule with the highest priority is preferred in case of conflict.
In specificity-based resolution, the most specific rule is preferred, regardless of its priority. The results
of the conflict resolution study are presented in Table 3. The priority-based resolution strategy achieves
a slightly higher accuracy than the specificity-based resolution strategy, suggesting that incorporating
domain knowledge and credibility assessments into the conflict resolution process can improve the overall
performance.

Table 3: Impact of Conflict Resolution Strategy on the Accuracy of Defeasible Reasoning

Conflict Resolution Strategy Accuracy (%)

Priority-Based 67.2
Specificity-Based 66.5

An analysis of the errors made by the defeasible reasoning approach reveals several common patterns.
One common source of error is the lack of contextual information in the rules. For example, a rule
might state that ”USUALLY, if two restaurants are located near each other, then they are similar.”
However, this rule does not take into account the cuisine type, price range, or customer ratings of the
restaurants, which are important factors in determining their similarity. Another common source of
error is the presence of conflicting rules that are not properly resolved. For example, a rule might state
that ”USUALLY, if two buildings have the same type, then they are similar,” while another rule might
state that ”USUALLY, if two buildings have different functions, then they are not similar.” In cases
where two buildings have the same type but different functions, these rules conflict, and the conflict
resolution strategy must be able to determine which rule should be preferred. These limitations suggests
that the current implementation of the defeasible reasoning engine is not robust enough to handle all
the complexities and nuances of real world geospatial data.

The hyperparameters used for the KGE model, including the embedding dimension and the number
of epochs, were tuned using a grid search approach. The optimal hyperparameter values were found
to be an embedding dimension of 100 and a number of epochs of 200. The learning rate was set to
0.01 and the batch size was set to 32. These hyperparameters were chosen to balance the trade-off
between model complexity and training time. For the LFM-based model, the prompt was carefully
designed to elicit similarity judgments from the LFM. The prompt included a description of the two
entities being compared, as well as a question asking the LFM to assess their similarity on a scale of
0 to 1. Different prompt variations were explored, including chain-of-thought prompting, aspect-based
similarity, and counterfactual reasoning prompts. The choice of prompt variation did not significantly
impact the overall accuracy of the LFM-based model, suggesting that the LFM is able to extract the
relevant information from the entity descriptions regardless of the specific prompt format.

In summary, the results of our experiments demonstrate that the knowledge graph embedding model
achieves the highest accuracy in geospatial similarity computation, followed by the LFM-based model and
the defeasible reasoning approach. However, the defeasible reasoning approach offers several advantages
in terms of interpretability and explainability, making it a valuable alternative for applications where
transparency and trust are important. Future research should focus on improving the accuracy and
coverage of the defeasible reasoning approach by refining the rules, developing more advanced conflict
resolution strategies, and incorporating more contextual information.

7 Discussion

The experimental results presented in the previous section offer several important insights into the
performance and potential of the defeasible reasoning approach for geospatial similarity computation.
While the knowledge graph embedding (KGE) model achieved the highest overall accuracy, defeasible

16



reasoning stands out as a promising alternative, especially in scenarios where interpretability and explain-
ability are paramount. The defeasible reasoning approach not only provides competitive performance
but also offers the advantage of transparency, as it explicitly represents the rationale behind similarity
assessments. This is particularly valuable in decision-making contexts where understanding the reasoning
process is crucial. The results demonstrate that defeasible reasoning, when enhanced with refined and
context-aware rules, can achieve substantial performance while maintaining its inherent interpretability.
This suggests that defeasible reasoning, despite a slightly lower accuracy compared to KGE, remains an
attractive choice for applications where transparency and trust in the results are essential.

Additionally, the performance of the LFM-based model highlights the potential of large foundation
models for capturing complex semantic relationships. However, the inconsistencies observed in its results
indicate that further refinement and the incorporation of more sophisticated prompts are necessary to
improve its reliability. This underscores the trade-off between accuracy and interpretability, a central
theme in this study. While the KGE model excels in accuracy, defeasible reasoning provides an impor-
tant alternative by offering clearer explanations of how similarity judgments are made, thereby ensuring
greater trust and transparency. The findings suggest that further improvements in the defeasible reason-
ing approach, particularly through the integration of richer semantic and contextual information, could
enhance its effectiveness and bring it closer to the performance levels of more complex models like KGE.

One of the most important findings of our experiments is the significant impact of rule refinement on
the performance of the defeasible reasoning approach. As shown in Table 2, systematically adding more
specific and context-aware rules to the rule set led to a substantial increase in accuracy, from 61.2% with
1000 rules to 67.2% with 2500 rules. This demonstrates the importance of capturing the nuances and
complexities of geospatial similarity through a well-crafted set of rules. However, the observation that
there is a point of diminishing returns, where adding more rules does not significantly improve accuracy,
suggests that the rule set may be approaching a saturation point. This could be due to several factors,
including limitations in the expressiveness of the rule language, the availability of relevant information
in the GeoKG, or the inherent complexity of the similarity relationships themselves. Future research
should explore more sophisticated rule refinement techniques, such as automatically learning rules from
data or incorporating feedback from domain experts, to overcome these limitations. The form of these
rules can vary greatly, for instance the rule ”USUALLY, IF a building is near a park AND the building is
residential, THEN the building’s value is high” can be represented with a spatial predicate and semantic
type to infer a property of the building. Furthermore, the nature of the predicates themselves can be
defined with varying degrees of fuzziness. For instance, what is considered ”near”? Is that within 100
meters? 500 meters? This needs to be rigorously defined.

The comparison of different conflict resolution strategies also provides valuable insights into the design
of effective defeasible reasoning systems. The finding that priority-based resolution achieves a slightly
higher accuracy than specificity-based resolution suggests that incorporating domain knowledge and
credibility assessments into the conflict resolution process can improve overall performance. This is
consistent with the intuition that some rules are more reliable or relevant than others, and that these
rules should be given higher priority in case of conflict. However, the difference in accuracy between the
two conflict resolution strategies is relatively small, suggesting that other factors may also be important
in resolving conflicts effectively. One possible explanation for this is that the priority assignments were
not sufficiently accurate or nuanced. Future research should explore more sophisticated methods for
assigning priorities to rules, such as learning priorities from data or using argumentation-based reasoning
techniques to resolve conflicts in a more transparent and context-sensitive way. The priority of a rule
r1 over another rule r2 can be expressed formally as r1 > r2. This priority can be determined by
various factors, including the specificity of the rules, the credibility of the sources from which the rules
are derived, or the domain knowledge of experts. The conflict resolution process then involves selecting
the rule with the highest priority when multiple conflicting rules are applicable. The implementation
of argumentation-based reasoning involves constructing arguments for and against different conclusions,
and then evaluating the strength of these arguments based on various criteria, such as the credibility of
the sources, the logical validity of the reasoning, and the relevance of the evidence.

Several unexpected findings emerged from our experiments, highlighting the complexities of geospatial
similarity computation. One surprising result was the relatively good performance of the LFM-based
model, despite its lack of explicit knowledge representation or reasoning capabilities. This suggests that
large foundation models are able to implicitly capture semantic relationships and contextual knowl-
edge from the input text, and use this information to make reasonable similarity judgments. However,
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the LFM-based model also exhibited some inconsistencies and biases, particularly in edge cases where
the entity descriptions were ambiguous or incomplete. This underscores the need for careful prompt
engineering and thorough evaluation to ensure the reliability and fairness of LFM-based similarity com-
putation. The relatively low computational cost of LFMs also makes them attractive options. Another
unexpected finding was the difficulty of creating a high-quality ground truth dataset for geospatial sim-
ilarity. The process of manually labeling entity pairs with similarity scores proved to be labor-intensive
and subjective, with significant variability in the judgments of different annotators. This highlights the
inherent ambiguity and context-dependence of similarity judgments, and the need for more sophisticated
methods for eliciting and aggregating human judgments. The use of crowdsourcing platforms, while
cost-effective, also introduced challenges related to data quality and reliability, requiring careful quality
control measures to ensure the validity of the ground truth dataset.

The main limitations of our current approach stem from the reliance on manually generated defeasible
rules and the relatively simple conflict resolution strategies employed. The process of manually generating
rules is time-consuming and requires significant domain expertise. It is also difficult to ensure that the rule
set is complete and covers all relevant similarity relationships. The simple conflict resolution strategies,
such as priority-based and specificity-based resolution, may not be sufficient to handle all the complexities
of real-world geospatial data, particularly in cases where there are multiple conflicting rules with similar
priorities or specificities. These limitations have a direct impact on the accuracy and coverage of the
defeasible reasoning approach, as well as its ability to handle complex and nuanced similarity judgments.
Furthermore, the scalability of the defeasible reasoning engine may be a concern for larger datasets
and more complex GeoKGs. Future research should focus on addressing these limitations by exploring
more automated rule generation techniques, developing more advanced conflict resolution strategies, and
optimizing the performance of the reasoning engine.

8 Conclusion

In conclusion, this research introduces a novel approach to geospatial similarity computation, which
effectively integrates the structured knowledge representation of GeoKGs with the flexible inference
mechanisms of defeasible reasoning. By constructing a GeoKG from various geospatial data sources, such
as OSMnx, Wikipedia, and GeoNames, and applying a defeasible reasoning engine with a set of refined
rules, this work presents a framework capable of capturing nuanced relationships between geospatial
entities. The experimental evaluation conducted on a real-world dataset from Amsterdam demonstrates
the feasibility and potential of this approach, highlighting a crucial trade-off between accuracy and
interpretability when compared to traditional knowledge graph embedding models and contemporary
large foundation models. While the ComplEx KGE model achieved the highest accuracy of 72.3%, and
the LFM (Gemini) model achieved 68.1%, the defeasible reasoning approach, with an accuracy of 67.2%,
offers the key advantage of interpretability. This transparency allows for a clear and understandable
basis for similarity assessments, making defeasible reasoning particularly valuable in applications where
trust and justification are critical, such as urban planning, resource allocation, and policy making. Table
4 summarizes these differences.

Table 4: Comparison of Similarity Models. While defeasible reasoning demonstrates lower accuracy, it
offers a balanced, practical, and interpretable alternative — a representative case of explainable AI in
geospatial applications.

Model Accuracy Interpretability Explanation Support Real-Time Applicability

KGE High Low Not Available Medium
LFM Medium Medium Partial Low (Heavy and Slow)
Defeasible Reasoning Low High Clear High (Lightweight and Fast)

The core contribution of this work lies in the innovative application of defeasible reasoning to the
domain of GeoKGs, enabling the representation of similarity as a set of defeasible rules that capture
contextual dependencies and handle conflicting evidence. The methodology for generating these rules,
based on spatial proximity, shared attributes, and domain knowledge, provides a structured approach
to encoding common-sense reasoning about geospatial similarity. Furthermore, the implementation and
evaluation of different conflict resolution strategies, such as priority-based and specificity-based reso-
lution, offer valuable insights into the design of robust and effective reasoning systems for geospatial
applications. The findings from the rule refinement experiments underscore the importance of curating a
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comprehensive and context-aware rule set to maximize the accuracy of the defeasible reasoning approach.
The improvements observed with increasing numbers of rules highlight the potential for further enhanc-
ing the model’s performance through automated rule learning and expert knowledge incorporation. The
priority-based conflict resolution strategy, demonstrating a slightly higher accuracy compared to the
specificity-based approach, suggests that incorporating domain expertise and credibility assessments is
beneficial for resolving conflicts among defeasible rules.

The significance of this research extends beyond the specific experimental results, offering a valuable
contribution to the broader landscape of geospatial knowledge representation and reasoning. By demon-
strating the feasibility and benefits of combining GeoKGs with defeasible logic, this work opens up new
avenues for developing more intelligent and explainable geospatial systems. The insights gained from the
experimental evaluation provide a solid foundation for future research aimed at improving the accuracy,
scalability, and applicability of defeasible reasoning for geospatial similarity computation. The approach
presented in this paper can be extended to other geospatial applications, such as location-based recom-
mendation systems, geographic data integration, and emergency response, where the ability to accurately
and efficiently assess similarity between geospatial entities is critical. For instance, in location-based ser-
vices, defeasible reasoning could be used to provide personalized recommendations based on a user’s
preferences and the characteristics of nearby locations, taking into account contextual factors such as
time of day, weather conditions, and user reviews. In geographic data integration, defeasible reason-
ing could be used to resolve conflicts and inconsistencies between different data sources, ensuring the
accuracy and reliability of the integrated data.

Moreover, this study highlights the increasing importance of explainable AI (XAI) in the context of
geospatial applications. As geospatial data becomes increasingly complex and pervasive, it is crucial to
develop methods that not only provide accurate results but also offer transparent and understandable
explanations for their decisions. The defeasible reasoning approach presented in this paper provides a
valuable step towards achieving this goal, offering a more interpretable and explainable alternative to
black-box machine learning models. The explicit representation of similarity relationships as defeasible
rules allows users to understand the reasoning process behind similarity judgments, fostering trust and
confidence in the system’s results. This is particularly important in applications where decisions have
significant consequences, such as urban planning and resource allocation. The ability to justify decisions
based on transparent and understandable reasoning processes can help to ensure fairness, accountability,
and public acceptance.

In closing, this study has demonstrated the potential of defeasible reasoning as a powerful tool for
geospatial similarity computation, offering a compelling alternative to traditional approaches by priori-
tizing interpretability and explainability. While knowledge graph embedding models and large foundation
models may achieve higher accuracy in certain scenarios, the transparent and understandable nature of
defeasible reasoning makes it a valuable asset in applications where trust, justification, and user under-
standing are paramount. The findings from this research provide a solid foundation for future work aimed
at improving the accuracy, scalability, and applicability of defeasible reasoning for geospatial knowledge
representation and reasoning, paving the way for more intelligent, explainable, and trustworthy geospa-
tial systems that can address a wide range of real-world challenges. The trade-off between accuracy and
interpretability is not a binary choice, but rather a spectrum, and the defeasible reasoning approach
offers a valuable point along that spectrum, providing a balance between quantitative performance and
qualitative understanding.

Future work should also focus on exploring hybrid approaches that combine the strengths of different
techniques. For example, one could use knowledge graph embedding models to learn initial embeddings of
geospatial entities and then use defeasible reasoning to refine these embeddings based on contextual infor-
mation and domain knowledge. This could potentially lead to improved accuracy while still maintaining
a degree of interpretability. Another promising direction is to explore the use of argumentation-based
reasoning techniques to resolve conflicts between defeasible rules in a more nuanced and transparent way.
Argumentation-based reasoning involves constructing arguments for and against different conclusions and
then evaluating the strength of these arguments based on various criteria, such as the credibility of the
sources, the logical validity of the reasoning, and the relevance of the evidence. This could provide a
more flexible and adaptable approach to conflict resolution, allowing the system to take into account the
specific context and characteristics of each situation.
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