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Abstract. This work addresses the challenge of classifying public sector organizations across multiple European languages
using only their official names, a critical step for entity disambiguation in knowledge graph population. We employ ontology-
based knowledge extraction to evaluate three Natural Language Processing approaches: rule-based keyword extraction, zero-shot
Natural Language Inference, and embedding-based semantic similarity —under low-context, low-resource assumptions. Large
Language Models are integrated accross all three techniques. Our methodology systematically evaluates multilingual prepro-
cessing, various state-of-the-art models, different supervision regimes, classification structures, and parameter optimization. We
conduct a detailed evaluation across three specific domains (healthcare, administration, education) spanning multiple European
countries, analyzing performance in relation to lexical structure and class balance.

Results demonstrate that lightweight rule-based methods, particularly TF-IDF keyword selection, are effective in multilingual
scenarios with minimal supervision. Natural Language Inference models offer competitive zero-shot performance but show
deficiencies with unbalanced class distribution. Embedding-based methods provide the most consistent generalization across
languages, with evidence of class coherence in vector space. We apply these techniques to a real-world use case — classifying
contracting authorities in the EU Contract Hub platform - and outline additional applications and extensions for governance
objectives and ontology refinement. This work highlights the feasibility of ontology-guided multilingual classification from
short texts and its contribution to entity disambiguation challenges in formal knowledge representation systems, particularly
when integrating diverse European organizational entities into structured knowledge bases.
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1. Introduction

Proper names can, in certain domains, carry descriptive information about an entity’s function, scope, or affil-
iation. In the case of organizations, names frequently reflect institutional roles, legal status, or sectoral domains.
This quality renders them particularly valuable in low-context settings, where such names may constitute the only
accessible representation of an entity and, when systematically extracted, can support ontology-driven classification
and entity disambiguation in knowledge graphs.

Inferring information about entities based solely on their names is a foundational task in natural language pro-
cessing and knowledge engineering. It supports semantic interpretation, entity linking, and structural categorization
when richer metadata is unavailable. Robust name-based classification methods are therefore essential, not only
for extracting key attributes, but also for enabling accurate entity resolution, knowledge graph population, and data
integration processes. In the context of European public institutions, a finer entity categorization provides deeper
insights, enabling knowledge engineers to not just identify who organizations are, but but to properly classify them
according to their functional domains and operational roles, enhancing the semantic richness of knowledge repre-
sentations. Improved access to structured organizational data supports multiple governance goals:

– Efficient Public Procurement: Improved data may allow institutions to better identify target groups for fund-
ing or policy interventions through precise entity linking.

– Transparency and Market Integrity: Detailed classification of organizations improves transparency and fa-
cilitates cross-dataset entity resolution, reducing ambiguity when populating knowledge graphs.

– Regulatory Harmonization: Standardized categorization enables cross-national entity alignment, ontology
mapping, and consistent knowledge representation across European information systems.

– Private Sector Oversight: Visibility into organizational structures aids in detecting conflicts of interest, tracing
beneficial ownership, and identifying systemic vulnerabilities during crises.

These challenges are directly reflected in the author’s involvement in an EU-funded study on healthcare public
procurement. ProCure, formally titled “Public Procurement Assessment in the Healthcare Sector,” is an EU-funded
initiative involving multiple European countries aimed at assessing and enhancing public healthcare procurement
practices, particularly in the aftermath of health crises such as the COVID-19 pandemic. Its central goal is to identify
best practices and strengthen procurement resilience across Europe, requiring precise categorization of healthcare
entities—particularly hospitals—to inform policy decisions effectively. One specification of the data analysis tool
named developed for this study, named EU Contract Hub [29], is the accurate identification of hospitals and uni-
versity hospitals among public procurers across Europe. This task exemplifies the broader difficulties discussed
next: operating in a multilingual, data-sparse environment where organization names serve as the primary source
of semantic information. The methods developed in this work aim to support such classification tasks, while also
contributing to the larger goals of knowledge graph population and semantic interoperability across European infor-
mation systems [19] [8].

1.1. Problem Definition

Semantic classification of organization names in a cross-national European context presents several non-trivial
challenges for entity disambiguation and knowledge graph population. First, the multilingual landscape comprising
24 official EU languages and several co-oficial or regional variants introduces substantial linguistic variation. Par-
ticularly public sector naming conventions tend to integrate regional languages more commonly. This study spans
organization names in 29 European languages, covering Germanic, Romance, Slavic, Uralic, Baltic, and Celtic fami-
lies, as well as typological isolates such as Basque and Maltese. These languages differ in morphological complexity,
compounding, and orthographic norms. Highly inflected languages (e.g., Finnish, Hungarian) and those with exten-
sive lexical compounding (e.g., German, Swedish) pose particular challenges for tokenization, rule-based methods,
and semantic segmentation. From a practical standpoint, multilingual classification requires distinguishing between
an organization’s official name and its available translations—an often ambiguous task when sourcing entity labels
from Knowledge Bases (e.g. Wikidata). Second, data harmonization remains a major obstacle for entity alignment.
National databases often function in isolation with limited interoperability. This fragmentation restricts cross-border
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data integration and complicates efforts to construct a unified, multilingual corpus for entity disambiguation tasks.
Third, the lack of unified language processing tools for multilingual classification complicates implementation. De-
ploying a set of comparable language-specific models and processing techniques introduces design constraints and
computational overhead. Furthermore, substantial variability in model performance across languages derived from
these disparities in the underlying language models’ coverage and task difficulty, complicates direct comparison
of classification scores. Fourth, the inherent brevity and semantic ambiguity of proper names significantly hinder
entity disambiguation accuracy. Traditional bag-of-words approaches, including TF-IDF, rely on term frequency
patterns across longer texts. Limited lexical diversity and lack of statistical signal render many standard meth-
ods poorly suited for short-text classification tasks. Finally, the task requires a pragmatic balance between model
complexity and operational efficiency. Given its narrow scope, organization name classification does not justify
the computational overhead of large-scale models. Instead, lightweight methods—appropriately tuned—often yield
competitive results with greater interpretability and lower resource requirements, which is essential for practical
knowledge graph population workflows.

To address these challenges, this study proposes leveraging structured knowledge bases (i.e. Wikidata) to generate
the ground truth labels for entities. By querying property hierarchies via SPARQL, this method enables adaptable
ground truth generation, which can be repurposed for any classification tasks within the knowledge graph’s seman-
tic scope. This study implements multiple classification strategies. Rule-based systems serve as an interpretable
baseline, though they require some training data. Our baseline method includes expert-informed rules derived from
domain knowledge in healthcare. A structured questionnaire was used to elicit classification heuristics from practi-
tioners, enabling the design of transparent and domain-specific rule sets. Natural Language Inference models further
extend this by allowing flexible application without task-specific annotated data, offering a robust solution in low-
resource settings. Embedding-based methods were introduced to capture the semantic information of textual names.
These leverage sentence-level vector representations, enabling classification initially through semantic similarity,
then trained classifiers that are able to derive more complex decision boundaries for entity classification.

The evaluation involved a systematic comparison of state-of-the-art model performances in entity disambiguation
tasks. Multiple preprocessing pipelines were tested on rule systems to assess their impact on classification outcomes,
and extensive hyperparameter tuning was conducted to optimize model behavior. The experimental framework was
designed for modularity and reproducibility, enabling robust identification of the most effective strategies across
varying data conditions and domain requirements.

1.2. Research Questions

Building on the methodological foundation outlined above, this study formulates a set of research questions to
guide the empirical evaluation of classification approaches. These questions are designed to assess not only the
performance of different models and techniques but also their ability to capture meaningful semantic patterns and
domain distinctions for entity disambiguation in multilingual organizational data.

– RQ1: How effectively can general-purpose Natural Language Processing (NLP) techniques paired with knowl-
edge graph data distinguish between medical, government, and educational organizations in multilingual, low-
resource environments to support entity linking processes?

– RQ2: In which aspects do naming conventions of public sector organizations exhibit significant semantic
variation across different European Union members, and how effectively can these variations be captured,
interpreted, and mitigated using multilingual NLP techniques enhanced by knowledge graph resources for
consistent entity disambiguation

2. Background

The classification of organization names has evolved significantly in recent years through the integration of
structured semantic resources, hybrid information-extraction techniques, and enriched vector-space representations.
First, knowledge graphs and ontologies have proven essential for providing supervision and explainability to classifi-
cation systems. Resources such as Wikidata allow structured queries to retrieve key attributes of an organization—its
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class, official name, and country of origin—which enhances classifier consistency and interpretability [26]. Comple-
mentarily, domain ontologies supply class hierarchies that serve as label sources, embedding symbolic knowledge
into NLP pipelines and filling gaps left by purely data-driven methods [18, 27].

Nevertheless, the inherent ambiguity and variability of organization names demand dedicated disambiguation
and entity-resolution strategies. Hybrid approaches combining string similarity, lexical rules, and minimal human
oversight have proven highly effective at aligning textual mentions with their canonical forms [1]. Furthermore,
recent generative systems like mGENRE have transformed multilingual entity linking by generating knowledge-
base identifiers (e.g., Wikidata QIDs) for ambiguous mentions—thereby not only disambiguating them but also
exposing structured properties that further support classification [9].

The challenge intensifies in low-context, multilingual scenarios, where large transformer models often under-
perform without external support. Shared tasks such as MultiCoNER have shown that multilingual transformers
require additional mechanisms—like Wikipedia-based retrieval, translation-based augmentation, and weak supervi-
sion—to improve recognition of ambiguous proper names in low-resource languages, underscoring the importance
of enriching context beyond model scale [21].

Finally, embedding-based methods have advanced to incorporate structured semantics from knowledge graphs.
Through contrastive learning, prototype-based classification, and graph neural networks, these approaches align
name embeddings with class-level semantics, enabling effective zero-shot and multilingual classification of organi-
zation entities [18, 27]. By marrying the flexibility of vector spaces with the depth of symbolic information, they
achieve a balance that enhances both precision and generalization.

Building on these hybrid advances, in this work we apply three complementary strategies—(i) interpretable
rule-based heuristics, (ii) zero-shot classification via multilingual NLI, and (iii) embedding-based classifiers—to
multilingual, low-context public-sector organization names drawn from three domains (medical, administration, ed-
ucation). We further leverage Wikidata’s class hierarchy to ground our labels in an ontology, and we conduct a
comparative evaluation across 24 countries, nested versus flat class structures, and an external EU Contract Hub
benchmark. This lets us assess not only raw performance but also interpretability, cross-lingual generalization, and
real-world applicability.

3. Methodology

This study presents a broad methodological framework designed to evaluate and compare classification strategies
for identifying and disambiguating organizational entities in the public sector. The classification problem involves
substantial language variations and limited contextual information, which challenges conventional NLP methods. To
address this, we integrate knowledge graph technologies to develop interpretable, generalizable, and semantically
grounded models for entity disambiguation. The methodological approach supports the study’s overarching goal of
assessing how effectively different rule-based, zero-shot LLM-based, and embedding-based techniques can classify
organizations across domains and languages, facilitating accurate entity linking when populating knowledge graphs
with organizational instances using data enriched through ontological structures from Wikidata.

The research questions are evaluated through a structured series of experiments, each designed to test the specific
capabilities of different classification approaches under controlled conditions. RQ1, which investigates the effec-
tiveness of classification techniques across languages, we focus on scenarios with highly unbalanced classes. This
condition is intrinsic to the problem of extracting specific organizational types from a broader institutional dataset
when performing entity linking tasks. To address this class imbalance and task specificity, we adopt F1-score as our
primary evaluation metric. Recall will also provide insight into the model’s ability to identify relevant instances.
For each classification strategy (rule-based, zero-shot, and embedding-based) we implement multiple model vari-
ants and preprocessing schemes, and conduct hyperparameter optimization where applicable. Comparisons across
methods are systematically presented, including a rule-based classifier benchmark grounded in domain knowledge
from experts via structured questionnaires. RQ2 focuses on a comparative analysis of models performance across
countries, centered specially on the more interpretable rule-systems, their optimal parameters and keywords, and
aims to identify standardized guidelines for processing multilingual names in a consistent and scalable manner to
support entity disambiguation in cross-lingual knowledge graphs.
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Fig. 1. Evaluated methods, models and parameter configurations.

3.1. Ontology-Guided Data Extraction

In the context of European public institutions, organization classifications facilitate accurate entity linking, knowl-
edge graph population, and semantic interoperability. To this end, we focus on three pivotal domains: medical,
administrative and educational. We regard the three domains as essential for public service delivery defined as a
service of public utility, instead of public ownership. Accurately addressing classification challenges in the medical,
governmental, and educational domains is crucial, as each domain directly impacts critical aspects of public welfare
and governance. A cross-sectoral focus was adopted in order to draw generalizable conclusions and obtain flexible
methodologies valid for inference in a variety of use-cases.

Wikidata is a large-scale, community-driven knowledge graph that we leverage to build semantically rich datasets
for entity disambiguation tasks. By extracting entities from Wikidata instances, we obtain both the class from the
hierarchical structure induced by the ontology and the name of organizations in all 29 official and co-official lan-
guages, creating a robust ground truth for entity linking experiments.

For class definition we refer to WikiData´s definitions of each as it will be our primary data source. We also
include the WikiData identifier of each class.

– Medical Domain: This problem involves categorizing healthcare institutions into a nested structure, specifi-
cally distinguishing general hospitals from specialized institutions such as university hospitals.

* Hospital (Q16917): Defined as a health care facility. However, it can be observed that in practice the hospital
category only includes those facilities offering comprehensive and continuous care. In particular clinics are
not typically categorized as hospitals, the key semantic and practical distinction is that hospitals provide
inpatient care—patients can be admitted for extended periods of observation, surgery, or specialized care.

* University Hospital (Q1059324): Defined as a hospital which is part of a university.
* Specifically excluded categories comprise elder-care centers, rehab centers, research centers and medical

clinics, for example.

– Administration Domain: This classification task addresses the identification of local administrations across
EU member states.

* Local Government (Q6501447): Defined as the lowest tier of administration within a sovereign state.

– Education Domain: The educational classification problem involves assigning institutions multiple relevant
labels, such as primary and secondary education, due to the overlapping roles many educational facilities fulfill.

* Primary School (Q9842): Defined as a school in which children receive primary or elementary education
from the age of about five to twelve
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* Secondary School (Q159334): Defined as an organization where secondary education is provided

WikiData’s descriptions do not offer much insight into precise definitions for organizational subclasses. However,
we will limit information on the classification task to the label in order to maintain alignment with the ontology. A
potential direction for future research is to explore how definition-based approaches, where subclass descriptions
are explicitly incorporated, might influence model performance in comparison to label-only methods for entity
disambiguation tasks.

The use of properties wdt:P31 (instance of) and wdt:P279 (subclass of) provides a robust means to traverse
the class hierarchy in the knowledge graph. This ontology-based approach ensures that we capture a sufficient
scope and variety of organizations for entity linking purposes. Although our current work restricts these classes to
three domains, there is an open possibility for exploring to what extent our category assignments mirror or deviate
from the ontology’s hierarchy, and whether trained classification models could enhance Wikidata’s coverage by
identifying missing relations or refining organizational taxonomies.

Dataset creation involved targeted SPARQL queries (as shown in listings 1 and 2) against the Wikidata endpoint
to retrieve relevant instances per country and organizational domain. Due to endpoint limitations (query size and
timeouts), queries were performed iteratively in smaller batches. An initial query extracts the instance URI of all
subclasses of a certain category, followed by a second query that retrieves names and class information.

The process included:

1. Retrieving entity instances per domain-country combination using transitive class properties wdt:P31 and
wdt:P279*.

2. Downloading JSON raw output in manageable batches and performing basic error handling to recover from
incomplete data responses.

3. Extracting multilingual labels for entities in each country’s official and co-official languages. Wikidata does
not offer a preferred language for labels, so we select the first label of the official languages of each country.
We have decided against data augmentation by keeping multiple names per instance. Proper names contain
very instance-specific tokens which makes them particularly prone to overfitting. Were this to be done, special
care would also have to be taken to not pollute test sets with instances present in the train datasets.

4. Consolidating data into a structured format, including instance identifiers, country labels, class IDs, and mul-
tilingual textual labels.

5. To ensure balanced representation, we apply random sampling with a cap of 5,000 items per subclass-country
combination, and maintain organization variety by also sampling from the national pool of organizations -
double the number of instances of the most frequent class label in that country.

6. Annotating instances with binary class labels.

This methodology produces an annotated, varied dataset suitable for entity classification and disambiguation
tasks. Future improvements could explore extraction from full Wikidata dumps to overcome endpoint constraints.
The results are published on [28]. The final dataset exhibits an unbalanced distribution that we assume is represen-
tative of the reality of this problem. It is represented in Figure 2.

Our experiments are structured to reflect heterogeneous classification schemas, encompassing binary, nested,
and multi-label tasks. In the medical domain, we compare both flat and nested classification to distinguish general
hospitals from specialized entities such as university hospitals. For the governmental domain, a standard binary
classification is applied to identify whether an entity functions as a local government authority. The educational
domain requires multi-label classification to account for institutions providing multiple educational levels.

Given that our dataset in some countries lacks sufficient instances across all classes of interest, we necessarily
restrict certain training-based methods to those countries with robust, representative coverage. This ensures that
our classifier metrics are not skewed by sparse data and remain reliably interpretable. Meanwhile, techniques that
do not rely on supervised training or language-independent are still applied. Otherwise, we selectively include for
evaluation only those countries meeting a minimum data threshold to ensure that reported performance metrics
reflect generalizable results.

In this work, EU Contract Hub’s [7] not only acts as motivation, but also as a practical benchmark to assess the
applicability of our classification methods in real-world scenarios. We utilize processed European Contract Award
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data, specifically focusing on contracting authorities associated with medical product procurement (Common Pro-
curement Vocabulary Division 33), in line with our domain requirements. From this subset, we manually annotated
a balanced dataset of 150 contracting authorities across multiple countries and contract years. Annotations were
informed by official organizational websites and geolocation data from widely used mapping platforms. Notably, a
significant number of local governments were also identified, allowing us to extend our evaluation to the govern-
mental domain using this same gold-standard dataset.

3.2. Classification Experiments Design

In this study, we consider several architectures suitable for classifying organization names, selected in accordance
with the multilingual and low-context nature of the entity disambiguation task. Our approaches are organized into
three families: (i) rule-based heuristics, leveraging interpretable country and domain-specific keyword patterns;
(ii) zero-shot classification using Natural Language Inference (NLI), which enables label prediction using large
language models (LLM) without training; and (iii) lightweight embedding-based classifiers, including logistic
regression and support vector machines (SVMs) trained on static semantic representations.

While various low-supervision classification methods were considered, including SetFit, Prototypical Networks,
and fine-tuned language models, all were excluded for the same reason: they involve adaptation of the embedding
space. Our objective is to evaluate the semantic structure encoded by general-purpose pretrained models without
introducing task-specific optimization or fine-tuning. To preserve the integrity of our evaluation and ensure that
results reflect the semantic meaning in organization names, we restrict our methodology to fixed-representation and
inference-only approaches.

We adopt a low-resource computational restriction by prioritizing rule-systems, efficient NLP models and locally-
run LLMs, motivated by accessibility, sustainability, and task suitability. Deployment in public sector settings often
goes hand-in-hand with a limited access to high-end computational infrastructure, necessitating cost-effective and
broadly accessible solutions. Environmentally, we strive to implement more sustainable AI practices, and for few
tokens tasks like organization name classification, smaller models can offer sufficient performance. Methods such
as model distillation, quantization, and pruning further support the use of compact architectures without substantial
performance loss. Nonetheless, this approach entails trade-offs: under-performance, generalization issues, and their
use on local machines imposes temporal and computational constraints. Despite these limitations, the low-resource
paradigm proves essential and practical in resource-constrained environments. In terms of model selection we also
restrict our choices to open-access models to ensure transparency, reproducibility, and suitability for public sector
deployment.

Our methodology also compares different classification structures across domains, recognizing that task complex-
ity influences model performance. In particular, we evaluate a nested classification scheme in the medical domain
and contrast it with a flat three-class approach. As the number and structure of classes increase, either across or
within domains, so does task complexity. It is therefore important to account for these differences when interpreting
performance comparisons.

To ground our analysis in the current state of the art, we draw on recent advances in zero-shot classifi-
cation and semantic representation. To substitute some training processes, we draw on the generative capa-
bilities of deepseek-R1 [20] to synthesize rules for classification. DeepSeek-R1 was selected due to open-
source accessibility and best performance as of March 2025. Benchmark evaluations indicated that DeepSeek-
R1 matched or exceeded the performance of leading proprietary models. The model’s architecture, utiliz-
ing a Mixture-of-Experts (MoE) framework with 671 billion parameters and 37 billion active per query, al-
lowed for efficient computation and local deployment of distilled versions. Natural Language Inference (NLI)
models trained on the XNLI corpus [4], including xlm-roberta-large-xnli, mDeBERTa-v3-xnli,
and multilingual-MiniLMv2-mnli-xnli, have demonstrated strong cross-lingual generalization and are
widely used for multilingual zero-shot classification tasks. Complementary to this, embedding-based models such as
bge-m3-zeroshot-v2.0, e5-mistral-7b-instruct [15] and gte-Qwen2-7B-instruct [3] pro-
vide dense vector representations optimized for classification, clustering, and retrieval.

We adopt the Massive Text Embedding Benchmark (MTEB) [16] and its multilingual extension MMTEB [17] as
methodological foundation for our selection of models. These frameworks cover over 100 languages and a broad
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range of tasks, including classification, clustering, and semantic search, offering a reproducible basis for comparing
multilingual embedding models.

3.2.1. Rule-Based Systems
Our rule-based approach consists of an initial extraction of domain-specific keywords, to then apply regular ex-

pression (regex) matching against organization names using inclusion list logic. An entity is assigned to a class if
its name contains one or more predefined keywords associated with that class. This method produces immediately
interpretable results directly traced to a set of lexical features. Rule-based systems are particularly well-suited for
domains with standardized naming conventions and provide transparent entity disambiguation decisions when popu-
lating knowledge graphs. However, this approach is region-dependent. As a result, effective keyword selection must
be tailored to each language and regional context. This makes possible to study regional variation in naming prac-
tices. For example, healthcare institutions in France frequently include terms like Hôpital or acronyms like CHU,
while Spanish entities may use the term Hospital. Our keyword extractor will identify these terms and classify as
positive any name containing these substrings.

The interpretability of these systems can be exploited to integrate manual input. To establish a benchmark for
medical classification, we leveraged domain expertise available within the ProCure project consortium. A question-
naire was distributed to healthcare procurement professionals from several participating countries, asking them to
identify linguistic patterns commonly found in hospital names. The survey included the following sections:

– Hospital Inclusion List: Keywords that typically appear in hospital names (e.g., Hôpital in France, Kranken-
haus in Germany).

– Hospital Exclusion List: Terms that may be healthcare-related but should not be associated with hospitals
(e.g., Clinics, Nursing Homes, Daycare Centers).

– University Hospital Inclusion List: Terms exclusive to university hospitals (e.g., Universitätsmedizin in Ger-
many).

– Additional Rules & Comments: Open-ended field for respondents to share regulatory constraints or naming
conventions specific to their countries.

We received responses from experts in Austria, Italy, and France. While the inclusion lists entries were clear
and actionable, the exclusion list proved ambiguous for several respondents and was ultimately excluded to avoid
inconsistencies. Notably, the open-ended comments revealed that in some countries, national regulations require
specific terms or acronyms to appear in official hospital names, further reinforcing the suitability of rule-based
systems for the task.

To evaluate whether automated keyword generation could replicate expert-provided patterns, we prompted a gen-
erative language model for the keyword generation sub-task. Specifically, we used DeepSeek-R1-Distill-Qwen-7B,
a 7B-parameter instruction-tuned model, deployed locally via the Ollama framework to ensure control over infer-
ence, reproducibility, and adherence to data constraints. DeepSeek was selected for its open nature, strong multi-
lingual capabilities, competitive performance, and efficient local deployment compared to other LLMs of similar
scale. The model was queried with the following standardized prompt mirroring the survey distributed to experts,
obtaining 5 keywords per class and country:

Return a structured text response containing a dictionary. Your output **must strictly** be a valid JSON
↪→ dictionary without any additional text, explanation, or formatting.

### Structure:
The dictionary will strictly have the 27 following keys, each corresponds to a EU Member State in this

↪→ equivalence:
Q29: Spain, Q45: Portugal, Q142: France, Q233: Malta, Q41: Greece, Q38: Italy, Q183: Germany, Q31: Belgium,

↪→ Q55: Netherlands, Q34: Sweden, Q33: Finland, Q211: Latvia, Q191: Estonia, Q37: Lithuania, Q36: Poland
↪→ , Q28: Hungary, Q218: Romania, Q214: Slovakia, Q213: Czech Republic, Q215: Slovenia, Q40: Austria,
↪→ Q219: Bulgaria, Q224: Croatia, Q229: Cyprus, Q35: Denmark, Q27: Ireland, Q32: Luxembourg

Each country code must be mapped to a **list of exactly five keywords** that commonly appear in hospital
↪→ names in that country.

### **Hospital Inclusion List**
- These keywords will be used for **regular expression-based name matching** to identify hospitals from **

↪→ organization** names.
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- Keywords must specifically appear in hospital names within the given country. It is important they do not
↪→ include other healthcare facilities.

- Consider all official and widely used languages of the country.
- What keywords typically appear in **hospital** names in each country?
- Select terms that uniquely distinguish **hospitals** from other **organizations**.

### **Final Output Rules:**
1. **Must be a valid JSON dictionary** no extra text, explanations, or formatting.
2. **Each country must have exactly five keywords** in its respective languages.
3. **No additional commentary or metadata.** Return only the JSON object.

### **Example Output (Format Only, Not Real Data):**
For example your output will begin: {’Q29’:["keyword1", "keyword2", "keyword3", "keyword4","keyword5"], ’Q45

↪→ ’:[...

Ensure your response **strictly follows** this structure. No additional text or formatting is allowed.

Outputs were generated in two batches per class to prevent prompt overflow, each covering half of the countries. All
templates and responses are available in our GitHub repository.

Model DeepSeek-R1-Distill-Qwen-7B
Architecture Distilled, Decoder-only transformer, instruction-tuned variant of Qwen
Parameters 7 billion
Training Objective Instruction-following and task generalization
Languages 20+ languages
Deployment Locally run via Ollama
Purpose Automatic keyword generation

Table 1
Model Card: DeepSeek-R1-Distill-Qwen-7B

Finally, we implemented two lightweight supervised keyword extraction methods tailored to the short-text nature
of organization names. The first is a frequency-based heuristic that identifies the most frequent tokens associated
with positively labeled examples for each class. The second leverages TF-IDF vectorization combined with chi-
squared statistical testing to select the top-k discriminative tokens. In this setting, the term frequency (TF) compo-
nent offers no variance as token repetiton is rare and non-relevant in this case. Despite this, IDF remains effective
at highlighting class-distinctive terms that appear infrequently across the overall corpus but consistently within par-
ticular classes. While grounded in classical bag-of-words representations, this approach adapts well to low-token
scenarios. In future extensions involving a broader label space, this method could be scaled to treat each class in-
stances as an aggregated document, allowing global TF and IDF to work together for classification. In both metods,
we optimized the number of keyword tokens by selecting the configuration that achieved the highest F1 score on
the evaluation set with token numbers ranging from 3 to 10.

To support keyword extraction, we implement a multilingual preprocessing pipeline tailored to the challenges
of organization name classification. The first step is stopword removal, applied based on the most prevalent official
language of each instance’s country. This approach, though it may not capture the language of every name, ensures a
common standardization while avoiding the often unfeasible task of obtaining comprehensive stopword lists across
regional and under-resourced languages.

The inherent difficulty of building multilingual NLP pipelines is especially pronounced in tokenization, where
language-specific morphological patterns require tailored solutions. A key example is the prevalence of compound
words, which are common in Germanic languages and pose a challenge to general-purpose tokenizers. Ideally,
such names should be segmented into their lexical components to expose semantically meaningful units for down-
stream tasks. In early experiments, we applied spaCy-based tokenization and lemmatization using language-specific
models, but found these methods inadequate for reliably decomposing such compounds. For instance, the Austrian
school name Bundesgymnasium und Bundesrealgymnasium Gleisdorf is tokenized by spaCy and WikDict as shown
in Table 2.
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Name Bundesgymnasium und Bundesrealgymnasium Gleisdorf
SpaCy tokenization Bundesgymnasium, Bundesrealgymnasium, Gleisdorf
WikDict decomposition Bund, Gymnasium, und, Bund, Realgymnasium, Gleis, Dorf1

Table 2
Example Tokenization and decomposition.

To address this, we adopted a dictionary-based compound decomposition strategy using the Wikdict project. We
downloaded SQLite lexicon databases per language and applied per-token decomposition. This method allowed
us to segment compound words into known lexemes, improving the interpretability and discriminative power of
tokens across languages. While not universal and far from the performance of language-specific decompounders,
this approach proved more robust than tokenizers.

To evaluate the effectiveness of the extracted keywords, we extract the results from the regex-based classification
approach using the selected tokens and compute performance metrics both globally and per country. This allows us
to assess how well the method generalizes across different linguistic and geographical contexts.

Given the method’s sensitivity to class imbalance and data sparsity, reliable evaluation is challenging for countries
or labels with few instances. To ensure robustness, we limit quantitative analysis to countries where the least fre-
quent label has at least 30 examples, based on manual inspection of prediction quality. While meaningful patterns
can emerge with as few as 5 instances, this threshold avoids overinterpreting noise and ensures reported metrics
generalize well.

3.2.2. Natural Language Inference
Natural Language Inference (NLI) enables zero-shot classification by evaluating the relationship between the

organization name and a hypothesis representing each potential class label. This approach is particularly suited for
low-resource contexts, as it does not require task-specific training data. We formulate the classification task as an
entailment problem: for each organization name, we evaluate whether it entails the following hypothesis: "This
organization is a {class}". We use pretrained multilingual transformer models capable of producing entailment
scores across languages.

The Zero-shot classification pipeline outputs scores for each hypothesis tested, which can provide flexibility in
handling imbalanced datasets. However, for this a threshold selection, which requires some knowledge of the class
distribution in a labeled training set, is needed. Since our objective for this method is to remain fully training-free,
for each instance, we select the most probable label from the candidate classes and a generic ’other’ class.

We followed a principled approach to model selection grounded in multilingual support, architectural diversity,
and community validation. All models were sourced from Hugging Face hub filtering by zero-shot classification
NLP task.

Models were then prioritized based on (i) explicit multilingual fine-tuning, iii) endorsement from the research
and practitioner community as indicated by popularity metrics (e.g., number of “likes” on the platform), and
(iii) architecture variety, including lighter models. This ensured the inclusion of models that are both methodolog-
ically sound and practically validated by wide adoption. The final selection includes four models that span different
transformer families, parameter sizes, and multilingual training coverage:

– joeddav/xlm-roberta-large-xnli2 is based on the XLM-RoBERTa architecture[6], a multilingual
extension of RoBERTa. This model is fine-tuned on the XNLI (Cross-lingual Natural Language Inference)
corpus[5], which comprises approximately 550,000 sentence pairs in 14 languages, including 10 European
languages: French, Spanish, German, Greek, Bulgarian, Russian, Polish, Portuguese, and Romanian. It serves
as a strong zero-shot multilingual classification baseline due to its broad language coverage and stable perfor-
mance across tasks.

1Translations: Bund = federal, Gymnasium = high school, Realgymnasium = science-oriented high school, Gleis = track, Dorf = village.
2https://huggingface.co/joeddav/xlm-roberta-large-xnli

https://huggingface.co/joeddav/xlm-roberta-large-xnli
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– MoritzLaurer/bge-m3-zeroshot-v2.03 multilingual variant fine-tuned from BAAI/bge-m3 for ze-
roshot classification in 100+ languages and with a context window of 8192 tokens. It is based on the M3-
Embedding architecture [2]. This model integrates dense, sparse, and multi-vector retrieval capabilities and
leverages self-knowledge distillation for enhanced multilingual and multi-function performance. The NLI-
based zero-shot classification training approach is described in [12].

– MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil74 is a multilingual adap-
tation of the DeBERTa-v3 architecture[10]. The model is fine-tuned on a multilingual NLI corpus combining
XNLI, MultiNLI[25], and WANLI[14], along with high-quality translations.

– MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli5 is a compact multilingual NLI model
based on the MiniLMv2 architecture[24], which distills knowledge from larger transformer models by reducing
depth and width while maintaining effective attention mechanisms. It is fine-tuned on both MNLI and XNLI
datasets and supports a wide range of languages.

Consistent with our prior methodology, in the medical domain we evaluate both a nested classification approach
and a flat classification strategy. Additionally, we experimented with augmenting the hypothesis prompts using
one-shot and few-shot examples. However, preliminary results indicated low performance, likely due to confusion
introduced by the added context in the entailment hypotheses.

Model xlm-roberta bge-m3 mDeBERTa-v3 multilingual-MiniLMv2
Architecture XLM-R XLM-R (RetroMAE) DeBERTa MiniLM
Parameters 561M 568M 279M 107M
Objective XNLI fine-tune Self-distilled contrastive +

NLI
XNLI, MultiNLI, WANLI MNLI + XNLI distilled

Languages 100 (pretrain.) + 15 XNLI
(6 EU)

100+ (EU Coverage) 100 (15+ EU) 100 (pretrain.) + 15 XNLI
(6 EU)

Deployment Python, Hugging Face Transformers library.
Purpose Zero-shot classification via Natural Language Inference (NLI).

Table 3
Selected NLI models.

3.2.3. Embedding-based Methods.
Embedding-based methods are instrumental to address the central research questions posed in this study. These

methods rely on general-purpose multilingual sentence embeddings derived from pretrained transformer models,
which incorporate the semantic content of organization names by extracting the contextual information embedded
within their tokens. By converting organization names into dense vector representations, this approach yields se-
mantically enriched features in a structured representation space. This strategy provides a mechanism for testing
the ability of pretrained language models to generalize across linguistic and domain boundaries, supporting our
investigation into multilingual classification performance and methodological robustness.

To assess the effectiveness of the embeddings, we construct a classifier using cosine similarity to class prototypes.
An organization will be classified if its sufficiently close to (one of) the prototype(s). Three strategies are tested: a
zero-shot setting using only the embedding of the class label, a one-shot configuration that with a single, randomly
chosen, organization per class, and a few-shot experiment that introduces one example per class per country (ie.
24-shot) to better capture regional variation.

Positive classification is determined by comparing similarity against a class-uniform threshold. While this ap-
proach does not account for different semantic "widths" of each class, it provides an approachable starting point. By
avoiding learning complex decision boundaries in this first iteration we also obtain a somewhat informative measure
of class separability and semantic cohesion.

3https://huggingface.co/MoritzLaurer/bge-m3-zeroshot-v2.0
4https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
5https://huggingface.co/MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli

https://huggingface.co/MoritzLaurer/bge-m3-zeroshot-v2.0
https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
https://huggingface.co/MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli
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By comparing the performance of the similarity-based approach with that of the later experiments, we can evaluate
the extent of conceptual dispersion the capacity of each method to accommodate hierarchical classes. Moreover, the
inclusion of few-shot, country-specific examples allows us to explore whether regional linguistic and institutional
variations are adequately captured by the class label or the multilingual encoding of a single example, or rather,
there is a higher cross-country heterogeneity in organizational naming.

Given the limitations of fixed-threshold similarity measures, we transitioned to trained classifiers on Static Em-
beddings capable of learning optimized decision boundaries. The encoded organization names vectors serve as input
features for logistic regression and Support Vector Machine (SVM) classifiers. We instantiated both logistic regres-
sion and SVM experiments with a range of hyperparameter configurations. Specifically, logistic regression models
were tuned over combinations of regularization strengths C ∈ {0.01, 0.1, 1, 10} and solvers {liblinear, lbfgs}, with
penalty terms dynamically selected as L1 or L2 depending on solver compatibility. Similarly, SVM classifiers were
tuned across C ∈ {0.1, 1, 10}, kernels {linear, rbf}, and applicable γ ∈ {scale, auto} values for the radial basis
function kernel.

To accommodate both multiclass and multilabel scenarios, all classifiers were wrapped using a One-vs-Rest
(OvR) strategy, enabling the decomposition of complex tasks into independent binary subproblems. We also sup-
ports the training of nested classifier hierarchies, wherein distinct classifiers are instantiated for parent-child class
relations or grouped categories. For binary classification tasks involving class imbalance, we employed balanced
class weights, dynamically adjusted to mitigate bias toward majority classes.

In selecting models for the embedding generation task, we utilized the Massive Multilingual Text Embedding
Benchmark (MMTEB), a comprehensive evaluation framework encompassing over 500 quality-controlled tasks
across more than 250 languages, in particular the European languages benchmark.

GritLM, a high-performing model, was excluded from our evaluation due to their absence from the Sentence
Transformers library, which we initially deemed necessary for compatibility with specific techniques. Additionally,
while the broader MTEB leaderboard includes a wide range of models, not all are present in the MMTEB paper. To
ensure coverage of recent and competitive architectures, we included Qwen, the best performing open model from
MTEB with strong multilingual capabilities. Finally, we deliberately selected a lightweight model with fewer than
100 million parameters to benchmark performance under resource constraints.

– intfloat/multilingual-e5-large-instruct6: This model is based on the XLM-RoBERTa archi-
tecture with 24 transformer layers and produces 1024-dimensional embeddings. It is trained using a weakly-
supervised contrastive objective on multilingual datasets and supports 100 languages, including all major Eu-
ropean languages. It consistently achieves high accuracy on the Multilingual Text Embedding Benchmark
(MTEB) tasks [16].

– Alibaba-NLP/gte-Qwen2-7B-instruct7: Built upon the Qwen2-7B architecture with 32 layers and
3584-dimensional embeddings, this model is instruction-tuned for embedding tasks using a multilingual
training corpus. It achieved high performance on the Massive Multilingual Text Embedding Benchmark
(MMTEB) [17].

– intfloat/e5-mistral-7b-instruct8: This model utilizes the Mistral-7B architecture with 32 trans-
former layers and 4096-dimensional embeddings. It is instruction-tuned on a large-scale multilingual corpus,
resulting in extensive language coverage. As of March 2025, it ranks first on the MTEB leaderboard for both
English and Chinese tasks, marking it as a leading multilingual embedding model [15].

– intfloat/e5-small-v29: A compact alternative designed for efficiency, this model features 12 layers
and 384-dimensional embeddings. It offers a balanced trade-off between performance and computational cost.

6https://huggingface.co/intfloat/multilingual-e5-large-instruct
7https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
8https://huggingface.co/intfloat/e5-mistral-7b-instruct
9https://huggingface.co/intfloat/e5-small-v2

https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://huggingface.co/intfloat/e5-mistral-7b-instruct
https://huggingface.co/intfloat/e5-small-v2
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Model Multilingual-E5-Large E5-Mistral-7B-Instruct GTE-Qwen2-7B-Instruct E5-Small-V2
Architecture XLM-RoBERTa (24 lay.) Mistral-7B (32 layers) Qwen2-7B decoder-only Custom (12 layers)
Parameters 560M 7B 7.61B 110M
Objective Contrastive Instruction-tuned Instruction-tuned Contrastive
Languages 100 (incl. EU languages) Primarily English Multilingual support Primarily English
Embedding Dim. 512 4096 8192 512
Deployment Python, Hugging Face Transformers library.
Purpose Embedding generation for classification.

Table 4
Overview of selected multilingual sentence embedding models.

3.3. Evaluation

The primary metric used is the F1-score. This is particularly important given the imbalanced nature of our dataset,
inherent to the real-world distribution. Therefore we must avoid relying on metrics sensitive to class frequency, such
as accuracy. In addition to the F1-score, we complement with recall. Our classification objectives center on detecting
very specific organizational types, and recall directly quantifies how many instances are successfully retrieved.

To accommodate varying levels of data availability across domains, we adopt domain-specific strategies for split-
ting the dataset into training, validation, and test sets. For domains with limited class coverage—particularly in the
medical and governmental sectors—we apply a 50/25/25 split. Conversely, in the educational domain, where data
availability is higher and class balance is more stable, we employ a more conventional 80/10/10 split.

For rule-based generation algorithms, rule sets are learned independently per country, partitioning training data
into 24 subsets with uneven coverage. Due to scarcity (in some cases 0 instances per class and country), we restrict
performance evaluation to countries for which sufficient labeled data is available. In contrast, for embedding-based
zero-shot methods—such as cosine similarity—missing few-shot examples in specific countries are less critical, as
these models are expected to generalize concepts across languages through their shared semantic space. Similarly,
while training classifiers also requires labeled data, we assume that sufficient generalization can be achieved from
the aggregate training set. Thus, our evaluation strategy adapts to the dependencies of each technique.

To benchmark the performance of our classifiers, we reference expert-curated rules as a comparative baseline.
While such systems offer valuable insights grounded in domain knowledge, it is unrealistic to expect experts to
cover the linguistic diversity and naming conventions across 29 languages and 24 countries. Evidently in the case
of expert-input we evaluate our method only on the answered regions.

To evaluate the practical applicability and generalization of our models beyond the Wikidata-derived dataset, we
additionally assess performance on a gold-standard validation set curated from the EU Contract Hub. By testing on
this independent source, we aim to examine whether the performance observed on Wikidata generalizes to other
data environments and institutional contexts. This secondary evaluation also allows us to explore the feasibility of
deploying models trained on semantically structured data in operational settings involving heterogeneous, domain-
specific datasets.

4. Discussion

As discussed throughout the evaluation, our three target domains exhibit differences in classification performance
(Table 8), reflecting varying levels of structural complexity and lexical regularity in organization names.

All experiments were conducted on a local machine equipped with 16 GB RAM and 512 GB SSD, running on
Apple’s M4 architecture with Metal Performance Shaders (MPS) acceleration. We encountered memory constraints
when loading language-dependant language models and when computing embeddings, underscoring the non-trivial
resource demands of multilingual embedding tasks even in low-token scenarios. The complete code can be found
on the Github [30]. Datasets and generated embeddings can be found on [28].



14 A. del Ser and C. Badenes-Olmedo / Linguistic Patterns in Organization Names

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Domain Structure Max F1 Mean F1

medical Nested (3 classes) 0.682510 0.354737
administrative 2 classes 0.892814 0.720648
education Multilabel (3 classes) 0.775537 0.482317

Table 5
Mean and Maximum Scores per Domain.

4.1. Rule-based Approach

Our rule-based classification section comprises a total of 7 experiments each for the educational and adminis-
trative domains (not including parameter optimization), and 14 for the healthcare domain. Processing time was
negligible in all cases, with all experiments completing within a matter of minutes. Complete results and charts are
contained in Table 9 and Figures 4 and 5.

Performance in this approach could be interpreted in terms of how effectively domain-specific naming conven-
tions can be captured through defined lexical patterns or token sets. The results suggest that, in many cases, the
functional class or purpose of an organization can be inferred with reasonable accuracy from lexical information
alone. This is particularly evident in domains such as healthcare, where terms like hospital, clinic, and university
hospital are both semantically distinctive and cross-linguistically consistent.

Our benchmark experiment based on a manual rule set demonstrated limited generalization across the dataset,
despite being informed by regulatory frameworks and institutional naming norms, the expert rules. Our findings
suggest that even expert-informed linguistic rules often fall short in the face of real-world variability. In comparison
with algorithmically obtained keywords. A contributing factor could be the ambiguity of Wikidata labels, which
frequently do not reflect the standardized official names. As a result, expert rules may either be too technical or
overly narrow, missing broader naming patterns—particularly in the healthcare domain. These challenges highlight
the importance of flexible, data-informed approaches for robust multilingual classification.

Experiments with rule sets generated by LLM, aiming to automate the extraction of plausible lexical patterns for
classification, performed reasonably well overall. Achieving scores that approached those of later, trained methods,
they remained slightly inferior. Notably, they did not exhibit clear signs of hallucination or semantic implausibility;
instead, their limitations were primarily due to insufficient lexical coverage across the diversity of national naming
conventions. A particularly strong outlier experiment in the Finnish LLM-generated rules, significantly outperforms
the other methods. To further contextualize this result, we performed a per-country evaluation of rule-based perfor-
mance, focusing in particular on the healthcare domain, the most affected by limited data. This analysis revealed
that classification effectiveness varies considerably by national context. Trained methods tend to under-perform in
countries with little or no labeled data, while outperforming untrained approaches only in cases where the minority
class has at least 30 labeled instances. While lexical pattern extraction can obtain relevant keywords even with very
low data, they can fail to approach the complete distribution of names, especially if they do not have sufficient
diversity. Although LLM-generated rules do not match the overall performance of well-trained models in high-
resource countries, their low dependency on labeled supervision makes them a viable alternative in multilingual
and data-scarce environments. A possible alternative and bridge between both approaches could be the generation
of synthetic organization names instead of the rules. In any case, as mentioned in the methodology, we restrict our
evaluation metrics to countries that ensure a minimum of 30 instances per class. This affects mostly the healthcare
domain, though final scores do not differ much.

Among all rule-based methods, the best-performing approaches were the keyword selection algorithms, partic-
ularly the refined TF-IDF best-k-words method. This technique consistently outperformed the counter algorithm
across domains. Notably, the optimal number of selected tokens differed substantially between both algorithms: the
TF-IDF variant achieved comparable or superior performance using approximately half as many keywords. Token
count also varied by domain, reflecting differences in lexical regularity. The administrative domain is the simplest
in this sense, needing only 3 keywords to identify that class reliably.

In our comparison of preprocessing strategies, we observed only marginal improvements in classification per-
formance. This is notable given the implementation challenges to deploy these techniques, particularly due to the
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Country No Preprocessing Spacy tokenization Decomposition Difference (Spacy - None)

Poland 0.66 0.74 0.66 0.08
Croatia 0.66 0.71 0.66 0.05
Spain 0.68 0.73 0.63 0.04
Portugal 0.62 0.65 0.62 0.03

Country No Preprocessing Spacy tokenization Decomposition Difference (Decomposition - None)

Germany 0.67 0.68 0.70 0.03
France 0.54 0.54 0.56 0.02
Netherlands 0.58 0.59 0.60 0.02
Finland 0.57 0.58 0.58 0.01

Table 6
Counter and TF-IDF Experiments average F1 Score per Country and Preprocessing technique. Top 4 countries ordered by differences.

integration of multiple tokenization models and language-specific dictionaries. Among the tested methods, SpaCy-
based tokenization slightly outperformed no decomposition and compound word decomposition. However, these
are the aggregated findings. On a per-country level preprocessing does affect the final results mostly decompostion.
Calculating the mean performance of counter and TF-IDF methods, we observe the most change in Poland, Croatia,
Spain and Portugal using Spacy and in Germany, France and the Netherlands using Decomposition.

In terms of classification structure, a nested approach proved more effective strategy. This involves first extracting
keywords to predict broad domain classes (e.g., hospitals), followed by finer classifiers trained on the corresponding
subsets. By decomposing the task into stages, the nested architecture not only improves precision but also enhances
interpretability.

Table 13 presents selected keywords that inform our classifiers. For illustrative purposes, we display a small
subset of the results, focusing on two countries—France and Germany—while the full dataset spans 28 rows and
24 columns. Expert-informed keyword selection selects acronyms while wikidata-trained systems tend to rely on
words. Furthermore, terms like clinique are included, which should not be categorized as hospitals. This supports
our earlier point that Wikidata classes are not always fully aligned with the target concepts of our task, suggesting
opportunities for future improvements in entity linking. Decomposition effects can clearly be seen in the French
educational domain, where lexical cues such as the prefix éle- help distinguish terms like élementaire, enabling
more accurate classification of school types.

Overall, our experiments demonstrate that lightweight rule-based methods can achieve remarkable classification
performance, comparable to more sophisticated embedding-based approaches. These methods offer significant ad-
vantages in terms of computational efficiency and interpretability. Their success is further reinforced by the ontolog-
ical grounding of the training data, which provides annotated instances. Variability and coverage within each class
are critical factors and in some cases we suspect that results may be adversely affected by wikidata’s composition,
particularly when most instances within a class are overly homogeneous.

The results suggest that the functional role of a public sector organization is often strongly grounded in the
lexical presence of specific keywords. Our approach constructs a country-specific lexical dictionary, capturing these
discriminative features which reinforces the value of lexical pattern mining over even expert-informed knowledge,
for tasks where domain semantics are linked to naming conventions.

However, the generalization of these approaches to more complex classification tasks remains an open question.
Potential limitations include diminished effectiveness when applied to non-class properties, or a high number of
classes. Performance also deteriorates with sparse labeled data, as LLM-generated rules have shown limited relia-
bility in our experiments. Furthermore, the scalability of rule-based methods to longer input sequences and broader
context windows has yet to be validated. While the current findings underscore the strength of ontology-guided
lexical modeling in varied, multilingual environments, further research is needed to evaluate its robustness and
adaptability in higher-complexity domains.
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Model Max F1

roberta-large 0.767278
bge-m3 0.772669
mDeBerta 0.674289
MiniLM 0.527614

Table 7
Maximum Scores per Model.

4.2. Natural Language Inference

For the Natural Language Inference (NLI) experiments, we evaluated four multilingual models using a consis-
tent zero-shot classification pipeline. This setup requires minimal configuration but is computationally intensive:
the largest models process approximately 11 instances per second, while the compact MiniLMv2 model achieves
around 40 instances per second. Across the full dataset, inference took approximately 24 hours to complete. Com-
plete results and charts are contained in Table 10 and Figures 4 and 5.

Our results indicate that larger models deliver superior classification performance. In particular, BGE-M3
ZeroShot v2.0, which incorporates additional multilingual fine-tuning beyond XLM-RoBERTa, outperforms
the XLM-R-based baseline across all domains. By contrast, mDeBERTa-v3, although highly effective in the med-
ical domain, performs noticeably lower in the administrative and educational domains. While MiniLMv2 offers
significantly faster inference and reduced computational demands, it fails to match the accuracy of larger models,
highlighting the trade-off between efficiency and performance in zero-shot NLI classification.

Interestingly, in contrast to our rule-based experiments, the nested classification structure did not lead to improved
performance in the NLI setting. This outcome could stem from error propagation. Additionally, the NLI model may
struggle to resolve fine-grained distinctions when presented with hypothesis classes that are semantically close
but hierarchically nested. This is particularly problematic in our threshold-agnostic setup, where always selecting
the most probable label can lead to misclassification . For instance, if the system consistently selects “university
hospital” over “hospital” due to marginally higher entailment scores, it may skew the evaluation metrics, which
penalize equally all misclassifications. These findings suggest that either threshold calibration or error design are
critical when adapting nested structures to NLI-based pipelines.

We additionally experimented with augmenting the NLI prompts using one-shot and few-shot example. However,
this strategy yielded very degraded performance. NLI models are optimized to assess the entailment relationship
between a single hypothesis and premise pair. Introducing prior examples into the hypothesis may distract the
model. As such, we do not include these experiments in our study.

These findings highlight the potential of rule-based systems as lightweight, interpretable alternatives in low-
resource and multilingual classification settings. However, their effectiveness diminishes as the number of target
classes increases. We suspect that, NLI-based models may suffer from increased confusion, and misinterpretation
of the “other” class. One possibility for improvement involves implementing threshold-based classification. Prelim-
inary binary classification experiments using thresholding showed promising results, suggesting that this strategy
could mitigate over-prediction. Nevertheless, a critical challenge remains: obtaining the thresholds without over
reliance on labeled training data or class distributions. Moreover, the stability of threshold-based approaches under
different distributions must be assessed. Specifically, it remains an open question whether thresholds calibrated on
Wikidata-derived samples would transfer reliably to new datasets with different class balances.

An additional possibility involves a definition-based classification approach. Rather than relying solely on la-
bel matching, this method would integrate class definitions into a structured set of inference questions about each
instance. For example, in the case of university hospitals, classification could proceed by sequentially verifying
whether the organization (i) functions as a healthcare facility, (ii) provides comprehensive general care distinguish-
ing it from specialized clinics, and (iii) engages in the education of medical students. Each of these properties could
be individually tested by suitably modifying the hypothesis formulation. Although the low-context setting limits
the immediate applicability of definition-based classification, access to richer textual sources, such as descriptions
obtained via web scraping, could substantially broaden its viability. A key advantage of employing NLI models lies
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Model Max F1 (similarity) Max F1 (logreg) Max F1 (svm)

multilingual-e5 0.654192 0.862211 0.885668
qwen 0.741955 0.868487 0.892814
mistral 0.793699 0.883531 0.682510
e5-small 0.574878 0.758679 0.862910

Table 8
Maximum Scores per Model.

in this flexibility: by appropriately modifying the hypothesis prompt, it becomes feasible to infer different ontolog-
ical properties beyond simple class membership. This enables multi-property classification, ontology enrichment,
and dynamic taxonomy construction, provided that sufficient and reliable contextual information can be gathered.
Such an approach would align well with knowledge graph augmentation efforts and holds potential for expanding
automated understanding of public sector organizational structures.

4.3. Embedding-based Classification

Embedding-based methods proved to be the most computationally intensive component of our experiments.
The generation of embeddings for the full dataset required approximately 100 hours for the Mistral-7B and
GTE-Qwen2-7B models, while even the smaller Multilingual-E5-Large model needed close to 20 hours.
The embedding output files for GTE-Qwen2-7B and Mistral-7B individually exceeded 20 GB. Evaluation time
of Cosine Similarity and Classifier experiments is negligible. Training of classifiers takes variable time depending
on the dimension of embeddigs. Logistic Regression training can take from one hour to five while Support Vec-
tor Machines take between 8 and 60 hours (8 models are trained per experiment to tune the hyperparameters).
These observations highlight that, while embedding-based classification can offer high performance, its deployment
poses logistical challenges. Complete results and charts are contained in Tables 12 and 12 and Figures 4 and 5.
In terms of performance, the initial zero-shot cosine similarity approach—matching embeddings directly to class
labels—proved to be quite competitive relative to other techniques, especially considering that it operates without
any labeled training data. Nevertheless, this remains a restricted form of classification and, overall, performs worse
than NLI models. Furthermore, one-shot experiments, which use a single randomly selected example per class for
comparison, consistently yielded lower scores than zero-shot label matching. This suggests that there exists seman-
tic variability in the vector space within class clusters, and that instance distributions are not perfectly compact
with respect to semantic similarity. In fact some one-shot examples tend to optimize distance lower than the label
prototypes. In fact, this distance varies from domain to domain, with higher thresholds suggesting separability of
the class. For the binary administrative domain, some distances are at 0.7, while on the others range from 0.1 to 0.3.
Few-shot provides more granular boundary and tends to reduce the optimal distance to around 0.5, suggesting that
the provided examples cover the initial zero-shot classification boundary well. They showed performance improve-
ments in some cases but were highly dependent on the choice of encoder and the domain. Improved performance
in few-shot setups could point to regional or linguistic dispersion instead of stronger class-specific cohesion. This
phenomenon was slightly notable in the administrative domain and most evident with the GTE-Qwen2-7B embed-
dings. These observations imply that entity clustering is not very influenced on these multilingual embeddings by
regional naming conventions rather than by functional class.

The use of per-class optimized thresholds—rather than a global decision boundary—could potentially have en-
hanced performance, especially in domains exhibiting higher semantic variability, but we have opted to relegate that
study for the classifier experiments.

Across all evaluated embedding models, performance was relatively consistent, with comparable results achieved
across domains. The base Multilingual-E5-Large model generalized particularly well in the zero-shot
label matching task, delivering robust performance with less resource requirements. While the larger mod-
els—GTE-Qwen2-7B-Instruct and E5-Mistral-7B-Instruct offered slightly higher overall scores,
the performance gains were marginal relative to their computational cost. In particular, Mistral outperformed
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Qwen2 across domains by a narrow margin. Given the minimal context provided by organization names, these re-
sults suggest that deploying large-scale generative embedding models may not be justified in such a constrained
setting.

The similarity-based embedding approach performance in the zero-shot configuration, demonstrates effective
generalization from class labels to unseen instances and highlighting the model’s capacity to capture latent semantic
structure. Despite the constrained nature of our experimental design, these results suggest that class clusters exhibit
meaningful internal coherence, potentially skewed due to semantic overlap, but without strong alignment to regional
variables.

Our final set of experiments focuses on improving decision boundaries using logistic regression and support
vector machines (SVMs). In all domains, both classifiers outperform semantic similarity methods by a significant
margin, making them the most effective approaches overall. However, the degree of improvement varies notably
by domain. In the medical domain, the gain is most pronounced, as semantic similarity fails to capture the nested
structure inherent in the data. Instead, we now train two classifiers, which are applied sequentially.

Logistic regression is generally less accurate than SVMs, although the computational cost of training SVMs is
substantially higher10.

Model size does not substantially alter performance across configurations. While larger models yield modest
improvements, the gains do not appear to justify their additional computational cost. However, the e5-small
model does show a clear performance drop with respect to the others.

Integrating embedding representations with supervised classification techniques consistently improved overall
performance, making this the best-performing method across our evaluation. These findings offer partial validation
of our hypothesis: that the embedding space captures latent semantic meaning sufficient for distinguishing public
sector organization types. While embedding-based inference may not be suitable to map complex relational reason-
ing tasks, the potential of these embedding spaces for unsupervised analysis, such as clustering, warrants further
investigation. We conjecture that such embeddings may not cluster primarily by language or country, but instead
organize instances according to institutional function. This positions embedding-based techniques as a powerful and
generalizable tool for multilingual classification and ontology discovery.

4.4. Evaluation on EU Contract Hub Use Case

We now turn to the evaluation of the previously trained Wikidata-based models using our gold-standard dataset
from the EU Contract Hub. Earlier observations suggested that the ontology-derived data might lack the diversity and
quality needed to generalize well. This is reflected in the evaluation results, where we observe a drop in performance
across trained methods. Rule-based approaches perform worse than in previous experiments. Semantic drift plays an
important part here, where we have seen clinics classified as hospitals in the Wikidata ground truth. Notably, expert-
informed strategies fall short in reliably identifying all relevant instances. Natural Language Inference (NLI) models
achieve therefore the best results, though their performance remains close to that of embedding-based models.
Cosine similarity fails to classify correctly for the nested medical domain experiments. This is caused as mentioned
by the nested structure and data sparsity of the new dataset (150 instances), prototype mismatch or semantic drift
can exacerbate this issue.

5. Results and Conclusions

This study addressed the multilingual classification of public sector organization names across healthcare, admin-
istrative, and educational domains. We showed that lightweight rule-based methods—particularly TF-IDF keyword
extraction—can achieve strong performance in low-context, multilingual settings. However, preprocessing remains
a challenge for multilingual standardized compound handling and tokenization, with only marginal gains in classifi-
cation scores. Regional differences continue to play a significant role in language processing, and no single method

10Due to unforeseen computational constraints, including a national power outage in Spain, SVM results for the education and administrative
domains could not be completed in time. These will be reported in future work.
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proves universally effective across all contexts. Our results suggest that the lexical presence of domain-relevant
terms is a key factor, with meaningful keywords emerging consistently across different regions and languages.

Natural Language Inference (NLI) models demonstrated competitive zero-shot performance, yet they require
careful calibration and are sensitive to fine-grained distinctions between semantically close classes. Their effective-
ness underscores the potential of ontology-guided classification based on lexical cues, particularly in settings with
minimal supervision.

Embedding-based approaches demonstrate consistent generalization across domains, enabling effective clustering
of organization types based on latent semantic features. These methods revealed that class structure within the
vector encodings is driven more by functional semantics than by linguistic variation. Also, larger models did not
offer substantial performance gains over the multilingual-e5 model. Instead, performance was primarily dependent
on the quality of the downstream classifier, suggesting that embedding-based pipelines can scale efficiently if well
optimized.

Upon manual inspection, we observed a highly unequal distribution of instances across countries, which may
point to systemic coverage biases or incomplete curation within certain regions. This uneven representation can
negatively affect model generalization. Semantic drift has also been observed when inspecting rule-classifiers key-
words, primarily due to the mislabeling of instances. This reflects a broader issue within Wikidata, where many
classes are ambiguous or overlapping, making it unsuitable to serve as a ground truth without further refinement.
The lack of clear class boundaries often leads to noisy supervision. However, it is worth noting that overall perfor-
mance on the new dataset remains consistent with our previous findings. The conclusions drawn regarding effective
methodologies, preprocessing strategies, and best practices continue to hold with some caveats, indicating that the
training dataset retains practical utility. Nevertheless, the results also suggest that a larger validation set may be
necessary to further support the robustness of these conclusions.

Practical applications of these findings are immediate and diverse. Within the EU Contract Hub project, the clas-
sification models are already being deployed to classify procurement contracts by contracting authority type, such
as hospitals and university hospitals. Future work could extend this analysis to assess joint procurement participa-
tion by government entities, an area of strategic interest for fostering collaboration in digital infrastructure projects.
Similarly, the classification of public schools could support geographic coverage studies and policy planning by
analyzing distribution patterns. Additional organizational properties, such as public versus private ownership, could
also be inferred with limited extensions to the methodology.

5.1. Future Work

This work opens several promising directions for future research. First, NLI pipeline would benefit from thresh-
old calibration, particularly to address class imbalance and improve performance on hierarchical or semantically
overlapping classes. In the embedding spaces, evaluating the distribution of class instances and conducting cluster-
ing analysis, using metrics such as silhouette scores, v-measure, or intra/inter-cluster distances, could support more
interpretable, cluster-based classification strategies.

Second, the current study operates under a strict low-context assumption. Incorporating contextual information,
such as organizational descriptions or web-scraped summaries, could significantly enhance classification accuracy,
particularly for fine-grained or ambiguous cases. This additional information would also enable more sophisticated
NLI strategies, such as decomposing class definitions into logical subcomponents and verifying them through tar-
geted entailment queries.

Another future direction involves expanding the classification task beyond the current class property to include
other organizational attributes—such as legal status (public vs. private, SMEs...) or relationships (eg. modeling
of organization relations). By extending the classification task to other ontological properties, the methodology
developed remains relevant and can help automated validation of the semantic structure. Furthermore, applying
the proposed methods to private sector entities could test the generalizability of the approach outside of public
administration.

Finally, a particularly impactful application lies in the integration of these models with semantic resources like
Wikidata. Our methods could support knowledge graph validation by detecting inconsistencies, suggesting new class
assignments, or recommending changes to existing taxonomies through structured inference. This would contribute
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to automated ontology refinement and enhanced alignment between textual data and formal semantic representa-
tions.

5.2. Conclusions

Our main contributions include the development of a multilingual, low-supervision pipeline for organization name
classification; a detailed comparative analysis of rule-based, NLI-based, and embedding-based approaches; and the
demonstration of scalable methods that adapt to low-context, short-text scenarios. We also introduced preprocessing
strategies for compound word decomposition and language-specific tokenization in resource-limited multilingual
settings, and conducted a fine-grained evaluation across domains and countries, highlighting the relationship be-
tween lexical regularity and classification success.

The methodologies employed revealed distinct trade-offs. Rule-based methods offered interpretability and effi-
ciency but struggled with dependency in training coverage. NLI-based approaches performed well with minimal
labeled data, yet multi-class classification remained challenging without threshold tuning. Embedding-based meth-
ods delivered the highest overall performance when coupled with supervised classifiers, confirming that semantic
spaces can effectively capture functional organizational attributes even in low-context inputs.
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6. Annex I: Tables and Figures

Listing 1: Query to extract all instances of a class and its subclasses per country.

SELECT DISTINCT * WHERE {{
?item wdt:P31/wdt:P279* wd:{class_id};

wdt:P17 wd:{country_id};
}}
LIMIT 100000

Listing 2: Query to link Instance ID to name and class.

SELECT ?item (GROUP_CONCAT(DISTINCT ?name; SEPARATOR=", ") AS ?names)
(GROUP_CONCAT(DISTINCT ?class; SEPARATOR=", ") AS ?class_ids)
(GROUP_CONCAT(DISTINCT ?classLabel; SEPARATOR=", ") AS ?classes)

WHERE {{
VALUES ?item {{ {instances_str} }}
?item wdt:P31 ?class;

rdfs:label ?name.
FILTER(LANG(?name) IN ({languages_str}))
?class rdfs:label ?classLabel.
FILTER(LANG(?classLabel) = "en")

}}
GROUP BY ?item
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Fig. 3. F1 Scores of Rule-based experiments per Country. Opacity encodes data availability in the smallest class.
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(a) Medical domain

(b) Administrative domain

(c) Educational domain

Fig. 2. Volume of entities per domain. Each subfigure shows the distribution of entities in the Medical, Administrative, and Educational classes
respectively.
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Fig. 6. F1 scores for EU Contract Hub experiments.
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