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Abstract

Scientific processes are often described in free text, making it difficult to represent and reason over them

computationally. We present SCHEMA-MINERpro, a human-in-the-loop framework that automatically extracts and

grounds structured schemas from scientific literature. Our approach combines large language models for schema

extraction with an agent-based system that aligns extracted elements to external ontologies through interpretable,

multi-step reasoning. The agent leverages lexical heuristics, semantic similarity, and expert feedback to ensure

accurate grounding. We demonstrate the framework on two semiconductor manufacturing workflows—Atomic Layer

Deposition (ALD) and Atomic Layer Etching (ALE)—mapping process parameters and outputs to the QUDT ontology.

By producing ontology-aligned, semantically precise schemas, SCHEMA-MINERpro lays the groundwork for machine-

actionable scientific knowledge and automated reasoning across disciplines.
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Introduction

Extracting structured information from scientific publica-
tions is essential for modeling complex real-world pro-
cesses, yet most scientific knowledge remains locked in
unstructured prose. In the context of the Semantic Web
vision, there is a large semantic gap between the volume
of unstructured literature and the available structured data
(38). Information Extraction (IE) methods aim to bridge this
gap by converting text into formal representations (17; 59),
but traditional IE approaches require extensive labeled cor-
pora and hand-engineered patterns, which are laborious in
domains like materials science (59), life sciences, medicine,
engineering, etc. (47). Recent advances show that large
language models (LLMs) can significantly aid this effort:
for example, LLM-based pipelines have mined millions
of polymer–property records from materials literature (25).
Nevertheless, the highly specialized language and reporting
conventions of scientific manuscripts continue to impede
fully automated schema discovery or induction. A further
challenge is semantic interoperability: terms and units often

vary across publications. Ontologies of quantities (e.g., the
OWL Ontology of Units of Measure) were developed to
make quantitative data explicit for integration and reuse (46).
However, without systematic grounding of text-derived con-
cepts in such ontologies, automatically extracted information
remains fragmented and ambiguous. Together, these factors
motivate the need for methods that can discover high-quality
domain schemas from literature and explicitly link them to
formal ontologies.

Agent-based workflows introduce a transformative capa-
bility to Semantic Web technologies by embedding auton-
omy, memory, and modular reasoning into information
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extraction and grounding tasks. For the Semantic Web com-
munity, this signals a shift from static, rule-based knowledge
population toward dynamic, explainable, and reproducible
schema engineering. The integration of agentic systems with
LLMs (22) allows for semantically rich, ontology-grounded
structures to be created with high precision and inter-
pretability—traits critical for maintaining FAIR principles
(Findability, Accessibility, Interoperability, and Reusability)
(56) and for scaling the population of Linked Open Data
(LOD) resources across scientific domains. By supporting
tool augmentation (e.g., embeddings-based vector search)
and human validation, agent-based workflows exemplify
how intelligent agents can act as semantic intermediaries,
fostering stronger alignment between unstructured scientific
discourse and formal knowledge graphs (23).

Existing work on schema discovery and ontology learning
has progressed from rule-based and statistical methods to
neural approaches. However, most prior efforts target general
or narrative text and do not fully address the complexity
of scientific processes. In our prior work, we introduced
the LLMs4SchemaDiscovery approach (implemented in the
SCHEMA-MINER software or tool), a human-in-the-loop
workflow that uses LLMs to extract candidate schemas
from materials science papers (48), as an exemplary,
while discussing its broader scientific applicability to other
domains. SCHEMA-MINER organized properties induced
from the unstructured text input into a structured schema and
incorporated expert feedback for refinement. It also allowed
experts to link schema terms to existing ontologies, adding
semantic depth. While this approach yielded semantically
rich schemas for the materials science process tested, viz.
atomic layer deposition, it had practical limitations: the
software was only accessible via a command-line interface,
and ontology grounding was performed manually or in an ad-
hoc way. These constraints limited the tool’s usability and the
reproducibility of its grounding results, indicating a need for
a more integrated AI-based solution.

Thus, as a systematic extension to our prior work, in
this paper we present SCHEMA-MINERpro—a significantly
enhanced framework that augments the original SCHEMA-
MINER pipeline with agentic AI capabilities specifically
for the ontology grounding stage. Unlike a purely prompt-
based approach in which a large language model is queried
to align extracted schema elements to ontological concepts
in a single pass, our agentic workflow decomposes the
alignment task into structured, tool-augmented steps. The
agent iteratively performs heuristic string matching and
embedding-based semantic search to identify candidate
ontology classes or properties for each schema element.

Crucially, it can maintain internal state, reason over
intermediate results, invoke specialized tools (e.g., lexical
lookup, FAISS search), and solicit expert validation in
a modular, extensible loop. This design leads to greater
transparency, controllability, and reproducibility compared
to end-to-end prompting, which often lacks interpretability
and is prone to hallucination.

In addition to this architectural enhancement, we evaluate
SCHEMA-MINERpro in a significantly broader experimental
setting. We demonstrate its end-to-end capabilities across
two complex and complementary semiconductor process
categories—Atomic Layer Deposition (ALD) and Atomic
Layer Etching (ALE, the reverse of ALD)—using both
experimental and simulation literature corpora. These
diverse use cases test the system’s robustness across
distinct process descriptions and vocabulary. To further
improve usability, especially for domain experts unfamiliar
with command-line tools, we introduce a web-based chat
interface deployed on the Hugging Face platform. This
interface enables users to interactively explore, edit, and
validate the discovered schemas via conversational dialogue,
thereby substantially improving accessibility and expert
engagement compared to the previous command-line-based
workflow.

At a high level, SCHEMA-MINERpro follows an iterative,
human-in-the-loop pipeline. It begins by prompting one
or more LLMs to generate a draft process schema
by extracting relevant entities and properties—such as
materials, parameters, or measurements—from a curated set
of scientific texts. Domain experts then refine the provisional
schema by correcting inaccuracies or adding missing
elements. At this point, the ontology grounding agent takes
over: for each schema element, it first attempts to identify
corresponding ontology classes using lexical heuristics (e.g.,
label and synonym matching). If no confident match is found,
it proceeds to semantic search using vector embeddings to
retrieve conceptually similar candidates from a pre-indexed
ontology space. The agent then ranks and proposes candidate
alignments—such as linking a “temperature” parameter to
the QUDT class for temperature, linking a “growthPerCycle”
parameter to QUDT class for Length—while allowing the
expert to accept or revise the mappings.

This agentic design contrasts with naive prompting
strategies in which ontology alignment is attempted through
single-turn LLM queries, which are difficult to trace,
evaluate, or debug. In contrast, our approach leverages the
explicit orchestration of reasoning and tool use, allowing
the agent to make informed decisions across multiple
subtasks and ensuring greater consistency and explainability
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in the grounding process. Through iterative cycles of LLM-
based schema induction, expert validation, and agentic
grounding, SCHEMA-MINERpro converges on a high-quality,
semantically rich, and human-validated process schema.
This final output—whose entities and units are grounded
in formal ontologies—enables downstream tasks such as
semantic integration, automated reasoning, and scientific
knowledge reuse at scale.

In summary, the key contributions of SCHEMA-MINERpro

are:

• Agentic Ontology Grounding: We introduce an
LLM-driven, tool-augmented agentic workflow that
combines heuristic matching and semantic vector
search to align schema elements with ontology
concepts, integrating expert validation for high-
precision grounding.

• End-to-End Application to ALD/ALE: We demon-
strate the full workflow on two complex semiconduc-
tor processes—Atomic Layer Deposition and Atomic
Layer Etching—showing its effectiveness across both
experimental and simulation literature.

• Interactive Web Interface: We develop a
publicly available chat-based interface (https:
//huggingface.co/spaces/SciKnowOrg/

schema-miner) enabling domain experts to engage
with schema discovery through natural language,
lowering the barrier for adoption and enhancing
expert–AI collaboration.

• Comprehensive Evaluation: We conduct in-depth
quantitative and qualitative analysis across LLM
variants, schema stages, and grounding effectiveness
using QUDT. Our evaluation highlights the stability
and utility of LLMs and the impact of agentic
grounding via FAISS-based semantic search.

The remainder of the paper is organized as follows.
Section 2 surveys related work on schema learning
which is a type of structured information extraction.
Section 3 describes the SCHEMA-MINERpro system and
workflow in detail. Section 4 presents our experiments and
evaluation on the ALD and ALE case studies. Section
5 concludes with a summary of findings and directions
for future work. The code and resources for SCHEMA-
MINERpro are publicly available at https://github.
com/sciknoworg/schema-miner.

Related Work

The SCHEMA-MINERpro approach builds upon and extends
several research directions including schema discovery
from unstructured text, LLMs for IE, human-in-the-loop
workflows, and ontology grounding. This section reviews
relevant prior work in these areas, highlighting the novel
contributions of our approach.

Schema induction or schema discovery from text.

Early research on schema discovery explored how structured
representations could be derived from raw text, often
through rule-based or handcrafted techniques. Embley et
al. (20) proposed foundational methods to identify record
boundaries in web documents, contributing to early data
integration pipelines. In the scientific domain, Kononova
et al. (30) introduced a domain-specific pipeline to
mine synthesis protocols from materials science literature,
converting thousands of paragraphs into structured ”codified
recipes.” Although impactful, these approaches required
extensive manual curation or domain-specific engineering,
highlighting the need for generalizable, scalable solutions.

Schema induction has also been studied in NLP as a
way to learn structured event or relational representations
from unstructured narratives. Chambers and Jurafsky (8)
pioneered script learning from co-occurring event sequences.
More recent methods emphasize ”complex event schema
induction,” where schemas are modeled as graphs over
events and participants. For instance, Hao et al. (26)
propose a discrete diffusion approach guided by LLM-
generated knowledge to induce causal and hierarchical
relations among events. Dror et al. (15) use GPT-3 to
synthesize artificial narratives from a high-level topic (e.g.,
“pandemic outbreak”) and then extract structured schemas
from them, demonstrating that zero-shot LLM methods can
exceed manual baselines. Regan et al. (45) focus on causal
schema induction in news data, modeling cause-effect chains
using annotated graphs and discourse-level features.

These works illustrate the evolution from rule-based to
neural schema discovery techniques, increasingly leveraging
generative models to produce interpretable and composable
structures. However, most focus on general or narrative
domains and rarely address the complexities of scientific
literature, which involves dense terminology, multi-step
processes, and deep domain knowledge.

LLMs for schema and ontology learning. The
emergence of LLMs has accelerated progress in schema
induction and ontology engineering. In materials science,
Dagdelen et al. (10) fine-tune GPT-3 and Llama-2 on a few
annotated papers to jointly perform named-entity recognition
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and relation extraction, producing structured JSON records
of host materials, dopants, compositions, etc. Similarly, Xie
et al. (58) introduce ByteScience, an automated AWS-based
pipeline that fine-tunes a domain-specific LLM (DARWIN)
with minimal annotations to extract complex scientific facts
from literature. These works show that LLMs can be
adapted to convert specialized text (chemistry, materials
science) into structured form with high accuracy given
only a small labeled seed. In ontology learning, Bakker et
al. (6) explore using GPT-4o to induce an ontology from
news text: they compare direct, sequential, and sentence-
level prompting strategies to extract classes, individuals, and
relations, and then evaluate the LLM-generated ontology
against a human-created ground truth. The authors find that
multi-step prompting improves consistency and reliability of
the induced ontology. Such studies suggest that LLMs can
serve as “ontology generators” or knowledge graph learners,
albeit often producing taxonomic or relational structures
rather than full-fledged ontologies.

Schilling-Wilhelmi et al. (49) provide a comprehensive
review of how LLMs can facilitate chemical informatics.
They highlight that modern LLMs enable even non-
experts to extract structured chemical knowledge from text,
provided that domain expertise is used to guide and validate
the LLM’s outputs. The chemical domain’s emphasis
on precise terminology and context echoes the review’s
recommendation that LLM-driven extraction be coupled
with expert oversight to ensure accuracy and relevance.

Our prior work, SCHEMA-MINER (48), introduced an
LLM-powered, human-in-the-loop pipeline tailored for
scientific schema extraction. It applied large language
models to collections of research papers (e.g., on atomic
layer deposition) to induce reusable schema components.
The workflow included expert-in-the-loop stages for refining
schema proposals and grounding schema nodes in scientific
ontologies. SCHEMA-MINER demonstrated that combining
LLM suggestions with domain expert validation significantly
improved the precision and reusability of the resulting
schemas.

The present work, SCHEMA-MINERpro, builds directly on
this foundation. It generalizes the method to support schema
discovery across scientific domains, integrates agentic AI
workflows for managing and orchestrating the pipeline, and
supports versioning and schema evolution across iterations.
Our system offers a modular architecture for plugging
in LLMs, grounding APIs, and user feedback interfaces,
making it an extensible platform for semantic schema
engineering.

D’Souza et al. (16) present a related system in
the ecology domain, where GPT-4 is used to induce
and populate schemas capturing species, habitat, and
ecosystem interactions from a large corpus of invasion
biology literature. Their multi-stage approach combines
schema discovery with large-scale fact extraction, resulting
in a sizable ecological knowledge base. While their
system automates many of the same tasks, SCHEMA-
MINERpro distinguishes itself through its generality, agentic
coordination, and grounding capabilities.

Human-in-the-loop knowledge extraction. Because
fully automated induction can err, several recent systems
integrate human oversight to refine schemas or extractions.
Zhang et al. (65) describe an interactive schema induction
system where GPT-3 initially proposes schema “steps”
(events) and tuple nodes, which human experts can edit
via a graphical interface before assembling them into a
schema graph. Their system allows prompt-based generation
of candidate elements, manual curation of those elements,
and conversion into a final graph, leading to more accurate
schemas with less manual effort compared to previous IR-
only methods. Similarly, Chang et al. (9) present an end-
to-end event-schema curation tool: LLMs propose event
sequences and relations, but users can correct extracted
tuples or relations at each stage. This pipeline includes a
entity extraction and representation using entity mention
detection. These human-in-loop designs demonstrate that
user feedback and ontology linking can greatly improve the
precision and interpretability of induced schemas.

Human expertise plays a central role in refining schema-
miner’s outputs. In contrast to earlier efforts that relied
heavily on post-hoc correction, our prior work SCHEMA-
MINER (48) included expert input at both the refinement and
generalization stages, ensuring correctness, completeness,
and domain alignment. Feedback is provided in descriptive
and direct-edit modes and is incorporated into iterative runs,
with measurable impact on output quality. This distinguishes
the schema-miner tool including the advancements proposed
in this paper as SCHEMA-MINERpro, from approaches that
treat human validation as a separate post-processing step.

Other work has also explored interactive paradigms.
OntoChat (63) enables ontology engineers to iteratively co-
develop ontologies with LLMs via multi-turn conversation.
These approaches, like SCHEMA-MINER, illustrate the value
of augmenting LLM outputs with human knowledge to
mitigate hallucinations and ensure interpretability in high-
stakes scientific contexts.
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Ontology grounding and alignment. Mapping schema
components to standardized ontologies ensures interoper-
ability and supports downstream reasoning. Historically,
ontology alignment tools were benchmarked in OAEI tracks.
More recently, He et al. (27) and Amini et al. (4) demon-
strated that zero-shot and prompted LLMs outperform clas-
sical methods like BERTMap on various ontology matching
tasks. Babaei et al. (5; 24) developed OntoAligner,* a modu-
lar Python toolkit that integrates retrieval-augmented LLM
prompting and classical matching algorithms for complex
alignment problems.

SCHEMA-MINER incorporated a grounding module to
match extracted schema elements to domain ontologies via
API-based services. In SCHEMA-MINERpro, this component
is extended through agentic control: autonomous agents
orchestrate grounding attempts, collect ranked candidate
matches, and solicit expert confirmation, ensuring consistent
and high-confidence mappings.

Foundational theories on schema mapping and conceptual
model integration (e.g., (19; 18)) remain relevant as
underlying frameworks. Our agent-enhanced grounding
design introduced as SCHEMA-MINERpro extends these ideas
by embedding them in a practical pipeline supported by state-
of-the-art AI components. This step is essential for ensuring
that newly induced schemas are not isolated artifacts but
connectable to the Linked Open Data cloud or domain-
specific graphs.

Summary. To our knowledge, no existing system offers
an end-to-end, domain-agnostic, human- and agent-in-
the-loop workflow for schema induction, refinement, and
ontology grounding from scientific literature. Existing
systems address schema induction in specific domains,
ontology alignment in isolation, or omit human oversight.
SCHEMA-MINERpro builds on our prior work and integrates
these components into a unified, extensible framework for
semantic schema engineering at scale.

SCHEMA-MINER - Overview

In our prior work, we introduced the SCHEMA-MINER

tool (48) (Figure 1). It implements a human-in-the-
loop, iterative workflow for scientific schema mining and
ontology grounding, utilizing large language models (LLMs)
and domain expertise. The workflow comprises three
main stages: initial schema mining, preliminary schema
refinement and final schema refinement.

The schema discovery is initiated by a process specifica-
tion document, which is iteratively refined using a curated

collection of scientific publications and structured domain-
expert feedback. This iterative, human-guided approach
enhances both the structural and semantic characterization
of the processes in the target domain. The final schema
is grounded with established ontology using the ontology
lookup service API, thereby facilitating interoperability and
knowledge integration within the Semantic Web ecosystem.
In the subsequent sections, we briefly describe each stage
of the workflow to establish the foundation for the extended
version of the framework, SCHEMA-MINERpro

Stage 1: Initial Schema Mining

In the first stage, SCHEMA-MINER begins with the automated
extraction of essential properties from unstructured process
specification document. This document is authored by
domain experts, which is provided to the LLM to generate an
initial JSON schema which encompasses essential properties
with its corresponding description, data type, and unit of
measurement if applicable. The LLM is instructed using
a structured prompt that contains a system prompt and a
user prompt. The system prompt assigns the LLM a specific
role (for example, as a schema design expert in scientific
process modeling), outlines the primary objectives (such as
generating a JSON schema that captures essential properties,
data types, units, and property relationships) and specifies the
required output format, ensuring consistency and adherence
to schema design best practices. The user prompt then gives
the process specification and contextual instructions, guiding
the LLM to extract relevant schema elements and conform to
the specified JSON structure. The initial schema is evaluated
by the domain experts, who evaluate its completeness,
correctness, and semantic clarity. Their feedback is very
important for informing subsequent refinement steps.

Stage 2: Preliminary Schema Refinement

The second stage is an iterative refinement of the initial
schema, using a curated high-quality corpus of domain-
relevant scientific literature and domain-expert feedback. A
small collection of research papers is curated by the domain-
experts of around 1-10 papers which are considered to be
state-of-the-art and highly specialized publications for the
target process. The purpose of this highly focused collection
is to allow LLM to extract properties and their relationship
which are highly relevant for describing that process. This
will help LLM in generating schema which are both specific

∗https://ontoaligner.readthedocs.io/index.html
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Figure 1. Overview of the LLMs4SchemaDiscovery workflow implemented in the SCHEMA-MINER tool (48). The diagram illustrates
a three-stage process followed by an ontology grounding phase. Stage 1 generates an initial process schema using
domain-specific specifications. In Stage 2, this schema is refined using a small, curated scientific corpus, and in Stage 3, further
enriched using a larger, non-curated corpus. The final stage involves manual grounding of properties using ontology lookup service.

and generalizable with semantic consistency across various
research scenarios.

The LLM is tasked with refining the schema by
extracting additional properties, updating or clarifying
property descriptions, incorporating missing constraints, and
aligning terminologies with those used in the literature. An
optional domain-expert feedback is requested based on the
guideline provided to them, which defines two ways to
provide a comprehensive feedback for the LLM to improve
schema:

1. The first way is the descriptive text where the domain
experts address questions like property merging,
property grouping into a single unit, missing essential
properties, and adequate property descriptions.

2. The other method is through direct edits to the schema,
where they can directly modify properties, constraints,
and relationships as needed.

Stage 3: Finalize Schema Refinement

In the third stage, the schema undergoes further general-
ization and validation using a substantially larger and more
heterogeneous corpus of scientific publications, which can
comprise up to 100 papers. The non-curated corpus of scien-
tific papers exposes the schema to a broader array of process
descriptions, terminologies, and domain-specific edge cases.
The primary objective is to ensure that the schema is not only

robust and semantically precise but also generalizable across
diverse representations of the target scientific process.

The LLM is instructed to incorporate new properties,
correct omissions or inaccuracies in property descriptions,
and improve semantic coherence across the schema. While
stage 2 emphasizes domain grounding and precision via
a curated literature set, stage 3 prioritizes scalability and
generalizability, capturing a wider spectrum of process
variations and terminological differences. The resulting
schema is therefore validated for both its foundational
accuracy and its applicability to a diverse range of real-world
scientific scenarios.

SCHEMA-MINERpro - Agent-based Ontology
Grounding over Scientific Schemas

In this work, we extend the SCHEMA-MINER tool with an
agent-based ontology grounding stage that aligns schema
properties with established ontologies through a tool-
augmented, agentic workflow. This enhancement ensures
semantic interoperability and facilitates alignment with
domain knowledge structures. We refer to this extended
version as SCHEMA-MINERpro. The agent-based component
is designed to be modular and adaptable, enabling the
grounding of schema elements across diverse domain
ontologies.
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Figure 2. Overview of the AI agent-based ontology grounding. The agent receives a process schema and performs a lexical
search on each property to determine if it exists in ontology. If not, the agent invokes a tool that uses FAISS for semantic search
over the ontology to retrieve the most relevant chunk associated with the property. Based on this, it recommends the appropriate
metadata, which are then validated by domain experts for correctness.

Agentic Workflows

Agentic workflows represent a paradigm in which LLMs
are embedded within structured, goal-driven processes that
support autonomous decision-making, iterative reasoning,
and adaptive interaction with dynamic environments. In
such systems, AI agents plan, decide, and act through
sequences of goal-oriented steps, incorporating memory,
feedback, and tool use to iteratively refine their behavior
(61). Unlike conventional LLM workflows—typically based
on direct prompt-response interactions or static chain-of-
thought sequences—agentic workflows maintain persistent
stage management, integrate environmental feedback, and
dynamically adjust task strategies (36). These capabilities
allow agentic systems to go beyond reactive text generation,
engaging instead in multistep, context-sensitive reasoning
using various tools to refine both internal representations
and external outputs. As such, agentic workflows provide
a robust foundation for ontology grounding by enabling the
alignment of schema properties with ontological concepts in
a principled and adaptable manner.

A key motivation for adopting an agentic work-
flow—rather than relying exclusively on LLM-based
prompting—is the need for improved modularity, trans-
parency, and scalability in the grounding process. While
LLMs exhibit strong performance in tasks involving text
understanding and concept matching, they are susceptible to

known limitations such as hallucinations and restricted con-
text windows, particularly when used in monolithic, prompt-
based settings (40). Recent studies indicate that purely LLM-
based approaches, such as LLMs4OM, can achieve high
recall on ontology alignment tasks but still require substan-
tial human-in-the-loop validation to ensure precision (5).

Agentic workflows offer an alternative by decomposing
the ontology grounding task into smaller, manageable
subtasks, each potentially handled by a dedicated agent.
This modular architecture allows each agent to integrate
specialized tools—such as memory, external knowledge
graphs, or FAISS-based semantic retrieval (14)—and to
apply task-specific reasoning strategies. For example, Wu et
al. (57) implement a multi-agent system to extend a medical
symptom ontology, where distinct agents perform roles
including extraction, validation, and classification. Their
framework demonstrates that agentic workflows are flexible,
scalable, and amenable to domain customization in ways that
are difficult to replicate using purely LLM-based methods.

Compared to traditional manual ontology grounding, as
used in our prior work (48), the agentic approach introduced
here offers a more efficient and reproducible alternative.
Manual grounding is labor-intensive, error-prone, and
difficult to scale across diverse scientific domains. In
contrast, agent-based systems automate significant portions
of the ontology alignment process while retaining the
opportunity for expert oversight and feedback. This semi-
autonomous design strikes a balance between automation
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and expert control, and is particularly well-suited to
knowledge integration in complex, high-stakes domains.

The SCHEMA-MINERpro Agentic Workflow

Building on the strengths of agentic workflows, SCHEMA-
MINERpro incorporates an autonomous ontology-grounding
agent to semantically align extracted process schemas with
domain ontologies (Figure 2). By embedding a goal-driven
agent within the schema refinement pipeline, our approach
advances beyond the manual grounding strategy employed
in the original SCHEMA-MINER tool.

Our implementation adopts a single-agent architecture
using the LangChain Agent framework†. This agent is
responsible for completing the grounding process for all
schema properties. Its behavior is governed by a system
prompt‡ that specifies the agent’s objectives, required inputs,
and expected outputs—including conditional logic, such as
returning an empty JSON object when the input property
does not correspond to a physical quantity.

The agent operates according to a heuristic-based
execution strategy: it initially attempts to resolve schema
properties through direct matching against ontology terms.
When ambiguity is detected or no direct match is found,
the agent invokes a semantic search tool to retrieve
relevant ontology candidates. This staged approach promotes
efficiency by minimizing unnecessary tool usage.

To support traceability and iterative reasoning, the agent
maintains a message history and an internal scratchpad for
storing intermediate results. The following sections describe
the detailed design, operational stages, and evaluation of this
agentic component within the SCHEMA-MINERpro system.

Step 1: Ontology and Schema Input

The first stage of the ontology grounding workflow in
SCHEMA-MINERpro is the Ontology and Schema Input
phase, where the agent prepares the necessary resources to
initiate the grounding process. This step involves three key
inputs: (1) the schema output from Stage 3 of SCHEMA-
MINER, (2) a domain-specific statement providing contextual
information about the schema, and (3) the target ontology for
grounding.

The input schema contains semantically enriched proper-
ties that must be aligned with corresponding ontology con-
cepts. The agent also receives a machine-readable ontology,
either via a URL or in a standard RDF serialization (e.g.,
Turtle or RDF/XML), which defines the relevant domain’s
concepts, relationships, and metadata.

The third input is a concise textual description of the
scientific domain or process associated with the schema. This
description provides essential context for disambiguating
schema properties during ontology lookup. For example, a
statement such as “Atomic Layer Etching – Atomic Layer

Etching (ALE) is a highly controlled, layer-by-layer etching

process used in semiconductor fabrication to achieve atomic-

scale precision in material removal.” helps guide the agent’s
interpretation of domain-specific terminology during the
grounding process.

Step 2: Property Matching

The second stage of the ontology grounding workflow,
Property Matching, focuses on aligning each property in
the extracted schema with its corresponding concept in the
target ontology. To balance efficiency and precision, we
implement a two-tiered, rule-based strategy. This design is
informed by observations that certain schema properties can
be directly and unambiguously mapped to ontology terms
without requiring complex reasoning. Such properties are
identified in advance and grounded immediately, bypassing
any further tool invocation.

For properties that are ambiguous or lack a clear match in
the ontology, the agent engages a specialized tool to resolve
the semantic uncertainty. This process begins by partitioning
the ontology’s knowledge base into smaller, overlapping
chunks, motivated by the token limitations of large language
models during inference. These chunks are indexed using
Facebook AI Similarity Search (FAISS) (14), enabling fast,
vector-based semantic retrieval.

When grounding an ambiguous schema property, the agent
queries the FAISS index to retrieve the most semantically
similar chunk. This chunk, along with the property in
question, is then passed to an LLM, which selects the most
appropriate ontology concept. The LLM is guided by a
structured prompt§ that specifies the required input format
(property and ontology chunk) and output structure. If the
property does not represent a physical quantity within the
ontology’s domain, the agent returns an empty JSON object;
otherwise, the output includes relevant metadata such as
quantityKind, unit, and ontology URIs. The prompt also

†https://api.python.langchain.com/en/latest/
langchain/agents.html

‡https://github.com/sciknoworg/schema-miner/blob/
main/src/prompts/ontology_grounding/agent_qudt_
prompt2.py

§https://github.com/sciknoworg/schema-miner/blob/
main/src/prompts/ontology_grounding/agent_qudt_
prompt1.py
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includes examples and instructs the LLM to use semantic
reasoning and synonym recognition to improve mapping
accuracy to formal QUDT concepts.

Step 3: Schema Integration

The third stage of the ontology grounding workflow, Schema
Integration, focuses on incorporating the matched ontology
concepts into the process schema to ensure semantic
completeness and interoperability. Once a schema property
has been successfully grounded—i.e., linked to an ontology
term along with its corresponding URI and associated
predicates—the relevant ontology subgraph is integrated into
the schema using a user-defined template.

This integration template provides a structural specifica-
tion for representing ontology-derived metadata within the
schema. For instance, a user may define a JSON schema
format that includes fields such as description, URI, sameAs,
and other metadata extracted from the ontology. The agent
populates these fields based on the matched ontology class
or property.

This template-based approach ensures both flexibil-
ity—allowing for adaptation across diverse domains—and
consistency, enabling the generation of machine-readable,
semantically enriched schemas. The resulting output is well-
suited for downstream applications such as knowledge graph
construction, semantic search, and automated reasoning.

Step 4: Domain-Expert Validation

The final stage of the ontology grounding workflow,
Domain-Expert Validation, ensures that the semantically
enriched schema aligns with domain knowledge and
experimental practice. In this step, domain experts review the
grounded schema to evaluate the correctness and relevance
of the matched ontology terms. Based on their feedback,
the agent iteratively revises the grounding to resolve any
misalignments or semantic inaccuracies.

This human-in-the-loop mechanism is essential for
maintaining the validity of the schema, particularly in
domains where subtle terminological or contextual nuances
may influence downstream interpretation. By incorporating
expert feedback into the refinement loop, the workflow
enhances the precision of ontology grounding and allows the
schema to evolve alongside domain knowledge.

The following pseudocode summarizes the complete
agentic workflow implemented in SCHEMA-MINERpro for
ontology grounding.

AGENT GroundSchema

INPUT:

ontology, process_schema, chunk_size,

overlap_size

#Step 1

Download OR Load ontology from URL/RDF File

Chunk ontology content into overlapping text

Embed each chunk into a vector

representation

Index all embeddings into a FAISS vector

store

#Step 2

FOR each property IN process_schema DO

IF property matches a known ontology term

THEN

Assign ontology metadata to property

ELSE

Use property as query in FAISS vector store

Retrieve top-k similar ontology chunks

prompt: includes property + ontology chunk

Pass prompt to LLM with grounding

instructions

IF LLM returns valid grounding metadata THEN

Assign metadata (e.g., quantityKind, unit)

ELSE

Mark property as ungroundable(not a

physical quantity)

END IF

END IF

END FOR

#Step 3

Integrate grounded properties into

process_schema

#Step 4

Collect feedback and corrections from domain

experts

Apply corrections to the schema

END AGENT

With expert validation complete, the refined schema is
ready for practical use. In the next section, we demonstrate
its utility in a materials science use case, showing
how semantic grounding enhances process understanding,
interoperability, and analysis in thin-film fabrication.
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Figure 3. Schematic illustration of one complete cycle of (a) atomic layer etching (ALE) and (b) atomic layer deposition (ALD).
Every cycle consists of two half-cycles: the precursor is dosed in the reactor and reacts with the surface in the first step, and then a
co-reactant is introduced in the second half-cycle. These steps are separated by purge steps to remove any leftover chemicals and
reaction products from the reactor, ensuring clean and controlled growth. A complete cycle removes or adds an atomic layer from or
to the film for ALE and ALD respectively. In (c), the saturation curves for each step of the ALE and ALD processes are depicted. ©
The Electrochemical Society. Reproduced by permission of IOP Publishing Ltd. All rights reserved (21)

Application: Material Science Use Case

Atomic Layer Deposition and Etching Processes

Atomic Layer Deposition (ALD) is a nanofabrication
technique that enables the precise and uniform preparation
of thin films of materials at the nanometer scale. It is a
chemical process that takes place in a reactor and relies on
self-limiting, sequential cycles in which thin films are built
atomic layer by atomic layer until the desired thickness is
achieved (29). Each ALD cycle consists of two half-cycles:
a precursor reacts with the surface in the first step, followed
by a co-reactant in the second. These steps are conducted
under controlled conditions and are separated by purge steps
to remove excess reactants and by-products from the reactor
(Figure 3 (b)) (51). Beyond the deposition of material at the
atomic scale, the removal of material—commonly referred
to as “etching”—is also a critical technique in the fabrication
of devices with high variability. Atomic Layer Etching
(ALE) is a precise etching method, analogous to ALD,
which removes thin layers of material through self-limiting
reactions, as depicted in Figure 3 (a). A typical ALE process
consists of two half-reactions, based on self-limiting surface
chemistry, that take place cycle-wise (28).

In both ALD and ALE, the self-limiting nature of the
reactions is the key property that ensures exceptional control

over film thickness, composition, and uniformity. These
characteristics make ALD and ALE critical technologies
for the production of cutting-edge electronic devices.
Their applications extend beyond electronics to fields
such as optics, photovoltaics, batteries, catalysis, and
more (3). While the fundamental principles of ALD and
ALE—self-limiting, sequential chemical processes—may
seem straightforward, developing a successful ALD or ALE
process requires careful design and execution. Conducting
such experiments involves a series of steps to optimize
parameters and ensure reliable outcomes (51; 54). Initially,
researchers must define the intended application and
accordingly select suitable precursors, co-reactants, and
substrates. It is necessary to determine optimal pulse and
purge durations, select an appropriate reactor type, and
choose suitable process conditions such as temperature
and pressure. Repeating experiments to validate results and
ensure reproducibility is essential for establishing a robust
ALD or ALE process.

Characterization of the results is another critical aspect.
This includes determining the growth per cycle (for ALD)
or the etch per cycle (for ALE), confirming the self-limiting
nature of the process, and assessing material properties
such as film structure (composition, crystallinity, density)
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and morphology (surface roughness, texture, film uniformity
and continuity, conformality). Addressing these factors
enables researchers to produce high-quality films tailored for
advanced applications in material science (29).

Computational simulations can further deepen our
understanding of ALD and ALE processes and materials.
These simulations are often combined with experimental
studies to explain underlying mechanisms, but they can
also serve as standalone research tools for investigating
a wide range of properties. Simulations span various size
scales, from atomistic simulations that explore mechanisms,
reaction energies, and material properties of ALD (37), to
continuum modeling that examines reactor-scale phenomena
such as the effect of gas flows on the processes (60). Across
these simulation scales, certain properties are consistently
studied—whether it’s the energy of a reaction step (37) or the
growth/etch rate of a film in kinetic Monte Carlo simulations
(50; 62). These properties play a crucial role in supporting
process development efforts in experimental research.

Suitability of Application for This Work

The study of ALD and ALE processes, ranging from experi-
mental process development data to simulation calculations,
generates vast amounts of data, much of it remaining unex-
ploited. In combination with the reproducibility of results
across studies, the ALD and ALE processes make a suit-
able use case for the technology of the semantic web. The
extraction of this key information into a structured format
would allow the efficient study of literature around a certain
process, material or even simulation type.

A major issue hindering the creation of a structured
format of information is the unstructured method of reporting
data found in scientific papers, especially those pertaining
to ALD/E. There are many different ways used to report
the same information, usually with no standard practice in
place. This makes searching for literature and the comparison
between studies more time-consuming and difficult than it
should be. Therefore, the use of this methodology to allow
extraction from unstructured to structured information would
greatly improve the method of literature searching in this
area, as well as in others.

An excellent starting point for this is the AtomicLimits
ALD and ALE Database developed by TU/e in 2019
(1). This open-access, crowd-sourced platform contains
extensive information on ALD and ALE processes,
including deposited materials, precursors, co-reactants
and corresponding references to literature. By leveraging
this well-established database, further advancements can
be made to enrich its capabilities and enable the

integration of predictive AI models, driving innovation in
material discovery, process optimization and sustainable
manufacturing methods.

It is evident that ALD and ALE have some clear
similarities, but also differences. For example, for the
ALD processes, conformality (a uniform thickness across
the substrate surface for 3D structured surfaces) is a key
characteristic, while for ALE this is not always the case. For
the latter, choosing the right co-reactant will lead either to
an anisotropic etching (etching of vertical structures) or to
isotropic etching (etching of three-dimensional structures)
(33) For that reason, it’s necessary for the context of this
work to produce two types of schemas for the data extraction
from ALD and ALE papers, respectively.

Experiments and Results

We evaluate SCHEMA-MINERpro on Atomic Layer
Deposition (ALD) and Atomic Layer Etching (ALE)
processes, using both experimental and simulation-based
literature to discover their underlying schemas. All process
specifications and related scientific papers are available
in our public repository (https://github.com/
sciknoworg/schema-miner/tree/main/data).
The following sections describe the experimental setup,
the ontology grounding of extracted schemas to the QUDT
ontology, and the quantitative and qualitative evaluation
results.

Experimental Setup

Our tool was implemented in Python using the LangChain
framework to interface with both closed-source and open-
source LLMs. All schema extraction experiments were run
on a machine with a 16-core CPU and 32 GB of RAM.
No dedicated GPU was used, as all LLM inferences were
executed via cloud services. Users running open-source
models locally may require significantly higher compute
resources, as noted in each model’s documentation.

SCHEMA-MINER supports multiple LLMs. For schema
discovery (Stages 1–3), we experimented with GPT-4o, GPT-
4-turbo, and LLaMA 3.1 (8B). The OpenAI models were
accessed using LangChain’s ChatOpenAI class, while
LLaMA 3.1 was accessed via the Scalable AI Accelerator
(SAIA) platform (13), which offers open-source models
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through OpenAI-compatible APIs. Additionally, SCHEMA-
MINER integrates with Ollama¶ and Hugging Face||, allowing
users to run a broader range of open-source models.

Following our prior work, we evaluated schema discovery
using two types of expert feedback: descriptive text and
direct schema edits. Accordingly, SCHEMA-MINER was
applied to ALD and ALE processes under four experimental
configurations:

1. Experiment 1: Descriptive text provided once or in
every iteration.

2. Experiment 2: Expert-edited schema provided once
or in every iteration.

3. Experiment 3: Both feedback types provided once or
in every iteration.

4. Experiment 4: No expert feedback (baseline).

These configurations were designed to assess the impact
of different feedback modalities on schema quality. Based on
domain expert evaluations, Experiment 3—which included
both feedback types in every iteration—yielded the most
accurate results for both ALD and ALE processes. In
total, 21 experiments were conducted across the three
LLMs (seven per model) to assess the consistency and
generalizability of the findings.

Ontology Grounded Schema Refinement with
QUDT

To enhance the semantic interoperability and machine-
readability of the extracted or induced or discovered
schemas from the LLM-based 3-stage workflow, as a novel
contribution as described in this work, we incorporated
an ontology grounding stage. For this we specifically
chose the QUDT ontology. Specifically, for both ALD
and ALE processes, the QUDT ontology was utilized to
ground relevant physical quantities—such as temperature,
pressure, and energy—providing consistent definitions and
unit representations across the schema.

QUDT Ontology. The Quantities, Units, Dimensions, and
Data Types (QUDT) ontology (42) is a widely adopted
semantic model for representing physical quantities, units of
measurement, and dimensional relationships. QUDT defines
a rich vocabulary covering over 800 units and quantity
kinds across both SI and non-SI systems. It is designed to
support semantic interoperability in scientific, engineering,
and industrial contexts where quantitative data is critical.

Key constructs such as qudt:QuantityKind (e.g., Tem-
perature, Pressure, FlowRate) and qudt:Unit (e.g., Celsius,

Pascal, Second) enable consistent data interpretation, unit
conversion, and validation in machine-readable form. QUDT
aligns with international standards (e.g., SI, ISO) and is com-
patible with RDF/OWL models, making it a foundational
component in domains such as manufacturing, materials
science, and semantic web integration (31).

Importance of QUDT in Materials Science. The materials
science domain is inherently quantitative, relying on precise
measurements of properties such as temperature, pressure,
energy, and deposition rate. In this context, QUDT plays
a critical role in enabling standardized, machine-readable
representations of physical quantities across experimental
and computational workflows.

By providing a formal vocabulary for quantities and units,
QUDT ensures consistency when integrating heterogeneous
data sources—such as synthesis protocols, simulations, and
characterization results—where units often differ in notation
or scale. It enables automated unit conversion, dimensional
validation, and semantic integration of data from diverse
systems (31).

Recent initiatives in materials informatics and scientific
knowledge graphs, such as the Materials Data Science
Ontology (MDS-Onto), have adopted QUDT as a mid-
level ontology to bridge domain-specific concepts with
foundational semantics, improving coherence and cross-
dataset searchability (43).

In process-driven domains like ALD and ALE, where
experimental parameters are tightly controlled and often
vary across publications or tools, QUDT supports precise
encoding of properties like etch rate and ion energy.
This enables machine-actionable comparisons across diverse
settings and enhances reproducibility, interoperability, and
integration—key pillars of semantic materials science in the
era of open data and AI-driven discovery.

QUDT Schema Structure for Grounding a Physical

Quantity To systematically integrate physical quantities
from ALD and ALE process schemas, we designed a
dedicated schema structure for grounding properties using
the QUDT ontology. The primary objective is to map each
relevant physical property in the schema to its corresponding
qudt:QuantityKind** and qudt:Unit††, where applicable.

During the grounding process, we observed two common
cases. In the first case, several physical properties—such

¶https://ollama.com/

∥https://huggingface.co/models

∗∗http://qudt.org/3.1.1/vocab/quantitykind

††http://qudt.org/3.1.1/vocab/unit
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Figure 4. Overview of the structured Quantity schema used to integrate physical properties from ALD and ALE process schemas
with QUDT ontology. The schema captures key semantic components, including the numerical value, unit of measurement, and
(optionally) the associated quantity kind. https://orkg.org/template/R1377474

as Temperature, Pressure, and Flow Rate—could be
clearly and directly linked to both a well-defined
quantity kind (e.g., http://qudt.org/vocab/

quantitykind/Temperature) and a valid unit (e.g.,
http://qudt.org/vocab/unit/DEG_C). These
cases represent straightforward mappings fully supported by
the QUDT ontology. An example RDF representation for
such a mapping is shown below:

[Quantity1] (class qudt:Quantity)

qudt:quantityValue->[quantityValue1](class

qudt:QuantityValue)

qudt:unit->[DEG_C](class qudt:unit)

qudt:numericValue->[10]datatype:decimal

qudt:hasQuantityKind->[Temperature](class

qudt:Temperature)

However, a second class of properties emerged that
posed greater semantic ambiguity. Certain domain-specific
properties, such as GrowthPerCycle, lack a direct match to
any qudt:QuantityKind. For these cases, while appropriate
QUDT units (e.g., http://qudt.org/vocab/unit/
NanoM) could be identified, no explicit quantity kind was
defined in the ontology. We can represent this as an example
in encoded RDF representation as:

[Quantity2] (class qudt:Quantity)

qudt:quantityValue -> [quantityValue2] (

class qudt:QuantityValue)

qudt:unit -> [NanoM] (class qudt:unit)

qudt:numericValue -> [2] datatype:decimal

To address ambiguous cases, the agent was allowed to
infer a semantically related quantity kind—such as http:
//qudt.org/vocab/quantitykind/Length

for the property GrowthPerCycle—based on contextual
relevance and expert feedback. When no suitable alternative
existed, the schema permitted the quantityKind field to
remain optional. This empirical differentiation informed
a flexible schema design that accommodates both well-
defined and ambiguous mappings. Specifically, making the
quantityKind metadata optional allowed physical properties
to be grounded without compromising the structural integrity
of the schema when a quantity kind was unavailable.

To support this flexibility, we developed a dedicated
sub-schema representation (Figure 4), referred to as the
“Quantity” node. This serves as the foundation for linking
physical properties in the ALD and ALE schemas to
semantic concepts in the QUDT ontology.

The Quantity sub-schema comprises several nested
components that collectively capture the semantics of a
physical measurement. The QuantityValue object holds the
numerical value along with its associated unit. The Unit

object formally links this value to a QUDT concept,
containing a quantityKind field that specifies the type of
quantity measured (e.g., temperature, pressure) and a sameAs

field linking to the canonical QUDT unit definition (e.g.,
http://qudt.org/vocab/unit/DEG_C).

The QuantityKind object defines the broader category of
the quantity (e.g., Temperature or FlowRate), includes a list
of applicable units, and provides a sameAs field pointing to
the corresponding QUDT ontology concept (e.g., http://
qudt.org/vocab/quantitykind/Temperature).

This structured approach ensures consistent and seman-
tically grounded integration of physical quantities while
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offering the flexibility required for domain-specific scenarios
frequently encountered in ALD and ALE process data.

QUDT Ontology Grounding for ALD Process Schema.

Building on the foundational role of the QUDT ontology in
grounding physical quantities, we applied this framework to
the extracted ALD process schema to semantically enrich
and standardize all identified physical properties with their
corresponding quantity kinds and units. A portion of the
grounded ALD experimental schema is shown in Figure 5,
highlighting key process parameters such as delivery method,
temperature, pressure, reactor, and thickness control. The
reactor and thickness control fields are nested objects that
include important experimental properties like growth per

cycle, saturation, nucleation period, dosing time, and purge

time.

As part of the SCHEMA-MINERpro workflow, these
properties were passed to the ontology-grounding agent,
which identified physical quantities and retrieved the
corresponding quantityKind and unit from QUDT. Properties
such as temperature and pressure were directly mapped
to QUDT concepts, while others—like growth per cycle,
nucleation period, dosing time, and purge time—were
inferred via the semantic search tool. Each grounded
property was linked to a corresponding Quantity object
within the schema, as illustrated in Figure 5.

Following grounding, the augmented schema was
reviewed by domain experts to verify that the assigned
units and quantity kinds aligned with experimental standards
reported in the literature. One key insight from this validation
phase concerned unit granularity. For example, while the
agent correctly suggested ”seconds” as the unit for dosing

time, domain experts recommended ”milliseconds” due to
the fine temporal resolution typical of ALD experiments.
This feedback was incorporated into the workflow, enabling
the agent to return the revised, domain-appropriate unit.

The final, validated JSON schemas for both
experimental and simulation cases in ALD are publicly
available at: https://github.com/sciknoworg/

schema-miner/tree/main/results/Ideal%

20Schema/Atomic-Layer-Deposition.

QUDT Ontology Grounding for ALE Process Schema. We
applied the QUDT ontology grounding process to the ALE
process schemas—covering both experimental and simula-
tion use cases—using the same agentic workflow employed
for ALD. A portion of the grounded ALE experimental
schema is shown in Figure 6, and the complete version in
our Github repository. This schema segment defines the ALE
window properties typically used during experimentation,

including the temperature window and ion energy window.
Each window contains nested properties specifying mini-
mum and maximum values—namely, minimum temperature,
maximum temperature, minimum ion energy, and maximum

ion energy.

These four properties were processed by the ontology-
grounding agent, which successfully identified them
as physical quantities and linked them to appropriate
QUDT concepts. Specifically, the agent assigned
the quantity kind http://qudt.org/vocab/

quantitykind/Temperature to the temperature-
related properties, using the unit http://qudt.org/
vocab/unit/DEG_C, and the quantity kind http:

//qudt.org/vocab/quantitykind/Energy

to the ion energy-related properties, with the unit
http://qudt.org/vocab/unit/KiloJ.

The grounded properties were then reviewed by domain
experts, who again raised concerns about unit granular-
ity—similar to observations made during ALD schema val-
idation. While the assigned units were semantically correct,
smaller-scale units were preferred to better reflect standard
experimental practice. This feedback was incorporated into
the agent’s refinement loop to adjust and improve unit
selection.

The final, expert-validated ALE schemas for both
experimental and simulation contexts are available
at: https://github.com/sciknoworg/

schema-miner/tree/main/results/Ideal%

20Schema/Atomic-Layer-Etching.

Results

In this section, we evaluate the performance of the
SCHEMA-MINERpro framework through both quantitative and
qualitative analyses. The quantitative evaluation focuses
on surface-level variance across schemas generated by
different LLMs at various stages of the workflow. The
qualitative evaluation captures domain expert observations
regarding schema quality, semantic accuracy, and agentic
implementation aspects.

Quantitative Results. The objective of the quantitative
evaluation is to evaluate property variance and structural
differences across the schemas generated by three LLMs:
GPT-4o, GPT-4-turbo, and LLaMA 3.1 (8B), over the three
stages of schema refinement. We aim to measure how closely
aligned the schemas are across models, and how they evolve
from the initial stage to the final stage. Here, we present the
quantitative results only for the experimental use cases of
ALD and ALE processes. However, all generated schemas
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Figure 5. Ontology-grounded schema fragment for the ALD experimental process, enriched using the QUDT ontology within the
SCHEMA-MINERpro workflow. The diagram illustrates key process parameters such as temperature, pressure, and dosing time, each
linked to their respective Quantity representations, including quantityKind and unit identifiers from QUDT.
https://orkg.org/template/R1366244

Figure 6. Ontology-grounded schema fragment for the ALE experimental process, enriched using the QUDT ontology within the
SCHEMA-MINERpro workflow. The diagram illustrates key properties related to ALE Window such as temperature window and Ion
energy window, each linked to their respective Quantity representations, including quantityKind and unit identifiers from QUDT.
https://orkg.org/template/R1379646

for each stage are made publicly available in our public
repository.

To evaluate schema similarity, we used three commonly
used text generation metrics: 1. ROUGE-L: Measures recall
and the longest common subsequence overlap, highlighting
structural alignment (34). 2. BLEU Score: Captures
precision-based n-gram overlap, often used in translation
and summarization tasks (41). 3. BERTScore: Uses BERT
embeddings to compute semantic similarity between schema
outputs (64). Each comparison here considers the output
of one LLM as the candidate schema and the other as the
reference schema.

ALD experimental schemas. In Stage 1, ROUGE-L
scores shows differences between schemas across LLMs.
GPT-4-turbo achieved a ROUGE-L of 0.4118 against
LLaMA 3.1 (8B), indicating higher structural coherence. In
contrast, LLaMA 3.1 (8B) scored only 0.3100 against GPT-
4o. GPT-4o maintained a balanced structural similarity with
GPT-4-turbo, scoring 0.3428. BERTScores were consistently
high across all model pairs, ranging from 0.8044 to 0.8098,
indicating strong semantic similarity. In Stage 2, GPT-4-
turbo demonstrated strong semantic alignment with GPT-
4o, achieving a BLEU score of 0.4515, while LLaMA 3.1
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Stage 1
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3428 0.4022 0.8098 0.3100 0.2862 0.8044

GPT-4-turbo 0.3428 0.3916 0.8098 0.4118 0.3481 0.7765
LLama-3.1-8B 0.3100 0.2649 0.8044 0.4118 0.3443 0.7765

Stage 2
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3071 0.4515 0.8094 0.3535 0.3316 0.8112

GPT-4-turbo 0.3071 0.4501 0.8094 0.3363 0.2803 0.7695
LLama-3.1-8B 0.3535 0.3319 0.8112 0.3363 0.2825 0.7695

Stage 3
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3690 0.4151 0.8046 0.3337 0.3397 0.7716

GPT-4-turbo 0.3690 0.4151 0.8046 0.2891 0.2392 0.7560
LLama-3.1-8B 0.3337 0.3493 0.7716 0.2891 0.2458 0.7560

Table 1. Quantitative schema variance across Stages 1, 2, and 3 of SCHEMA-MINER for ALD experimental processes, evaluated
using ROUGE-L, BLEU, and BERTScore metrics, comparing schemas from GPT-4o, GPT-4-turbo, and LLaMA 3.1 (8B).

(8B) scored 0.3316 against GPT-4o. This suggests that GPT-
4-turbo produced semantically rich but structurally variable
schemas relative to LLaMA 3.1 (8B). In Stage 3, GPT-4-
turbo and GPT-4o maintained strong alignment with a BLEU
score of 0.4151 and BERTScore of 0.8046, showing model
robustness even with increased data complexity.

ALE experimental schemas. In Stage 1, GPT-4o
achieved a ROUGE-L of 0.3758 compared to GPT-4-turbo,
reflecting good structural similarity. However, similarity
with LLaMA 3.1 (8B) was lower at 0.2732. BERTScore
between GPT-4o and GPT-4-turbo was 0.7764, indicating
high semantic consistency. In Stage 2, Structural similarity
remained strong between GPT-4o and GPT-4-turbo with a
ROUGE-L of 0.3865 and BERTScore of 0.7879. Similarity
with LLaMA 3.1 (8B) improved slightly but remained
weaker than that of the OpenAI models. Finally, in stage 3,
semantic and structural alignment between GPT-4o and GPT-
4-turbo dropped slightly (ROUGE-L: 0.3552, BERTScore:
0.7370) due to the broader scope of the scientific corpus
introduced in this stage.

Overall, for ALD experimental schemas, GPT-4o and
LLaMA 3.1 (8B) demonstrated strong performance, with
consistent semantic comprehension and structural robust-
ness. While for ALE experimental schemas, GPT-4o and
GPT-4-turbo emerged as the most reliable models, with
superior performance in capturing the nuances and structure
of the ALE processes.

Qualitative Results.

LLM stability. The stability of an LLM refers to its
ability to produce consistent outputs across multiple runs
and avoid introducing irrelevant modification during schema
refinement, particularly in stage 2 and stage 3 of the
workflow. Through domain expert feedback for both the

ALD and ALE processes, we observed notable difference in
model behavior.

For the ALD process, both GPT-4o and LLaMA 3.1 (8B)
demonstrated high stability, maintaining a coherent schema
structure throughout the refinement stages. GPT-4-turbo, on
the other hand exhibited instability, frequently introducing
overly specific properties that were not validated by our
domain experts.

In the case of the ALE process, GPT-4o and GPT-4-turbo
were found to be relatively stable, while LLaMA 3.1 (8B)
generated several irrelevant schema properties, particularly
during the third stage of the workflow. These inconsistencies
often detracted from the semantic accuracy of the extracted
schema.

Effect of different experimental settings for domain

feedback. As part of our evaluation, we investigated how
different methods of domain expert feedback (descriptive
text and direct schema edits) as introduced in SCHEMA-
MINER, impacted the quality and structure of the extracted
schemas. The experiments were designed to compare four
settings, with varying combinations of feedback integration
during the schema refinement stages.

Among all, experiment type-3, which incorporated
both descriptive text and expert edited schema at every
iteration, consistently outperformed the others for both
ALD and ALE processes. This hybrid approach provided
the LLMs with richer contextual and structural semantic
information with concrete structural corrections, resulting
in more accurate and meaningful schema refinements. In
contrast, experiment type-4, where no domain feedback was
provided, gave the least satisfactory results. The schemas
generated under this condition lacked semantic coherence
and often introduced irrelevant or redundant properties.
This performance gap strongly reinforces the importance of
domain expert involvement in guiding and constraining the
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schema discovery process, especially in complex scientific
domains.

Effect of using process specification document in

stage 1. The process specification document during stage
1 plays an important role in the schema extraction workflow
by providing a foundational structure which LLMs can build
upon. In both the ALD and ALE schema extraction tasks,
the inclusion of these documents significantly enhanced
the LLMs ability to generate coherent and semantically
rich initial schemas. Each process specification document
contains essential properties required to effectively model
the respective processes, along with procedural descriptions
outlining how these processes are been executed. This
structured, domain-specific information allows the LLMs
to ground their outputs and generalize effectively when
identifying key concepts and relationships.

For instance, the ALD specification document includes
properties such as precursors, co-reactants, growth rate, and
various material properties. Similarly, the ALE document
defines properties like thickness, etch rate, synergy, and
other relevant properties. The presence of these properties
enables the LLMs to construct well-formed initial schemas
that capture essential physical and procedural characteristics
for these processes.

These foundational schemas serve as a strong starting
points for next refinement stages. When combined with
scientific literature and expert feedback in stages 2 and 3,
they help maintain structural integrity and prevent semantic
drift, ensuring that the final schema remains aligned with the
core domain knowledge.

Effect of using small scientific corpus in stage 2. In
Stage-2 of the SCHEMA-MINER workflow, we used a small
curated, yet focused collection of scientific papers (ranging
from 1-10 papers) for both ALD and ALE processes. The
objective of this stage was to enrich the foundational schema
with additional properties and semantic relationship, while
preserving its core structure established in Stage 1.

This curated corpus helped the language models to
refine and enhance the schema without deviating from the
domain-relevant semantic framework. By integrating this
carefully chosen literature, the LLMs were able to extract
key properties that were not explicitly present in the initial
process specification document but were critical to scientific
reporting and comprehension.

For example, during the iterative refinement of the ALD
process schema, LLM particularly GPT-4o and LLaMA
3.1 successfully incorporated properties such as material
deposited and optical properties. Domain experts validated

these additions as essential for accurately characterizing
ALD procedures. Moreover, the semantic structure of
the schema, including the relationships among properties,
became more coherent and aligned with how domain experts
conceptualize these processes.

Effect of large scientific corpus in stage 3. In Stage-
3 of the SCHEMA-MINER workflow, we introduced a broader
corpus of scientific literature, including review papers on
ALD and ALE processes. This larger corpus was designed to
show LLMs to a wider range of domain-specific properties
and experimental variations.

For most of the experiments, this broader perspective
offered valuable diversity, it also introduced potential risks
related to schema over-specialization. In some experiments,
the inclusion of this corpus led LLMs to incorporate
highly specific properties into the schema that while
scientifically accurate, were not generalizable to core
conceptual representation of ALD or ALE processes. For
instance, the ALE schema proposed by LLaMA 3.1 (8b)
added a property called, diketoneEtchingMechanism, which
represents a very specialized etching mechanism and cannot
be generalized to all the ALE processes. Among the models
tested for ALE, LLaMA 3.1 (8b) was particularly affected. It
sometimes deviated from the original schema structure and
produced highly specialized schemas.

Comprehension of ALD and ALE processes. A main
objective for applying SCHEMA-MINER was to assess how
effectively different LLMs comprehend the ALD and ALE
processes. This was primarily evaluated through domain
expert assessments of the extracted schemas, focusing
on the relevance, completeness, and organization of the
properties identified by the models. Table 3 presents an
example illustrating how the ALD experimental process
schema evolved through each stage of the SCHEMA-
MINER workflow. It highlights how domain expert feedback
contributed to refining property names, structuring nested
relationships, and improving overall accuracy.

For the ALD process, both GPT-4o and LLaMA 3.1
(8B) demonstrated strong comprehension. They not only
identified the key properties of ALD but also structured them
in a semantically meaningful way and the resulting schemas
were well-aligned with expert expectations.

In contrast, for the ALE process, GPT-4o and GPT-4-
turbo outperformed LLaMA 3.1 (8B). While these models
produced coherent and generalizable schemas, LLaMA 3.1
introduced an highly specific properties, which limited the
schema’s interpretability. These issues suggest that although
LLaMA 3.1 showed promise for ALD, its performance on
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Stage 1
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3758 0.3317 0.7764 0.2732 0.1766 0.7497

GPT-4-turbo 0.3758 0.3608 0.7764 0.3542 0.2705 0.7485
LLama-3.1-8B 0.2732 0.1953 0.7497 0.3542 0.2706 0.7485

Stage 2
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3865 0.4612 0.7879 0.2683 0.2123 0.7738

GPT-4-turbo 0.3865 0.4611 0.7879 0.2838 0.2139 0.7524
LLama-3.1-8B 0.2683 0.2353 0.7738 0.2838 0.2409 0.7524

Stage 3
GPT-4o GPT-4-turbo LLama-3.1-8B

RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1 RougeL Bleu Score BERT-F1
GPT-4o 0.3552 0.3488 0.7631 0.2793 0.2458 0.7370

GPT-4-turbo 0.3552 0.3629 0.7631 0.3203 0.2693 0.7505
LLama-3.1-8B 0.2793 0.2492 0.7370 0.3203 0.2677 0.7505

Table 2. Quantitative schema variance across Stages 1, 2, and 3 of SCHEMA-MINER for ALE experimental processes, evaluated
using ROUGE-L, BLEU, and BERTScore metrics, comparing schemas from GPT-4o, GPT-4-turbo, and LLama 3.1 (8B).

ALE was less consistent, likely due to its sensitivity to
broader or more complex input corpora.

Difference between ALD and ALE process schema.

An ideal schema representations for both ALD and ALE
processes were derived from the output of stage-3 of
SCHEMA-MINER and expert feedback. These schemas reflect
optimal structures for modeling the respective processes
and incorporate semantic grounding through the QUDT
ontology, ensuring scientific data representation.

As discussed in Section Application: Material Science
Use Case, ALD and ALE represent fundamentally opposite
physical processes, where ALD is focused on the deposition
of material layers, while ALE is concerned with the removal
of material. Despite their opposing goals, the schemas
for ALD and ALE share a subset of common properties,
such as reactants, precursors, and substrates, which are
essential to both processes. However, each process also
has domain-specific properties that uniquely characterize
it. For example, ALD schema (https://orkg.org/
template/R1366244) typically include metrics like
growth per cycle, whereas ALE schema (https://orkg.
org/template/R1379646) uses properties such as etch

per cycle. The schema differences underscore the importance
of process-specific modeling, even within closely related
domains.

Impact of using a hybrid heuristic approach

for grounding schemas with QUDT. To semantically
enrich the extracted schemas, SCHEMA-MINERpro used an
agentic workflow to ground physical quantities using the
QUDT ontology. To optimize this grounding process, we
implemented a hybrid heuristic approach within the agent,
combining predefined mappings with LLM-based inference.

Specifically, the agent was provided with QUDT ontology
and a process schema to be grounded. For all the
unambiguous properties, the agent was able to perform direct

lookup through the ontology without needing to invoke
the LLM for each grounding task. This hybrid strategy
significantly improved efficiency by reducing the number of
API calls to the LLM for ontology concept retrieval and
reasoning. It allowed the agent to ground many standard
physical properties quickly, reserving LLM calls for less
common or more ambiguous cases.

Impact of using FAISS for semantic search. For all
the ambiguous physical properties which cannot be directly
mapped with any ontology term, the agent uses a semantic
search mechanism to retrieve relevant ontology information
for grounding. This is achieved through the integration
of FAISS (14), a vector-based search library designed for
efficient similarity matching over large corpora.

Because of this approach of dividing the ontology
into multiple chunks and allowing the agent to perform
semantic search on these chunks, it significantly reduces
the computational overhead of loading and parsing the
full ontology during runtime, which would otherwise be
infeasible due to its size and complexity.

Correctness of QUDT grounding with AI agent. To
assess the accuracy of the semantic grounding process, the
QUDT grounded schemas generated for ALD and ALE
processes were reviewed and validated by domain experts.
The goal was to evaluate both the correctness of the assigned
quantityKind and the associated unit for each physical
property.

Overall, the AI agent demonstrated a high level of
accuracy in detecting and grounding all physical properties
present in the schemas. However, some issues were observed
with the selection of units, particularly in terms of practical
suitability within experimental contexts. For example, in the
ALD simulation schema, the property flowRate was correctly
assigned a quantityKind and matched to the unit Liter-Per-
Minute, which is semantically accurate. However, domain
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Extracted Properties Expert Feedback

Stage-1 Schema Reactants, Process Conditions, Film Properties, Safety And Stability

Missing Property:
ALD Method, Material Deposited, Carrier Gas
, Bubbler Temperatures, Reactor, Substrate,
Nucleation period, Crystallinity, Film Density

Stage-2 Schema

ALD Method, Material Deposited,
Reactants (Contains Carrier Gas, Bubbler Temperature),
Process Conditions (Contains Reactor, Substrate, Nucleation Period),
Film Properties (Contains Crystallinity, Density) , Optical Properties ,
Electrical Properties, Safety And Stability

Merge Properties:
Growth Per Cycle, Nucleation Period,
Self Limiting Growth into
Growth Behavior information unit

Stage-3 Schema

ALD Method, Material Deposited, Reactants,
Process Conditions (Removed Growth Per Cycle and Nucleation Period),
Growth Behavior (Contains Growth Per Cycle, Nucleation Period, Self Limiting Growth),
Film Properties, Optical Properties , Electrical Properties,
Safety And Stability, Diffusion Barrier Properties

None Needed

Table 3. Evolution of selected ALD experimental schema properties across three key stages of the SCHEMA-MINER workflow. The
table highlights changes in property extraction and representation introduced by each stage. Only top-level properties are shown,
but optional nested properties are included to illustrate the significant role of domain-expert feedback.

experts noted that in practice, this unit is too big to be
used in ALD experiments. A more appropriate unit, such as
CentiCubicMeter-Per-Minute (cM³/min), would better align
with experimental practices. Overall, the domain expert had
to correct around 30% property units suggested by agent.

Discussion: Generalizability of
SCHEMA-MINERpro

SCHEMA-MINERpro was explicitly designed as a domain-
agnostic schema discovery workflow, even though our
experiments focused on materials science (ALD/ALE
processes). The method employs a plug-and-play LLM-
driven pipeline with stages for initial schema generation,
refinement, and grounding in ontologies. In principle,
it makes no hard-coded assumptions about materials
or the processes. Indeed, schema mining in science is
often “fragmented [and] domain-specific, and. . . lacking
generalizability” (48), and our goal was to overcome
that. The SCHEMA-MINERpro workflow can be applied to
any structured process text: it takes as input a domain
specification document (describing the kind of process and
data one expects) and a corpus of related documents, and
then iteratively extracts schema elements with optional
expert feedback. Because all core steps rely on general
LLM capabilities and an ontology-lookup component, the
same machinery can handle biomedical protocols, chemical
syntheses, engineering processes, etc., with only domain-
relevant prompts and ontologies swapped in.

For example, SCHEMA-MINERpro could be applied to
biomedical protocols (e.g., clinical workflows or lab
procedures). Laboratories and hospitals already document
complex procedures in prose (e.g., SOPs, clinical trial
protocols) where steps like “add reagent,” “incubate,” or

“monitor vital signs” appear. In such cases, one could specify
a biomedical context in the initial prompt and feed a small set
of representative protocol documents. The LLM would then
propose schema elements (actions, parameters, materials)
which could be grounded to biomedical ontologies. Domain
vocabularies like the Unified Medical Language System
(UMLS) (7) or Medical Subject Headings (MeSH) (35)
would allow grounding drugs, diseases, or procedures
to standard concepts, while specialized ontologies like
EXACT2 (EXperimental ACTions) provide structure for
protocol steps (53). In fact, the EXACT2 ontology has
been demonstrated to capture the “essential information
about biomedical protocols” in a machine-processable way,
and has been used as a reference model for text-mining
of experimental actions and their properties. Grounding
SCHEMA-MINERpro’s output to UMLS/MeSH/EXACT2
would thus embed rich biomedical semantics into the
extracted schema.

Similarly, chemistry synthesis procedures are a natural
application. Published experimental procedures (e.g. for
organic syntheses) describe sequences like “dissolve 5g

of X in solvent Y, heat at 80°C, then add reagent Z.”
An LLM-based schema extractor can identify the stepwise
actions (dissolve, heat, add) and entities (compounds,
solvents), and an ontology lookup can link chemicals
to standardized classes. For instance, ChEBI (Chemical
Entities of Biological Interest) is a well-known ontology
of small molecules (12). SCHEMA-MINERpro could ground
each mentioned reagent or product to ChEBI entries. For
reactions, the Name Reaction Ontology (RXNO) defines
hundreds of reaction classes (e.g. Diels–Alder cyclization),
which could be used to label transformation steps. In short,
using ChEBI and RXNO (and related chemoinformatics
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ontologies) would turn raw synthesis text into a semantically-
rich workflow schema.

Engineering and environmental workflows are another
illustrative domain. Consider workflows in environmen-
tal engineering (e.g., water treatment procedures (52)) or
mechanical assembly lines. Relevant ontologies like SWEET
(Semantic Web for Earth and Environmental Terminology)
cover environmental science concepts and units (44), and
engineering-specific vocabularies can capture mechanical
processes and equipment. SCHEMA-MINERpro could con-
sume, say, an environmental impact report or a factory
standard operating procedure, and extract structured steps
(monitor pollutant level, adjust flow valve, inspect com-
ponent, etc.). These can be grounded to SWEET concepts
(e.g. “WaterQualityObservation”) or to engineering domain
ontologies (for example, systems engineering ontologies or
building information models). While the specific ontologies
for mechanical engineering may be fewer, one can also use
general vocabularies (units from QUDT (52) or SWEET,
materials from EMMO the Elementary Multiperspective
Material Ontology, etc.) to cover many aspects of engineer-
ing processes.

Importantly, adapting SCHEMA-MINERpro to these
domains would require minimal modifications to the
pipeline. The core workflow remains the same: supply
a domain-specific prompt or specification, select a
suitable LLM (via the plug-in interface), and feed in
the new corpus. No algorithmic changes are needed. In
practice, one would “prompt-tune” by phrasing instructions
about clinical protocols or chemical syntheses, and one
would seed the ontology lookup with relevant ontologies
(e.g. UMLS/MeSH for biomedicine, ChEBI/RXNO
for chemistry, SWEET/engineering ontologies for
environmental/mechanical) instead of only the materials
ontologies we used. The iterative human-in-the-loop
refinement still applies: domain experts would verify or
correct the candidate schema. In sum, the pipeline is
inherently reusable across domains: its steps for initial
schema induction, refinement from example documents,
and ontology grounding do not depend on material-specific
code. Only the inputs (prompts, document sets, ontologies)
change, which is a lightweight adaptation.

Finally, even within materials science, there is room to
enhance semantic grounding by incorporating additional
ontologies. In our ALD/E use cases we grounded to
QUDT for units (52). But many ontologies are relevant
to materials and processes. For example, ChEBI (already
mentioned) could cover any molecular precursors or
by-products involved in deposition processes (12). The

Materials Design Ontology (MDO) defines concepts for
solid-state physics and materials structures (32), and linking
process parameters to MDO classes could capture high-
level design intent. The European Materials and Modeling
Ontology (EMMO; https://emmo-repo.github.

io/versions/1.0.0-beta/emmo.html) provides a
unified framework for physics, chemistry and materials
concepts; grounding to EMMO would align our schemas
with a broad community standard. In fact, past studies have
noted that combining QUDT with other vocabularies (e.g.
SWEET or domain-specific ontologies) is desirable future
work for richer models. Integrating these ontologies into
SCHEMA-MINERpro’s lookup stage would enrich the schemas
with concepts like materials’ intrinsic properties or chemical
identities, beyond the units currently captured. Such multi-
ontology grounding is well supported by our existing
workflow (which already handles dozens of ontologies in
Materials terminologies) and could be undertaken without
changing the core system.

In summary, SCHEMA-MINERpro’s methodology – itera-
tive LLM-based extraction plus ontology grounding – is not
tied to materials science. It can be redirected to any domain
of structured procedures by adjusting prompts, corpora, and
ontology inputs. The biomedical, chemical, and engineering
examples above illustrate this flexibility. We plan to pursue
these extensions in future work. Doing so will fully confirm
the approach’s promised generality, and will also help build
richer, cross-domain semantic schemas by leveraging ontolo-
gies beyond those we have used so far

HuggingFace Chat Application

To enhance the usability and adoption of the SCHEMA-
MINERpro tool, we developed a web-based chat application
hosted on Hugging Face Spaces. While the original version
of SCHEMA-MINER was designed as a command-line
interface (CLI) tool primarily for technical users, this new
graphical user interface significantly lowers the barrier to
entry by allowing non-technical users, including domain
experts and researchers, to engage with schema extraction
and refinement workflows without the need to interact
directly with code or local dependencies.

This user-facing interface is particularly valuable for facil-
itating iterative refinement cycles, a core design philosophy
behind the SCHEMA-MINER workflow. Through an intuitive
chat-driven interaction model, the application guides users
through the three-stage SCHEMA-MINER pipeline, where the
user initiate schema extraction from a process specification
document and iteratively incorporates additional scientific
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Figure 7. SCHEMA-MINERpro Chat application hosted on Hugging Face Spaces. The interface enables users to extract and refine
process schemas through three-stage workflow using graphical user interface. The application is accessible at:
https://huggingface.co/spaces/SciKnowOrg/schema-miner

literature and domain expert feedback. This conversational
paradigm enables users to assess intermediate schema out-
puts and make informed adjustments, leading to more accu-
rate and semantically aligned process representations.

The application is implemented using the GRADIO library,
a Python-based framework designed for building interactive
data science and machine learning applications with minimal
overhead. Gradio provides rapid prototyping capabilities
and flexible UI components, making it the best choice
for deploying LLM-powered systems. Its integration with
Hugging Face Spaces further facilitates public sharing and
reproducibility of AI applications.

Currently, the chat interface supports schema extraction
using OpenAI-based models such as GPT-4o via secure
API access. Future updates will expand support to include
open-source LLMs (e.g., Hugging Face Transformers) to
ensure broader accessibility and to reduce dependency on
proprietary services. Importantly, the application is model-
agnostic and can generalize to any domain involving
structured process documentation, making it a powerful tool
for fields such as materials science, biomedical workflows,
manufacturing protocols, and beyond.

Conclusion

In this work, we presented SCHEMA-MINERpro, an extensible
framework for scientific schema discovery and agent-based

ontology grounding. Beyond its demonstrated utility in
semiconductor manufacturing processes (ALD/ALE), our
approach offers substantial contributions to the Semantic
Web vision. The ontology-grounded schemas produced by
our framework are machine-actionable and reusable across
scientific domains, laying a foundation for reproducible
scientific workflows, automated reasoning, and semantic
interoperability.

For example, an ontology-grounded ALD schema can be
directly used to annotate experimental datasets, support
unit-consistent comparisons, or integrate with domain-
specific knowledge graphs, enabling semantic queries such
as “Find all ALD processes operating below 200°C using

trimethylaluminum precursors”. These capabilities extend
the reach of our work into AI4Science, where automated,
trustworthy, and interpretable systems are central to scientific
discovery.

Looking ahead, our next steps include aligning discovered
schemas with Wikidata (55) to link process-level knowledge
to broader scientific entities, and expanding schema
mining to biology and environmental science, where
similar challenges of unstructured reporting and semantic
fragmentation persist (39; 2). We also envision integrating
SCHEMA-MINERpro with active LOD initiatives and FAIR
digital objects (56; 11), contributing toward a shared,
structured, and queryable infrastructure for open science.
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E., Baumlé, V., Saunders, N.J., Marwan, W., Rudkin,

B.B.: Exact2: the semantics of biomedical protocols. BMC

bioinformatics 15, 1–11 (2014)

[54] Vos, M., Mackus, A., Kessels, W.: Atomic layer deposition

process development - 10 steps to successfully develop,

optimize and characterize ald recipes. AtomicLimits 3 (2019),

https://www.atomiclimits.com/2019/02/12/

atomic-layer-deposition-process-development-10-steps-to-successfully-develop-optimize-and-characterize-ald-recipes/
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