
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ontologies, Knowledge Graphs, and User
Interfaces for Exploration of Irish Traditional
Music
Abdul Shahid a, Rory Sweeney b, Pushkar Jajoria b, Danny Diamond b, Mathieu D’Aquin c and
James McDermott b,*

a School of Business, South East Technological University, Waterford, Ireland
E-mail: abdul.shahid@setu.ie
b School of Computer Science, University of Galway, Ireland
E-mails: rory.sweeney@universityofgalway.ie, pushkarjajoria@gmail.com, d.diamond1@universityofgalway.ie,
james.mcdermott@universityofgalway.ie
c Laboratoire Lorrain de Recherche en Informatique et ses Applications and Institut des Sciences du Digital,
Université de Lorraine, France
E-mail: mathieu.daquin@loria.fr

Abstract.
Musical patterns are important for many musicological tasks, such as genre classification, identifying common origins of

pieces, and measuring similarities between compositions. Our previous research has defined several types of patterns in Irish
traditional music and developed tools for extracting them from databases of musical scores. We now wish to enable flexible and
efficient querying, open access, preservation, integration with multiple data sources, and user-friendly exploration of the data.
To address these needs we use semantic web technologies. We present a music pattern ontology based on the Music Anno-
tation Pattern (an ontology design pattern [13] which formalizes key concepts in musical annotations). We develop a pipeline
(Patterns2KG) to process our pattern data through the ontology. We process approximately 40 thousand compositions from two
datasets to give a knowledge graph (KG) of approximately 45 million triples. We evaluate the work against pre-developed com-
petency questions. We then elicit requirements for a graphical user interface (GUI) in collaboration with musicologists, and
develop custom modular GUI software which interfaces with the KG via SPARQL queries.

Keywords: Music Annotation, Music Patterns, Patterns KG, Music Similarity

1. Introduction

In musicology, musical analysis enhances our understanding of the content of the music. It provides insights
into musical style and genre, assessing the compositional techniques used by the composer, tracking the musical
development and evolution of different styles and genres over time, classifying music, recognizing genres, and
even generating music. In oral traditions, where pieces are transmitted from generation to generation without being
written down, finding musical relationships among pieces is particularly important because they can give insight
into the evolution of, and connections between, musical traditions.

*Corresponding author. E-mails: abdul.shahid@setu.ie, james.mcdermott@universityofgalway.ie.

1570-0844/$35.00 © 0 – IOS Press. All rights reserved.

mailto:abdul.shahid@setu.ie
mailto:rory.sweeney@universityofgalway.ie
mailto:pushkarjajoria@gmail.com
mailto:d.diamond1@universityofgalway.ie
mailto:james.mcdermott@universityofgalway.ie
mailto:mathieu.daquin@loria.fr
mailto:abdul.shahid@setu.ie
mailto:james.mcdermott@universityofgalway.ie

2 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Musical analysis may focus on one or more “layers” of the music, such as musical structure, harmony, rhythm,
dynamics, and texture. This work follows the most-common approach in studies of Western folk music, focusing on
melody, which is defined simply as a sequence of notes, with durations and rests.

Patterns within or between such sequences are the focus of our research. Using multiple definitions of patterns,
and tools for extracting patterns from databases of musical scores in the Irish folk tradition, we have previously
created a large database of patterns. We wish to present and preserve this pattern data within a robust structure,
enabling effective music analysis. Throughout the Polifonia project, we have represented datasets as Linked Open
Data (LOD, i.e. ontologies and KGs). The motivation is to enable flexible and efficient querying, open access,
preservation, integration across multiple data sources, and open-ended integration with future work [39]. Therefore
in the current paper, we describe the process of formalising the pattern data as LOD.

1.1. What is a musical pattern?

Pattern is a central concept in many fields. Mathematics has been called “the science of patterns” [40]; “pattern
recognition” is almost a synonym for the field of machine learning; in architecture, Alexander [3] codified common
design patterns, a term then adopted by software developers also (and we will see it in this context later).

Pattern analysis plays a significant role in the rich understanding of music. For example, Schenker [38] claimed
that repetition “is the basis of music as an art”, Bent [7] proposed that “the central act” in all forms of music analysis
is “the test for identity” and Lerdahl and Jackendoff [31] state that the importance of “parallelism” [i.e., repetition]
in musical structure cannot be overestimated. The more patterns one can detect, the more internally coherent an
analysis becomes, and the less independent information must be processed and retained in hearing or remembering
a piece. Pattern detection is seen as a central task in the field of music information retrieval (MIR). A repetition
need not consist of literal identity to give rise to a pattern. For example, if a sequence of notes is repeated with
transposition (i.e. all notes in the second occurrence have increased or decreased in pitch by some constant), it will
certainly be regarded as a repetition and hence a pattern. Patterns can occur due to repetitions within a single melody
or voice in a single piece; or between multiple voices in a piece; or between multiple pieces.

Creating a complete analytical taxonomy of pattern types and definitions has not been achieved in previous work,
and we do not attempt this. To be concrete, we have focused on a limited taxonomy of pattern types, all based on
n-grams of scale degree values. In Western music, a pitch can be defined simply as an integer (e.g., in the range
[0, 127] in the common chromatic MIDI encoding). For example, the “middle C” note on the piano is MIDI note
60. Several other integer representations for pitch are also common but discussion is out of scope here. We also
use the concept of accented notes: an accented note is a note which occurs on a beat. With these definitions, we
have a simple taxonomy. In our input corpus we count all n-grams of consecutive accented notes (represented as
scale degree values) for n = 4 . . . 10. In our earlier work, we developed the FoNN (FOlk N-gram aNalysis) tools1

which exhaustively and deterministically extract patterns from compositions. Briefly, all subsequences of length n
are extracted, and any which occur more than once in the corpus are taken as patterns. Although we focus on Irish
traditional music, the representation and all methods in the paper are suitable for other forms of European folk music
and to some extent for other forms of music when represented monophonically.

1.2. Patterns and Tune Families in Irish Folk Music

The existence of common melodic patterns2 between tunes in the Irish tradition was first noted by 19th century
collectors George Petrie and William Forde [10]. The influential Irish-American music collector Francis O’Neill
devoted a chapter in his 1913 book Irish Minstrels and Musicians to the qualitative identification of related melodies
within the Irish tradition [32].

In 1950, American folk music collector and researcher Samuel Bayard published his theory of tune families:
proposing that many traditional melodies could be traced, in the manner of a family-tree, to prototype melodies [5].

1https://github.com/polifonia-project/folk_ngram_analysis
2The following section draws on the M.Sc. thesis of author Danny Diamond[18].

https://github.com/polifonia-project/folk_ngram_analysis

Shahid et al. / 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In Bayard’s words: “...a group of melodies showing basic interrelation by means of constant melodic correspon-
dence, and presumably owing their mutual likeness to descent from a single air that has assumed multiple forms
through processes of variation, imitation and assimilation.”

Bayard’s tune family concept has been widely adopted in research on Irish and other Western folk music [10,
26, 48]. This provides the point of departure for our work. We assume that these important shared patterns can be
captured well by a diatonic representation. Indeed, the diatonic representation deals well with the modal ambiguity
common in Irish traditional music. We deal with transpositions among tune variants by normalising all melodies to
a common tonal centre.

Further, we take advantage of previous work on structure in Irish traditional music to focus on “accented tones”
only, i.e. those on the beat. Their importance (in contrast to the variability of the unaccented tones) in defining a
stable outline melody crops up consistently in the literature [8, 43, 47, 48].

Thus, while we have worked with multiple definitions of patterns, in the current work we represent a pattern as
an n-gram of integers representing a sequence of diatonic scale degrees of accented notes, which occurs more than
once in the corpus. For example, the pattern (7, 1, 7, 6, 1) is a 5-gram pattern visible in Fig. 5.

In previous work, we have annotated 314 Irish tunes with ground-truth on tune family membership, based on the
academic literature and expert judgement [18]. The ground-truth data is available3.

1.3. Previous work on music-related ontologies and KGs

In the literature, there are several ontologies that focus mainly on the modeling of music scores and cataloging
information. We have summarized those in Table 1.

For example, the Music Ontology [34] enumerates the concepts and properties for describing music (i.e., artists,
albums, and tracks), while the DOREMUS Ontology [2] focuses on describing catalog information. There are some
other ontologies as well, e.g., Music Theory Ontology (MTO) [35] and Music Score Ontology (Music OWL) [28].
The MTO describes theoretical concepts of music composition, while Music-OWL models similar concepts with a
focus on music sheet notation. Apart from these, Music Notation Ontology focuses on the core “semantic” informa-
tion present in a score and also establishes a relationship between a symbolic and audio representation [33].

The efforts described above have focused on cataloging and music score information, whereas patterns in musical
objects are annotations. Apart from patterns, other typical annotations might contain information about instruments
and chords detected during certain time intervals in the music. For example, an annotation could represent that the
chord "C:major" is heard during the time interval 10s-20s, detected with confidence 99% [13]. The MIR community
uses JAMS: A JSON Annotated Music Specification for Reproducible MIR Research [27] as a software specification
for music annotations.

The previous research in MIR mentioned is mainly focusing on formalizing and cataloging music content and
metadata. However, recently the Music Annotation Pattern – An Ontology Design Pattern (MAP-ODP) [13] was
proposed aiming to homogenise different annotation systems and to represent several types of musical objects (e.g.,
chords, patterns, structures). Furthermore, a software pipeline was developed with the help of SPARQLAnything [4]
to process a database of annotations in JAMS format and automatically populate a corresponding KG. Ontology
Design Patterns (ODPs) are reusable solutions to common modeling problems that may arise when building an
ontology. They provide guidelines for creating a well-structured ontology and ensuring that it is consistent, interop-
erable, and maintainable. To avoid confusion, we will use the term “design pattern” to refer to an ontology design
pattern, and just “pattern” to refer to a pattern in musical content.

The pattern found in the musical content is also a kind of annotation and thus it was ideal to use the MAP design
pattern to model patterns and eventually create a KG. Thus, we developed our model on the basis of MAP-ODP to
conceptualise n-gram pitch class patterns. Finally, we developed a software pipeline to populate a KG of n-gram
patterns that automatically creates a KG from the patterns found in the tunes.

3https://github.com/polifonia-project/folk_ngram_analysis/tree/master/tune_family_annotations

https://github.com/polifonia-project/folk_ngram_analysis/tree/master/tune_family_annotations

4 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
List of ontologies for musical data modeling in previous work.

Sr.
No

Ontology Description

1. Music Ontology [34] http://purl.org/
ontology/mo/

The purpose of Music Ontology is to describe music (i.e. artists, albums, and tracks). It defines
a set of classes, properties, and relationships that can be used to describe various aspects of
music, including musical works, performers, events, and genres.

2. Tonality Ontology [23] http://purl.
org/ontology/tonality/

The purpose of this ontology is to define a set of concepts and relationships that can be used
to describe tonal structures, such as key intervals, interval class, and scales.

3. Segment Ontology [24]
http://www.linkedmusic.org/
ontologies/segment

Segment Ontology is a formal representation of music that focuses on the segmentation of
musical structures into smaller, meaningful parts. It defines a set of concepts and relationships
that can be used to describe different types of music segments, such as phrases, sections, and
motifs.

4. Music Score Ontology [28]
http://linkeddata.uni-muenster.de/
ontology/musicscore

This ontology defines a set of concepts and relationships that can be used to represent different
aspects of music scores, including staff notation, musical symbols, and temporal relationships
between them.

5. Music Theory Ontology [35] http://
purl.org/ontology/mto/

This ontology is related to previous music ontologies such as the Music Ontology and the
Music Score Ontology. It extends these ontologies by focusing specifically on music theory
concepts and relationships. Some of the classes and properties of this ontology are key, chord,
meter, cadence, etc.

6. Music Notation Ontology
[36] http://cedric.cnam.fr/isid/
ontologies/MusicNote.owl

It defines a set of concepts and relationships that can be used to represent different aspects of
music notation, including chord, score, note, measure, and music event. It also defines some
object and data properties such as has event, has measure, has note, has part, has syllable, has
composer, has count, has pitch, has title, etc.

7. DOREMUS [2] http://data.
doremus.org/ontology

The DOREMUS (DOing REusable MUSical data) extends the previous models CIDOC-CRM
and FRBRoo for representing bibliographic information and adapting it to the domain of mu-
sic. It uses several shared vocabularies about music-specific concepts (such as musical genres
or keys) and is linked and published using the SKOS standard. It defines properties such as
has rhythmic pattern but it does not serve our purpose to represent n-gram patterns.

1.4. Summary of the work

Our previous work in the Polifonia project developed ontologies and KGs for musical metadata [9, 12, 17].
They represent concepts such as composition name, family (applicable to “tune families” which occur in traditional
music), composition type (e.g. jig or reel, again applicable to traditional music), key signature, and the name of the
corpus from which the composition is drawn 4. On top of these, we developed an ontology for musical patterns,
including concepts such as the musical composition where the pattern is found, frequency and locations of pattern
occurrences, composition duration, pattern contents, pattern type (i.e. the specific definition of the pattern in use),
and the complete composition contents. The latter is to facilitate pattern tracing within a composition. We will
describe our ontology and KG in detail in Section 2.

We developed a custom software pipeline, based on previous work by project partners [14], to produce the KG
given the ontology and a pattern dataset. This pipeline includes intermediate processes which will be described in
Section 3. Finally, we developed a UI for exploration of the patterns KG. This is described in Section 5.

2. Proposed Ontology and Knowledge Graph

In this section, we present the proposed ontology and relevant details related to the requirements for modeling
patterns, as outlined in the previous sections. We provide information about the software components that were
developed to populate the KG.

4https://github.com/polifonia-project/tunes-knowledge-graph

http://purl.org/ontology/mo/
http://purl.org/ontology/mo/
http://purl.org/ontology/tonality/
http://purl.org/ontology/tonality/
 http://www.linkedmusic.org/ontologies/segment
 http://www.linkedmusic.org/ontologies/segment
http://linkeddata.uni-muenster.de/ontology/musicscore
http://linkeddata.uni-muenster.de/ontology/musicscore
http://purl.org/ontology/mto/
http://purl.org/ontology/mto/
http://cedric.cnam.fr/isid/ontologies/MusicNote.owl
http://cedric.cnam.fr/isid/ontologies/MusicNote.owl
http://data.doremus.org/ontology
http://data.doremus.org/ontology
https://github.com/polifonia-project/tunes-knowledge-graph

Shahid et al. / 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.1. Building on the Smashub workflow

Our work follows an existing workflow, the Smashub5 workflow. Smashub uses an ontology for annotations in a
musical score or recording, and this ontology is part of the Polifonia Ontology Network (PON)6. The PON is a set
of OWL ontology modules that describe the content and context of tangible and intangible musical cultural heritage
assets across Europe [17]. Smashub takes advantage of a common format known as JAMS to represent these JAMS
annotations. They are processed by SPARQL Anything with a custom query to generate a KG in RDF format. The
first instance of the Smashub workflow is ChoCo, a chord corpus KG created by integrating and standardizing 18
existing chord collections [14]. The other existing example is Harmonic Memory [15], a KG of harmonic patterns.

To adapt the Smashub workflow to the case of melodic patterns, we created a custom JAMS pattern schema and
SPARQL query, which will be described in Section 3.

2.2. Pattern Ontology – Music Annotation Framework

The purpose of the MAP-ODP is to model different types of musical annotation such as chords, structure, and
patterns [13]. The MAP-ODP uses JAMS terminology because of its wide adoption in the MIR community, and thus
the classes start with the name jams. The proposed pattern ontology uses MAP-ODP to model pattern information
in a score. The ontology is shown in Figure 1.

There are two classes defined, named jams:JAMSObservation and jams:JAMSAnnotation. The
jams:JAMSAnnotation class includes multiple observations. The main concept expressing patterns is the
jams:ScorePatternOccurrence class. It specifies the occurrence of a pattern at a specific time in a compo-
sition. It has a property jams:hasLocation and to represent the location of a pattern.

The actual content (i.e., scale degree values) is described by a separate class, namely jams:Pattern.
The same pattern may occur in multiple locations in a tune and in multiple tunes. This linkage enables
the connection of different compositions within a corpus or even across multiple corpora. Several prop-
erties are defined for jams:Pattern, such as xyz:pattern_complexity, xyz:pattern_length,
xyz:pattern_content, and xyz:pattern_type. The xyz:pattern_type property is a string. It is
not possible to anticipate all future patterns types, so a string enables flexibility. Our KG contains patterns with
type diatonic scale degree, level=accent and n_vals, together indicating that we represent dia-
tonic notes, restricting to notes on strong (accented) beats, and showing the number of values in the particular pat-
tern. The xyz:pattern_complexity property defines how complex a pattern is, which is the fraction of unique
pitch values in a pattern and the length of the pitch. The current ontology version only shows the concepts and prop-
erties associated with patterns. In addition to this, various metadata information of the musical composition is also
modeled, including jams:key, jams:timeSignature, jams:transcriber, jams:tuneContent, and
jams:tuneFamily, etc.

2.3. Knowledge Graph

Figure 2 shows an illustrative extract from the KG, with important concepts and relationships. As shown, the KG
contains musical compositions with metadata such as titles. Each composition may have annotations, in particular
annotations of pattern occurrences. An occurrence of a pattern is a location in time in a particular composition where
a pattern occurs. A pattern has contents.

3. Patterns2KG: JAMS Pipeline

The Patterns2KG7 pipeline consists of several stages as shown in Figure 3. First, pattern sequences are extracted
from the dataset using FoNN tools. Details are discussed in Section 3.2. The dataset includes composition metadata,

5https://github.com/smashub/choco
6https://github.com/polifonia-project/ontology-network
7https://github.com/polifonia-project/patterns-knowledge-graph

https://github.com/smashub/choco
https://github.com/polifonia-project/ontology-network
https://github.com/polifonia-project/patterns-knowledge-graph

6 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

mm:MusicEntity

xsd:double

jams:beatsDuration

xsd:string jams:tuneContent

mm:timesig

mm:FormType

mm:hasKey

jams:timeSignature

mm:FormType

mm:hasKey

tunes:TuneFamily

rdf:type

rdf:type

xsd:string

xsd:string

xsd:string

xsd:string

mm:tuneFamilyName

mm:timesig

mm:tuneTypeName

mm:tuneKeyName

Prefixes

core:
mm:

jams:
xyz:

http://w3id.org/polifonia/ontology/core/
http://w3id.org/polifonia/ontology/music-meta/
http://w3id.org/polifonia/ontology/jams/
http://sparql.xyz/facade-x/data/

jams:includesObservation owl:allValuesFrom jams:JAMSScoreObservation

jams:JAMSAnnotation jams:JAMSObservationjams:JAMSIncludesObservation

jams:JAMSScoreObservation

jams:ScorePatternOccurence

jams:Pattern

rdfs:subClassOf

rdfs:subClassOf

xsd:string

xyz:pattern_complexity

jams:ofPattern

jams:hasLocation

xsd:float

xyz:pattern_content

xsd:string

xyz:pattern_type

xsd:string

xyz:pattern_length

rdfs:subClassOf

xsd:float

Fig. 1. The pattern ontology: relevant concepts of melody and patterns used to generate the KG.

and details can be found in Section 3.1. Next, the Patterns2KG pipeline processes the pattern sequences to generate
a .jams file for each composition. Patterns2KG uses a specialized schema to represent patterns, which is described
in Section 3.3. Next, Patterns2KG loads each .jams file and converts it to RDF. This is accomplished through
a SPARQL query that automatically loads the JAMS file and uses SPARQL Anything [4] to generate the KG. A
snippet of the KG is depicted in Figure 2. This process is repeated for all JAMS files, resulting in the creation of the
KG for the entire dataset.

3.1. Dataset

We begin by specifying the dataset we used. In our previous work [19], we conducted a comprehensive pattern
analysis on a large dataset of Irish folk music, known as The Session8[29]. This dataset is crowd-sourced but is
widely regarded as a definitive resource by practitioners. The dataset contains 40,152 compositions (as of our extract
date), in ABC notation, a symbolic music format widely used by practitioners and students of Western folk music.
A further source of tunes is the Essen corpus9, which contains music from a wider variety of traditions.

8https://thesession.org/
9http://essen.themefinder.org/

https://thesession.org/
http://essen.themefinder.org/

Shahid et al. / 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

jams:isJAMSAnnotationOf

jams:ofPattern

jams:JAMSAnnotation

mm:MusicEntity

core:title

"1stAugust14126"^^xd:string

jams:ofPattern

jams:includesObservationjams:includesObservation

jams:hasLocation "48"^^xsd:int"5"^^xsd:int jams:hasLocation

jams:ofPattern

jams:JAMSAnnotation

jams:includesObservation

xyz:pattern_type

xyz:pattern_length

"5"^^xsd:int

xyz:pattern_content

'diatonic scale degree',
level='accent',

n_vals=5"^^xsd:string

xyz:pattern_length

"5"^^xsd:int

xyz:pattern_content

mm:MusicEntity

"4,2,4,1,4"^^xsd:string

core:title

"1stAugust935"^^xd:string

"10"^^xsd:int jams:hasLocation "35"^^xsd:intjams:hasLocation

"0.75"^^xsd:double

xyz:pattern_complexity

"0.75"^^xsd:double

xyz:pattern_complexity

"7,0,7,0,7"^^xsd:string

jams:ofPattern

jams:Pattern jams:Pattern

jams:includesObservation

xyz:pattern_type

jams:isJAMSAnnotationOf

jams:ScorePatternOccurrencejams:ScorePatternOccurrence

jams:ScorePatternOccurrencejams:ScorePatternOccurrence

'diatonic scale degree',
level='accent',

n_vals=5"^^xsd:string

Fig. 2. Extract from the pattern KG. One composition (top) can be related to another (bottom) via occurrences of the same patterns (middle). The
yellow boxes show information about patterns themselves, while blue boxes concern patterns’ usage and location in tunes.

abc sources

JAMS
pattern_fonn

schema

Polifonia music-
meta & pattern

ontology

pattern data
JAMS

annotations
RDF

FONN
tools

Python
script

Smashub
SPARQL
query

Fig. 3. Workflow of the proposed system

3.2. Extracting patterns

The FoNN tools take inputs from The Session in ABC format and, for each composition, create sequences rep-
resenting pitch, onset, duration, and velocity values for each note using the music21 Python library [11]. These
primary feature sequences are extracted both at note-level (i.e., for every note) and at accent-level (i.e., for rhyth-
mically accented notes only). Sequences of additional secondary features are derived from the primary sequences,

8 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

including the diatonic scale degree data used in this work. For Essen, tune data is available in integer representations
through the MTCFeatures library10.

The pattern extraction is then implemented on the diatonic scale degree sequences using n-grams. Only those n-
gram patterns occurring more than once in the corpus are retained. Pattern occurrences are counted per composition,
ranked by tf–idf [37], stored in a single corpus-level Pandas dataframe and then processed to a Python pickle
format. Thus for both note-level and accent-level we have a large dataframe of pattern occurrence tf-idf values
representing the entire corpus. The code of the FoNN tools is available on GitHub11.

3.3. JAMS Pattern Schema

The MIR community uses JAMS: A JSON Annotated Music Specification for Reproducible MIR Research [27]
as a software specification for music annotations.

The JAMS annotation offers a default pattern schema named pattern_jku; however, the default schema is
inadequate to model our requirements. For instance, it consists of fields such as pattern_id, midi_pitch,
occurrence_id, and staff whereas we require to define types of patterns, lengths of patterns, and pattern
contents so that we can preserve them in KG in the later stages. Therefore, a custom JAMS schema was designed,
suitable for patterns extracted by FoNN tools. This schema is named pattern_fonn, with components including
the pattern contents and location, as shown below.

{"pattern_fonn":
{"value": {

"type": "object",
"properties": {

"pattern_id": {"type": "string"},
"pattern_content": {"type": "string"},
"pattern_type": {"type": "string"},
"pattern_frequency": {"type": "number"},
"pattern_length": {"type": "number"},
"pattern_location": {"type": "number"}

},
"required": ["pattern_id", "pattern_content", "pattern_type",

"pattern_frequency", "pattern_length"]
},
"dense": false,
"description": "FoNN-Patterns"}}

Using custom text-processing Python scripts, the pattern database was converted to .jams files that follow this
schema. The content is organised in two main sections, one for pattern information and the other for file meta-
data. Each composition leads to one .jams file, containing a list of annotations under data. Each annotation
contains generic JAMS fields (suitable for any JAMS annotation), such as time and duration; and also contains
pattern_fonn-specific fields under value. In the file_metadata section the identifiers link to an
online reference source.

3.4. Knowledge Graph – RDF generation using SPARQL Anything

In the next stage, each .jams file is converted into a KG in the form of an RDF file. This is done using a custom
SPARQL query12 This is a dynamically generated SPARQL construct query that transforms the JAMS file into RDF
graph statements.

10https://github.com/pvankranenburg/MTCFeatures
11https://github.com/polifonia-project/folk_ngram_analysis
12Thanks to Andrea Poltronieri and Polifonia partners for help with this.

https://github.com/pvankranenburg/MTCFeatures
https://github.com/polifonia-project/folk_ngram_analysis

Shahid et al. / 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
List of competency questions developed in conjunction with musicologists

No. Question

CQ1 Metadata: Find composition metadata such as key signature, composition type (e.g. reel or jig), and name of the transcriber.
CQ2 Pattern types: Identify the types of patterns present, e.g. a pattern might be composed of a list of notes, or of accented notes,

pitch-class values, etc.
CQ3 Pattern search: Given a pattern, find a list of compositions it occurs in.
CQ4 Pattern search (2): Given two patterns, find a list of compositions both occur in.
CQ5 Pattern frequency: Retrieve patterns and their frequencies per tune.
CQ6 Pattern location: Given a pattern, retrieve its location in a tune (beginning, middle, or end).
CQ7 Similar compositions: Given a composition, find a ranked list of similar compositions (based on pattern similarity).
CQ8 Characteristic patterns: Given a tune family, tune type (e.g., reel), or national origin, find the patterns that are characteristic

of that subset of compositions.
CQ9 Pattern containment: Given a pattern, find all compositions when it or a pattern that contains that pattern occurs.

PREFIX jams:<http://w3id.org/polifonia/ontology/jams/>
PREFIX mm:<http://w3id.org/polifonia/ontology/music-meta/>
PREFIX core:<http://w3id.org/polifonia/ontology/core/>
PREFIX xyz:<http://sparql.xyz/facade-x/data/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX tunes:<http://w3id.org/polifonia/ontology/tunes/>
PREFIX prov: <http://www.w3.org/ns/prov#>

Listing 1: List of prefixes required for executing SPARQL queries.

Two details of the SPARQL query are worth noting, as follows.
First, to create a unique URI for representing a jams:JAMSAnnotation is created by applying the SHA1 hash

function to the combination of the TuneId and TuneTitle to produce the latter part of the URI. This approach
ensures interoperability with the other Polifonia Ontology Network (PON) modules.

Second, each jams:Pattern is also represented by a hashed URI. This URI means that multiple occurrences
of the same pattern point to the same pattern object, as shown in Figure 2. It also shows how patterns of the
same content are linked together to create an aggregated view of the whole KG. It is also worth mentioning that
a composition can belong to any corpus and thus compositions of different corpora can be conveniently linked
together, and thus it offers an opportunity to perform inter-corpus pattern analysis. Furthermore, it is scalable in the
sense that further corpora can be automatically added to enrich the KG without making any changes to the existing
model. It is also highly flexible: third parties can introduce novel pattern types (e.g., not based on n-grams) using
xyz:pattern_type.

A total of approximately 45 million (44,979,281) statements were generated. The process takes time linear in the
number of compositions – several hours for our complete KG. In the version we host for public use, we store just
the tune-family annotated subset of The Session together with all of Essen, totalling 8784 tunes. It is available via
Blazegraph13 with a SPARQL endpoint14.

4. Evaluation

We used the eXtreme Design methodology, a well-known method for the evaluation of ontologies. According
to this, an Ontology shall address a set of competency questions (CQs). Later the CQs are translated to SPARQL

13https://blazegraph.com/
14https://polifonia.disi.unibo.it/fonn/sparql

https://blazegraph.com/
https://polifonia.disi.unibo.it/fonn/sparql

10 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

queries for extracting the modeled knowledge to ensure the retrieved result serves its purpose. The CQs play a frame
of reference role for evaluating ontologies [25]. The CQs link to tasks the user might wish to do. Showing that our
system answers the CQs helps us to evaluate the scope of the domain modeling. Therefore, the CQs should be
developed in collaboration with domain experts. In our research, we conducted several meetings with musicologists
to understand their needs. Some of those who took part in these meetings were members of the Polifonia project,
so they understood the context, while others were independent. To save space, we present just four CQs, listed in 2.
The full list is available online.

In order to address these CQs, we formulated SPARQL queries as shown below. They demonstrate the suitability
of our proposed model in capturing pattern-related information of use to musicologists.

Later, a comprehensive analysis of each question was conducted, and below are the responses and actions. Es-
sential namespace prefixes are given in Listing 1 for use in later Listings. These queries can be executed using the
SPARQL endpoint already mentioned.

SELECT DISTINCT ?Title ?TuneID ?Duration ?Timesig ?Key ?Form
WHERE {

VALUES ?Title {"Drowsy Maggie"}
?Tune rdfs:label ?Title.
?Tune core:id ?TuneID.
?Tune mm:hasKey ?KeyURI;

jams:timeSignature ?TimesigURI;
jams:beatsDuration ?Duration;
mm:hasFormType ?FormURI.

?FormURI mm:tuneTypeName ?Form.
?TimesigURI mm:timesig ?Timesig.
?KeyURI mm:tuneKeyName ?Key.

} ORDER BY ?Title ?TuneID LIMIT 4

Title TuneID Duration Timesig Key Form
Drowsy Maggie 12406 66.0 4/4 Edorian reel
Drowsy Maggie 12407 18.0 4/4 Edorian reel
Drowsy Maggie 12408 50.0 4/4 Dmajor reel
Drowsy Maggie 12409 34.0 4/4 Edorian reel

Listing 2: Finding metadata information on a composition or corpus: query (top) and results (bottom). Notice that
providing a title will retrieve multiple variants, which have the same title but distinct IDs.

For many compositions in The Session corpus, we have multiple related variants that share a common title
but are differentiated via unique composition ID numbers. Therefore, various compositions may be retrieved if a
search is performed through the composition title. In this case, notice that we have provided a composition title
instead of composition Id, therefore, multiple compositions are retrieved as shown in Listing 2.

In the requirement outlined in 3, the user is interested in loading various types of patterns modeled in KG. The
results show that, at present, the KG contains diatonic scale degree patterns of varying lengths.

The requirements listed in 4 represent a common use case, where a user is interested in finding the list of compo-
sitions in which a given pattern occurs. This requirement is addressed using the SPARQL query provided in 4. The
results also include additional relevant information for the user, such as Tune Type, Key, and Time Signature.

The requirement defined in 6 reflects a scenario where a user is interested in identifying all compositions in which
two specific patterns co-occur. This need is fulfilled by the SPARQL query shown in the upper part of 5. The query
matches both patterns against the KG and retrieves only those tunes where both patterns are present. The result
table, shown below the query, includes the tune ID, title, and the frequency of each pattern within the matched
compositions.

Shahid et al. / 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?PatternType (COUNT(?PatternType) AS ?Occurrences)
WHERE {

?Pattern xyz:pattern_type ?PatternType.
}
GROUP BY ?PatternType
ORDER BY DESC(?Occurrences) LIMIT 10

PatternType Occurrences
feature=’diatonic scale degree’, level=’accent’, n_vals=6 35612
feature=’diatonic scale degree’, level=’accent’, n_vals=5 13721
feature=’diatonic scale degree’, level=’accent’, n_vals=4 3821

Listing 3: Find all pattern types in the KG and total number of each pattern

SELECT DISTINCT ?Title ?TuneID ?Timesig ?Key ?Form
WHERE{

?Observation jams:ofPattern ?PatternURI.
?PatternURI xyz:pattern_content "5, 1, 6, 2, 4, 1".
?Annotation jams:includesObservation ?Observation.
?Annotation jams:isJAMSAnnotationOf ?Tune.
?Tune rdf:type mm:MusicEntity.
?Tune core:id ?TuneID.

?Tune rdfs:label ?Title.
?Tune mm:hasKey ?KeyURI;
jams:timeSignature ?TimesigURI;
jams:beatsDuration ?Duration;
mm:hasFormType ?FormURI.
?FormURI mm:tuneTypeName ?Form.
?TimesigURI mm:timesig ?Timesig.
?KeyURI mm:tuneKeyName ?Key.

} ORDER BY ?Title ?TuneID LIMIT 4

Title TuneID Timesig Key Form
The Road to Lisdoonvarna 12972 12/8 Edorian slide
The Road to Lisdoonvarna 21776 12/8 Edorian slide
The Road to Lisdoonvarna 250 12/8 Edorian slide
The Road to Lisdoonvarna 27843 12/8 Edorian slide

Listing 4: Finding compositions where a given pattern was found: query (top) and results (bottom).

CQ5: Pattern frequency: Retrieve patterns and their frequencies per tune. Here a user is interested in finding
common patterns in a given tune.

To address this requirement, the query in 6 retrieves patterns occurring in a specific composition by explicitly
filtering results for a given tune title. While the current query focuses on a single composition, it can be easily
generalized to handle multiple tunes. Since the property jams:ofPattern links observations to a pattern URI,
identical patterns occurring in different compositions will still reference the same pattern entity. To compute how
frequently each pattern appears within the selected tune, we apply a GROUP BY clause on the tune title and pattern
content. The results, shown below the query, highlight the most frequently occurring patterns in the tune "Drowsy
Maggie."

CQ6: Pattern location: Given a pattern, retrieve its location in a tune (beginning, middle, or end). To address this

12 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?Title ?TuneID (COUNT(DISTINCT ?Observation1) AS ?Pattern1Freq)
(COUNT(DISTINCT ?Observation2) AS ?Pattern2Freq)↪→

WHERE {
?Pattern1 xyz:pattern_content "5, 1, 3, 1" .
?Pattern2 xyz:pattern_content "5, 3, 1, 1, 5, 1" .
?Observation1 jams:ofPattern ?Pattern1 .
?Observation2 jams:ofPattern ?Pattern2 .
?Annotation1 jams:includesObservation ?Observation1 .
?Annotation2 jams:includesObservation ?Observation2 .
?Annotation1 jams:isJAMSAnnotationOf ?TuneID .
?Annotation2 jams:isJAMSAnnotationOf ?TuneID .
OPTIONAL { ?TuneID rdfs:label ?Title }

}
GROUP BY ?TuneID ?Title
HAVING (COUNT(DISTINCT ?Observation1) > 0 && COUNT(DISTINCT ?Observation2)

> 0)↪→

ORDER BY DESC(?Pattern1Freq) DESC(?Pattern2Freq)

Title TuneID Pattern1Freq Pattern2Freq
Blackbird, The 39782 3 1
Blackbird, The 27198 2 2

Listing 5: Given two patterns, find a list of compositions both occur in. Query (top) and results (bottom).

SELECT ?Title ?PatternContent (COUNT(?Pattern) AS ?PatternFreq)
WHERE {

VALUES ?Title {"Drowsy Maggie"}
?Tune rdfs:label ?Title .
?JamsFile jams:isJAMSAnnotationOf ?Tune .
?JamsFile jams:includesObservation ?Observation .
?Observation jams:ofPattern ?Pattern .
?Pattern xyz:pattern_content ?PatternContent.

}
GROUP BY ?Title ?PatternContent
ORDER BY DESC(?PatternFreq) LIMIT 5

Title PatternContent PatternFreq
Drowsy Maggie 1, 1, 7, 1 41
Drowsy Maggie 6, 1, 1, 7 41
Drowsy Maggie 6, 1, 1, 7, 1 41
Drowsy Maggie 2, 1, 6, 1 34
Drowsy Maggie 5, 2, 1, 6 32

Listing 6: Retrieve the patterns and their frequencies per tune. Here, a user is interested in finding common patterns
in a given tune. Query (top) and results (bottom).

type of requirement, we include the total length of the tune as "BeatDuration" and also incorporate pattern location
information alongside the pattern. Therefore, the query listed in 7 can cater to this need.

CQ7: - Similar compositions: Given a composition, find a ranked list of similar compositions (based on pattern
similarity).

Shahid et al. / 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT DISTINCT ?Title ?TuneID ?Location ?BeatDuration ?PositionCategory
WHERE {

?Pattern xyz:pattern_content "5, 1, 6, 2, 1, 5" .
?Observation jams:ofPattern ?Pattern ;

jams:hasLocation ?Location .
?JamsFile jams:includesObservation ?Observation ;

jams:isJAMSAnnotationOf ?Tune .

?Tune rdf:type mm:MusicEntity ;
core:id ?TuneID ;
jams:beatsDuration ?BeatDuration .

OPTIONAL { ?Tune rdfs:label ?Title }
BIND(IF(?Location <= (?BeatDuration * 0.25), "Start",

IF(?Location >= (?BeatDuration * 0.75), "End", "Middle")
) AS ?PositionCategory)

} ORDER BY ?Title ?Location LIMIT 10

Title TuneID Location BeatDuration PositionCategory
Foxhunters, The 22807 60.0 82.0 Middle
Foxhunters, The 22808 60.0 82.0 Middle
Foxhunters, The 30575 60.0 82.0 Middle
O’Sullivan’s March 2204 85.0 115.0 Middle
O’Sullivan’s March 2204 101.0 11.0 End

Listing 7: Where does a pattern (5, 1, 6, 2, 1, 5) appear in a tune? For instance, it could be found at the beginning,
middle, or end of a tune. Query (top) and results (bottom).

In Listing 8, the query is designed to retrieve a ranked list of compositions that share common patterns with a given
tune. This is achieved by exploiting the fact that observations of patterns (?obs1 and ?obs2) point to the same
pattern URI when the content is identical. As a result, if two compositions share the same pattern, their observations
will reference the same ?SharedPattern URI. This enables us to compute the intersection of patterns across
compositions.

To avoid returning the given tune itself or introducing symmetric duplicates (e.g., A–B and B–A), filters are
applied to ensure that only distinct and ordered tune pairs are considered. The results are grouped by both tune IDs
and their corresponding labels, and the count of shared patterns is used to rank similarity.

Although the query in 8 is intended to find closely related versions of a tune, the same structure can be adapted
to identify other similar tunes that are not direct variations. These compositions may share a moderate number of
patterns due to stylistic or structural resemblance. By adjusting the sort order (e.g., using ORDER BY ASC) and
applying a HAVING clause (e.g., to select those with at least 10 shared patterns), we can expand the scope to retrieve
loosely related yet musically similar compositions. This variant approach was used to generate the results shown in
Listing 9.

CQ8: Given a tune family, tune type (e.g., reel), or national origin, find the patterns that are characteristic of that
subset of compositions.

Note: We take the definition of the tune family from [6] which states that "A tune family is a group of melodies
showing basic interrelation by means of constant melodic correspondence, and presumably owing their mutual
likeness to descent from a single air that has assumed multiple forms through processes of variation, imitation, and
assimilation." In the The Session dataset, most of the compositions do not have the tune family information,
however, we can extract tune family information with a query listed in 10. In this query, we have added certain
conditions to limit the overall results. Additionally, we can refine the results as per the specific needs of the users.
The query presented in Listing 10 retrieves the most characteristic melodic patterns for a given family, in this case,

14 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?GivenTuneTitle ?GivenTuneID ?SimilarTuneTitle ?SimilarTuneID
(COUNT(DISTINCT ?SharedPattern) AS ?SharedPatternCount)↪→

WHERE {
VALUES ?GivenTuneTitle {"Rakes Of Kildare, The"}
?GivenTune rdfs:label ?GivenTuneTitle ;

core:id ?GivenTuneID .
?JamsFile1 jams:isJAMSAnnotationOf ?GivenTune ;

jams:includesObservation ?Observation1 .
?Observation1 jams:ofPattern ?SharedPattern .
?JamsFile2 jams:includesObservation ?Observation2 ;

jams:isJAMSAnnotationOf ?SimilarTune .
?Observation2 jams:ofPattern ?SharedPattern .
?SimilarTune rdf:type mm:MusicEntity ;

core:id ?SimilarTuneID ;
rdfs:label ?SimilarTuneTitle .

FILTER(?SimilarTune != ?GivenTune)
FILTER(STR(?GivenTuneID) < STR(?SimilarTuneID))

}
GROUP BY ?GivenTuneTitle ?GivenTuneID ?SimilarTuneTitle ?SimilarTuneID
ORDER BY DESC(?SharedPatternCount) LIMIT 5

GivenTuneTitle GivenTuneID SimilarTuneTitle SimilarTuneID SharedPatternCount
Rakes Of Kildare, The 34240 Rakes Of Kildare, The 84 89
Rakes Of Kildare, The 12586 Rakes Of Kildare, The 12587 83
Rakes Of Kildare, The 12588 Rakes Of Kildare, The 34240 63
Rakes Of Kildare, The 12588 Rakes Of Kildare, The 84 63
Rakes Of Kildare, The 12589 Rakes Of Kildare, The 34240 58

Listing 8: Given a composition, find a ranked list of similar compositions (based on pattern similarity): query (top)
and results (bottom).

GivenTuneTitle GivenTuneID SimilarTuneTitle SimilarTuneID SharedPatternCount
Rakes Of Kildare, The 22230 Queen Of The Earth, Child Of The Skies 27066 11
Rakes Of Kildare, The 12588 Johnny Cope 34131 12
Rakes Of Kildare, The 12590 Johnny Cope 40691 12
Rakes Of Kildare, The 22229 Drunken Sailor’s, The 32089 12
Rakes Of Kildare, The 22215 Long Note, The 9850 12

Listing 9: Example 2 – This result is a variant generated using the query in 8, enhanced with a HAVING clause
and sorted using ORDER BY ASC to retrieve compositions that are not direct variations but exhibit close relevance
based on pattern similarity.

Lord McDonald’s. The query filters for patterns with a minimum length of six notes. However, we can easily add
further filters to retrieve more interesting results.

CQ9: Can we relate one pattern to another? For example, pattern similarity, containment (one pattern is contained
by another pattern), transposition, etc. This user requirement pertains to pattern relationships.

Given a pattern, find all compositions when it or a pattern that contains that pattern occurs. The query and results
for this CQ are listed in 11. We store n-gram patterns for multiple values of n. Consequently, we can use this query
to identify compositions where the specified pattern is a part of another pattern. This represents a containment
relationship.

Shahid et al. / 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?PatternContent (COUNT(?Pattern) AS ?PatternFrequency)
WHERE {
?Pattern xyz:pattern_content ?PatternContent ;

xyz:pattern_length ?patternLength .
FILTER(?patternLength >= 6)
?Observation jams:ofPattern ?Pattern .
?TuneFile jams:includesObservation ?Observation ;

jams:isJAMSAnnotationOf ?Tune .
?Tune core:isMemberOf

<http://w3id.org/polifonia/resource/tunefamily/Lord_McDonald_s> .↪→

}
GROUP BY ?PatternContent
ORDER BY DESC(?PatternFrequency) LIMIT 5

PatternContent PatternFrequency
3, 3, 5, 5, 2, 3 22
5, 3, 5, 2, 5, 2 17
5, 2, 5, 3, 5, 2 15
5, 2, 5, 2, 5, 2 15
5, 3, 3, 5, 5, 2 15

Listing 10: Given a tune family, tune type (e.g., reel), or national origin, find the patterns that are characteristic of
that subset of compositions: query (top) and results (bottom).

SELECT DISTINCT ?Title ?TuneID ?MatchedPatternContent ?Location
?BeatDuration↪→

WHERE {
VALUES ?targetContent {"5, 1, 6, 2"}
?Pattern xyz:pattern_content ?MatchedPatternContent .
FILTER(CONTAINS(STR(?MatchedPatternContent), ?targetContent))
?Observation jams:ofPattern ?Pattern ;

jams:hasLocation ?Location .
?JamsFile jams:includesObservation ?Observation ;

jams:isJAMSAnnotationOf ?Tune .
FILTER(CONTAINS(STR(?JamsFile), "thesession20211212"))
?Tune rdf:type mm:MusicEntity ;

core:id ?TuneID ;
jams:beatsDuration ?BeatDuration .

OPTIONAL { ?Tune rdfs:label ?Title }
} ORDER BY ?Title ?Location LIMIT 5

Title TuneID MatchedPatternContent Location BeatDuration
Britches Full Of Stitches, The 31614 5, 1, 6, 2 14.0 33.0
Britches Full Of Stitches, The 31614 5, 1, 6, 2, 5 14.0 33.0
Foxhunters, The 30575 5, 6, 5, 1, 6, 2 50.0 82.0
Foxhunters, The 13438 5, 6, 5, 1, 6, 2 50.0 82.0
Foxhunters, The 22808 5, 6, 5, 1, 6, 2 50.0 82.0

Listing 11: List of compositions and patterns where a given pattern ("5, 1, 6, 2") is subsumed by another pattern.

16 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In conclusion, we have successfully addressed all of the competency questions outlined in this study, ranging from
basic metadata retrieval (CQ1) to more complex pattern-based queries such as similarity (CQ7), characteristic motif
discovery (CQ8), and pattern containment (CQ9). Each query demonstrates how the underlying knowledge graph
enables expressive and musically relevant interrogation. While these competency questions cover a wide spectrum of
analytical needs, we acknowledge that many additional requirements may emerge from diverse research or creative
scenarios. To accommodate such needs, we have compiled an extended collection of SPARQL queries, which are
publicly available in our GitHub repository15.

5. Graphical User Interface

In this section we describe the GUI we have developed to take advantage of the Patterns KG. We briefly discuss
related work; our co-design process with musicologists; two forms of evaluation and feedback from potential useres;
and the final version of the GUI in operation.

5.1. Existing GUIs for music corpus exploration

Many GUIs have been developed for the exploration of music libraries in a popular music context, but we focus
on more experimental GUIs for musicological and content-based exploration.

Tovstogan et al. used a GUI for the exploration and discovery of personal music collections in which labelled
segments of musical compositions are represented as points in a 2D visualisation. Dimension reduction algorithms
were used to position points in the visualisations and suggest similarity. They found that users perceived this system
as engaging, rewarding and useful [42]. Knees et al. developed a three-dimensional GUI for the exploration of
musical collections, in which similar compositions are clustered together, and their properties processed into a
height value to form a landscape through which the user can navigate a music collection [30]. The Digital Music
Lab system of Abdallah et al. supports large-scale musicological research across large music corpora. Their system
uses Linked Open Data, allowing for a distributed system across multiple corpora. It includes a GUI through which
analyses of musical collections can be visualised as bar charts, line graphs or histograms [1]. De Berardinis et
al. [16] developed a “harmonic relation graph” to show inferred relationships between pairs of pieces of music in a
network diagram. Graph layout algorithms produce a static graph that visualises clusters of related pieces16.

Focussing now on folk music, Walshaw developed the abcnotation.com web interface to search an online corpus
of traditional music stored in ABC notation [44–46]. The interface provides tools to view tunes in musical notation
and play MIDI audio. The interface also features the TuneGraph network visualisation, which presents tunes as
nodes with connections to a small set of similar tunes. The TunePal interface, https://tunepal.org, allows querying
a corpus of traditional Irish, Welsh, Scottish and Breton music by title and by playing music. The score of the
selected composition is displayed on a musical staff and in ABC notation. MIDI and recorded audio of tunes can be
played [20–22]. Finally, we mention the LOD Live interface, designed for exploration of arbitrary KGs17. This UI
is not music-oriented, but served as inspiration for a live network diagram with show / hide functionality based on
linked open data.

5.2. Co-Design Process

Following our review of related work, we engaged in a co-design process with potential users. We used semi-
structured interviews with musicologists and music researchers of varying backgrounds. They were driven by proto-
types and related work, and then used brainstorming and open discussion. Taken together with our review of related
work, we arrived at an initial list of desirable features for our GUI. This allowed us to develop a first complete
version of the GUI. User testing with this was then carried out in two formats: in-depth testing with individuals,

15https://github.com/polifonia-project/patterns-knowledge-graph
16https://github.com/polifonia-project/harmonic-similarity
17E.g. http://en.lodlive.it/?https://w3id.org/italia/env/ld/place/municipality/00201_042002

https://tunepal.org
https://github.com/polifonia-project/patterns-knowledge-graph
https://github.com/polifonia-project/harmonic-similarity
http://en.lodlive.it/?https://w3id.org/italia/env/ld/place/municipality/00201_042002

Shahid et al. / 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

who were required to carry out tasks; and a group tutorial, intended to lead to comments and questions. Results and
feedback led to the refinement of the required features, which now included fuzzy search facilities over metadata and
over contents, display of patterns on musical staves, audio playback of patterns, a facility to export a stable URL for
citation of a particular result, code resources such as SPARQL queries on a Resources page, and a network diagram
for exploration of relationships. Further details are out of scope here, but were described in previous work [41].

5.3. GUI Description

In this section, the final design of the application is described from the point of view of the user.
The interface opens onto a Search page which features three search methods for finding tunes, by fuzzy search

over Title, search over Pattern (search allowing for a variety of input formats to facilitate the user), and Advanced
search which allows for multiple-select drop-down boxes for ‘Corpus’, ‘Key’, ‘Time Signature’, and ‘Tune Type’,
the options of which can be filtered using associated text fields.

Search results show relevant metadata such as tune type (e.g. jig, reel, strathspey), key, and time signature, as
shown in Figure 4. Clicking on a search result opens the Composition page for the selected tune.

Fig. 4. The Search page showing the Advanced search interface. The Title field contains the partial title ‘Maggie’, which can match a number of
tune titles as a result of the fuzzy Title search feature. The pattern ‘1, 3, 1, 7’ has been entered in the Pattern field using hyphens as a delimiter.
‘The Session’ has been selected from the Corpus drop-down. The Key drop-down further limits the search to tunes featuring a Dorian key, and
the Time Signature drop-down specifies a ‘4/4’ time signature. The results of the search are shown in a table.

An example of a Composition page is shown in Figure 5. It includes an interactive network visualisation which
can be expanded by the user to include more tunes and patterns. Double-clicking a tune node navigates to the
clicked node’s Composition page, while double-clicking a Pattern node navigates to this node’s Pattern page. The
Composition page also features a panel on the left side listing the most common melodic patterns contained in the
selected tune along with their occurrence frequencies. Trivial patterns can be excluded from the list by adjusting a
toggle switch. Trivial patterns are patterns with low pattern complexity, based on a proportion of unique note values.

The Pattern page features a musical stave representing the melodic pattern described by the page in musical
notation, along with a MIDI player that can play audio of the pattern. Below the stave, there is a list of the tunes that
contain the selected pattern, each entry linking to its respective Tune page. A screenshot of the Pattern page can be
seen in Figure 6.

The Tune Family page for a given tune can be accessed from a link on its Composition page below the page
title. The Tune Family page lists all the tunes in the selected tune family. Each tune in the list links to its respective
Composition page. The Composition page also features a link to external resources for each tune.

18 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Patterns UI Composition page. On the left, a table of the most common patterns in the selected tune; a middle panel containing a list of
patterns in common with the previously selected tune; on the right, a network visualisation showing the current tune, some of its most common
patterns (small, black nodes), and other tunes that contain the same pattern. At the top of the page, the tune title and tune family name are
displayed above a link to the original source for the tune and a Cite button.

On several pages, there is a feature that generates a citation for the current page, which can be copied to the
clipboard using the Copy button.

6. Conclusions

This study combines novel user interfaces and a structured KG for exploring musical patterns. The KG, con-
structed using a pattern ontology based on Musical Annotation patterns, enables seamless integration of multiple
data sources, facilitating complex queries that uncover relationships among musical entities. We have processed a
dataset of 40,152 compositions, resulting in a KG with approximately 45 million statements, evaluated using compe-
tency questions to demonstrate its analytical capabilities. Usability testing of Patterns UI confirmed its effectiveness,
providing positive feedback and affirming its role in answering research queries.

This work has a wide range of applications. For instance, it could be used in recommendation systems and MIR,
enabling musicians to analyze patterns, compare compositions across corpora, and extract meaningful insights from
vast musical datasets. Furthermore, with the help of an interactive UI, non-technical users can engage with the
system to explore trends, uncover similarities between compositions, and support creative or educational endeavors.

Acknowledgements

This work is part of the Polifonia Project, which has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N. 101004746.

Shahid et al. / 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. The Pattern page shows a musical stave featuring the pattern in musical notation, as well as a MIDI player that can play audio of the
pattern. Below them is the full list of tunes containing the selected pattern. Below the page title is the Cite button, giving a shareable link to the
current view.

References

[1] S. Abdallah, E. Benetos, N. Gold, S. Hargreaves, T. Weyde and D. Wolff, The Digital Music Lab: A Big Data Infrastructure for Digital
Musicology, J. Comput. Cult. Herit. 10(1) (2017). doi:10.1145/2983918.

[2] M. Achichi, P. Lisena, K. Todorov, R. Troncy and J. Delahousse, DOREMUS: A graph of linked musical works, in: The Semantic Web–
ISWC 2018: 17th International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II 17, Springer,
2018, pp. 3–19.

[3] C. Alexander, A Pattern Language: towns, buildings, construction, Oxford university press, 1977.
[4] L. Asprino, E. Daga, A. Gangemi and P. Mulholland, Knowledge Graph Construction with a Façade: A Unified Method to Access Hetero-

geneous Data Sources on the Web, ACM Trans. Internet Technol. (2022). doi:10.1145/3555312.
[5] S.P. Bayard, Prolegomena to a study of the principal melodic families of British-American folk song, The Journal of American Folklore

63(247) (1950), 1–44, Publisher: University of Illinois Press. doi:10.2307/537347. http://www.jstor.org/stable/537347.
[6] S.P. Bayard, Prolegomena to a study of the principal melodic families of British-American folk song, The Journal of American Folklore

63(247) (1950), 1–44.
[7] I. Bent and W. Drabkin, Analysis, The New Grove Handbooks in Music, The MacMillan Press Ltd, Houndmills, Basingstoke, Hampshire

& London, 1987.
[8] B. Breathnach, Between the jigs and the reels, 1982. http://msikio.online.fr/Breathnach/breandn.htm.
[9] V. Carriero, J. de Berardinis, A. Meroño-Peñuela, A. Poltronieri and V. Presutti, The Music Meta Ontology: A Flexible Semantic Model

for the Interoperability of Music Metadata, in: ISMIR 2023 Hybrid Conference, 2023.
[10] J.R. Cowdery, A fresh look at the concept of tune family, Ethnomusicology 28(3) (1984), 495. doi:10.2307/851236. https://www.jstor.org/

stable/851236?origin=crossref.
[11] M.S. Cuthbert and C. Ariza, music21: A Toolkit for Computer-Aided Musicology and Symbolic Music Data, in: Proceedings of the 11th

International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, Netherlands, 2010, pp. 637–642.
[12] J. De Berardinis, A. Meroño-Pe nuela, A. Poltronieri and Presutti, The Music Annotation Pattern, in: WOP2022: 13th Workshop on Ontol-

ogy Design and Patterns, Hangzhou, China, 2022.
[13] J. de Berardinis, A.M. Penuela, A. Poltronieri and V. Presutti, The Music Annotation Pattern, in: The Semantic Web–ISWC 2022 21st

International Semantic Web Conference: 13th Workshop on Ontology Design and Patterns (WOP2022), 2022.
[14] J. de Berardinis, A. Meroño-Peñuela, A. Poltronieri and V. Presutti, ChoCo: a Chord Corpus and a Data Transformation Workflow for

Musical Harmony Knowledge Graphs, Scientific Data 10(1) (2023), 641.
[15] J. de Berardinis, A. Meroño-Peñuela, A. Poltronieri and V. Presutti, The Harmonic Memory: a Knowledge Graph of harmonic patterns as

a trustworthy framework for computational creativity, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 3873–3882.
[16] J. de Berardinis, A. Meroño-Peñuela, A. Poltronieri and V. Presutti, The Harmonic Memory: a Knowledge Graph of harmonic patterns as

a trustworthy framework for computational creativity, in: Proceedings of the ACM Web Conference 2023, 2023, pp. 3873–3882.
[17] J. de Berardinis, V.A. Carriero, N. Jain, N. Lazzari, A. Meroño-Peñuela, A. Poltronieri and V. Presutti, The Polifonia Ontology Network:

Building a Semantic Backbone for Musical Heritage, in: Proceedings of the 22nd International Semantic Web Conference, 2023.
[18] D. Diamond, Automatic tune family detection in a corpus of Irish traditional dance tunes, Master’s thesis, University of Galway, 2025,

Forthcoming.
[19] D. Diamond, J. McDermott and M. d’Aquin, Tune family detection in Irish traditional music [Manuscript in preparation], 2023.

http://www.jstor.org/stable/537347
http://msikio.online.fr/Breathnach/breandn.htm
https://www.jstor.org/stable/851236?origin=crossref
https://www.jstor.org/stable/851236?origin=crossref

20 Shahid et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[20] B. Duggan, Tunepal: the traditional musician’s toolbox, in: Proceedings of the Second Workshop on EHeritage and Digital Art
Preservation, eHeritage ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 25–30–. ISBN 9781450301565.
doi:10.1145/1877922.1877931.

[21] B. Duggan and B. O’Shea, Tunepal - Disseminating a Music Information Retrieval System to the Traditional Irish Music Community, in:
Proceedings of the 11th International Society for Music Information Retrieval Conference, ISMIR 2010, Utrecht, Netherlands, August 9-13,
2010, J.S. Downie and R.C. Veltkamp, eds, International Society for Music Information Retrieval, 2010, pp. 583–588. http://ismir2010.
ismir.net/proceedings/ismir2010-100.pdf.

[22] B. Duggan and B. O’Shea, Tunepal: Searching a Digital Library of Traditional Music Scores., OCLC Systems & Services 27 (2011).
doi:10.1108/10650751111182597.

[23] D.P. Escuredo, The Tonality Ontology: Draft specification of the Tonality Ontology, The Centre for Digital Music, Queen Mary, University
of London, Accessed: 08-05-2023.

[24] B. Fields, K. Page, D. De Roure and T. Crawfordz, The segment ontology: Bridging music-generic and domain-specific, in: 2011 IEEE
International Conference on Multimedia and Expo, IEEE, 2011, pp. 1–6.

[25] A. Gómez-Pérez, Some ideas and examples to evaluate ontologies, in: Proceedings the 11th Conference on Artificial Intelligence for
Applications, IEEE, 1995, pp. 299–305.

[26] A. Hillhouse, Tradition and innovation in Irish instrumental folk music, Master’s thesis, The University of British Columbia„ Vancouver,
Canada, 2005.

[27] E.J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R.M. Bittner and J.P. Bello, JAMS: A JSON Annotated Music Specification for Repro-
ducible MIR Research., in: ISMIR, 2014, pp. 591–596.

[28] J. Jones, D. de Siqueira Braga, K. Tertuliano and T. Kauppinen, Musicowl: The music score ontology, in: Proceedings of the International
Conference on Web Intelligence, 2017, pp. 1222–1229.

[29] J. Keith, The Session, 2001. https://thesession.org.
[30] P. Knees, M. Schedl, T. Pohle and G. Widmer, An innovative three-dimensional user interface for exploring music collections enriched, in:

Proceedings of the 14th ACM International Conference on Multimedia, MM ’06, Association for Computing Machinery, New York, NY,
USA, 2006, pp. 17–24–. ISBN 1595934472. doi:10.1145/1180639.1180652.

[31] F. Lerdahl and R.S. Jackendoff, A Generative Theory of Tonal Music, MIT press, 1996.
[32] F. O’Neill, Irish minstrels and musicians, Regan Printing House, Chicago, USA, 1913.
[33] A. Poltronieri and A. Gangemi, The music note ontology, in: Workshop on Ontology Patterns, 2021.
[34] Y. Raimond, S.A. Abdallah, M.B. Sandler and F. Giasson, The Music Ontology., in: ISMIR, Vol. 2007, Vienna, Austria, 2007, p. 8th.
[35] S.M. Rashid, D. De Roure and D.L. McGuinness, A music theory ontology, in: Proceedings of the 1st International Workshop on Semantic

Applications for Audio and Music, 2018, pp. 6–14.
[36] S.S.-s. Cherfi, C. Guillotel, F. Hamdi, P. Rigaux and N. Travers, Ontology-based annotation of music scores, in: Proceedings of the Knowl-

edge Capture Conference, 2017, pp. 1–4.
[37] C. Sammut and G.I. Webb, Encyclopedia of machine learning, Springer Science & Business Media, 2011.
[38] H. Schenker, Harmony, Vol. 1, University of Chicago Press, 1954.
[39] A. Shahid, D. Diamond and J. McDermott, Patterns2KG: JAMS Pipeline for Modeling Music Patterns, in: International Joint Workshop on

Semantic Web and Ontology Design for Cultural Heritage, 2023. https://api.semanticscholar.org/CorpusID:266377142.
[40] L.A. Steen, The Science of Patterns, Science 240(4852) (1988), 611–616.
[41] R. Sweeney, P. Jajoria, D. Diamond, M. D’Aquin and J. McDermott, Patterns UI, An interactive tool for music exploration, in: Sound and

Music Computing Conference, 2024.
[42] P. Tovstogan, X. Serra and D. Bogdanov, Visualization of Deep Audio Embeddings for Music Exploration and Rediscovery, in: Proceedings

of the 19th Sound and Music Computing Conference, 2022, pp. 493–500.
[43] C. Walshaw, A multilevel melodic similarity framework, in: Extended Abstracts for the Late-Breaking Demo Session of the 16th Interna-

tional Society for Music Information Retrieval Conference, 2015, Málaga, Spain, 2015.
[44] C. Walshaw, TuneGraph, an online visual tool for exploring melodic similarity, in: Proc. Digital Research in the Humanities and Arts,

2015. https://api.semanticscholar.org/CorpusID:2605457.
[45] C. Walshaw, Constructing Proximity Graphs to Explore Similarities in Large-scale Melodic Datasets., in: 6th Intl Workshop on Folk Music

Analysis, 2016, pp. 22–29.
[46] C. Walshaw, A Visual Exploration of Melodic Relationships within Traditional Music Collections, in: 2018 22nd International Conference

Information Visualisation (IV), 2018, pp. 478–483. doi:10.1109/iV.2018.00089.
[47] D. Ó Maidín, A programmer’s environment for music analysis, PhD thesis, University of Limerick, Limerick, Ireland, 1995. http://rgdoi.

net/10.13140/2.1.3387.2969.
[48] M. Ó Suilleabháin, The creative process in Irish traditional music, in: Irish musical studies 1: musicology in Ireland, Irish musical studies,

Vol. 1, Irish Academic Press, Dublin, Ireland, 1990, pp. 117–130.

http://ismir2010.ismir.net/proceedings/ismir2010-100.pdf
http://ismir2010.ismir.net/proceedings/ismir2010-100.pdf
https://thesession.org
https://api.semanticscholar.org/CorpusID:266377142
https://api.semanticscholar.org/CorpusID:2605457
http://rgdoi.net/10.13140/2.1.3387.2969
http://rgdoi.net/10.13140/2.1.3387.2969

	Introduction
	What is a musical pattern?
	Patterns and Tune Families in Irish Folk Music
	Previous work on music-related ontologies and KGs
	Summary of the work

	Proposed Ontology and Knowledge Graph
	Building on the Smashub workflow
	Pattern Ontology – Music Annotation Framework
	Knowledge Graph

	Patterns2KG: JAMS Pipeline
	Dataset
	Extracting patterns
	JAMS Pattern Schema
	Knowledge Graph – RDF generation using SPARQL Anything

	Evaluation
	Graphical User Interface
	Existing GUIs for music corpus exploration
	Co-Design Process
	GUI Description

	Conclusions
	Acknowledgements
	References

