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Abstract. We live in a big data era of unstructured data expressed as natural language (NL) texts. As the volume of text-based
information grows, effective methods for encoding and extracting meaningful knowledge from this corpus are of paramount rele-
vance. A challenging task concerns transforming NL texts into structured and semantically rich data. Semantic web technologies
have revolutionized how we represent and access structured knowledge. Resource Description Framework (RDF) triples serve
as a fundamental building block for this purpose, enabling the integration of diverse data sources. This investigation examines
methods for RDF triple generation and Knowledge Graphs (KGs) enhancement from natural language texts. This study area
presents wide-ranging applications encompassing knowledge representation, data integration, natural language understanding,
and information retrieval. Our systematic literature review addresses the understanding, characterization, and identification of
challenges and limitations in existing approaches to RDF triple generation from NL texts and their inclusion into an existing KG.
We retrieved, categorized, and analyzed 150 articles from several scientific databases. We provide a comprehensive overview
of the field, identify research gaps, and provide directions for future research. We found the most commonly available study
categories, especially considering the domain, target language, the public availability of datasets, and real-world applications.
Our results reveal a growing trend in this field in the last few years related to the use of transformer-based machine learning
methods for triple generation. Our study also drives innovation by highlighting open research questions and providing a road
map for future investigations.

Keywords: Knowledge Graph Construction, RDF triples, Text-to-triple, Natural Language Processing

1. Introduction

An unprecedented volume of text is generated daily in modern information systems, leading to large data sources
from which meaningful knowledge can be derived. In particular, Natural Language (NL) texts (e.g., web pages,
social network posts, unstructured textual documents) have been generated substantially in the past few years [1].
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A great portion of such textual data remains largely unprocessed and untapped [2], representing a reservoir of
information that could be explored for deriving actionable insights. In this scenario, developing novel methodologies
and software tools to convert large volumes of unstructured text into structured, computer-interpretable knowledge
is of paramount relevance.

Unlocking the potential of unprocessed NL text can significantly contribute to informed decision-making
grounded on knowledge representation. With Resource Description Framework (RDF) [3] triples at their core, Se-
mantic Web technologies offer an approach to organizing said information. In this context, Knowledge Graphs
(KGs) [4] play a key role in creating rich and interconnected RDF triples by structuring interlinked data meaning-
fully [5].

KGs serve as invaluable assets across diverse domains, ranging from applications related to improving search
engine outcomes [6] to those targeting the enhancement of results of artificial intelligence models and applica-
tions [7]. Our motivation extends to the critical role KGs play in powering various applications and services [8, 9].
These structured knowledge repositories find applications in diverse fields, including but not limited to information
retrieval systems [10], query and answering questions [11], and data integration platforms [12, 13].

The core issue addressed in this investigation is the effective generation of RDF triples from NL texts. This often
encompasses tasks regarding entity recognition [14], relation extraction [15], and challenges in transforming textual
information into a structured, semantically rich format. Our study also investigates existing methods in the literature
for incorporating generated RDF triples into an existing KG, respecting an underlying ontology [16].

Studies present distinct approaches for generating RDF triples from NL texts based on Natural Language Pro-
cessing (NLP) techniques. Some consider rule-based methods like Open Information Extraction (OpenIE) [17] and
Semantic Role Labeling (SRL) [18] which aim to identify the triple elements (subject, predicate, and object) from
textual sentences based on their grammatical structures. More recent research employ Transformers [19] and other
types of neural network architectures in identifying and generating RDF triples to generate a KG from scratch.

We investigate additional challenges in enhancing an existing KG with new RDF triples. For instance, KGs
require respecting existing intrinsic ontology statements. This often involves identifying already-existing triples and
whether they follow such ontology definitions. This integration is even harder when constructing a KG relies on
assimilating a fully comprehensive knowledge set at once. KGs are constructed based on the information available
at a given moment, making it arduous to capture the entirety of knowledge in a single instantiation comprehensively.
The constantly expanding repository of NL texts introduces a dynamic facet to this challenge. Textual data is not
stagnant, as new knowledge is continuously generated, thus requiring, a mechanism for KGs to keep pace with this
influx of information. In this sense, KGs need to constantly change and evolve automatically or manually to adhere
to the evolution of knowledge in the domain they represent [20]. Information “freshness” and “recency” in KGs of
any size or domain is critical to their usefulness [21].

Existing survey articles on RDF triple generation emphasize the creation of new KGs [12, 13]. We found studies
describing solutions for similar problems, including: transforming table-formatted texts in RDF triples [22], trans-
forming relational databases in RDF triples [23], and generating NL texts from RDF triples [24]. Nevertheless, to
the best of our knowledge, there is no available systematic literature review that combines research related to RDF
triple generation and KG enhancement from NL texts.

This systematic literature review provides insights into how unstructured textual data are transformed into RDF
triples and how the produced knowledge is aggregated into existing KGs linked to an underlying ontology. Our
specific objectives are:

– Investigate studies and techniques that identify relevant parts of NL-produced texts to transform it into RDF
triples. Intent and entity discovery, relation extraction, and named entity recognition are examples of such
techniques;

– Investigate techniques that automatically or semi-automatically build RDF triples in a single domain (e.g.,
biology, medicine) or multi-domain;

– Investigate methods that link the created triples to an existing set of classes and relations defined by one or
more ontologies;

– Investigate techniques that check the added knowledge’s for consistency, validity, and semantic coherence.
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Our study employs a systematic approach organized into three phases: preparation, execution, and reporting. Each
phase involves distinct steps, from formulating research questions to categorizing and analyzing relevant articles.
Our methodology includes defining research questions, identifying query strings, defining inclusion/exclusion cri-
teria, categorizing studies and methods, generating metadata, description, and analysis of results, and reporting on
open challenges in the field.

Our study offer in-depth descriptions of categories, challenges, advancements, and triple-generation trends from
NL texts and KG enhancement. We offer researchers and practitioners valuable insights for future investigations.
For those entering the study of text-to-triple transformation, this review provides a structured overview, highlighting
key considerations in the field. Our study also identifies the varied approaches and methodologies employed in the
surveyed articles. Paper search identified 15 articles on RDF triple generation from unstructured NL texts for KG
enhancement, which were systematically categorized into 10 distinct categories originally defined in this study.

The proposed categorization is a foundation for synthesizing information and discerning common trends, chal-
lenges, and advancements within each thematic group. This structured approach may be relevant to researchers,
practitioners, and enthusiasts interested in extracting targeted knowledge based on their specific areas of interest.
Readers, especially those new to the field, can navigate these categories to understand specific aspects, like technical
methodologies, language specificity, and ontology construction.

follows:Aside from this introduction, this paper has seven other sections. Section 2 formalizes the problem and
its components. Section 3 presents the methodology of how we systematically evaluated the state-of-art. Section 4
provides quantitative analyses of the retrieved articles. Section 5 categorizes and describes the key relevant articles
filtered, and Section 6 discusses relevant aspects of our findings and addresses the research questions. Finally,
Section 7 draws conclusion remarks.

2. The Triple Generation Problem

This section defines the triple generation problem and highlights its inherent difficulties (Section 2.1), using a
motivating example (Section 2.2).

2.1. Triple Generation: Formalization and Challenges

This section formalizes the key terms and concepts central to this research. Figure 1 presents the typical pipeline
for triple generation and KG enhancement from NL texts.

As core elements we have:
Ontology (O): A shared and formal conceptualization and representation of knowledge [16]. Formally, an ontol-

ogy O is formed by the components (C, P,R), in which C represents a set of classes, P is a set of properties, and R
is a set of relationships. O is also named T-Box.

Knowledge Graph (KG): A graph-based representation constructed by linking RDF triples according to the
structure defined in ontologies. Formally, a KG is a connected directed graph formed by V vertices (entities) and
their directed E edges (connections).

Class (Ci): A category or type within the ontology representing a set of entities with common properties. For-
mally, Ci is an element of the set of classes C in the ontology.

Property (pi): A characteristic or attribute associated with entities in the ontology. Formally, pi is an element of
the ontology’s set of properties P.

Triple (Ti): A statement in the form of a subject-predicate-object, representing a relation between entities in the
KG. Formally, Ti is the triple (s, p, o) in which s is a subject entity, p is a predicate (property), and o is an object
entity.

Based on such formalization, the problem of generating RDF triples from NL texts and appending them to an
existing Knowledge Graph can be formally defined as follows:

Given a set of NL texts T = {t1, t2, . . . , tn} and an existing Knowledge Graph KG (KG ̸= ∅), the goal is to
generate RDF triples S T = {(s1, p1, o1), (s2, p2, o2), . . . , (sm, pm, om)} from T (component A in Figure 1), such
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Fig. 1. Typical pipeline for triple generation and KG enhancement based on NL texts. It comprises five elements (set of textual documents,
ontology, generated triples, existing KG, and enhanced KG) and two processing components. Boxes A and B represent the RDF Triple generation
and the KG enhancement components, respectively.

that generated triples are inserted into KG leading to an enhanced knowledge graph KG′, i.e., KG′ = KG ∪ S T

(component B).
Common challenging problems faced in triple generation refer to:

– Ambiguity in natural language: NL is inherently ambiguous, hindering the precise identification of entities,
relationships, and attributes. Resolving this ambiguity is critical for accurate triple generation;

– Diverse sentence structures: NL exhibits a wide range of sentence structures, making it difficult to design an
approach that fits all problems for extracting RDF triples. Handling diverse syntactic patterns adds complexity
to the problem;

– Contextual dependencies: Extracting triples often requires understanding the context in a document or a
broader knowledge context. Capturing contextual dependencies is key to accurately generating triples;

– Named Entity Recognition (NER): Identifying entities within the text is a subproblem that involves NER.
Variability in entity types and expressions poses challenges in accurately recognizing entities in different con-
texts.

– Entity Linking (EL): Beyond simply recognizing entity mentions, EL is the process of disambiguating and
grounding each mention to a unique URI in the target KG (or another reference knowledge base) [25]. This
step is used to avoid creating duplicate nodes for the same real-world entity and to ensure that newly generated
triples correctly attach to existing graph elements.

Aggregating triples to an existing KG poses additional challenges, such as:

– T-Box alignment: A new RDF triple can be composed of entity and property types not described in the initial
KG. This new structure must be aggregated into the T-Box portion of the KG and the triple itself in the A-
Box portion. In some situations, however, that specific triple may not be incorporated into the KG, depending
on its use context. If the KG’s T-Box is aligned with a 3rd-party ontology, including such new knowledge
representation may even affect the alignment.
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– A-Box alignment: The entities (subject, object, or both) of the new triple may already be present in the graph.
In this case, adding a triple will require identifying whether the URIs representing it are already available in
the KG. If so, this could lead to appending a new property (i.e., the new triple’s predicate) to existing entities
or linking an existing entity to a new one. Also, neither of the elements of the new triple may already exist in
the KG; in this case, those new elements may end up being disconnected. Once triples are generated, an entity
linking module must determine whether each subject and object mention already exists in the KG (i.e., assign
the correct URI). If a mention resolves to an existing node, the new property is appended; otherwise a new
node is created and linked.

– URI alignment: In case the URI creation for the new triples is automatic, adding such triples to an existing
KG may require searching for existing URIs that represent the same entities. This would ensure consistency in
knowledge representation.

2.2. Motivating Example

Let us consider the following sentences:

– t1 = “SpaceX, founded by Elon Musk, is known for pioneering space exploration and innovation;”
– t2 = “The engine is incompatible with Ford Mustang 1990.”

For the first example t1, relevant parts of it are identified. Step A of Figure 1 identifies entities, such as “SpaceX,”
“Elon Musk,” “space exploration,” and “innovation” from the given text, transforming this information into RDF
triples, producing relationships like:

– <SpaceX, founded_by, Elon Musk>
– <SpaceX, known_for, space_exploration>
– <SpaceX, known_for, innovation>

The created triples should be integrated into an existing KG, based on the application of ontology statements from
O. In this context, the rules identify “SpaceX” as a company and “Elon Musk” as a founder, ensuring these classes
are present in O. Given an existing KG, which initially comprises nodes for “SpaceX,” “founder,” and general
relations, integrating new triples enriches this graph. The updated KG – enhanced knowledge graph KG′ – (step B of
Figure 1) now includes nodes specific to “space exploration” and “innovation,” accompanied by their corresponding
relations.

For t2, entities like “engine,” “incompatible,” and “Ford Mustang 1990” are identified in T in step A of Figure 1.
The generated RDF triples build relationships such as <engine, incompatible_with, Ford_Mustang_1990>. Explor-
ing ontology elements helps ensure the meaningful integration of that into the KG. For instance, identify “engine”
as a component, “incompatible” as a property, and “Ford Mustang 1990” as a specific model of O. Examining the
state of KG before the integration of new information reveals existing nodes for “engine” and “incompatible.” The
subsequent integration of S T enhances this KG by adding nodes specific to “Ford Mustang 1990” in step B of Figure
1 reaching knowledge graph KG′.

We list the following challenges for converting t1 and t2 into triples:

– Ambiguity in natural language: The phrase “founded by” may pose ambiguity. It could be interpreted as the
founder of a company or the person behind a project;

– Diverse sentence structures: The sentence structure includes both the subject “SpaceX” and the additional
information “founded by Elon Musk” requiring a mechanism to handle diverse syntactic patterns;

– Contextual dependencies: Understanding the context that associates Elon Musk with SpaceX is essential.
What does “incompatible” mean? The whole engine? Without context awareness, incorrect triples may be
generated;

– Named Entity Recognition (NER): NER is required to identify “SpaceX,” “Elon Musk,” “Ford,” “Mustang,”
“1990,” and “engine” as entities, introducing the challenge of recognizing entity types accurately.
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Fig. 2. Systematic literature review methodology comprising three main phases: Preparation, Execution, and Reporting. Each phase comprises
steps represented by numbers from 1 to 15.

3. Methodology

This section describes the methodology for systematically reviewing the literature on triple generation and KG
enhancement from NL texts based on Budgen and Bereton [26]. Figure 2 presents our methodology with three
distinct phases: Preparation, Execution, and Reporting. A series of ordered steps further delineate each of these
phases. This phase-based structure provides a comprehensive overview of the entire procedure and highlights our
experimental approach’s systematic and controlled nature.

The “Preparation Phase” serves as the initial step, in which we lay the groundwork for our investigation. During
this phase, we formulate research questions, identify relevant scientific databases, and establish rigorous inclusion
and exclusion criteria (steps 1 to 6 in Figure 2). The Preparation Phase seeks to construct a process that guides this
systematic literature review article.

We proceed to the “Execution Phase,” in which we pragmatically implement the process discussed in the Prepara-
tion Phase. This phase entails executing a sequence of planned tasks, including database queries, article retrieval, and
applying inclusion and exclusion criteria. We synthesize data, categorize results, and perform preliminary analyses
(steps 7 to 11 in Figure 2). The Execution Phase emphasizes data acquisition and initial assessments.

Finally, the research concludes with the “Reporting Phase.” We gather all our analyses, including bibliometric,
quantitative, and qualitative assessments, into a cohesive and structured presentation. This phase is dedicated to
synthesizing our findings, the systematic organization of results, and in-depth analytical examinations (steps 13 to
15 in Figure 2). We discuss our outcomes comprehensively, emphasizing their implications and significance within
the context of our survey’s objectives.

Section 3.1, Section 3.2, and Section 3.3 describe each phase and their steps.
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Table 1
Study Definition. Initial questions to define the reasons for conducting this study, as well as its targets.

Question Definition

Why? Investigate different methods of building knowledge graphs from natural language texts.

Where? Via the existing literature related to the area of study

What? The survey explores various approaches, algorithms, and techniques used for converting natural language texts into RDF triples.

3.1. Preparation Phase

1. Study the Necessity: The initial step of the Preparation Phase was essential to thoroughly study the necessity
of conducting this investigation. We understood the current landscape of RDF triple generation from NL texts
and investigated the relevance of this topic within semantic web technologies and knowledge representation. On
this basis, we justify the significance of our study. The thorough study of such literature gaps not only justified
beginning our investigation but also guided the subsequent phases by providing a clear rationale for their objectives
and methodologies.

2. Define the Focus: After establishing the necessity, we defined the specific focus of our study. Here, we de-
termined the boundaries and scope of our investigation. To guide this step, we answered three important questions
(Table 1): What is the study? Where do we gather scientific data to answer the research questions? Why is the study
important? We also made decisions regarding the scope of the study:

– We would accept any RDF triple generation method (e.g., entity recognition, relation extraction). This choice
sought to embrace the diversity of methodologies prevalent in the field, ensuring a comprehensive exploration
of the topic.

– We would not restrict the survey to scientific articles by the type of natural language texts (e.g., news articles,
academic papers, social media posts). This decision allows to capture the breadth of RDF triple generation
applications across different textual domains.

The motivation to review the literature on triple generation and KG enhancement derived from the lack of this
type of research in the state-of-the-art based on our initial observations of result analyses. Among all the articles
found on the subject of generating triples (in this study), only 10% referred to adding these triples to an already
existing KG.

3. Define Research Questions: We defined clear and concise research questions in addition to the focus steps.
These questions were tailored to address the specific aspects of RDF triple generation and KG enhancement from
NL texts and are addressed through quantitative and qualitative analyses in Section 4 and Section 5. Those questions
were defined to ensure that our study provides meaningful insights and answers to existing challenges or gaps
identified (Table 2)

The RQs address the benefits and drawbacks of the surveyed methods, patterns in input texts and generated triples,
the most utilized and accurate techniques, the presence of fully automated approaches, applications benefiting from
the methodologies; and the exploration of T-Box and A-Box in text-to-triple generation. These research questions
not only serve as a guide for our analyses but also function as a means to benchmark the success of our survey.

4. Define Query Terms: To systematically retrieve relevant literature, we defined query strings used to search
scientific databases. Effective search terms are essential for retrieving a comprehensive set of articles that align with
our goals. We incorporated relevant keywords, terms, and Boolean operators to refine the search. Table 10 in the
Appendix presents the employed query terms. These can be condensed in a unique query, as defined in Equation 1.

( generation OR extraction OR construction OR population ) AND

( triples OR knowledge graph OR knowledge base ) AND

( natural language text OR unstructured text OR textual data )

(1)
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Table 2
Overview of Research Questions (RQs). These focused inquiries form the basis for exploring the surveyed literature.

RQ Question

RQ-01 What are the benefits and drawbacks of a method that generates RDF triples from texts?

RQ-02 Are there any patterns for texts used as input and for the triples generated as output?

RQ-03 What are the most used techniques? What are the most accurate ones?

RQ-04 Are there fully automated approaches to generate knowledge graphs from text?

RQ-05 What are the main applications that benefits from the text-to-triple approaches?

RQ-06 How do the methods explore the T-Box and A-Box in terms of text-to-triple generation?

The query string represents a balance between completeness and specificity. The selection of terms reflects the
multifaceted nature of the field, encompassing aspects such as entity recognition, relation extraction, and knowledge
representation.

The iterative process of refining and validating the query string in Equation 1 involved a continuous dialogue
among the research team (authors in this article), ensuring that the queries encapsulate emerging trends and diverse
perspectives within the domain. The final set of search terms, detailed in Table 10, represents a distilled synthesis
of our collective understanding.

5. Define Scientific Databases: At this step, we define in which scientific databases we could execute the queries
listed in the previous step. We chose databases most likely to contain relevant articles related to Computer Science,
including the domains of Text classification/Mining and Semantic Web. The chosen databases were ACM DL,1

IEEE Xplore,2 Springer Link,3 Elsevier,4 Scopus,5 and ACL Anthology.6

We assume that these databases contain highly ranked and cited articles relevant to our study. The chosen
databases collectively offer a broad spectrum of publications, including conference proceedings and journals, en-
suring a sound exploration of the academic landscape.

6. Define Inclusion and Exclusion Criteria: In this last step, we defined rigorous inclusion and exclusion criteria
to determine which articles should be included in the survey. Inclusion criteria (Table 3) specify the characteristics
an article must possess to be considered for the survey, whereas exclusion criteria (Table 4) identify reasons for
excluding articles.

In summary, we included articles that scientifically (IC-01) contribute to the understanding of RDF triple gener-
ation from NL texts (IC-02), written in English (IC-03) and that uses RDF specification (IC-04). By setting these
standards, we sought to ensure that the articles chosen were not only recent but also provided comprehensive insights
into the current state of the art. We excluded articles that are too old (EC-01), duplicates (EC-02), short (EC-03),
without abstract (EC-04), not written in English (EC-05), and without further explanation on how generating triples
based on text (EC-06).

3.2. Execution Phase

7. Retrieve the Papers: In the first step of the Execution Phase, we retrieved the relevant articles based on
the query strings defined in the Preparation Phase. We collected all articles that matched the search criteria in the
predefined databases. The title and abstract of each article were read for criteria verification. We retrieved a total of
150 articles from our search queries. By relying on the query strings built in the Preparation Phase, we ensured that
the retrieved articles aligned closely with our present study’s specific focus and objectives.

1https://dl.acm.org/ (As of Dec. 2023).
2https://ieeexplore.ieee.org/Xplore/ (As of Dec. 2023).
3https://link.springer.com/ (As of Dec. 2023).
4https://www.elsevier.com/ (As of Dec. 2023).
5https://www.scopus.com/ (As of Dec. 2023)
6https://aclanthology.org/ (As of Dec. 2023).

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/
https://link.springer.com/
https://www.elsevier.com/
https://www.scopus.com/
https://aclanthology.org/
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Table 3
Inclusion Criteria. Articles must present the characteristics here defined to be included in the study.

EC Type Definition

IC-01 Application Book chapters, conference papers (full and short articles), journals and thesis

IC-02 Application Papers of type as listed at IC-01 that create, use, or theoretically define a way to generate triples
from any kind of textual data.

IC-03 Language Articles written in English

IC-04 Scope Articles that uses the RDF specification to construct the triples

Table 4
Exclusion Criteria. Articles with such characteristics are not included in the study.

EC Type Definition

EC-01 Date Articles 10 years older than the execution of the queries in August 2023

EC-02 Duplicate Articles’ duplicate found in the scientific databases

EC-03 Short Articles Articles with less than 4 pages

EC-04 Abstract Articles without abstract

EC-05 Language Articles not written in English

EC-06 Application Articles that just mention a tool that generates triples from text, not explaining how and why it was used

8. Read the Papers: We read and reviewed each article systematically. This step involved an in-depth examina-
tion of the content of the selected articles which involved a collaborative effort among the researchers, leveraging
diverse perspectives to interpret and extract insights from the selected papers.

While reading, we took detailed notes and highlighted key information extracted in the following steps: “Create
Categories,” “Generate Metadata,” and “Describe Results.”

We employed a collaborative approach in the review process. To this end, we involved 15 graduate students,
among Master’s and Ph.D., enrolled in the Semantic Web course (Graduate Program in Computer Science, Institute
of Computing, University of Campinas, Brazil) to actively contribute to this step. Each student, possessing the abil-
ity and expertise in reading and interpreting scientific articles (topic taught in the course), analyzed 10 articles each.
Their task extended beyond reading; they were invited to categorize the articles based on predefined categories out-
lined in the subsequent step. The authors of this study double-checked the final assessment of each article reviewed
by the students to ensure their quality further.

The rationale behind involving master’s and Ph.D. students in this collaborative review lies in many reasons.
First, the students’ academic standing ensures an understanding and critical analysis necessary for interpreting the
nuances present in scientific articles. Their familiarity with the Semantic Web and ontologies domain positions them
as adept evaluators of the selected articles. Moreover, including these graduate students aligns with a commitment to
diversity in perspectives. Drawing on their varied academic backgrounds and research interests within the Semantic
Web, those students brought a breadth of insights that enriched our study’s analytical depth. The collaborative
approach contributed to a shared understanding of the reviewed literature among the research team, reducing risks
associated with using a possible biased categorization.

In addition to the categorization, the students identified valuable aspects of each article’s characteristics, includ-
ing the availability of the data investigated in the article, the type of evaluation conducted, and an assessment of the
solution’s applicability in real-world settings. These insights, derived from the students’ discerning analysis, pro-
vided a holistic view of the articles beyond their immediate contributions to RDF triple generation and KG enhance-
ment. After the students categorized the articles, the authors of this study reviewed the provided results, correcting
potential erroneous categorizations when necessary.

9. Create the Categories: To organize the collected articles, we created categories that reflect the various aspects
of RDF triple generation from NL texts. Aligned with the research questions and focus areas, we defined such
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Table 5
Categories of the retrieved articles and their correspondent description, according to this study’s focused areas.

Category Definition

Neural Network Approaches that use neural network architecture to build the triples

Multilingual Approaches that process and generate triples from and to more than one language

English Specific Approaches that process and generate triples from texts written in English

Non-English Approaches that process and generate triples from texts not written in English

T-Box Population Approaches that define new classes and properties

A-Box Population Approaches that insert new instances

Lexical Resources Approaches that use any external lexical resources (e.g., WordNet)

Specific Transformation Approaches that generate triples of a single domain (e.g., biomedical ontologies)

Generic Transformation Approaches that generate triples of any type of domain (e.g., DBpedia)

Link Creation Approaches that create links of the newly added resources to existing well-known Linked Open Data (LOD) datasets (e.g., Wikidata)

Survey Papers Papers focused on the analysis of the literature on text to triples solutions

categories based on our screening of this literature review and the authors’ background. The names were crafted to
align with common terminology in the field, ensuring clarity and coherence in the categorization process.

Categorizing the articles facilitates the synthesis of information and helps identify common themes and trends in
the literature. Table 5 presents the proposed 10-category set followed by a brief description.

The categories for organizing the collected articles reflect a diverse landscape of methodologies in the context of
RDF triple extraction and KG enhancement from NL texts. We grouped categories that describe similar aspects of
the literature to improve comprehension:

– Language specificity: represented by “Multilingual,” “English Specific,” and “Non-English” categories. The
rationale for choosing this category group (along with its categories) is that understanding how language is
used in the text-triple-KG transformation directly impacts solutions created and whether there is a tendency to
process multilingual texts generating KGs that are also multilingual;

– Technical methodology: represented by “Neural Network” category. The rationale for studying models based
on deep learning reveals the authors’ interest in categorizing articles that follow the trend in using these tech-
niques;

– Ontology and KG enhancement: represented by “T-Box Population” and “A-Box Population” categories.
This group of categories aimed to group articles based on how the KG enhancement stage occurs: only via
instances (A-box), or also through their classes (T-Box).

– Resource utilization: represented by “Lexical Resources” category. We understand that using external lexical
resources can help create more rule-adherent triples and improve the overall quality of the final version of the
KG;

– Domain specificity: represented by “Specific Transformation” and “Generic Transformation” categories. This
group of categories concerns understanding whether there is a preference for enhancing KGs based on text
from a specific domain, such as biomedical, with a large set of ontologies (e.g., BioPortal7), or whether it is
not related to any specific domain.

10. Generate Metadata: Metadata generation involves extracting essential data from each article to create a
structured dataset, described in Table 6, for analysis. The collected metadata is further used in Section 4, generating
relevant quantitative analyses.

11. Filter the Results: As part of our systematic review process, we retrieved a comprehensive set of articles
using well-defined inclusion and exclusion criteria. These criteria were intentionally broad to ensure high recall,
allowing us to capture the full spectrum of research on generating RDF triples from natural language texts. At this
stage, we prioritized inclusiveness to avoid overlooking potentially relevant work.

Following a detailed full-text analysis, we identified a smaller subset of studies that directly addressed our core
research focus—namely, the generation of RDF triples from natural language and their integration into existing

7https://bioportal.bioontology.org/ (As of Dec. 2023).

https://bioportal.bioontology.org/
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Table 6
List of all metadata used in the survey, their types, and descriptions.

Metadata Type Description

Year of Publication quantitative respecting ten-year-old exclusion criteria from Table 4

Country quantitative nationality of the authors

Category quantitative values found in Table 5

Objective quantitative
3 possible values: extract knowledge from text; create KG; connect
to KG with existing ontology rules

Degree of Automatism quantitative 3 possible values: manual, automatic, semi-automatic

Methodology qualitative article’s methodology

Domain quantitative
10 possible values: health, technology, education, language, agriculture,
commerce, arts, government, financial, no domain

Used in real-world quantitative the article generates a product used in real world (e.g software) or not

Dataset Available quantitative the article generates a dataset publicly available or not

Evaluation type quantitative
5 possible values: quantitative, qualitative, user evaluation, gold standard
comparison, case study

Strengths qualitative strong points of the methodology, results and evaluation

Weaknesses qualitative weak points of the methodology, results and evaluation

Validation Risks qualitative
potential threats or problems that could compromise the validity
and reliability of the results

Open Challenges qualitative research challenges that are still open according to the article

KGs. Although related to triple generation, most of the initially retrieved articles centered on constructing new
KGs rather than updating existing ones. These were therefore not included in the in-depth methodological review
presented in Section 5.

Nonetheless, the full collection of articles remains essential to our study. Section 4 presents a broader statistical
and quantitative examination of the field, exploring aspects such as publication trends, venues, datasets, evaluation
approaches, and the types of natural language inputs considered. This broader analysis provides important context
and supports our efforts to understand the field holistically. It also plays a critical role in addressing RQ-05, as
many applications are relevant regardless of whether the focus is on building a new KG or updating an existing one.
Examining the entire dataset enables us to map out the real-world domains and use cases that drive research in this
area, helping to identify gaps and opportunities.

Although several prior surveys have reviewed techniques for generating RDF triples from text [27–29], our study
occupies a distinct space in the literature. To our knowledge, there has been no focused review examining methods
for generating RDF triples that conform to ontological constraints and are suitable for insertion into pre-existing
KGs. In this way, our work contributes a unique perspective that advances the understanding of RDF triple genera-
tion within this context.

In summary, the broader set of papers forms the foundation for a wide-ranging analysis of the field, while the
focused subset enables a more detailed evaluation of approaches directly relevant to knowledge graph updates.
These two analytical layers—one broad, one deep—are complementary and offer a well-rounded view of the current
research landscape.

12. Describe the Results: We described the results of our literature review based on the generated metadata (cf.
Section 4) and categorized articles (cf. Section 5). We summarized the key findings and insights from each category,
highlighting trends, challenges, and advancements in the context of this survey.

3.3. Reporting Phase

13. Report Analyses: We reported analyses conducted on the collected data, creating quantitative insights into
trends and patterns within the literature. We analyzed publication trends, research challenge distribution, and the
prevalence of specific keywords. We present the findings using graphs, charts, and tables in Section 4.
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14. Answer Research Questions: The first crucial step was systematically answering the research questions
formulated in the Preparation Phase. Based on the findings from the Execution Phase, we provided clear and concise
responses to each research question (cf. Section 4 and Section 5). We referenced the relevant articles and their
key findings to support the answers. We ensured that the responses aligned with our study’s scope and provided
insights into the state of the field. All research questions addressed in this study were answered exclusively through
the systematic screening and analysis of the selected papers, without incorporating additional methods such as
stakeholder interviews or expert consultations.

15. Report Open Challenges: We identified and reported open challenges and areas of future research within
our study scope (cf. Section 6). We summarized the limitations and gaps in the existing literature and discussed the
unresolved issues, methodological shortcomings, and opportunities for further investigation.

4. Statistical Analysis

This section presents a quantitative analysis of the literature on RDF triple generation based on NL texts. We
aim to gain insights into the research landscape in this domain. In this analysis, we used all 150 articles to better
understand how the state of the art dealt with the generation of triples with or without adding them to an existing
KG (KG enhancement). We conducted a literature analysis based on the metadata, described in Step 10 of our
methodology (cf. Figure 2 and Section 3). The list of used metadata and analyses and why we used them is as
follows:

– Number of articles per year: provides insights into the temporal evolution of research, indicating trends over
time (cf. Figure 3);

– Number of articles per category: enables an exploration of diverse approaches and methodologies, catego-
rizing articles based on specific themes and focus areas (cf. Figure 4);

– Number of articles by domain: facilitates a domain-specific analysis of the literature, offering a deeper un-
derstanding of how RDF triple generation varies across different knowledge domains (cf. Figure 5);

– Number of articles by scientific database: identifies the distribution of relevant research across reputable
scientific databases, revealing the popularity and impact of different platforms (cf. Table 7);

– Number of articles by evaluation type: identifies the methodologies used to assess proposed solutions, help-
ing to discern the rigor and validity of the research within the surveyed literature (cf. Figure 6);

– Number of articles by the automation level: classifies articles based on the degree of human intervention
involved in the proposed solutions, providing insights into the level of automation achieved (cf. Figure 7);

– Number of articles used in real-world applications: distinguishes between papers with immediate practical
implications and those whose contribution is more theoretical or conceptual, highlighting the potential impact
of the proposed solutions (cf. Figure 7);

– Number of articles that make data available: promotes transparency and reproducibility in the scientific
community by identifying articles whose study handled publicly available data (cf. Figure 7).

Figure 3 presents the number of articles published annually. One may notice a growing trend, especially consid-
ering the 2019–2022 interval. Such a finding helps to ensure the relevance of our work’s subject in recent years. We
further analyze and discuss our findings from this analysis in Section 6 (Discussion).

Figure 4 presents the number of articles per category. We included a category for survey-related studies, totaling
10 categories. This plot helps understanding the distribution of research efforts across various subfields within
the domain. This is crucial for identifying trends and emphasizing different aspects of the topic from the existing
literature.

Additionaly the distribution of articles across categories and evaluation approaches can indicate more mature ar-
eas (e.g., A-Box Population, Generic Transformation, and English-Specific) or those which require further investi-
gation (e.g., Multilingual, Link Creation, and Non-English). In our analysis, each article may belong to one or more
categories.

Figure 5 presents the most common domains in which RDF triples are extracted from NL texts for posterior KG
enhancement. Most of the studies found target no specific domain. As for studies focusing on specific domains,
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Fig. 3. Number of articles by publication year. We observe a growing trend in the later years, especially from 2019 to 2022. The numbers related
to 2023 are from January to August.

Fig. 4. Number of articles by category. Lower numbers of studies in the Multilingual or Link Creation categories present an opportunity for
future research. On the other hand, studies focusing on the A-Box population or English-specific are more common.
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Fig. 5. Number of articles within the 10 most popular domains. It helps to answer RQ-05. As observed, most studies are not specific to a
particular domain.

Table 7
Number of studies found, according to the Scientific Database. Elsevier Scopus and IEEE Xplore have yielded more relevant studies.

Database #

ACM DL 14

IEEE Xplore 43

SpringerLink 37

Elsevier Scopus 48

ACL Anthology 7

health is the most frequent, followed by technology, and science & education. We observe a relation between the
domain of natural language text; the Knowledge Graph produced from these triples, and the application that benefits
from this knowledge. Figure 5 contributes to answer RQ-05, i.e., “the main applications that benefit from the text-
to-triple approaches.”

Figure 6 presents the number of articles grouped by the type of evaluation they employ. We identified five distinct
types of evaluation, such as quantitative analysis and case studies. This figure highlights the diversity of methodolo-
gies used in assessing the proposed solutions.

We investigated the extent to which the solutions are capable of automation which is a fundamental factor in
assessing these methods’ scalability and real-world applicability. The first plot in Figure 7 categorizes articles based
on how they describe their solutions’ level of “automaticity.” We classify articles into three categories: automatic,
semi-automatic, and manual. The level of “automaticity” in the proposed solutions can inform us about how ready
for practical deployment they are.

We analyzed studies concerned with real-world applications and discussed data availability. Both of them have
implications for the practicality and reproducibility of the research. Identifying how many articles have been applied
in real-world scenarios and how many make their data publicly available guide researchers in selecting the most
relevant and accessible resources for their work. In the second plot in Figure 7, we explore the practical relevance of
the articles by counting how many of them describe applications of proposed methods in real-world settings. In the
third plot of Figure 7, we show the number of articles that handled publicly available data. By observing the numbers
concerning the automation aspect in Figure 7, we can positively answer RQ-04. The number of studies in which
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Fig. 6. Number of studies by each type of Evaluation. Studies evaluated by quantitative analysis (especially focusing on using gold standards)
are more commonly observed in the literature.

Fig. 7. Three plots describing how automatic the solution is, how applicable it is in the real-world settings, and how research data are publicly
available. Most studies present a fully automated method, do not relate to a real-world usage scenarios, and do not disclose their data publicly.

no human intervention is required in the process is greater than those in which some level of manual interaction is
required.



16 A. G. Regino et al. / Survey

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 8
Categories of each article and their presence in each work. The columns represent each of the ten categories. The rows represent each of the
fifteen articles. The columns are composed of five groups of categories: 1) Language Specificity (LS); 2) Ontology and KG Enhancement (OE);
3) Underlying Domain (UD); 4) Technical Resources (Neural Network); 5) Lexical Resources (LR); 6) Link Creation (LC).

Group 1: LS Group 2: OE Group 3: UD Group 4: TR Group 5: LR Group 6: LC
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Zhang and Nguyen [30] X X X X X

Yu et al. [31] X X X

Rios-Alvarado et al. [32] X X

Stern and Sagot [33] X X

Kertkeidkachorn et al. [34] X X X

Sordo et al. [35] X X X X

Dutta et al. [17] X X

Rossanez et al. [18] X X X X X X

Lin et al. [36] X X X

Sendyk et al. [21] X X X X

Xu et al. [37] X X X X

Fei et al. [38] X X X X X

Liu et al. [39] X X X X X X

Yan and Gao [40] X X X

Li et. al [41] X X

5. Research Questions Analysis

This section categorizes the identified studies related to RDF triple generation from NL texts aiming to enhance
Knowledge Graphs. The categorization of articles provides a navigational guide to help understand the area under
study. Additionally, this sets the stage for discussions, paving the way for advancements in this domain.

From the 150 articles obtained after the first screening (cf. Section 3), we narrowed the sample to 15 after applying
filters described in Step 11 of Section 3 for the key aspects considered in this study. Section 4 presents the considered
categories’ descriptions.

The upcoming sections describe in further detail the categories and the studies that best fit such categories (relying
on our procedure conducted for this purpose). Table 8 presents our proposed organization of categories relying on
our observations from the analyzed articles. Table 9 describes the learning methods used by each paper to transform
text into RDF triples, the evaluation metrics and their respective values.

5.1. Language Specificity

We considered the language specificity addressed in the study. More specifically, we considered whether the
method applies to English texts (cf. Section 5.1.1), other languages (cf., Section 5.1.2), or even if applicable to texts
in multiple languages (cf., Section 5.1.3). Language Specificity is represented by the Group 1: LS in Table 8.

Multilingual KGs created over multilingual texts provide a versatile solution by handling multiple languages
within a single model, enabling broader language coverage. However, they may face challenges in achieving
language-specific precision. Language-specific KGs, while resource-intensive, can offer superior accuracy and depth
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Table 9
Learning value and evaluation metrics of each article. The first shows the articles; the second column is the main method used to generate triples
from a text; the following four columns present quantitative values: accuracy (ACC), precision (PRE), recall (REC), and F1. The last column
shows if the authors perform a qualitative evaluation (QLI). The rows represent the papers. RE stands for Relation Extraction; NER stands for
Named Entity Recognition; OpenIE stands for Open Information Extraction; IM stands for Instance Matching; SRL stands for Semantic Role
Labeling; DP stands for Dependency Parsing.

Paper Learning Method ACC PRE REC F1 QLI

Zhang and Nguyen [30] Basic pattern rules and Neural RE 0.80

Yu et al. [31] RE with GloVe, CNN and Transformer 0.78

Rios-Alvarado et al. [32] NER with lexical patterns identifier 0.53 0.67 0.59

Stern and Sagot [33] EL and NER of GeoNames and Wikipedia 0.88 0.85 0.77 0.81

Kertkeidkachorn et al. [34] Rule-based and similarity-based based on OpenIE 0.46 0.56 0.51

Sordo et al. [35] RE with dependency trees analysis, NER with DBpedia Spotlight 0.74 0.72 X

Dutta et al. [17] Markov Clustering, IM with DBpedia and OpenIE 0.86 X

Rossanez et al. [18] SRL for main relations and DP for secondary relations X

Lin et al. [36] RE using OpenIE and context knowledge 0.56 0.56 0.56

Sendyk et al. [21] BERT and Transformer to merge triples 0.98 0.99 0.99 X

Sendyk et al. [21] BERT and Transformer to acquire triples 0.98 0.98 0.99

Sendyk et al. [21] BERT and Transformer to classify triples 0.81 0.86 0.81

Xu et al. [37] NER with BERT-CRF and RE with Bootstrapping

Fei et al. [38] Perspective Transfer Network, a Transformer-based neural network 0.89

Liu et al. [39] Encoder-decoder Transformer-based framework 0.84

Yan and Gao [40] Learning method not specified X

Li et. al [41] Phrase Mining with Random Forest Classifier and BERT models 0.88

Li et. al [41] NER with BERT models and dictionary knowledge 0.81

for individual languages. The choice between multilingual and language-specific depends on the application’s lan-
guage requirements and the trade-off between broad coverage and language-specific proficiency.

5.1.1. English-Specific
Zhang and Nguyen [30] focused on generating triples from a text in English. Their primary objective was to

create KGs and connect them with ontology classes and properties. The methodology involved text preprocessing,
including filtering by English, removal of special words, and capitalization. The following step was done by applying
distinct relation and entity extraction methods, including rule-based, OpenNRE, and OpenIE [42]. The extracted
relations were inserted into a graph database, and a software tool was created to explore the results. The specific
textual domain is health-related (COVID-19), and although the application has not been used in real-world settings,
the dataset is public. The conducted evaluations are quantitative. The solution’s strengths lie in its automation,
independence from domain experts, and generalizability. In turn, the solution may yield limited results because
it sometimes employs models trained in unrelated domains. Open challenges include using advanced extraction
techniques like BERT [43] and connecting to external vocabularies for additional information, such as DBpedia
[22].

Similarly,Yu et al. [31] focused on generating triples from texts in English. Their primary objective was estab-
lishing connections with classes and properties in an existing ontology. The methodology lies in constructing a net-
work encyclopedia classification system and KG. Domain experts defined the classification system as a KG with
concepts and instances. A web crawler algorithm extracted classification information, capturing upper and lower
concept relations. Co-occurrence analysis mined implicit associations between concepts, facilitating the extraction
of upper and lower relations during KG construction. Their algorithm quantifies co-occurrence probabilities based
on the occurrence frequency of classifications, identifying relations if certain conditions are met. Their solution uti-
lized classification data from encyclopedia entries to ensure a reliable and rich KG, showing the interplay between
web crawling, co-occurrence analysis, and semantic analysis in constructing a comprehensive classification system.
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Yu et al. [31] specifically constructed a KG related to food. Their method was applied in a project using a public
dataset. The conducted evaluation was quantitative. The solution’s strengths lie in its comprehensive approach to
relation extraction in a domain KG, through various knowledge sources, including structured, semi-structured, and
unstructured data. Their method employed a convolutional residual network for extracting lower relations from web
texts and stored the resulting KG in Neo4j8, showing practical applicability. Concerning their investigation weak-
nesses, the solution presented dependencies on available knowledge sources, and its effectiveness is contingent on
the quality of training data, which is highly sensitive to extraction errors. Risks to the validation included the po-
tential imperfections and errors in the Wikipedia data used for experiments and the necessity for parameter tuning
in NLP and semantic analysis algorithms. Open challenges involved developing different relation extraction models
for diverse forms of knowledge existence.

5.1.2. Non-English
Rios-Alvarado et al. [32] investigated triple generation from documents written in Spanish. Their main goal was

knowledge extraction from texts, the KG creation, and the connection with classes and properties from an existing
ontology. The methodology involved text segmentation using NLP, word tagging, knowledge extraction through
lexical analysis, and KG construction. The application domain was technology. Evaluations included quantitative
analysis and comparison with a gold standard. The strength of this solution appears in enabling knowledge extraction
from Spanish language text, which is not common in the literature. Potential weaknesses included the manual
validation of extracted entities using a small sample, which can impact accuracy and reliability. Open challenges
included exploring alternative methods for feature extraction and implementing the KG for question-answering
applications.

The study by Stern and Sagot work [33] belongs to the non-English category as they focused on extracting en-
tities from French texts. The methodology employed Named Entity Recognition (NER) with the support of well-
known databases, such as Wikipedia,9 Aleda [44], and Geonames,10 specifically tailored for news-related content.
The automated process links these entities to ontologies and assigns URIs, subsequently compiling a database con-
taining all identified entities and their occurrences in news articles. The solution’s strengths lie in its reliance on
widely acknowledged databases for NER. Their work addressed texts in French exclusively. The investigation pub-
licly evaluated its methodology through quantitative measures and comparison with a Gold Standard, emphasizing
transparency in its assessment.

5.1.3. Multilingual
Kertkeidkachorn and Ichise [34] constructed a multilingual framework to map predicates from NL texts to KG

triples, named T2KG. The methodology combined rule-based and similarity-based approaches and includes five
steps: 1) entity mapping, linking entities in the text to corresponding entities in the KG; 2) coreference resolution,
detecting chains of entities and pronouns referring to the same entity; 3) triple extraction, extracting relation triples
from the text using open information extraction techniques; 4) triple integration, generating a text triple by combin-
ing results from entity mapping, coreference resolution, and triple extraction; and 5) predicate mapping, mapping
a predicate of a text triple to a predefined predicate in other KGs. Their solution extracts information from textual
documents and aims to integrate it into a KG. The goal was to incorporate new information into preexisting knowl-
edge structures (e.g., ontologies and KGs). The solution applies to various domains. The authors report achieving
high precision, recall, and F1 scores, effectively mapping their generated triples to DBpedia’s, and integrating sig-
nificant new knowledge into the existing KG. The major drawback is the difficulty in mapping complex predicates.
Validation risks include potential errors in graph generation depending on the input data. Open challenges involve
improving triple extraction accuracy, handling complex predicates, integrating multiple sources of information, and
developing effective methods for assessing KG quality, completeness, correctness, and consistency, as well as error
identification and correction.

8https://neo4j.com/ (As of Feb. 2024).
9https://www.wikipedia.org/ (As of Feb. 2024).
10https://www.geonames.org/ (As of Feb. 2024).

https://neo4j.com/
https://www.wikipedia.org/
https://www.geonames.org/
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5.2. Ontology and KG Enhancement

In this category, we investigate whether the study comprises the triple generation from NL texts either enhances
the Ontology that describes an existing KG, i.e., populating T-Box (cf. Section 5.2.1), or enhancing the instances
portion of the knowledge representation, i.e., populating A-Box (cf. Section 5.2.2). The Ontology and KG Enhance-
ment are represented by the Group 2: OE in Table 8.

5.2.1. T-Box Population
Sordo et al. [35] focused on extracting knowledge from unstructured text sources to generate structured data

for music recommendations. The methodology involved identifying relevant entities in texts, extracting meaningful
relations between them, and connecting this knowledge to existing ontology classes and properties. The method-
ology of the knowledge graph construction comprised several key steps, beginning with text input preprocessing,
segmenting the input text into sentences, and tokenizing. This work employed Named Entity Recognition (NER)
using DBpedia Spotlight [45] to identify music-related entities, focusing on types like song, band, person, album,
and music genre. Simultaneously, Dependency Parsing (DP) generates trees for sentences, aiming to find relations
between multi-word music-related entities. These processes were integrated in a subsequent step, combining NER
and DP results by merging nodes in the dependency tree corresponding to recognized entities. The subsequent stages
involved Relation Extraction (RE), in which relations between recognized music-related entities are extracted based
on paths in the dependency trees. Empirical rules were introduced to filter out relations irrelevant linguistically.
Finally, a graph representation was constructed, encapsulating the music-related entities as nodes and their relations
as edges. This graph, composed of five distinct entity types, provided a structured representation of the knowledge
extracted from the input text, facilitating a comprehensive understanding of relations within the music domain.

The domain of their work was in the arts, particularly music. The application of their work relates to a real-
world project, and the dataset used was publicly available. Evaluations include quantitative and qualitative analyses,
user evaluations, and comparisons with a gold standard. The solution’s strengths include using natural language for
user recommendations, which enhances the user experience, and comparing the extracted knowledge with a gold
standard to assess the quality of the relations. Its weaknesses include low recall in extracting relations, potentially
leading to the loss of relevant information, and the need for a prior syntactic simplification step to handle potentially
noisy relations. Potential validation risks include limited generalization due to a single dataset and the possibility of
noisy relations extracted from text variability. Open challenges relates to improving relation extraction system recall
and evaluating the method on larger, more diverse datasets for generalization assessment.

5.2.2. A-Box Population
Dutta et al. [17] generated KGs and connected them to classes and properties of an existing ontology. The method-

ology involved data clustering before mapping the relations between phrases and clusters. The employed methodol-
ogy concerns constructing a KG by converting Open Information Extraction (OIE) [42] facts into assertions within
a target knowledge base (KB). The process involved four key components: Instance Matching (IM), Lookup (LU),
Clustering (CL), and Property Mapping (PM) modules. The domain of this work referred to language, and although
it was not used in a real-world setting, the dataset is publicly available. Their investigation described an evalua-
tion protocol that includes quantitative assessments and comparisons with a gold standard. One of their solution’s
strengths is its focus on simplifying the mapping process for knowledge bases, with clustering being a valuable ad-
dition. No weaknesses were identified explicitly, but potential validation risks include dealing with identical phrases
that might have different meanings. An open challenge is creating a T-box when certain relations present in OIE do
not exist in the target knowledge base.

5.3. Underlying Domain

In this category, we considered studies that are either applicable to a specific domain, e.g., biomedical (cf. Section
5.3.1), or those which are domain-agnostic (cf. Section 5.3.2). Domain Specificity is represented by the Group 3:
UD in Table 8.
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5.3.1. Specific Transformation
Specific Transformation refers to methodologies for generating triples for a specific domain. The intersection em-

phasizes the alignment of domain-specific approaches with ontology construction, highlighting how these method-
ologies often tailor the generation process to the intricacies of a particular domain.

Rossanez et al. [18] presented a specialized method for generating KGs specifically in the biomedical domain. The
methodology comprised four main steps: preprocessing, triple extraction, ontology linking, and graph generation.
The focus was on extracting knowledge from biomedical texts, connecting it to existing ontologies, and ultimately
generating a KG. While the application has not been used in a real-world application, the dataset used is public, and
the evaluations included quantitative and qualitative assessments. The strengths of their solution include proposing a
semi-automatic method for KG generation and relating it to existing ontologies. The method identifies primary and
secondary relations. Validation relies on a ground truth defined by medical experts, albeit not domain specialists.
The results show promise, especially regarding the Jaccard coefficient. Weaknesses include the method not being
entirely automatic, domain limitations due to the vast internal vocabulary of various medical subfields, and the
relatively small number of samples (e.g., articles in the medical domain) evaluated by medical experts. Identified
potential validation risks include the involvement of non-specialist medical experts, which might have introduced
bias, and the use of abstracts rather than full-text articles, which hinders the assessment of the generalizability of
the results. Open challenges included the development of an automatic approach for generating RDF triples more
akin to those created by domain specialists, leveraging logical inferences to capture implicit relations in texts,
exploring the use of other KGs and ontologies to enrich the main set of triples, comparing knowledge graphs linked
to different ontologies using UMLS CUIs [46], and involving more domain-specific experts to establish a baseline
for comparison.

5.3.2. Generic Transformation
Generic Transformation represents methodologies that generate triples agnostic to a specific domain. This inter-

section shows how even domain-agnostic approaches often involve ontology construction, showcasing the relevance
of aligning the generated triples with a predefined ontology.

Lin et al. [36] introduced a method that generates triples across various domains. They aimed to extract knowledge
from a text by generating KGs and their connection with existing ontology classes and properties. Their method-
ology included two key stages: knowledge extraction and knowledge linking. The first stage extracts information
from documents, including entities and triples. The second stage constructs a graph from this data, and the link-
age between entities and predicates is determined using similarity measures. Notably, their study was applied in
real projects and leverages public datasets, making it suitable for generalized application. Their evaluation involved
quantitative analysis and comparison with a gold standard. Lin et al. [36] solution’s strengths included the popu-
lation of incomplete and outdated knowledge bases, extraction and organization of information from unstructured
documents, utilization of a semantic graph approach, efficient integration of entities and relations, and effectiveness
demonstration compared with other reference techniques. Their study also handled the coherent creation of new
entities. However, the proposed method may face limitations in scenarios with very large or complex datasets, and
its linking efficacy can depend on the quality of reference KB data. Challenges include dealing with ambiguity
and polysemy in extracted information, potential biases in datasets, erroneous input data, and matching failures
between entities and relations in reference datasets. Open challenges involve improving entity and relation linking
in lengthy and complex documents, adapting the method for different domains and languages, exploring techniques
for handling noisy and ambiguous data, and investigating the scalability of the method for larger datasets.

“A Task-Agnostic Machine Learning Framework for Dynamic Knowledge Graphs”, authored by Sendyk et al.
[21], falls under the category of Generalized Transformations. Their study described the development of a generic
framework capable of generating triples in any domain. Their methodology involved a series of steps, including
web data extraction, training NLP models based on synthetic data, page classification, sentence segmentation, and
graph generation. Notably, the framework was designed for a specific domain, allowing its application across vari-
ous fields. While their defined process is semi-automatic, incorporating manual classification, the study addressed
potential biases by implementing steps to avoid user biases during classification and introducing synthetic data to
enhance the available dataset. The solution’s strengths lie in its attempt to mitigate user biases and augment data
availability through synthetic data. Challenges include the need for a robust manual classification step and potential
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risks associated with biased classification and imbalanced base texts. Validation aspects included the framework
assessment using quantitative measures and a case study, showing its real-world applicability and emphasizing the
need for well-defined manual classification steps in open challenges.

5.4. Neural Networks

This category represents methodologies that uses neural network architecture for triple generation.
Transformers [47] are neural network models that rely on the attention mechanism to draw global dependencies

between their inputs and outputs. They are often used in text-to-text applications, such as translation. In the literature,
several studies employ such models to identify entities and relations from text to build triples.

Graph Neural Networks (GNNs) [48] are used in relation extraction tasks and knowledge representation. We
found no articles in the literature that describe solutions using GNNs for the complete pipeline of transforming text
into triples and adding them to an existing KG.

Xu et al. [37] described how they used BERT-based and Bootstrapping methods to construct a constantly evolving
KG in the domain of Traditional Chinese Medicine (TCM). BERT is a Transformer-based deep learning model
by Google used in various NLP tasks [43]. The authors state that the KGs in the TCM domain are static, not
fully representing the evolving characteristics of the medicine domain. To overcome this problem, they proposed a
methodology that generates a dynamic growth of the proposed KG. It starts by collecting data based on user input
keywords and then employs the BERT-CRF [49] to identify entities and Bootstrapping to identify relations and
obtain structured data. Finally, the structured data was integrated into an existing KG. Bootstrapping is applied to
extract the relation between symptoms of diseases and their causes. The entity recognition and relation extraction
result is merged into an existing KG. While the method allows the continuous and dynamic growth of the TCM KG
through user interactions, its main difficulty lies in merging KGs, especially in handling equivalent entities and term
ambiguity. Also, the authors [37] do not describe how to assess the qualitative aspects of the added information to
the KG. Additionally, the methodology was only applicable to English-based knowledge and the TCM domain [37].

Fei et al. [38] relied on few-shot Relational Triple Extraction (RTE) to construct triples. The authors state that
traditional triple-construction approaches are not aware of the semantics and coherence of the generated triples. The
proposed methodology, Perspective-Transfer Network (PTN), included a multi-perspective approach to constructing
a KG. It operates on episodes comprising support and query sets. The framework designed by Fei et al. [38] used
three perspectives: Relation, Entity, and Triple. In the Relation Perspective, the query detects potential relations
by marking entity pairs sentences. A binary classifier predicts if a relation exists among them. If a relation is
identified, the Entity Perspective extracts entity spans in the query, combining relation and entity information into
triples. The Triple Perspective then validates these triples, utilizing labeled query sentences and a binary classifier.
Although it does not have a specific domain, the solution can be applied generally. It has not been used in a real
project, but the dataset is public, and the evaluations involve quantitative analysis and a comparison with the gold
standard. The main strength of their solution [38] is the ability to handle a few training examples, which is a common
limitation in many NLP tasks. Additionally, their study explore the utilization of an efficient and scalable neural
network architecture that can be trained on modern GPUs. Also, the solution is fully automatic and does not require
human intervention. As a downside, the solution may be computationally intensive, requiring substantial hardware
resources. Its performance can be sensitive to the quality of the input data, mainly affected by annotation errors and
data noise [38].

Liu et al. [39] proposed an application named Seq2RDF, which uses the Transformer architecture to construct
triples. Seq2RDF was one of the first applications of Transformers to build KGs, in 2018. The methodology involves
applying Transformers and generating embeddings for triple generation. It uses DBpedia [22] as input to train
models, with the encoder processing NL sentences and the decoder producing triples in the <subject, predicate,
object> format. Their solution [39] is generic and not limited to a single domain. It was applied to a real-world
project, but their dataset is public. Evaluations included quantitative analysis and comparison with a gold standard.
The authors state that the differential of Seq2RDF is its simplicity and efficiency for generating triples from NL
texts. The downside of Seq2RDF remains that it can only generate a single triple per sentence.
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5.5. Lexical Resources

External lexical resources, such as WordNet [50], PropBank [51], or VerbNet [52], have been explored to assist
RDF triple generation. Examples of their application include identifying verbs and their parameters in sentences
as candidates for subjects or objects. Resources like Yago [53], BabelNet [54], or SpaCy [55], are often employed
for identifying named entities in texts. This category emphasizes the reliance on linguistic resources in language-
specific contexts, showcasing how the utilization of such resources plays a crucial role in these methodologies.

Yan and Gao [40] fits this category. Using the Baidu Encyclopedia to aid in the KG construction. Their main ob-
jective was to generate KGs and connect them to existing ontology classes and properties, focusing on the domain of
biology, specifically water. Their methodology involved information extraction, knowledge fusion, and knowledge
processing. Information extraction encompasses extracting entities (concepts), attributes, and relations between en-
tities from the data source, forming the foundation for ontological knowledge representation. After acquiring new
knowledge, the following step, called knowledge fusion, integrates this new knowledge to eliminate contradictions
and ambiguities. The method was applied in a project and the used dataset is public. The conducted evaluation [40]
was based on a case study. The solution’s strengths lie in customizing the wrapper for extracting entity attributes
and values from semi-structured water entry data in the encyclopedia. On the other hand, its weakness lies in the
dependence on data sources, as the quality and quantity of data can impact the comprehensiveness of content extrac-
tion. The main validation risk is the lack of comparisons with other methods. Open challenges involve expanding
the scope of extraction to acquire more knowledge and conducting further research to identify potentially better
methods for KG construction in the water domain.

5.6. Link Creation

This category focuses on methodologies that create links to existing well-known Linked Open Data (LOD)
datasets. LODs often adhere to standardized ontologies and vocabularies, such as RDF and OWL. This adherence
ensures consistency and interoperability between different datasets, reducing ambiguity and enhancing the overall
quality of information in the KG.

“AliMe KG: Domain Knowledge Graph Construction and Application in E-commerce,” by Li et al. [41] was
categorized under Link Creation due to its primary focus on connecting newly created triples with other existing
datasets. Their proposal involved key components, such as phrase mining, named entity recognition, relation ex-
traction, and knowledge fusion. The authors described a semi-automated process for knowledge acquisition and
validation, incorporating human annotation and feedback cycles to enhance KG precision and completeness. Their
study [41] was applied in the e-commerce domain and showcases real-world applications of the AliMe KG in pre-
sales conversation scenarios. The evaluation combines both quantitative and qualitative assessments. The solution’s
strengths include providing a systematic methodology with semi-automated processes for mining structured knowl-
edge from natural language texts applicable to multiple languages and domains. Identified challenges include the
significant need for human annotations and feedback cycles, which can be time-consuming and expensive. The so-
lution also relies on external knowledge sources, introducing potential issues of reliability and currency, leading to
biases or errors in the Knowledge Graph. Risks to validation involve biases in data sources and potential inaccu-
racies in external knowledge, impacting the representation and generalization of results. Open challenges include
expanding the AliMe KG coverage in the Alibaba e-commerce platform and exploring its application in various
domains beyond e-commerce.

6. Open Challenges

This section describes key findings (cf. Section 6.1) and common themes and revisits our research questions (cf.
Section 6.2). We discuss open research challenges and potential paths for future investigations (cf. Section 6.3).
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6.1. Findings and Limitations

Publication years analysis (Figure 3) reveals a growing trend, especially from 2019 to 2022, which suggests an
increasing interest in and importance of the surveyed topic and justifies the relevance of our study. We believe that
the numbers for 2023 did not follow this trend because many accepted articles have not yet entered the scientific
databases (Table 7). In 2024, data related to 2023 will be better consolidated. Given the increasing adoption of
generative models for various NL processing tasks, including those related to KGs, we expect an accelerated growth
in the coming years. The increasing adoption of RAG (Retrieval Augmented Generation) [56] indicates that KGs
can and should be used with LLMs for information retrieval tasks.

Study categorization served as a venue for understanding the diverse methodologies employed in generating RDF
triples from NL texts and enhancing KGs. Each category addresses specific aspects, such as language specificity,
ontology and KG enhancement, domain specificity, use of neural networks, lexical resources, and link creation.

Clustering of articles across categories (Figure 4) provides a comprehensive overview of research efforts. These
results align with the subset of 15 articles described in Section 5. Our findings highlight some facts that warrant
reflection. Despite thousands of spoken and computationally represented languages, English still dominates as the
language used for NL texts and the KGs resulting from text processing. A more in-depth future work is needed to
identify how non-English languages use KGs generated in English for information representation.

Regarding transformation and domain categories (Section 5), we identified the proximity between specific single-
domain transformations and generic transformations across multiple domains. WCreating domain-specific KGs can
benefit companies, government agencies, or any other entities interested in using specific KGs, given that their
maintenance involves domain experts to ensure information consistency and less maintenance. On the other hand,
KGs spanning multiple domains may face maintenance and accelerated growth challenges due to the multiplicity of
domains and, consequently, the continuous creation of RDF triples. As such, we believe that, for example, creating
a specific and local KG about the health sector — the domain with the most articles based on our results (cf. Figure
5) — offers more benefits in terms of creation and maintenance than a domainless Knowledge Graph.

The less represented categories but of great relevance to this research are Multilingual and Link Creation. More
solutions should somehow support the creation of links with other ontologies or existing KGs. The rationale is that
such solutions would facilitate information reuse, connecting nodes from local KGs with larger and more established
KGs. In this sense, they would contribute to the LOD movement, transforming a Web with some disconnected data
islands into an interconnected archipelago of data [20].

Article distribution based on evaluation types (Figure 6) highlights the methodological diversity in assessing
existing proposed solutions. Quantitative methods were widely employed since this type of assessment can use
a large set of texts and triples as input, which facilitates adapting the methodology and refactoring tests. With a
large dataset, quantitative analysis enables researchers to iteratively adjust their methodologies and improve testing
procedures, ensuring a more comprehensive and informed evaluation of proposed solutions.

Figure 7 shows that most of the 150 articles present automatic or semi-automatic solutions, which, to some extent,
streamlines the RDF triple production and improvements in existing KGs. As such, quantitative methods dealing
with large amounts of data are needed for an overall evaluation of the results of these solutions. However, qualitative
methods are valuable allies that help to identify semantically incoherent RDF triples. Even though the triples are
generated in the <subject, predicate, object> pattern and can be connected to an existing KG, such triples may be
redundant, repeated, or inconsistent with those in the KG. Qualitative methods can identify such issues. Despite
the potential limitations in volume and speed associated with evaluation assessments using quantitative methods,
we understand that combining both quantitative and qualitative approaches is crucial for generating more consistent
and comprehensive evaluations. This is particularly important as it allows for a multi-faceted assessment of results
from different perspectives.

Several proposed solutions used a gold standard to evaluate the generated triples. We found no standard used
by the 15 studies described in Section 5. Constructing a “generic gold standard” to evaluate the generation of
Knowledge Graphs from texts would be a valuable asset, helping future solutions to be compared using a unified
evaluation basis.

The surveyed articles across various categories exhibit several limitations that provide opportunities for future
research and refinement of NL-based KG generation methodologies. First, the challenge of domain specificity. Many
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studies, particularly those in the Specific Transformation category, struggle with the adaptability of their approaches
to diverse domains. Biomedical applications, for example, present specific requirements that may not be addressed
adequately by generic NL-based KG generation methods. Moreover, several articles lack extensive evaluation in
real-world scenarios, relying on relatively small datasets or limited case studies. This hinders a comprehensive
understanding of the scalability and robustness of the proposed solutions, making it crucial for future work to address
this gap by validating solutions in diverse and realistic settings.

Second, while Transformer-based approaches present remarkable capabilities, as shown in the Neural Network
category, they are not without limitations. Many studies employing neural network architectures focus on English-
centric applications, raising concerns about the generalizability of these methods to non-English languages. Effec-
tiveness of these neural network models can be contingent on the availability of large and high-quality training
datasets, limiting their applicability to less-resourced languages. Additionally, the computational intensity associ-
ated with neural networks is a common challenge, potentially restricting their deployment in resource-constrained
environments. These limitations demand research efforts to enhance the multilingual applicability, dataset diversity,
and computational efficiency of transformer-based KG generation methods to foster broader advancements.

Third, Figure 7 indicates that fewer articles explicitly mention real-world applications, suggesting a potential gap
between research and practical applications. The availability of publicly accessible data remains limited, impacting
the reproducibility and accessibility of the proposed studies.

6.2. Answer Summary of Research Questions

Our literature review enables answering the defined research questions in Table 2. Each research question was
answered throughout this text, which are summarized below:

1. RQ-01 – “What are the benefits and drawbacks of a method that generates RDF triples from texts?” As
highlighted in Section 5, these approaches contribute to KG enrichment by extracting structured information
from unstructured texts, fostering a more comprehensive understanding of various domains. Their versatility
is evident across applications, including healthcare, e-commerce, and the Arts. Drawbacks include language
dependency, which limits the applicability of some methods to specific languages, and potentially excludes
valuable information from texts in other languages. Domain sensitivity is another challenge, as certain methods
are tailored to specific domains, making them less adaptable across diverse knowledge areas. Dependency on
external lexical resources introduces challenges related to the consistency, coverage, and real-time updates of
those resources.

2. RQ-02 – “Are there any patterns for texts used as input and for the triples generated as output?” We identified
that methods preprocess texts to extract entities, relations, and contextual information, leading to diverse pat-
terns in generated triples. Table 8 showcases the intersection of different categories, emphasizing the variety
in approaches and potential patterns. Generally, texts undergo preprocessing by filtering, entity extraction, and
relation extraction, resulting in patterns like <entity, relation, entity>.

3. RQ-03 – “What are the most used techniques? What are the most accurate ones?”, Most studies, especially
recent ones, rely on Transformers techniques in either one step of the process or the overall method [37] [21]
[38] [39] [31]. Previous research relied mostly on NLP techniques combined with rule-based approaches to
identify and extract RDF triples from text [5][7]. The advent of Transformers showed greater accuracy when
considering those used in past research. Due to their ease of use, transformer-based solutions are becoming
more popular in diverse applications [57]. Based on Table 9, we note that articles related to Transformers, in
addition to being highly popular in recent years, also report impressive evaluation metrics, like precision, re-
call, F1-score, and accuracy, with values approaching 1. Although these studies do not utilize the same bench-
marking datasets or evaluation methodologies, we interpret these high values as indicative of performance that
surpasses the current state-of-the-art. However, a definitive conclusion regarding which method for generat-
ing triples from text achieves the highest accuracy can only be reached by adopting a unified and sufficiently
comprehensive benchmarking framework.

4. RQ-04 – “Are there fully automated approaches to generate knowledge graphs from text?”, Few studies present
a semi-automatic method [21] [17] [39] [35] [18]. Most research employs a fully automated method, i.e., the
KG is generated with no human intervention.
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5. RQ-05 – “What are the main applications that benefit from the text-to-triple approaches?” A portion of the
studies in our survey are not currently employed in real-world applications. From the original 150 papers re-
trieved, only 27 (18%) were employed in live software. Of 15 papers detailed in section 5, only five were used
in real-world applications [21] [36] [40] [31] [35]. This suggests an existing gap between research advance-
ments and practical implementation. Nonetheless, for the subset of studies that are applied in real-world sce-
narios, we verified a direct impact on information retrieval-based applications across diverse domains. Specif-
ically, these applications span various sectors such as health, technology, education, and more. In healthcare,
for instance, text-to-triple approaches contribute to the construction of KGs that aid in medical research, diag-
nosis, and treatment recommendations. In education, the application of text-to-triple techniques facilitates the
creation of educational KGs, supporting adaptive learning systems and personalized content delivery.

6. RQ-06 – “How do the methods explore the T-Box and A-Box in terms of text-to-triple generation?”, We iden-
tified some relevant approaches. T-Box population methods enhance/enrich existing ontologies by extracting
knowledge from unstructured texts and connecting it to ontology classes and properties. In turn, A-Box pop-
ulation methods focus on populating the instances portion of knowledge representation with relations derived
from texts. The challenge lies in balancing both aspects for a comprehensive and accurate KG construction.
As discussed in Sections 5.2.1 and 5.2.2, methods explore T-Box and A-Box differently, emphasizing the rel-
evance of understanding and addressing ontology and instance-related aspects for effective text-to-triple gen-
eration. Furthermore, successful A-Box population hinges on robust entity linking by automatically matching
mentions to existing URIs. Several of our 15 studies explicitly evaluate EL quality [21] [36], even if they may
not use the term “entity linking”.

6.3. Promising Research Directions

This section outlines research gaps and promising research directions arising from the analyses and findings
described in Section 4 and Section 5. We also discuss opportunities identified by us (the authors) and not identified
in the reviewed articles in our study.

Multilingual NL-Based KG Generation: Developing methodologies that can effectively generate RDF triples
from NL texts in multiple languages remains a significant challenge. The inherent linguistic variations, syntactic
structures, and semantic nuances across different languages pose obstacles. Moreover, the availability of large and
diverse training datasets and benchmarks [58] [59] for less-resourced and less-spoken languages is limited, compli-
cating the training of robust multilingual models.

To the best of our knowledge, no tools exist for adding triples to KG from texts written in natural language
exclusively for low-resource or low-comprehensive languages. We have found many tools for English [30] [31]
[35] [17] [18], Spanish [32] [37] [38], French [33], multilingual [34] [36] [21] [39] and other languages with many
speakers [40] [41]. Addressing this challenge requires innovative approaches to handle linguistic diversity, improve
cross-language generalization, and explore techniques for effective knowledge transfer between languages.

Real-World Applicability and Scalability: NL-based KG generation methods may lack extensive validation in
real-world scenarios, impacting their practical applicability and scalability. Validation methods applied to diverse
domains and large-scale applications are challenging due to the complexity and variability of real-world data. Re-
searchers face difficulties using comprehensive gold-standard datasets for various domains and ensuring their pro-
posals can scale to handle large, dynamic datasets [58] [59]. Overcoming these challenges requires developing eval-
uation frameworks that simulate real-world conditions and exploring scalable NL processing techniques suitable for
diverse application contexts.

Evaluation Metrics for Quality and Completeness: The lack of a universal benchmark gold standard dataset for
evaluating knowledge graph enhancement from natural language texts remains a significant challenge. While some
benchmarks, such as WebNLG [58] and Text2KG [59], are available, they are not widely or consistently adopted
across studies. As shown in Table 9, many papers diverge in their choice of datasets and metrics, hindering direct
comparisons between proposed methods. Existing evaluation metrics, often limited to quantitative measures like
precision and recall, fail to fully capture essential aspects such as semantic accuracy, coherence, and relevance of the
generated RDF triples. The subjective nature of these qualitative dimensions, combined with the lack of a unified
evaluation framework, further complicates developing comprehensive and standardized metrics.
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Handling Ambiguity and Polysemy: Ambiguity and polysemy in NL texts introduce complexities in accurately
identifying entities and relations. Resolving the ambiguity arising from multiple interpretations of words or phrases
and disambiguating between polysemous meanings is challenging. Existing NL-based KG generation methods often
struggle in contexts where entities have diverse meanings or where words can be used in multiple contexts. Mitigat-
ing this challenge requires developing context-aware models, advanced disambiguation techniques, and strategies
to incorporate contextual information for accurate entity and relation identification.

Several studies identified in our systematic literature review reported this challenge. Lin et al. [36] reported
difficulties with both ambiguity and polysemy in noisy data used as input in their method, hidering the process of
relation definition between the entities to build the triples. Kertkeidkachorn and Ichise [34] cited errors that arise
with both polysemy and ambiguity, such as low NER accuracy, matching and inconsistent mappings with other
KGs. Dutta et al. [17] discussed errors in their method when dealing with identical phrases. Xu et al. [37] reported
difficulties with equivalent entities in when merging KGs.

Ethical and Bias: NL-based KG generation methods are susceptible to biases present in training data, which may
perpetuate biases. Addressing ethical considerations and mitigating biases in the generated knowledge is a pressing
challenge. The difficulty lies in identifying and addressing implicit biases in training data, ensuring fair represen-
tation of diverse perspectives, and establishing guidelines for responsible NL-based KG generation. Creating KGs
based on fairness is a topic of study that has been cited as future work in some articles within KG engineering [59]
[60] [61], showing its importance for the scientific community. Overcoming this challenge requires interdisciplinary
collaboration and ethical frameworks to promote fairness in knowledge representation.

Dynamic Knowledge Graph Evolution: Ensuring the dynamic growth and temporal evolution of NL-based
KGs, such as Temporal Knowledge Graphs (TKGs) [62] to capture real-time changes in knowledge domains is
complex. Many existing methods focus on static KGs, limiting their ability to adapt to emerging information. Ad-
dressing this challenge involves designing frameworks that allow continuous knowledge acquisition, integration,
and evolution while considering the computational complexity and potential risks associated with real-time updates.

User Involvement: Incorporating user feedback, domain expert insights, and human-in-the-loop interactions in
NL-based KG generation can be meaningful to the overall quality of the KG. Many solutions lack mechanisms for
effectively involving users and domain experts in the generation process, leading to potential gaps in understand-
ing contextual nuances. Overcoming this challenge requires developing interactive NL-based KG generation inter-
faces, feedback loops, and collaborative frameworks that help users contribute domain-specific knowledge, validate
generated triples, and enhance the overall quality of knowledge representation.

Real World Applications: Creating KGs from texts has a wide range of practical applications. For example, in
the e-commerce domain, KGs are used to enhance user experiences by providing personalized recommendations and
ensuring product compatibility through semantic relations extracted from textual descriptions. In healthcare, KGs
constructed from scientific articles and electronic health records facilitate identifying clinical patterns and support
evidence-based decision-making. In the automotive industry, KGs derived from technical manuals and specifications
enable precise queries regarding part compatibility and vehicle maintenance.

An emerging application involves integrating KGs with language models in Graph-RAG (Retrieval-Augmented
Generation) systems [63]. In this context, KGs serve as a structured knowledge layer, enhancing the ability of LLMs
to generate more accurate and context-aware responses. For instance, in customer support systems, KGs can provide
information directly related to a user’s interaction history or the company’s knowledge base, ensuring alignment
with verified data.

7. Conclusion

A considerable portion of textual data remains unprocessed, representing substantial amount of information that
holds the potential to provide actionable insights. This is driven by the need to develop novel methodologies and soft-
ware tools capable of transforming these large volumes of unstructured text into structured, computer-interpretable
knowledge. Semantic Web technologies, particularly with the core use of RDF triples and Knowledge Graphs, offer
an approach to organize this information. This systematic literature review about studies addressing RDF triple gen-
eration from unstructured NL texts sought to enhance existing KGs. We identified the most prominent approaches
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in the literature for extracting RDF triples from text, especially concerning their inclusion in existing KGs. We pro-
vided a comprehensive overview of the domain pointing out the main challenges and the limitations on the current
state-of-the-art on such research. Our study systematically surveyed a diverse set of 150 articles from distinct scien-
tific databases. From such, we identified 10 categories and presented a detailed description of the most key studies
from those, resulting in 15 articles discussed in detail. We contributed by outlining opportunities for future research
by identifying the categories, approaches, challenges, open research questions, and research gaps. Our contribution
paves the way for further advancements in novel methods for the automatic RDF triple generation from texts.

Acknowledgments

This study was financed by the National Council for Scientific and Technological Development - Brazil (CNPq)
process number 140213/2021-0. In addition, this research was partially funded by the São Paulo Research Foun-
dation (FAPESP) (grants #2022/13694-0, #2022/15816-5 and #2024/07716-6). This work was also supported by
Nederlandse Organisatie voor Wetenschappelijk Onderzoek [grant number Nwa.1332.20.002]. The authors thank
Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP – for the language services provided. The opinions
expressed in this work do not necessarily reflect those of the funding agencies.



28 A. G. Regino et al. / Survey

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix

Table 10 presents all the terms used to query the papers. It is an expanded version of Equation 1.

Table 10
Search queries. They represent a breakdown of the main query (cf. Equation 1), aligned with the study objectives.

Query Terms description

Q-01 “generation” + “triples” + “natural language texts”

Q-02 “generation” + “triples” + “unstructured texts”

Q-03 “generation” + “triples” + “textual data”

Q-04 “generation” + “knowledge graphs” + “natural language texts”

Q-05 “generation” + “knowledge graphs” + “unstructured texts”

Q-06 “generation” + “knowledge graphs” + “textual data”

Q-07 “generation” + “knowledge base” + “natural language texts”

Q-08 “generation” + “knowledge base” + “unstructured texts”

Q-09 “generation” + “knowledge base” + “textual data”

Q-10 “extraction” + “triples” + “natural language texts”

Q-11 “extraction” + “triples” + “unstructured texts”

Q-12 “extraction” + “triples” + “textual data”

Q-13 “extraction” + “knowledge graphs” + “natural language texts”

Q-14 “extraction” + “knowledge graphs” + “unstructured texts”

Q-15 “extraction” + “knowledge graphs” + “textual data”

Q-16 “extraction” + “knowledge base” + “natural language texts”

Q-17 “extraction” + “knowledge base” + “unstructured texts”

Q-18 “extraction” + “knowledge base” + “textual data”

Q-19 “construction” + “triples” + “natural language texts”

Q-20 “construction” + “triples” + “unstructured texts”

Q-21 “construction” + “triples” + “textual data”

Q-22 “construction” + “knowledge graphs” + “natural language texts”

Q-23 “construction” + “knowledge graphs” + “unstructured texts”

Q-24 “construction” + “knowledge graphs” + “textual data”

Q-25 “construction” + “knowledge base” + “natural language texts”

Q-26 “construction” + “knowledge base” + “unstructured texts”

Q-27 “construction” + “knowledge base” + “textual data”

Q-28 “population” + “triples” + “natural language texts”
Q-29 “population” + “triples” + “unstructured texts”

Q-30 “population” + “triples” + “textual data”

Q-31 “population” + “knowledge graphs” + “natural language texts”

Q-32 “population” + “knowledge graphs” + “unstructured texts”

Q-33 “population” + “knowledge graphs” + “textual data”

Q-34 “population” + “knowledge base” + “natural language texts”

Q-35 “population” + “knowledge base” + “unstructured texts”

Q-36 “population” + “knowledge base” + “textual data”

Figure 8 shows the papers submitted by country. Figure 9 highlights the five countries with the highest contribu-
tion, namely China, India, the USA, Germany, and Canada.

Considering the institutions, Figure 10 shows the universities that contributed with at least two articles. Of 16
universities, the top 5 are from China.



A. G. Regino et al. / Survey 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. Number of articles categorized by country.

Fig. 9. Top 5 countries in terms of number of articles.
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