
Dataspecer: Development of Consistent
Semantic Data Specification
Ecosystems

Semantic Web journal
XX(X):1–17
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Štěpán Stenchlák, Jakub Klímek, Petr Škoda and Martin Nečaský1

Abstract
To achieve interoperability for effective data exchange on the web, we need a contract. Depending on the field, we may
refer to technical data schemas, web vocabularies, or, more generally, to data specifications (DS). The development
and management of these DSes can become difficult in complex domains with multiple stakeholders and related
DSes involved. In this paper, we present Dataspecer, an open-source, modular web application for the development of
semantic data specifications (SDSes), DSes that target the semantic and technical layers of data exchange. Dataspecer
allows users to design web vocabularies and their application profiles, maintaining relations between reused concepts
and their original SDSes. Furthermore, Dataspecer assists users in the creation of technical artifacts such as schemas
for JSON or XML, while maintaining consistency of the artifacts with the application profiles. We motivate the need for
SDSes and derive requirements for such a tool. In case studies based on the ecosystem of DCAT-based specifications,
we demonstrate that SDSes created in Dataspecer meet these requirements and are of higher quality. We show SDSes
that were created directly in Dataspecer, and in the evaluation section, we argue that using our tool is more efficient
than creating them manually, even for smaller domains.

Keywords
Semantic Interoperability, Technical Interoperability, Semantic Data Specification, Vocabularies, Application Profiles

Introduction
As businesses grow and the number of systems they employ
increases, or when multiple independent organizations
coexist within a shared environment, data interoperability
becomes increasingly critical. Consistent and accurate data
exchange, unified terminology used, and support for the
development of scalable, maintainable systems that rely on a
common understanding of the exchanged data are all effects
of high data interoperability.

Achieving interoperability requires that all parties adopt
a shared contract. Developing such contracts requires a
methodological approach, recognized in communities that
participate in model-driven development, conceptual mod-
eling, and data governance (Atkinson and Kühne (2003);
Guarino et al. (2009)). These communities converge on
the idea that interoperability must be addressed both (i)
semantically, by providing meaning - usually by vocabu-
laries and ontologies, and (ii) technically, by ensuring that
data is correctly exchanged in machine-readable formats -
usually validated by technical schemas (Masmoudi et al.
(2024); Bayerlein et al. (2024); Jordan et al. (2025); Vogt
et al. (2025)). We refer to such contracts as semantic data
specifications (SDS).

In practice, we often find that SDSes reuse other, already
existing specifications. The reuse increases the likelihood
that users already familiar with the concepts that reused
SDS defines will understand them. This approach is widely
adopted, for example, in the world of web vocabularies
(Noy et al. (2001); Corcho et al. (2005)). However, some
specifications go even further and specify how to apply
reused concepts in their target application domain by

Figure 1. An example of an application profile (AP) hierarchy of
the Data Catalog Vocabulary (DCAT) (Perego et al. (2024)).
Lower profiles reuse concepts from the higher ones and apply
them in their specific application scenario, often with restrictions
and terminological refinements.

adding additional contextual information (Park and Childress
(2009)). Historically, such refinements were handled ad
hoc, lacking a more systematic approach. Specifications that
reuse existing concepts while providing them with contextual

1Charles University, Faculty of Mathematics and Physics, Department of
Software Engineering, Prague, Czechia

Corresponding author:
Štěpán Stenchlák, Charles University, Faculty of Mathematics and
Physics, Department of Software Engineering, Malostranské nám. 25,
118 00 Prague, Czechia
Email: stepan.stenchlak@matfyz.cuni.cz

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Semantic Web journal XX(X)

meaning within a specific application domain are called
application profiles (APs) (Heery and Patel (2000)), which
can form hierarchies similar to the one in the data catalog
domain (Figure 1). To support the structured description
of such profiles, we have published the Data Specification
Vocabulary (DSV) (Klímek et al. (2025b,c)) - a vocabulary
for describing the reused concepts, how they should be used
in the given application scenario, to which vocabularies they
belong, and metadata about the individual specification’s
parts and reused specifications.

A variety of methodologies and frameworks have
emerged to address this challenge of reuse in the
form of application profiles. In particular, the European
Interoperability Framework (EIF)1 and the SEMIC Style
Guide2 provide guidance and methods to operationalize the
principles of interoperability, with an emphasis on the reuse
of existing semantics. However, they lack proper tooling and
technical standards to support the authoring of such SDS.

Although Semantic Web technologies are, in theory,
sufficient to ensure technical interoperability, many systems
still rely on conventional data formats such as JSON or XML.
These formats require a systematically defined schema that
represents the structure of the data.

The manual design of SDSes is a demanding and
monotonous process. It requires knowledge of multiple
technologies and a good grasp of the domain being
described. In complex domains, having high-quality SDSes
is essential to prevent errors during integration.

To address the challenge of creating and maintaining high-
quality coherent semantic data specifications, we introduce
Dataspecer, a web application for authoring and managing
high-quality semantic data specifications, specifically:

• web vocabularies in the context of other existing
vocabularies and ontologies,

• application profiles of other vocabularies and applica-
tion profiles by selecting concepts and contextualizing
their definitions for a given application domain,

• interlinked technical schemas for formats such as
XML, JSON, and CSV while maintaining strict
separation between them and the semantics they were
derived from.

Building on our previous work on the generation of
technical schemas from ontologies (Stenchlák et al. (2022))
and the creation of vocabularies and application profiles
(Klímek et al. (2024)), in this article we provide a
comprehensive presentation of the tool as a whole. We show
how these functionalities are integrated, revisit their core
principles, and demonstrate the tool’s complete functionality
on real-world specifications, highlighting its maturity and
applicability. We also evaluate the suitability of the tool for
practical use.

In the following chapter, Motivation and requirements, we
introduce the key concepts and motivate the requirements
for such a tool. In the Dataspecer chapter, we present
the Dataspecer tool and its key architectural decisions.
In the subsequent chapter Related Work, we compare
the requirements with existing tools and show their
shortcomings in our use case. Chapters Evaluation:
Improvement of DCAT application profiles and Evaluation:

Other Specifications Created in Dataspecer present real
SDSs created in Dataspecer, either by us or by our
users, including already existing specifications, thereby
demonstrating the usability of the tool. In Evaluation:
productivity and usability, we show systematically that even
for small cases, the use of Dataspecer is advantageous, and
we conclude the article with Conclusions and Future Work.

Motivation and requirements
In this section, we first explain why semantic data
specifications (SDSes) are important and why they should
be of high quality. Next, we introduce other core terms that
we will use. Finally, we present the requirements for a tool
that supports the development and maintenance of SDSes.

Semantic Data Specification (SDS)
A semantic data specification (SDS) is a contract for data
exchange that defines the (i) intended meaning of the
data elements in terms of a shared conceptualization of
the domain it describes, (ii) the constraints on how the
data can be related, and the (iii) structure, i.e. the format
of the representation of the data. We will refer to the
last point as the technical level as it ensures technical
interoperability by specifying how to structure and transfer
the data. The first two points ensure semantic interoperability
by providing semantics, and are crucial for understanding
the given domain and its concepts, so that the exchanged
data can be interpreted correctly. While the technical level
can be omitted if the contract’s purpose is only to define the
semantics for further use, the semantic level must always be
included to some extent; otherwise, it describes something
that has no defined meaning.

Technical
level

(optional)

Semantic
level

Documents Technical artifacts

Technical

schemas

Data

examples

Validation /
transformation

scripts

Mapping from technical to semantic

level

Ontology /

Vocabulary

Application

Profile

H
u
m
a
n
-r
e
a
d
a
b
le

d
o
c
u
m
e
n
ta
ti
o
n

Glossary

Im
a
g
e
s

M
a

p
p

in
g

 t
o

 o
th

e
r

S
D

S
e

s

M
e
ta
d
a
ta

Figure 2. Example of complex SDS manifestation targeting
both semantic and technical levels. SDSes typically consist of
human-readable documents, machine-readable technical
artifacts, and metadata for machine processability with mapping
to other SDSes. The list of SDS parts is non-exhaustive.

For small domains, the manifestation of an SDS can
be just a verbal agreement or may not even exist, if the
SDS is simple. However, in complex domains, especially
when multiple parties are involved, SDSes must be more
descriptive and formal. The formal description helps
stakeholders avoid misunderstandings that could cause costly
errors and complicate integrations (Tan et al. (2024)).

For the purpose of this paper, we consider SDSes as a
collection of interlinked (i) documents with attachments, and
(ii) technical artifacts, including metadata, as can be seen in
Figure 2. The documents target human readers; the technical
artifacts are designed for machine processing.

Prepared using sagej.cls

Stenchlák et al. - Dataspecer 3

We will target three types of SDSes that correspond to
three use cases that will be described in more detail further
in the paper: (i) vocabularies, which focus mainly on the
definition of terms and their relationships, (ii) application
profiles, which select concepts from other vocabularies
and application profiles, add constraints and terminological
specifications, to be used in a specific application scenario,
and (iii) technical SDSes, describing the structure of data.

In Linked Data ecosystem, (web) vocabularies3 are sets
of classes and properties that provide shared meanings for
describing data in RDF. Vocabularies are described using
RDFS (RDF Schema; Guha and Brickley (2014)) sometimes
extended with OWL (Wood et al. (2014)) statements that can
be used for more descriptive vocabularies, often referred to
as ontologies.

Reuse and Application Profiles (AP)
One of the key principles for achieving interoperability is the
reuse of existing, usually more established, SDSes. Those
SDSes are often already proven in practice, so reusing them
reduces the risk of errors and increases confidence. Reusing
semantic concepts increases the chance that the other party
may already understand them, thus simplifying the whole
integration process on the semantic level. Reusing technical
artifacts or data schemas, if they are suitable in the given
context, also eases the process.

Focusing only on semantics, two main approaches to reuse
are typically found in practice: (i) reuse of individual terms
as is and (ii) reuse with modifications for the purpose of
applying the terms to a specific domain.

Reuse as-is The nature of RDF, which is used in Linked
Data ecosystem, allows for this as-is reuse as vocabularies
and ontologies can link to others and use their concepts
as they were defined. This effectively splits the semantics
horizontally between multiple SDSes. For example, if we
want to describe people in our SDS, we can use the FOAF4

ontology, which defines the concept Person, including its
own properties. We can use directly the Person class as-is
by creating a relation that has a Person as its end. Or we
can create a new subclass from it, such as Student. This is
supported by numerous methodologies for ontology creation
(Noy et al. (2001); Corcho et al. (2005)) that recommend
reusing terms that are already used and proven in practice.

Reuse with modifications Reuse with modifications aims to
take an existing SDS, or part of it, and apply it to a specific
domain or context in such a way that certain modifications
may occur. For example, in the DCAT vocabulary, a property
for a title of a Distribution is directly dct:title from
the DCMI Metadata Terms vocabulary5. DCAT reuses this
property, in their context, as a Distribution title, while the
original DCMI Metadata Terms define it only as a Title. We
can also find cases where cardinality or datatype is narrowed
for the given domain.

Indirectly, this reuse with modifications is recommended
by the Best Practices for Publishing Linked Data (Hyland
et al. (2014)) and preferred by technically oriented experts in
the community of contributors to DCAT-AP and its profiles,
where properties from existing vocabularies are reused by
classes from other vocabularies. Following the previous
example, dct:title does not have a domain defined,

which means that it can be used anywhere, without any
side effects on inference, etc. DCAT states that this title
is used with the Dataset class. However, this information
about reuse with modifications cannot be correctly expressed
in RDFS + OWL since one would need to modify the
domain of the original property, which belongs to a different
SDS. Technically, changing this information is possible
simply by adding RDF statements about the given concept,
but this may have consequences in loss of provenance
information or incorrect reasoning - assuming something that
is not true. Therefore, in practice, this reuse information is
available only in human-readable specification documents
or manifests itself in derived artifacts such as SHACL
validation rules6.

Reuse with modifications preserves IRIs of classes that
are used, in contrast with subtyping, where new classes are
created with new IRIs. Reuse as is with subtyping is not an
issue if the other party correctly interprets the result, which
means that it knows all relevant SDSes and performs the
reasoning in order to derive the proper types. However, this
adds complexity to the data exchange, which is why authors
of SDSes prefer reuse with modifications.

The idea of not creating subclasses but rather reusing
concepts with modifications is conceptually addressed by
Application Profiles (AP) (Heery and Patel (2000); Baker
and Coyle (2009)). An AP is an SDS that (i) selects concepts
from other SDSes that will be reused, and (ii) alters or
concretizes their established semantics in order to apply them
in the given application domain.

APs form a hierarchy where reused SDSes are more
general, targeting broader applicability (see Figure 1).
The most general SDSes define only the core concepts,
minimizing potential integration issues, while the more
specialized extend them to a specific domain or a subdomain
or application. The derived APs then add the necessary
context for the given domain.

This idea of separating semantics to vocabularies that
only define terms and APs that reuse them in a specific
context aligns with real-world practice in ontologies (Corcho
Associate professor et al. (2015)), where we often see core
ontologies such as the DCMI Metadata Terms vocabulary
that introduces only basic terminology without enforcing any
strict rules.

As the original definition of AP is more of a guideline, we
developed the Data Specification Vocabulary (DSV) (Klímek
et al. (2025b,a)), which supports the representation of the
necessary information regarding reuse in the context of AP,
that is, in which contexts are which terms from which
vocabularies reused in a data specification. Maintaining
this information in machine-readable form is especially
important in complex data specification hierarchies such
as DCAT, DCAT-AP, DCAT-AP HVD, GeoDCAT-AP,
StatDCAT-AP, DCAT-AP-CZ, etc. (see Figure 1), where
the same classes and properties are reused and refined in
different ways in different contexts.

A typical setting for many SDSes is a combination of a
vocabulary and an application profile, which is the effect
of applying the reuse with modifications principle. The
vocabulary defines new domain-specific terms, while the
profile reuses existing terms. We call this combination a

Prepared using sagej.cls

4 Semantic Web journal XX(X)

Default Application Profile (DAP) and later show that some
vocabularies are, in fact, DAPs.

For SDSs to be of high quality, they must comprise many
different documents (see Figure 2) that are consistent with
each other. Creating them by hand is a demanding and
error-prone task. The designer then has to employ several
technologies at once and have a thorough understanding of
the domain being described. Therefore, there is a clear need
for machine assistance in the SDS creation.

Requirements
We proceed by presenting three real-world use cases, on the
basis of which we derive a set of requirements for the tool.
Later in the evaluation, we will show that our implementation
meets these requirements. These requirements are (i) a
summary from us, the authors of this article, based on
the needs we identified during our work in the areas of
data modeling in public administration, the development of
DCAT application profiles and software development, and
(ii) feedback from other Dataspecer users.

Use case: Vocabularies The first use case concerns the
creation of RDFS vocabularies on the Web. Examples of
such vocabularies include the previously mentioned DCMI
Metadata Terms or FOAF. A non-exhaustive list of them
can be found, for instance, in the Linked Open Vocabularies
(LOV) application7. Such vocabularies consisting of class
and property definitions then use definitions from other
vocabularies, which correspond to reuse as-is according to
our definition. The list of these reuses can be found in the
LOV application by opening the given vocabulary.

Req. 1. The tool shall support the creation and manage-
ment of web vocabularies in RDFS+OWL.

Req. 2. The tool shall support importing existing web
vocabularies and guide the user when reusing them.

Because this use case covers a wide range of applications,
such a tool must be highly versatile in order to be used
in different scenarios. The bare minimum includes the
following:

Req. 3. The tool shall support customization of the
generated documents and technical artifacts.

Req. 4. It shall be possible to extend the tool to create other
technical artifacts and documents.

Use case: Application profiles As stated in Reuse and
Application Profiles (AP), an Application Profile (AP) is a
specialized SDS that reuses terms from other SDSes, that
is, vocabularies or APs, with some modifications and/or
extensions to fit a specific domain.

Since APs are based on a vocabulary or another AP that
they extend, it is necessary to maintain consistency between
individual APs.

Req. 5. The tool shall support the authoring of APs that
may extend other APs or vocabularies, and shall guide users
when creating them and maintain consistency between them.

Use case: Technical interoperability The core of data
interoperability is the actual data exchange; hence the goal
is to enable users to easily create an SDS that describes
the data structure in the form of typical documents such as
a JSON Schema or XSD. In theory, sharing data in RDF
that conforms to the RDFS vocabulary, possibly extended
with a rich ontological description when necessary, should
be sufficient. However, most software developers and data
engineers are not yet comfortable with these languages
and formats and require the well-known XML, JSON, or
CSV (Espinoza-Arias et al. (2021); Köcher et al. (2022);
Klíma et al. (2023)).

These formats have a defined structure, described by a
schema (typically XSD (Thompson et al. (2012)) for XML or
JSON Schema (Wright et al. (2022)) for JSON). The schema
is usually sufficient to provide technical interoperability;
therefore, the main challenge is to create the schema in a
way consistent with the defined semantics, ideally deriving
it from it as doing it manually is laborious and error-prone
task (Nuyts et al. (2023); Westermann et al. (2025)).

Vocabularies and their application profiles define the
semantics. For the purposes of this paper, we can view the
semantics as a UML class diagram, with concepts as classes
with their properties and relations, having cardinalities
and data types. By deriving we mean taking this graph
representation of the semantics, and transforming it into the
graph or tree representation of a schema for a given data
format.

Req. 6. The tool shall support authoring technical schemas
derived from semantics.

However, in real-world applications, it is common to find
multiple slightly different schemas that all describe the same
underlying concept, usually differing by the context in which
the data are queried. For example, an API specification for an
e-commerce system may have two endpoints: /items and
/items/{id}. The first one may return an array of items
with only the basic properties, such as name and price. The
second then would return a single item, but with all other
properties as description or specification.

As another example, in some cases, it may be necessary
that the structure of the schema does not directly reflect the
graph representation of the semantics. For example, consider
an Address as a concept with one of its properties city and
a Person with the Address as a primary address. In JSON,
the designer may decide to skip this correct, but complex
relationship to Address and model primary-city as a
direct property of an object representing the Person concept.

These two examples imply a not-so-strict relation between
the structure and semantics. Designers should have the
opportunity to shape the structure to their needs.

If this flexibility is not maintained, it may force designers
to adjust the semantics to conform to the data structures.
This adjustment may involve selecting concept names
and organizing associations within concepts based on the
designed data structures rather than on the desired and
correct semantics in the domain (such as breaking the
concept Address from the example above).

Req. 7. The designer shall have the freedom to customize
the structure implied by the semantics without breaking the
original semantics.

Prepared using sagej.cls

Stenchlák et al. - Dataspecer 5

In practice, we may encounter two opposing approaches
regarding how a data structure corresponds to its original
semantics. Considering the implicit structure derived from
semantics and the corresponding data, we can:

1. Create a data structure that relaxes requirements
such as cardinality and thus entirely omits certain
properties. Such a data structure can represent a view
that contains only the basic properties of the dataset,
effectively a subset of the information.

2. Create a data structure that tightens requirements,
such as restricting cardinality or adding properties.
This use case is precisely addressed by application
profiles. However, there may also be a need to add
technical attributes that do not necessarily belong
to the semantics. These might include, for example,
an internal ID, or attributes for limit and offset on
collections.

Req. 8. The designer shall have the freedom to model only
parts of the domain and add concepts that are not part of the
semantics.

Schemas often reference each other, for example, using
$ref or <import>, enabling the incremental construction
of larger, more complex schemas from smaller ones already
defined.

Req. 9. The tool shall support referencing schemas defined
in other specifications.

Thanks to well-defined semantics, it becomes possible to
understand what the data actually describes (Doan et al.
(2012)) and to avoid errors such as misinterpreting the
meaning of a data field or drawing assumptions that, in fact,
do not hold. For that, we need the mapping between the
semantics and the structure. Depending on the complexity
of the domain, mappings can be implicit, for example,
by matching names (e.g., the dataset-distribution element
corresponds to the Dataset Distribution concept), but this
approach is neither formal, unambiguous, nor machine-
processable. A formal mapping (in JSON-LD (Champin
et al. (2020)), SAWSDL for XML (Lausen and Farrell
(2007)), CSVW (Kellogg and Tennison (2015)), etc.) is
needed to avoid ambiguity and ensure machines can interpret
the relationship between data structure and semantics.

Req. 10. The tool shall generate a mapping from the
technical schema to the semantics.

To reduce the technical complexity of schema creation,
which is still necessary due to Requirement 7 and 8, we can
employ a simpler language that is then translated into the
final schema.

This approach gives us the benefit of having one language
that can then be translated to different formats, such as XML
and JSON, because both are hierarchical and have some
common properties. As we show in the evaluation, even
basic feature support for given formats is often sufficient.
For constructs specific to a particular format, such as groups
in XML, we can simply extend the language with those
constructs in an appropriate way so that they can be ignored
by other formats, such as JSON.

Req. 11. The tool shall provide a simpler language that can
express the desired data structure independently of the target
format.

General requirements

FAIR principles One of the critical issues is that current
semantic data specifications are not fully machine-
processable and, in general, FAIR (Wilkinson et al. (2016)).
FAIR specifications (Garijo and Poveda-Villalón (2020);
Poveda-Villalón et al. (2020)) are easily findable through
a unique and persistent identifier, with which they are
accessible, and are described using rich metadata. They
should use open standards, have a license and contain
clear provenance. In practice, not all specifications follow
these principles. For example, DCAT is represented by the
namespace URL http://www.w3.org/ns/dcat#,
and the human-readable documentation URL https://ww
w.w3.org/TR/vocab-dcat-3/. The namespace URL
yields just the DCAT vocabulary. The documentation URL
contains a bibliography, but no links to the other artifacts, not
even the namespace URL. In DCAT-AP (Cock et al. (2025)),
the European profile of DCAT, the situation is similar. The
DCAT-AP namespace URL8 contains just the supporting
vocabulary file. There are no links to other artifacts.

A fully machine-readable SDS based on open standards
will facilitate easy integration with other tools, adoption,
validation, and reuse for the creation of additional SDSes
built on it. The entire workflow for creating and maintaining
an SDS should then not depend on proprietary tools and
should be easily extensible to ensure maximum adoption.

Req. 12. The specifications authored in the tool shall
include machine-readable metadata that identifies and
provides access to all artifacts of the specification and
helps the publisher publish the specification under the FAIR
principles.

Dataspecer
Based on the motivation and requirements described in
Motivation and requirements, we introduce Dataspecer9.
It is an open-source10 web application for the complete
creation and management of SDSes at the semantic (Klímek
et al. (2024)) and technical (Stenchlák et al. (2022))
levels. Dataspecer supports the entire SDSes development
lifecycle, starting with the import of existing vocabularies
or specifications for reuse, continuing through conceptual
modeling, including the definition of application profiles,
followed by structural definitions and generation of the final
specification.

The goal of Dataspecer is to provide a user interface for
the easy authoring of SDSes, which can then be generated in
the form shown in Figure 2. Dataspecer represents work-in-
progress SDSes as projects. The projects consist of various
parts, which we call models, and the user edits these models
through Dataspecer. Based on these models, an SDS with
metadata is then generated. Thanks to the metadata and
technical artifacts, such as DSV or RDFS vocabulary, it
is possible to upload the SDS back into Dataspecer as a
project and continue editing it. We therefore consider the
SDS to be an "export," where a single piece of information,
for example, the name of a concept, as mentioned in

Prepared using sagej.cls

http://www.w3.org/ns/dcat#
https://www.w3.org/TR/vocab-dcat-3/
https://www.w3.org/TR/vocab-dcat-3/

6 Semantic Web journal XX(X)

Metadata

Imported SDS

Metadata

Dataspecer project

Metadata, Configuration,

Templates

Semantic model(s)

Structure model(s)

Exported SDS

Human-readable

documentation
Images

Ontology /
Vocabulary

Application
Profile

Glossary

Technical
schemas

Data
examples

Validation /
transformation

scripts

Mapping to other SDSes

Ontology /
Vocabulary

Mapping from technical to semantic level

Figure 3. Relation between Dataspecer project, fully exported
SDS and SDS that is imported, such as vocabulary. The arrows
show import/export dependencies.

Requirements, appears in multiple places, whereas within
the project it is contained only in the semantic model, from
which technical artifacts, documentation, diagrams and other
parts of the SDS are generated. This is shown in Figure 3.

The high-level architecture of Dataspecer, shown in
Figure 4, can be divided into the core (indicated in the
figure by a black dashed box) and the individual applications
(shown in blue), which allow users to manipulate the
different parts of a project. The Dataspecer core is
responsible for loading external SDSes into the internal
format, as demonstrated in Figure 3, and for exporting
SDSes. The individual applications then access the internal
representation of the project, which they can modify, thereby
changing the form of the resulting specification.

Dataspecer core and backend
At runtime, the Dataspecer core acts as the backend of the
framework. Its main responsibility is managing projects and
providing applications with a simplified representation of the
project consisting of models while ensuring their consistency
and handling the import and export of specifications.
Individual applications can thus be shielded from the
complexities of SDSes and focus only on one specific part.

The applications can access the individual models via
API or can read the fully exported specification via DSV
or other technical artifacts that are being exported. The
latter approach allows applications to be at least partially
independent of Dataspecer. However, due to the proposed
workflow, they cannot directly modify the artifacts.

To ensure consistency and to enable change tracking in the
future, modifications via API are carried out through a set of
operations, which are evaluated by the Operation Executor
and applied to the model. Since models depend on each other
and resolving dependencies could be problematic for the
individual applications, the Model Aggregator can provide
a simplified representation that applications can work with.

Dataspecer supports extensibility through adapters, which
facilitate the import of existing conceptual and semantic
models. These adapters allow Dataspecer to integrate various
external data specifications or vocabularies, such as RDFS
vocabularies or data accessible via SPARQL endpoints
(Clark et al. (2013)), including, for example, the Czech
Semantic Government Vocabulary (SGoV) (Křemen and
Nečaský (2019)). We have also experimented with adapters
for Enterprise Architect and Wikidata (Gora (2025)), and
with integration with our neighboring research group’s

Manager
[Frontend application]

Conceptual Editor
[Frontend application]

Structural Editor
[Frontend application]

SQLite +
filesystem
database

Operation
Executor &

Model source
[Component]

Technical artifacts generators
[Components]

HTML generator
[Component]

DSV generator
[Component]

RDFS adapter
[Component]

SPARQL adapter
[Component]

Model Aggregator
[Component]

SGoV

[SDS]

RDFS Web
Vocabularies

[SDS]

Wikidata

[SDS]

SDS

exported

Technical artifacts generators
[Components]

SDS
Designer

Dataspecer Backend (core)
[Container]

Figure 4. Architecture of the Dataspecer tool containing key
parts with indication of import and export flow of SDS. Black
arrows denote the relationship that the given component uses
the target component.

tool for multi-model database management (Klímek et al.
(2023)), further proving the flexibility of the architecture.

The SDS can be previewed and exported as HTML
documentation using Respec11, accompanied by all related
technical artifacts (schemas, mappings, examples, etc.). The
Respec document serves as an entry point for human
users and can also be accessed by machines as it links to
all necessary resources and metadata. Support for another
documentation system such as Bikeshed12 can be added by
implementing a suitable documentation generator.

To generate artifacts in SDS, individual generators can be
registered in the backend as separate components. Based on
given model(s) and configuration, these generators produce
the files that form the SDS. We have already implemented
generators for XML, JSON, and CSV schemas, XSLT
transformations, JSON-LD contexts, JSON example, etc.

For example, JSON generators read structure models
(described later) to generate JSON Schema and the
aggregated result of all conceptual models to correctly
generate JSON-LD context that can be used by linked data
consumers for semantic interoperability. In addition, the
generators can inject text into the documentation to describe
the generated artifacts.

Manager Application

Manager is a simple front-end application that is tightly
coupled to the backend and provides a UI for managing
projects, importing and exporting SDSes, and serves as a
signpost to other applications. It also manages metadata,
including a Handlebars13 template that is used to generate an
HTML document for SDSes. This gives users the flexibility
to customize the SDS front page to their needs.

For easier use, it provides a wizard that helps users
create their own vocabulary, application profile, or technical
schema from existing specifications.

Prepared using sagej.cls

Stenchlák et al. - Dataspecer 7

Figure 5. DCAT-AP in Conceptual Editor of Dataspecer - to the
left, there are vocabularies and APs reused by DCAT-AP, to the
right the current AP displayed on canvas

Conceptual Editor Application
The conceptual editor is an application capable of creating
and editing semantic models - vocabularies, and application
profiles. It can work with multiple models simultaneously
(Requirement 2), allowing the designer to import existing
specifications and build alongside them or interconnect
them, forming a hierarchy like the one in Figure 12. The
dependency between models is maintained by the backend
in a hierarchical structure, ensuring consistency and enabling
the display of complex class-profiling scenarios across
multiple layers of application profiles.

With the use of the Conceptual Editor (and Backend with
the Manager), a user can import existing web vocabularies,
which are displayed on the canvas, and create a new
vocabulary alongside them by defining new concepts and
linking them to the existing ones. In this case, the
result of the process is an SDS with RDFS+OWL web
vocabulary accompanied by documentation that describes all
the concepts and reused vocabularies.

In the case of creating an application profile, the process
is similar. The user imports existing vocabularies or creates
new ones and then reuses individual classes, attributes,
and properties, defining their profiles. The generated
documentation includes only the profiled concepts, along
with information on how they are applied in a specific
application domain, and a technical description of the
application profile.

The tool supports various layout options, categorizing
concepts into roles, multiple graphical views of a single
specification, and various visual adjustments such as hiding
features, grouping concepts into a single node, or duplicating
them. This allows the designer to graphically express the
complexity of the specification in a simple way. These views
are then included in the documentation.

Structural Editor Application
To support the requirements regarding technical interoper-
ability, we provide the Structural Editor. The goal of this
application, in combination with the Dataspecer core, is to
enable users to create a data structure from their semantics

and generate various technical schemas and related artifacts
from it.

Our main focus is on JSON and XML formats, as these
are our main use cases, which are further explained in
Case study: Czech Formal Open Standards (FOSes). Due
to both formats sharing a similar hierarchical structure and
to support Requirement 11, we designed a simple graphical
language for the structural model that corresponds to nested
lists (see Figure 6). Designers can use the existing semantics
to build the structure (Requirement 6) simply by searching
for the correct term or clicking on the plus button, but are
not restricted by it. Elements can have their order changed
by dragging, and properties can be moved under parents or
children as long as the rules that ensure that the structure
remains mappable to the original conceptual model are not
violated. In this way, the desired data structure can be easily
reached with just mouse clicks (Requirement 7, 8).

Figure 6. Example of structure for cataloging Tourist
destinations. Primitive properties are in blue with minus symbol,
associations in red and objects in black with a tree symbol. You
can see that Owner object can be specialized if necessary, this
is denoted by green, and Barrier-free access is a structure
defined in another SDS.

We can then translate this graphical language into JSON
Schema, XSD, and, after certain transformations*, also into
CSVW. The corresponding mappings of data from the
data formats into RDF are automatically generated for the
schemas, e.g., JSON-LD for JSON, SAWSDL and XSLT
transformations for XML (Requirement 10), etc.

In Dataspecer, if one creates multiple SDSes from the
same semantics, it is then possible to reference one structure
from another (Requirement 9). In this context, by reference
we mean a simple link to the corresponding technical
artifacts of other SDSes. This allows data modelers to first
create small technical SDSes and then use them to build
larger ones.

Each specification has a persistent IRI identifier, under
which the specification is expected to be accessible. It
contains machine-readable metadata with references to all

∗The details of the language and the transformations are out of the scope of
this paper.

Prepared using sagej.cls

8 Semantic Web journal XX(X)

its documents and artifacts that rely on open standards.
For full support of users in publishing FAIR specifications
(Requirement 12), the tool is missing verification of the
correct completion of metadata, support for license selection,
and mechanisms or instructions for easy publication of
resulting SDSes on the web as Dataspecer does not aim
to serve as an SDS catalog, but only as a tool for editing
specifications.

Dataspecer Development
Dataspecer is actively being developed on GitHub† in
collaboration with the Faculty of Mathematics and Physics
of Charles University and the Digital Information Agency
of the Czech Republic 14 and is publicly available as open
source software (https://github.com/datas
pecer/dataspecer). Due to its extensibility, we
involve our computer science students in the development
process. Usually, students provide their own frontends,
model specifications, and generators for creating specific
artifacts, such as the OpenAPI generator (Akhvlediani
(2024)), the LLM assistant (Prokop et al. (2025)), or a
mockup application generator. At the time of writing, we
have two active developers and 4 students working on
extensions. All issues are tracked on GitHub in English.

Dataspecer is implemented in TypeScript and most of the
code is part of the main repository as a monorepo. Frontends
use Vite + React, and the backend runs on Bun15 + Express.

For simplicity, we publish all core functionality as a
minimalist single-container Docker image which uses a
bundled SQLite database, making it easily deployable
with the docker command docker run -p3000:80
ghcr.io/dataspecer/ws and accessing http://lo
calhost:3000. Detailed instructions are provided in the
repository README.

Related Work

The OSLO (Open Standards for Linked Organizations, Buyle
et al. (2016)) and SEMIC16 (Semantic Interoperability Com-
munity) toolchains are similar, well-established approaches
for creating SDSes, including application profiles, in com-
plex ecosystems. OSLO, initiated by the Flemish Govern-
ment in Belgium, aims to standardize data exchange within
local administrations, while SEMIC, under the Interoperable
Europe programme, builds on top of OSLO and targets cross-
border data interoperability within the EU.

These toolchains begin with Enterprise Architect17,
which is used for vocabulary management in UML
following their strict set of rules18 to automatically generate
data specifications - documents targeting domain experts,
developers, and machines. These data specifications may
include RDFS representations of the vocabulary, SHACL
shapes, HTML documentation, and diagrams. The SHACL
shapes are effectively used to validate the correctness against
the AP, but do not provide machine-readable semantic
information about how individual APs alter the original
definition. These toolchains are implemented as a series of
CI/CD pipelines to read the source Enterprise Architect file,
generate individual artifacts, and, depending on the context,
publish them.

From a functionality perspective, they meet our require-
ments, covering use cases for vocabulary and application
profile authoring. However, we identify several ideological
drawbacks that limit the usability of these toolchains:

1. The toolchains are complex to set up due to Git and
CI/CD, as they mostly target large organizations. They
depend on Enterprise Architect, which is paid and
proprietary software.

2. The toolchains are difficult to operate because (a)
the Enterprise Architect editor is not suited to their
specific needs, and (b) the configuration is spread
across various pipeline and git configuration files.

3. The toolchains do not provide any suggestions when
modeling and do not check consistency and validity
immediately, making them difficult to develop and
iterate SDSes quickly (Requirement 5).

Furthermore, as both toolchains focus primarily on
semantic interoperability, they lack support for technical
schemas, such as the ability to design structures that meet
developers’ needs (Requirement 7 and 8).

On the other hand, we see a significant benefit
in Git/GitHub/GitLab integration, as features such as
collaboration, user management, versioning, and change
proposition are already implemented and widely understood
by users. However, the integration setup should not restrict
smaller developers and open-source communities.

An alternative is the Finnish tool Tietomallit19, an
all-in-one web application for semantic modeling and
publication of specifications. Users can create conceptual
models directly in the web interface and collaborate with
others. They distinguish between core vocabularies and
their profiles that reuse terms from them. As Tietomallit
is also a publication platform, SDSes are not generated
per se but are directly made public. However, users can
generate individual artifacts, including OWL, JSON-LD
context, or JSON schema. The generation of JSON Schemas
has minimal customization as it is simply derived from
the conceptual model. Thus, it is expected that the data in
JSON matches the implicit conceptual model derived from
semantics, which conflicts with Requirement 7 and 8. The
tool itself is currently not reusable outside the Finnish use
case because of dependencies on the Finnish environment.

Focusing solely on individual use cases introduced in
Motivation and requirements, to our knowledge, there
are no other tools that focus on AP creation as this
problem; although important, it is relevant only for larger
communities.

Protégé (Musen (2015)) is the de facto standard
tool for the creation of RDF vocabularies and OWL
ontologies. The desktop client provides mature OWL
editing with plugin support for visualizations, reasoning,
and documentation generation, effectively supporting our
first use case with established Semantic Web practices.
However, its functionality is limited to OWL capabilities;

†At the time of writing, we have 12 contributors, of whom 2 are active, along
with 4 other students working on their own projects within Dataspecer. So
far, the project has received 33 stars and has more than 3,600 commits.

Prepared using sagej.cls

https://github.com/dataspecer/dataspecer
https://github.com/dataspecer/dataspecer
http://localhost:3000
http://localhost:3000

Stenchlák et al. - Dataspecer 9

Table 1. Comparison of Dataspecer with tools mentioned in Related Work with respect to fulfillment of requirements defined in
Motivation and requirements. ◆ indicates only partial fulfillment of the requirement while ✓ complete fulfillment.

Dataspecer OSLO/SEMIC toolchains Tietomallit Protégé LinkML
Requirement 1 - creation of web vocabularies in RDFS+OWL

✓ ✓ ✓ ✓ richer OWL support ✓

Requirement 2 - reuse of existing vocabularies on the web with user guidance
✓ ✗ only by manual IRI input ✓ ✓ ✗

Requirement 3 - customization of generated documents and technical artifacts
✓ ✓ ✗ ✗ ✗

Requirement 4 - possibility to extend the tool to generate additional types of artifacts
✓ by coding ✓ by scripting CI pipelines ✓ by coding ✓ by plugins ✓ by coding

Requirement 5 - creation of APs with reuse of existing APs with user guidance
✓ ◆ no user guidance ✓ ✗ ✗

Requirement 6 - generate technical schemas such as XSD, JSON Schema, ...
✓ ✗ ◆ JSON and OpenAPI only ✗ ✓

Requirement 7 - freedom to derive different structure than the implicit from the semantics
✓ ✗ ✗ ✗ ✗

Requirement 8 - freedom to model only part of the structure or add additional concepts
✓ ✗ ✗ ✗ ✗

Requirement 9 - support for referencing other schemas
✓ ✗ ✗ ✗ ✗

Requirement 10 - generate a mapping between the structure and the semantics
✓ ✗ ◆ JSON-LD only ✗ ✓

Requirement 11 - simpler, user-friendly language to create the structure
✓ ✗ ✗ ✗ ✓

Requirement 12 - contains machine readable metadata and supports publishing FAIR specifications
◆ not all FAIR principles ✗ ✗ ✗ ✗

therefore, it lacks support for application profiles. Although
a web version (WebProtégé) exists, it offers very limited
functionality without basic features such as visualization or
generation customization.

The Linked Data Modeling Language LinkML (Moxon
et al. (2021)) is a modeling language and a tool to generate
various artifacts from a YAML document containing easy-to-
understand semantic descriptions of concepts, their relations,
and other metadata. It supports various technical formats and
can also produce transformations between them. However,
its target audience is developers who need to generate various
artifacts quickly based on a conceptual model of their data.
The tool also binds the resulting schema structure to the
conceptual model that the user must design, forcing the user
to contemplate the specific schema rather than the concepts
that the schema describes. The schema may then need to
be manually mapped onto an ontology. Thus, it does not
use the existing ontology model as a basis. Given the wide
range of supported technologies and their use, we plan to
implement a LinkML model generator into Dataspecer so
that the resulting structure is also instantly usable in these
tools.

All mentioned tools are compared in Table 1.

Evaluation: Improvement of DCAT
application profiles

In this section, we take a closer look at DCAT and its
application profiles, examining in detail the challenges they
face and how Dataspecer would address them if DCAT and
its profiles were created in it. This thus demonstrates that
(i) we have successfully met all the requirements and (ii) the
proposed solution is capable of addressing various real-world
use cases. We cover all three use cases from Motivation and
requirements as the DCAT hierarchy (Figure 1) goes from
the most generic vocabulary to the specifications concerning
technical interoperability in JSON and XML.

DCAT - Data Catalog Vocabulary
Formally, DCAT is not just a vocabulary; it is also a Default
Application Profile (DAP). It is a vocabulary because it
defines new domain-specific terms in the http://ww
w.w3.org/ns/dcat# namespace. It is an application
profile because it reuses terms from existing vocabularies
such as DCMI Metadata Terms, SKOS (Miles and Bechhofer
(2009)), FOAF, PROV-O (Lebo et al. (2013)), the Time
Ontology (Cox and Little (2022)), etc., to be used in the data
catalogs context.

Figure 7. title property in DCMI Metadata Terms

Explicit term reuse The first identified issue is the
lack of a machine-processable representation of which
terms are actually being reused in an AP. In the
DCAT Vocabulary, classes like dcat:Resource or
dcat:Dataset and properties like dcat:keyword are
defined. Moreover, DCAT specifies the reuse of classes like
skos:Concept or dct:PeriodOfTime, and properties
like time:hasBeginning or dct:title. The fact
that these terms are reused in DCAT is represented only
by mentioning them in the dcat-external.ttl20 file

Prepared using sagej.cls

http://www.w3.org/ns/dcat#
http://www.w3.org/ns/dcat#

10 Semantic Web journal XX(X)

linked from Section 6.1 of the specification. Moreover,
processing this file along with other vocabularies adds
DCAT-specific annotations directly to the external terms like
dct:title, which creates confusion in other use cases of
these vocabularies.

Figure 8. Catalog Record title in DCAT 3

Terminological changes to profiles Another issue in
DCAT is the lack of a machine-readable representation
of context-specific adjustments to the reused classes and
properties from other vocabularies. As one representative
example, we take the very commonly reused property
dct:title. In its original vocabulary, DCMI Metadata
Terms, it is defined as can be seen in Figure 7, with the
label Title and the definition A name given to the
resource.

Figure 9. Various titles in DCAT 3 DAP in Dataspecer. All titles
are profiles of a single dct:title, but in different contexts - in
this case in different classes. For each class, Dataspecer allows
the definition of title to be altered to better suit the given context.

In DCAT, the dct:title property is reused in multiple
contexts. First, for titles of Cataloged Resources, with an
unchanged definition, but a slightly modified title title
- note the lowercase t. Second, it is used for the titles of
Catalog Records, with the modified title, but also with a
modified definition, as can be seen in Figure 8. Third, it is
used for the titles of Distribution, with the modified title and
yet another definition.

Figure 10. Catalog Record title in DCAT 3 DAP from
Dataspecer

Here, we can already start to see the issue - one property,
dct:title, has a different title when reused in DCAT
than it has in its original vocabulary. Moreover, it also has

<#CatalogRecord.title>
a dsv:TermProfile,

dsv:DatatypePropertyProfile;↪→

dsv:domain :CatalogRecord;
dct:isPartOf dcat-dap:;
skos:prefLabel "title"@en;
skos:definition "A name given to the

record."@en;↪→

dsv:cardinality cardinality:0n;
dsv:property dct:title;
dsv:datatypePropertyRange rdfs:Literal.

Figure 11. Catalog Record title in DCAT 3 DAP DSV
representation

different, and even multiple, definitions in DCAT, based on
the class with instances of which it is used. However, this
information is not represented in any machine-processable
form and may even confuse the users of the specification,
such as developers trying to build a UI for an application
processing DCAT.

Dataspecer’s approach Dataspecer natively supports term
profiling in its Conceptual Model Editor (Figure 9),
transparently indicates this information in the generated
specification (Figure 10), and represents this information
in a machine-processable form in an attachment to the
specification, using the Data Specification Vocabulary (DSV)
(Figure 11). This is shown in our Dataspecer-created version
of DCAT 3, the DCAT 3 Default Application Profile21.

Dataspecer also uses the Profiles Vocabulary (Car
(2019)) to identify and describe all the specification
artifacts so that they can be discovered. The necessary
metadata is stored embedded in the specification document,
allowing applications to automatically discover all relevant
artifacts of the specification, making the specification
more FAIR. The Profiles vocabulary represents the
specification as an instance of prof:Profile, and the
artifacts, including the human-readable specification, are
instances of prof:ResourceDescriptor, connected
using prof:hasResource. The description of each
artifact then includes its format, the standard used, and its
role. The profiles then point to other profiles they reuse.

Requirement 1 and 2 were fulfilled by creating the SDS
of DCAT. It reused several vocabularies such as skos or
dcterms. Requirement 3 allowed us to customize the final
document to fit the format of DCAT specifications, such
as customizing the ordering and contents of chapters or
customizing logos.

DCAT-AP for European data catalogs
Continuing the case from DCAT - Data Catalog Vocabulary,
we now focus on DCAT-AP, the DCAT application profile
for data portals in Europe, published by the European
Commission and maintained by the SEMIC initiative, and
also the most prominent application profile of DCAT.
Naturally, it profiles DCAT, namely its default application
profile, but also adds its own supporting vocabulary22

for new terms such as distribution availability and
applicable legislation. Again, we show that the current
official representation is insufficient, mainly from the

Prepared using sagej.cls

http://www.w3.org/ns/dx/prof/Profile
http://www.w3.org/ns/dx/prof/ResourceDescriptor
http://www.w3.org/ns/dx/prof/hasResource

Stenchlák et al. - Dataspecer 11

Figure 12. 5-level term profile hierarchy for dcat:Dataset example in Dataspecer - the relations represent class profiling

machine-processability point of view, and how it can be
represented better using Dataspecer23. The discoverability
of specification artifacts is handled by the Profiles
Vocabulary metadata, but there are additional issues with
the specification contents and relation to the reused
specifications.

Explicit term reuse In DCAT-AP, the list of reused
terms can be extracted from the specification document by
processing it as RDFa (Adida et al. (2015)). However, this
yields the context-specific definition and the usage note as
direct properties of the reused terms, leading to the same
confusion as above with DCAT. The reuse information is
then reflected in the SHACL shapes used for validation
of DCAT-AP compliant data. However, SHACL shapes are
generated from the AP definition, and they are not something
to be used as a definition itself. An example of a limitation
of relying on SHACL for AP definition is a situation where
we have one class used in two contexts in an AP. In DCAT-
AP, this may be a Distribution representing a file download,
which has a different set of mandatory properties than a
Distribution representing a Data Service. Both are reusing
the same class dcat:Distribution, and therefore, all
SHACL shapes targeting this class will apply to all instances
of the class, regardless of the different usage contexts. This
then forces the specification editors to change their AP due
to a limitation in a data validation language, which is not
systematic. Moreover, there is no support for term profile
hierarchies. There is no machine-processable indication
that, for example, the reuse of dct:title on DCAT-AP
Catalogue Record24 is actually a reuse of how that property
is reused for the Catalog Record in DCAT25, not a reuse of
how it was originally defined by DCMI Metadata Terms26.

Terminological changes to terms In DCAT-AP, the same
property is reused in multiple contexts, e.g., for Dataset,
Data Service, Catalog, Distribution, and Category Scheme,
having a more precise label and definition for each context.
In DCAT-AP 2.1.1, this was represented using RDFS directly
on the original property IRI, causing confusion, as even with
just DCAT-AP processed, a developer gets multiple labels for

one property and no means of distinguishing the contexts. In
DCAT-AP 3.0.0, the different contexts are manifested in the
generated SHACL shapes, however, a machine-readable AP
definition is missing.

Even in cases where no AP-specific changes are defined,
in cases where one term reuses multiple terms at once,
it is necessary to explicitly represent from which term
the terminology should be reused. Otherwise, it would be
unclear which label and definition should be reused.

Context-specific Property Domains and Ranges When
reusing properties, it is common for an AP that the
property has an AP-specific domain and range. For
example, dct:title is used for titles of Cataloged
resources and Catalog records in DCAT, yet it does
not have a domain where it is defined. Again, there
is no machine-readable representation of this fact. In
DCAT-AP, this information manifests itself only in the
generated SHACL shapes. Regarding AP-specific ranges, for
example, DCAT-AP restricts the range of adms:sample
to dcat:Distribution, while originally, it is defined
as adms:Asset. Dataspecer allows specification editors to
explicitly represent each property reuse context along with
the domain and range specific to the context.

Cardinality Constraints A part of property reuse in an
AP are cardinality constraints. For example, in DCAT-AP,
the reuse of dct:license on Distribution is restricted to
0..1, meaning that there may be at most one license for a
Distribution. Moreover, in DCAT-AP-CZ, a Czech profile of
DCAT-AP, it is further restricted to 1..1, meaning that there
must be one license for each distribution. Dataspecer allows
specification editors to specify cardinality constraints of
property reuse. This representation supports, e.g., automatic
checking of possible violations of cardinality constraints
coming from upper profiles in the profiling hierarchy.

DCAT-AP-CZ
The Czech Digital and Information Agency also uses
Dataspecer for the definition of DCAT-AP-CZ27, the Czech
application profile of DCAT-AP, and subsequent profiles of

Prepared using sagej.cls

12 Semantic Web journal XX(X)

DCAT-AP-CZ for specific purposes. For example, in all these
profiles, the class dcat:Dataset is reused, but each time
in a different context, and with changed definitions along
the way. At the same time, users are implicitly expected
to comply with all restrictions from the entire application
profile hierarchy, i.e., to stay compliant with what DCAT
says, what DCAT-AP says, and what DCAT-AP-CZ says.
These links are present in various forms in the human-
readable specifications. However, it is quite demanding for
the user of the specification to manually navigate the whole
hierarchy for each class and each property reused in the
specification, and, without Dataspecer, there is no machine-
processable way of helping the users. When implemented
properly, the term reuse hierarchy can look like in Figure 12.
Although it may seem complex, it just sheds light on existing
relations among the data specifications and the terms reused
in them. Note that the relations between the classes are
the term profiling relations. At the top we have the orange
DCAT Vocabulary Dataset, profiled by the red DCAT-
DAP Dataset, profiled by the teal DCAT-AP Dataset. Next
is the green DCAT-AP-CZ Dataset. Finally, there is the
blue Dataset in one of the DCAT-AP-CZ profiles. Note that
the blue Dataset also profiles the pink Dataset, a DCAT-
independent definition of a Dataset in SGoV.

Profiling of Multiple Terms There are situations like the
one described in the previous case in which a term in
an AP reuses multiple terms at once. Another example
can be found in GeoDCAT-AP28 Section A.7.16, where
it is suggested that a responsible party be double typed
as prov:Agent and foaf:Agent. The reason for this
may be that the AP editors want to make sure that the
compliant data is usable to some extent by users who
know only some of the reused terms. The situation is
similar to defining an owl:unionOf class, but not defining
an IRI for it, and requiring the data instances to be
explicitly typed by all the reused classes. This situation
is not systematically covered in current specifications, not
even in human-readable documents. Dataspecer supports the
representation of profiling of multiple terms and reflects
it in the generated artifacts, including human-readable
documentation (Figure 13).

Figure 13. Dataset in DCAT-AP-CZ-360, a class profile of two
distinct Dataset classes, merging 6 reuse contexts. (1) Dataset
in DCAT-AP-CZ, profile of Dataset in DCAT-AP, profile of
Dataset in DCAT-DAP, profile of Dataset in DCAT vocabulary,
and (2) Dataset in SGoV

Evaluation: Other Specifications Created in
Dataspecer
In this section, we will briefly report on various other
specifications created in Dataspecer that were successfully
deployed.

Case study: Czech Formal Open Standards
(FOSes)
In this subsection, we focus on technical interoperability. The
specifications described here are developed using Dataspecer
at the Czech Digital and Information Agency (DIA), which
also maintains the Czech Government Semantic Vocabulary
(SGoV). The specifications are then published as Formal
Open Standards (FOSes), which are mandatory to use for
the publication of open data by public administration in
Czechia. The goal of these specifications is to provide
technical artifacts such as XML Schema, JSON Schema,
and transformations to RDF, so that data providers unaware
of semantic web technologies can focus on compliance
with the technical schemas in languages they understand,
while maintaining the interoperability of their data as RDF.
This is achieved by deriving a technical data structure from
SGoV, maintaining the mapping of the technical constructs
to the semantic constructs, and automatically translating
the data structure to multiple target technical artifacts at
once (Requirement 11). For XML, these are an XSD
annotated with SAWSDL (Lausen and Farrell (2007)), a
lifting XSLT transformation producing the compliant data in
RDF, and a lowering transformation consisting of a SPARQL
query selecting the relevant RDF subset, and an XSLT
transformation to transform the RDF/XML SPARQL query
result to a form compliant with the XSD. For JSON, the
artifacts include a JSON Schema for validation, and a JSON-
LD context for mapping the data to RDF.

Examples of Dataspecer generated specifications target-
ing XML include Information system record replacing an
officially certified signature29, and Common parts for elec-
tronic documents30 reused (Requirement 9) in specifications
Documents from forms for electronic submission under the
Digital Services Act31, Digital act certificate32, and Scheme
for a machine-readable layer of static text components and
static combined text and image components pursuant to §69a
of Act No. 499/2004 Coll.33 - all available in Czech.

Examples of Dataspecer generated specifications targeting
JSON include updated versions of specifications describing
the Czech Register of rights and obligations34, technical
parts of a specification for the representation of semantic
vocabularies by public administration35, and the specification
for the lists of Voluntary associations of municipalities36.

Some of these specifications, such as Czech Register of
rights and obligations, already existed before Dataspecer
was developed, so we recreated them one-to-one in our tool.
Even though some structures were complex, we did not find
any issues recreating them in the structural editor, meaning
resulting JSON Schemas matched those designed by hand.

Since the SGoV domain is large with complex business
processes that depend on various actors, when an error
happens, such as a bug in the conceptual model, the whole
process may jam. For such cases, Dataspecer allows working
in a mode where consistency can be violated. This feature

Prepared using sagej.cls

Stenchlák et al. - Dataspecer 13

enables faster deployment of SDSes, with the technical debt
in the form of inconsistent mappings to be fixed in the future.

To date, we have not encountered any other issues in
collaboration with the authors of FOSes that would indicate
any flaws in our proposed architecture and methodology.

Dogfooding - Data Specification Vocabulary
Data specifications produced by Dataspecer are represented
using the Data Specification Vocabulary (DSV) (Klímek
et al. (2025b)), and, more specifically, its Default Application
Profile (DSV-DAP) (Klímek et al. (2025a)). In the spirit of
dogfooding, those specifications themselves are developed
in Dataspecer. This means that it is clear which terms of
which vocabularies are and are not used by the profile,
what the cardinalities of the reused properties are in which
contexts, what the main and supportive classes are, and all
this information is published as machine-readable, enabling
further reuse and profiling.

Impact in other areas
Dataspecer is currently being used to build an application
profile ecosystem in the domain of Czech research data
repositories, part of the EOSC-CZ initiative37. Contrary
to the DCAT-AP-based ecosystem of European public
administrations, where standardized metadata flows from
local data catalogs to regional catalogs, national catalogs,
and, finally, to the Official portal for European Data38,
there is no such metadata harvesting hierarchy established
in the international EOSC community. However, a national
hierarchy is being established in Czechia. The Czech Core
Metadata Model (CCMM) profiles DCAT-AP and Datacite,
identifying core metadata for the domain of research data in
general39. It is built with profiling in mind, so that domain-
specific data repositories can define their CCMM application
profiles, ensuring semantic-level data interoperability. On
the technical level, the XSDs with SAWSDL are being
developed. Dataspecer is the tool of choice in the project.

Evaluation: productivity and usability
In this section, we finish the evaluation by assessing the
productivity of authoring SDSes in Dataspecer compared to
the manual approach, i.e. how fast one can create SDSes.
We also use the System Usability Scale (SUS; Brooke et al.
(1996)) methodology to assess the usability score of the
whole process.

Our goal is to demonstrate that Dataspecer is useful and
efficient even for small SDSes without major requirements.
Users can therefore use Dataspecer from the very beginning
and thus create higher-quality specifications, instead of
postponing its use only for more complex cases. The
objective is to efficiently go through all three use cases
to the final technical SDS: (i) create a vocabulary, (ii) its
DAP (default application profile), and (iii) derive technical
schemas. Evaluating isolated use cases separately would
provide limited evidence about practical benefit: (i) there are
many vocabulary editors, and Dataspecer’s main goal is not
to replace them, and (ii) evaluating the creation of APs would
be uninformative because our premise is that APs are needed
in complex domains where a manual approach is objectively
unusable.

Specifically, we try to determine the complexity of the
domain under study, for which it is more productive to use
our approach rather than manual data specification design.
By complexity we mean the degree to which the individual
concepts refer to each other and technical structures reuse
each other, as more reuse requires a human designer to have a
wider context about the entire specification. We demonstrate
that there exists reasonable complexity under reasonable
assumptions for which it is simpler to use our approach.

We selected the following real-world SDSes sorted by the
complexity from the least to the most complex.

1. A FOS for publishing dissertation theses topics by
universities40. It is based on the part of SGoV that
models the university domain and defines two data
structures, a simple overview of a topic and a topic
detail.

2. A collection of FOSes41 for local administrations that
includes one for tourist destinations and 18 other
FOSes. They form a mutually interrelated system of
data specifications, with more generic FOSes reused
by more specific ones. They are based on SGoV
and also on Schema.org, Registered Organization
Vocabulary (Archer et al. (2013)), and several other
vocabularies.

3. DCAT-AP-CZ - a Czech profile of DCAT-AP.

4. A collection of 13 data specifications for the Czech
Register of Rights and Obligations. Each defines a
single data structure, but the structures intersect on
different semantic concepts.

5. A collection of data specifications that define data
structures for data exchange among services in a
service-oriented architecture of a study information
system of our university. The specifications are based
on semantic models designed in a commercial UML
modeling tool. Each is based on one or more semantic
models and defines various data structures.

The first three SDSes target relatively isolated domains
whose concepts are not found in any other specifications.
Their technical schemas thus do not reference much each
other. The last two SDSes make greater use of interrelated
concepts. The Register of Rights and Obligations contains
several schemas that refer to each other, utilizing some
concepts multiple times. The final one represents a case
where, for optimization reasons, it is necessary to design
schemas for different levels of data granularity. For example,
a schema with a list of taught subjects at the university
and also a schema with a list of teachers, which includes
basic information about the subjects that the teachers teach.
Consequently, a particular concept is modeled in varying
levels of detail, which reduces the portion of work in creating
the conceptual model.

Since the specifications we chose are too large and their
creation would take a lot of time, we asked the participants
to create a set of simpler SDSes based on the domain
description, and to record the time spent on each task. For
the manual approach, we asked them to create only the
JSON Schema in an IDE of their choice, from the same

Prepared using sagej.cls

14 Semantic Web journal XX(X)

Table 2. Relative cost needed to create a conceptual model,
which is crucial for our solution. A byproduct of this process in
Dataspecer is a vocabulary and its DAP.

Task Manual Dataspecer
attribute n/a 89 ± 10
association n/a 122 ± 22
class n/a 86 ± 13
extension n/a 56 ± 18

Table 3. Results of the survey as a relative cost for individual
tasks. Because the workflow of how the user designs schemas
in Dataspecer is similar to the manual approach, the results for
these two categories are merged in this table.

Task Manual Dataspecer
attribute 146 ± 8 39 ± 6
attribute of type IRI 174 ± 5 42 ± 7
association to class 159 ± 15 37 ± 7
schema root and root class 125 ± 27 29 ± 5
reference to other schema 160 ± 16 89 ± 16
@id, @type attributes 151 ± 16 n/a
class extending other 149 ± 27 78 ± 13
choice between classes 151 ± 20 52 ± 10

description. We picked the JSON Schema as it represents
the final technical artifact of the process that depends on the
semantics, but also concerns the technical level. The time
spent on the manual approach is therefore only for the JSON
Schema, while the time spent in Dataspecer is for the full
SDS including the JSON Schema. However, we show that
even for this apple-to-oranges comparison, the Dataspecer
approach is more productive than manual.

Initially, the participants familiarized themselves with a
text document specifying the concepts, their relations, and
the required structure for the final schema. We also asked
the participants to assume that they were already experts in
the relevant technologies. This step was incorporated to filter
out the time spent familiarizing oneself with the tool, as this
would not be relevant for a larger number of created data
specifications.

We obtained results from 8 participants. Some of them use
Dataspecer regularly and participated in the design of Czech
FOSes that were developed mostly manually. Therefore,
they were able to measure the time spent more objectively.
Detailed results of this process are in Table 2 and 3 and times
spent are normalized to an average value of 100 per task, and
therefore we shall refer to them as the cost.

Based on these results that include key actions that are
necessary to do in Dataspecer, or when manually designing
JSON Schema, we calculated the estimated cost it would take
the users to design the selected SDSes in Dataspecer, and
only their JSON Schema part manually.

The respondents preferred our approach due to its
elimination of the need to address the syntactic correctness
of the resulting schema and due to the suggestion of concepts
that can be used for modeling. Therefore, they were not
required to keep the entire model in their heads. In addition,

Table 4. Calculated cost that would need to be spent on
presented SDSes based on workflow of individual tasks for
manual approach and an approach using Dataspecer. The ratio
then compares Dataspecer to Manual.

SDS Manual Dataspecer Ratio
1. 3,800 ± 200 4,600 ± 400 (123 ± 13) %
2. 25,500 ± 1,300 24,200 ± 2,100 (95 ± 9) %
3. 7,300 ± 200 6,100 ± 400 (83 ± 6) %
4. 35,400 ± 1,100 27,300 ± 2,100 (77 ± 6) %
5. 17,600 ± 600 9,800 ± 600 (56 ± 4) %

they appreciated the ability of the tool to mitigate the risks of
errors from repetitive tasks.

In contrast, for particular schemas with numerous, very
similar attributes, respondents appreciated the capability of
the manual approach to easily duplicate similar attributes,
thus significantly accelerating the schema development
process. In relation to more complex and less frequent
operations, the cost between Dataspecer and the conventional
methods equalized, as participants had to recall the operation
and confirm its accurate functionality.

Based on the collected cost for individual schema design
tasks, we calculated the total cost for creating the above-
mentioned five SDSes. For the manual approach, we
calculated only the cost for designing the JSON Schema,
whereas for our approach, we accounted for both the
creation of the conceptual model and the subsequent
schema development. The results are shown in Table 4 and
demonstrate that for the sole purpose of generating only
JSON Schema, the second case is already productive in
Dataspecer. Nevertheless, in this case, the added value of
Dataspecer lies in its ability to generate all other artifacts
and documents that can be utilized by other developers. In
the event of changes, it also ensures consistency and thus
prevents the typical errors that tend to occur with a manual
approach.

During the evaluation, we asked our respondents the 10
standard SUS questions since their task was to operate
Dataspecer and design full SDS. The final score is 58, which
is below the typical threshold of 68 considered to be the
minimal score to be acceptable, even though most of our
respondents consider themselves experts or at least advanced
users in the area of semantic modeling.

The main issue we see from the usability point of view
is the notion of AP or DAP, as Dataspecer to some level
distinguishes between the vocabulary and AP instead of
having a single conceptual model. The worst-rated question
was Q10: I needed to learn a lot of things before I could get
going with this system with the average score of 2.6 out of
5 (1 means strongly disagree, 5 means strongly agree). This
is understandable as the users still need basic knowledge of
vocabularies, reuse, and technical schemas. The best-rated
question was Q5: I found the various functions in this system
were well integrated with the average score of 4.2.

Conclusions and Future Work
In this paper, we introduced Dataspecer, an open-source,
modular web application for authoring and managing

Prepared using sagej.cls

Stenchlák et al. - Dataspecer 15

Semantic Data Specifications (SDSes), covering conceptual
modeling of (i) vocabularies, (ii) their application profiles
with explicit support for reuse, and (iii) the derivation of
technical schemas in various structures. The resulting SDSes
contain rich metadata, human-readable documentation with
diagrams, and machine-readable artifacts depending on
the target technology: RDFS+OWL, JSON Schema with
context, XSD, XSLT transformations, CSVW, and data
samples.

We successfully demonstrated the applicability of
Dataspecer on DCAT and its complex ecosystem of
application profiles. The tool is currently used in Czechia for
developing the government specifications ecosystem and in
several other projects.

Although Dataspecer already covers the core lifecycle of
practical SDS authoring, ongoing development focuses on
the following key areas:

• Supporting users in making their specifications more
FAIR by checking all the necessary requirements and
providing them with instructions on how to properly
publish the specifications.

• Versioning, change management, and propagation
of changes (evolution) across profile hierarchies,
including publishing those changes in open standards
with supporting artifacts, such as migration scripts.

• Git and GitHub/GitLab integration. These platforms
are well-tailored for large communities with support
for issues, pull requests, user management, and CI/CD,
allowing specification creation processes to be tailored
to domain needs.

• Capturing provenance information about critical
decisions made during development, including their
management and reasoning.

• Developing open standards for SDS description
to enhance adoption and FAIRness, while also
contributing to standardization and methodology
development.

Acknowledgements

The work was supported by the Charles University GAUK
project no. 262823, by project National Repository Platform for
Research Data no. CZ.02.01.01/00/23_014/0008787, and by the
SVV project number 260821.

Notes

1. https://interoperable-europe.ec.europa.eu/collection/iopeu-
monitoring/european-interoperability-framework-detail

2. https://semiceu.github.io/style-guide/1.0.0/
3. https://www.w3.org/TR/ld-bp/#VOCABULARIES
4. http://xmlns.com/foaf/spec/
5. https://www.dublincore.org/specifications/dublin-core/dcmi-

terms/
6. https://www.w3.org/TR/shacl/
7. https://lov.linkeddata.es/dataset/lov
8. http://data.europa.eu/r5r/
9. https://dataspecer.com
10. https://github.com/dataspecer/dataspecer

11. https://respec.org/docs/
12. https://speced.github.io/bikeshed/
13. https://handlebarsjs.com/
14. https://www.dia.gov.cz/
15. https://bun.sh/
16. https://semiceu.github.io/toolchain-manual/
17. https://sparxsystems.com/
18. https://semiceu.github.io/style-guide/1.0.0/gc-conceptual-

model-conventions.html
19. https://tietomallit.suomi.fi/
20. https://www.w3.org/ns/dcat-external.ttl
21. https://mff-uk.github.io/specifications/dcat-dap/
22. https://data.europa.eu/r5r/
23. https://mff-uk.github.io/specifications/dcat-ap/
24. https://semiceu.github.io/DCAT-

AP/releases/3.0.0/#CatalogueRecord.title
25. https://www.w3.org/TR/vocab-dcat-3/#Property:record_title
26. https://www.dublincore.org/specifications/dublin-core/dcmi-

terms/#http://purl.org/dc/elements/1.1/title
27. https://ofn.gov.cz/dcat-ap-cz/
28. https://semiceu.github.io/GeoDCAT-

AP/releases/3.0.0/#detailed-usage-notes-and-examples
29. https://ofn.gov.cz/záznam-informačního-systému-nahrazující-

úředně-ověřený-podpis/
30. https://ofn.gov.cz/společné-části-elektronických-dokumentů/
31. https://ofn.gov.cz/dokumenty-z-formulářů-ZoPDS/
32. https://ofn.gov.cz/osvědčení-digitálního-úkonu/
33. https://ofn.gov.cz/metadata-dokumentů-veřejnoprávních-

původců/
34. https://ofn.gov.cz/registr-práv-a-povinností/
35. https://ofn.gov.cz/slovníky/
36. https://ofn.gov.cz/dobrovolné-svazky-obcí/
37. https://www.eosc.cz/en
38. https://data.europa.eu
39. https://eosc-cz.github.io/CCMM/en/
40. https://ofn.gov.cz/témata-dizertačních-prací/
41. https://data.gov.cz/ofn/

References

Adida B, Herman I, Birbeck M and McCarron S (2015) RDFa
Core 1.1 - Third Edition. W3C Recommendation, W3C. URL
https://www.w3.org/TR/2015/REC-rdfa-cor

e-20150317/.
Akhvlediani A (2024) Expanding the Dataspecer Tool for

Streamlined API Creation and Management. Master’s Thesis,
Charles University, Faculty of Mathematics and Physics. URL
http://hdl.handle.net/20.500.11956/193756.

Archer P, Papantoniou A and Meimaris M (2013) Registered
Organization Vocabulary. W3C Note, W3C. URL https:

//www.w3.org/TR/2013/NOTE-vocab-regorg-2

0130801/.
Atkinson C and Kühne T (2003) Model-driven development: a

metamodeling foundation. IEEE Softw. 20(5): 36–41. URL
https://doi.org/10.1109/MS.2003.1231149.

Baker T and Coyle K (2009) Guidelines for Dublin Core™
Application Profiles. https://www.dublincore.org
/specifications/dublin-core/profile-guide

lines/.

Prepared using sagej.cls

https://www.eosc.cz/en/projects/national-repository-platform-for-research-data-os-i-nrp/national-repository-platform
https://www.eosc.cz/en/projects/national-repository-platform-for-research-data-os-i-nrp/national-repository-platform
https://interoperable-europe.ec.europa.eu/collection/iopeu-monitoring/european-interoperability-framework-detail
https://interoperable-europe.ec.europa.eu/collection/iopeu-monitoring/european-interoperability-framework-detail
https://semiceu.github.io/style-guide/1.0.0/
https://www.w3.org/TR/ld-bp/#VOCABULARIES
http://xmlns.com/foaf/spec/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/TR/shacl/
https://lov.linkeddata.es/dataset/lov
http://data.europa.eu/r5r/
https://dataspecer.com
https://github.com/dataspecer/dataspecer
https://respec.org/docs/
https://speced.github.io/bikeshed/
https://handlebarsjs.com/
https://www.dia.gov.cz/
https://bun.sh/
https://semiceu.github.io/toolchain-manual/
https://sparxsystems.com/
https://semiceu.github.io/style-guide/1.0.0/gc-conceptual-model-conventions.html
https://semiceu.github.io/style-guide/1.0.0/gc-conceptual-model-conventions.html
https://tietomallit.suomi.fi/
https://www.w3.org/ns/dcat-external.ttl
https://mff-uk.github.io/specifications/dcat-dap/
https://data.europa.eu/r5r/
https://mff-uk.github.io/specifications/dcat-ap/
https://semiceu.github.io/DCAT-AP/releases/3.0.0/#CatalogueRecord.title
https://semiceu.github.io/DCAT-AP/releases/3.0.0/#CatalogueRecord.title
https://www.w3.org/TR/vocab-dcat-3/#Property:record_title
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/elements/1.1/title
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/elements/1.1/title
https://ofn.gov.cz/dcat-ap-cz/
https://semiceu.github.io/GeoDCAT-AP/releases/3.0.0/#detailed-usage-notes-and-examples
https://semiceu.github.io/GeoDCAT-AP/releases/3.0.0/#detailed-usage-notes-and-examples
https://ofn.gov.cz/záznam-informačního-systému-nahrazující-úředně-ověřený-podpis/
https://ofn.gov.cz/záznam-informačního-systému-nahrazující-úředně-ověřený-podpis/
https://ofn.gov.cz/společné-části-elektronických-dokumentů/
https://ofn.gov.cz/dokumenty-z-formulářů-ZoPDS/
https://ofn.gov.cz/osvědčení-digitálního-úkonu/
https://ofn.gov.cz/metadata-dokumentů-veřejnoprávních-původců/
https://ofn.gov.cz/metadata-dokumentů-veřejnoprávních-původců/
https://ofn.gov.cz/registr-práv-a-povinností/
https://ofn.gov.cz/slovníky/
https://ofn.gov.cz/dobrovolné-svazky-obcí/
https://www.eosc.cz/en
https://data.europa.eu
https://eosc-cz.github.io/CCMM/en/
https://ofn.gov.cz/témata-dizertačních-prací/
https://data.gov.cz/ofn/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
http://hdl.handle.net/20.500.11956/193756
https://www.w3.org/TR/2013/NOTE-vocab-regorg-20130801/
https://www.w3.org/TR/2013/NOTE-vocab-regorg-20130801/
https://www.w3.org/TR/2013/NOTE-vocab-regorg-20130801/
https://doi.org/10.1109/MS.2003.1231149
https://www.dublincore.org/specifications/dublin-core/profile-guidelines/
https://www.dublincore.org/specifications/dublin-core/profile-guidelines/
https://www.dublincore.org/specifications/dublin-core/profile-guidelines/

16 Semantic Web journal XX(X)

Bayerlein B, Schilling M, Birkholz H, Jung M, Waitelonis J, Mädler
L and Sack H (2024) Pmd core ontology: Achieving semantic
interoperability in materials science. Materials & Design 237:
112603. DOI:https://doi.org/10.1016/j.matdes.2023.112603.
URL https://www.sciencedirect.com/science/

article/pii/S0264127523010195.
Brooke J et al. (1996) SUS-A quick and dirty usability scale.

Usability evaluation in industry 189(194): 4–7.
Buyle R, De Vocht L, Van Compernolle M, De Paepe D, Verborgh

R, Vanlishout Z, De Vidts B, Mechant P and Mannens E (2016)
Oslo: Open standards for linked organizations. In: Proceedings
of the international conference on electronic governance and
open society: Challenges in Eurasia. pp. 126–134. DOI:
10.1145/3014087.3014096. URL https://dl.acm.o

rg/doi/abs/10.1145/3014087.3014096.
Car N (2019) The Profiles Vocabulary. W3C Working Group Note,

W3C. URL https://www.w3.org/TR/2019/NOTE-d

x-prof-20191218/.
Champin PA, Longley D and Kellogg G (2020) JSON-LD 1.1. W3C

Recommendation, W3C. URL https://www.w3.org/T

R/2020/REC-json-ld11-20200716/.
Clark K, Williams G, Torres E and Feigenbaum L (2013) SPARQL

1.1 protocol. W3C recommendation, W3C. https://www.
w3.org/TR/2013/REC-sparql11-protocol-201

30321/.
Cock JD, Dhondt E, Fragkou P, Klímek J and Sofou A (2025)

DCAT-AP 3.0.1. Technical report, European Commission.
URL https://semiceu.github.io/DCAT-AP/re

leases/3.0.1/.
Corcho O, Fernández-López M, Gómez-Pérez A and López-Cima

A (2005) Building legal ontologies with methontology and
webode. In: Law and the semantic web: legal ontologies,
methodologies, legal information retrieval, and applications.
Springer, pp. 142–157. URL https://link.springer.

com/chapter/10.1007/978-3-540-32253-5_9.
Corcho Associate professor O, Poveda-Villalón PhD student M and

Gómez-Pérez Full professor A (2015) Ontology engineering
in the era of linked data. Bulletin of the Association for
Information Science and Technology 41(4): 13–17. URL ht

tps://asistdl.onlinelibrary.wiley.com/do

i/abs/10.1002/bult.2015.1720410407.
Cox S and Little C (2022) Time Ontology in OWL. Candidate

Recommendation, W3C. URL https://www.w3.org/T

R/2022/CRD-owl-time-20221115/.
Doan A, Halevy AY and Ives ZG (2012) Principles of Data

Integration. Morgan Kaufmann. ISBN 978-0-12-416044-6.
URL http://research.cs.wisc.edu/dibook/.

Espinoza-Arias P, Garijo D and Corcho O (2021) Crossing
the chasm between ontology engineering and application
development: A survey. Journal of Web Semantics 70: 100655.
DOI:https://doi.org/10.1016/j.websem.2021.100655. URL
https://www.sciencedirect.com/science/ar

ticle/pii/S1570826821000305.
Garijo D and Poveda-Villalón M (2020) Best Practices for

Implementing FAIR Vocabularies and Ontologies on the Web.
In: Applications and practices in ontology design, extraction,
and reasoning. IOS Press, pp. 39–54. URL http://dx.d

oi.org/10.3233/SSW200034.
Gora M (2025) Searching classes in the Wikidata ontology.

Master’s Thesis, Charles University, Faculty of Mathematics

and Physics. URL http://hdl.handle.net/20.500.

11956/197453.
Guarino N, Oberle D and Staab S (2009) What is an ontology? In:

Handbook on Ontologies. Berlin, Heidelberg: Springer Berlin
Heidelberg. ISBN 978-3-540-92673-3, pp. 1–17. URL http

s://doi.org/10.1007/978-3-540-92673-3_0.
Guha R and Brickley D (2014) RDF Schema 1.1. W3C

Recommendation, W3C. https://www.w3.org/TR/

2014/REC-rdf-schema-20140225/.
Heery R and Patel M (2000) Application profiles: Mixing and

matching metadata schemas. Ariadne 25. URL http://

www.ariadne.ac.uk/issue/25/app-profiles/.
Hyland B, Atemezing GA and Villazón-Terrazas B (2014) Best

Practices for Publishing Linked Data. W3C Note, W3C. URL
https://www.w3.org/TR/2014/NOTE-ld-bp-201

40109/.
Jordan M, Schönhals S and Auer S (2025) Enhancing interoper-

ability in digital calibration data exchange: A case for ontology
development. Measurement: Sensors 38: 101459. DOI:https:
//doi.org/10.1016/j.measen.2024.101459. URL https:

//www.sciencedirect.com/science/article/

pii/S2665917424004355. Proceedings of the XXIV
IMEKO World Congress.

Kellogg G and Tennison J (2015) Model for Tabular Data and
Metadata on the Web. W3C Recommendation, W3C. URL
https://www.w3.org/TR/2015/REC-tabular-d

ata-model-20151217/.
Klíma K, Taelman R and Nečaský M (2023) Ldkit: Linked data

object graph mapping toolkit for web applications. In:
The Semantic Web – ISWC 2023. Cham: Springer Nature
Switzerland. ISBN 978-3-031-47243-5, pp. 194–210. DOI:
10.1007/978-3-031-47243-5_11. URL https://link.s

pringer.com/chapter/10.1007/978-3-031-472

43-5_11.
Klímek J, Koupil P, Škoda P, Bártík J, Štěpán Stenchlák,

Nečaský M and Holubová I (2023) Atlas: A toolset for
efficient model-driven data exchange in data spaces. In:
2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-
C). IEEE, pp. 4–8. DOI:10.1109/MODELS-C59198.2023.000
09. URL https://ieeexplore.ieee.org/docume

nt/10350726.
Klímek J, Štěpán Stenchlák, Polický A, Škoda P and Nečaský M

(2024) Towards Authoring of Vocabularies and Application
Profiles using Dataspecer. In: Etcheverry L, Garcia VL,
Osborne F and Pernisch R (eds.) Proceedings of the ISWC
2024 Posters, Demos and Industry Tracks: From Novel Ideas
to Industrial Practice co-located with 23nd International
Semantic Web Conference (ISWC 2024), Hanover, Maryland,
USA, November 11-15, 2024, CEUR Workshop Proceedings,
volume 3828. CEUR-WS.org, pp. 1–5. URL https://ce

ur-ws.org/Vol-3828/paper33.pdf.
Klímek J, Štěpán Stenchlák and Škoda P (2025a) Data

Specification Vocabulary - Default Application Profile (DSV-
DAP). Technical report, Charles University, Department of
Software Engineering. URL https://w3id.org/dsv

-dap#.
Klímek J, Štěpán Stenchlák and Škoda P (2025b) Data Specification

Vocabulary (DSV). Technical report, Charles University,
Department of Software Engineering. URL https://w3

Prepared using sagej.cls

https://www.sciencedirect.com/science/article/pii/S0264127523010195
https://www.sciencedirect.com/science/article/pii/S0264127523010195
https://dl.acm.org/doi/abs/10.1145/3014087.3014096
https://dl.acm.org/doi/abs/10.1145/3014087.3014096
https://www.w3.org/TR/2019/NOTE-dx-prof-20191218/
https://www.w3.org/TR/2019/NOTE-dx-prof-20191218/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://semiceu.github.io/DCAT-AP/releases/3.0.1/
https://semiceu.github.io/DCAT-AP/releases/3.0.1/
https://link.springer.com/chapter/10.1007/978-3-540-32253-5_9
https://link.springer.com/chapter/10.1007/978-3-540-32253-5_9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.2015.1720410407
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.2015.1720410407
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.2015.1720410407
https://www.w3.org/TR/2022/CRD-owl-time-20221115/
https://www.w3.org/TR/2022/CRD-owl-time-20221115/
http://research.cs.wisc.edu/dibook/
https://www.sciencedirect.com/science/article/pii/S1570826821000305
https://www.sciencedirect.com/science/article/pii/S1570826821000305
http://dx.doi.org/10.3233/SSW200034
http://dx.doi.org/10.3233/SSW200034
http://hdl.handle.net/20.500.11956/197453
http://hdl.handle.net/20.500.11956/197453
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.ariadne.ac.uk/issue/25/app-profiles/
http://www.ariadne.ac.uk/issue/25/app-profiles/
https://www.w3.org/TR/2014/NOTE-ld-bp-20140109/
https://www.w3.org/TR/2014/NOTE-ld-bp-20140109/
https://www.sciencedirect.com/science/article/pii/S2665917424004355
https://www.sciencedirect.com/science/article/pii/S2665917424004355
https://www.sciencedirect.com/science/article/pii/S2665917424004355
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/
https://link.springer.com/chapter/10.1007/978-3-031-47243-5_11
https://link.springer.com/chapter/10.1007/978-3-031-47243-5_11
https://link.springer.com/chapter/10.1007/978-3-031-47243-5_11
https://ieeexplore.ieee.org/document/10350726
https://ieeexplore.ieee.org/document/10350726
https://ceur-ws.org/Vol-3828/paper33.pdf
https://ceur-ws.org/Vol-3828/paper33.pdf
https://w3id.org/dsv-dap#
https://w3id.org/dsv-dap#
https://w3id.org/dsv#

Stenchlák et al. - Dataspecer 17

id.org/dsv#.
Klímek J, Štěpán Stenchlák and Škoda P (2025c) Data Specification

Vocabulary (DSV): Representation of Application Profiles of
Semantic Data Specifications. In: The 27th International
Conference on Information Integration and Web Intelligence
(iiWAS2025), Lecture Notes in Computer Science. Springer.

Köcher A, Markaj A and Fay A (2022) Toward a generic mapping
language for transformations between rdf and data interchange
formats. In: 2022 IEEE 27th International Conference on
Emerging Technologies and Factory Automation (ETFA). pp.
1–4. DOI:10.1109/ETFA52439.2022.9921513. URL
https://ieeexplore.ieee.org/abstract/doc

ument/9921513.
Křemen P and Nečaský M (2019) Improving discoverability of

open government data with rich metadata descriptions using
semantic government vocabulary. J. Web Semant. 55: 1–20.
URL https://doi.org/10.1016/j.websem.2018.

12.009.
Lausen H and Farrell J (2007) Semantic Annotations for WSDL and

XML Schema. W3C Recommendation, W3C. URL https:

//www.w3.org/TR/2007/REC-sawsdl-20070828/.
Lebo T, Sahoo S and McGuinness D (2013) PROV-O: The PROV

Ontology. W3C Recommendation, W3C. URL https:

//www.w3.org/TR/2013/REC-prov-o-20130430/.
Masmoudi M, Ben Abdallah Ben Lamine S, Karray MH,

Archimede B and Baazaoui Zghal H (2024) Semantic data
integration and querying: A survey and challenges. ACM
Comput. Surv. 56(8). DOI:10.1145/3653317. URL https:

//doi.org/10.1145/3653317.
Miles A and Bechhofer S (2009) SKOS Simple Knowledge

Organization System Reference. W3C Recommendation,
W3C. URL https://www.w3.org/TR/2009/REC

-skos-reference-20090818/.
Moxon SAT, Solbrig H, Unni DR, Jiao D, Bruskiewich RM,

Balhoff JP, Vaidya G, Duncan WD, Hegde H, Miller M,
Brush MH, Harris NL, Haendel MA and Mungall CJ (2021)
The Linked Data Modeling Language (LinkML): A General-
Purpose Data Modeling Framework Grounded in Machine-
Readable Semantics. In: Hastings J and Barton A (eds.)
Proceedings of the International Conference on Biomedical
Ontologies 2021 co-located with the Workshop on Ontologies
for the Behavioural and Social Sciences (OntoBess 2021) as
part of the Bolzano Summer of Knowledge (BOSK 2021),
Bozen-Bolzano, Italy, 16-18 September, 2021, CEUR Workshop
Proceedings, volume 3073. CEUR-WS.org, pp. 148–151. URL
https://ceur-ws.org/Vol-3073/paper24.pdf.

Musen MA (2015) The protégé project: a look back and a look
forward. AI Matters 1(4): 4–12. DOI:10.1145/2757001.27
57003. URL https://doi.org/10.1145/2757001.

2757003.
Noy NF, McGuinness DL et al. (2001) Ontology development 101:

A guide to creating your first ontology. URL https://pr

otege.stanford.edu/publications/ontology

_development/ontology101.pdf.
Nuyts E, Werbrouck J, Verstraeten R and Deprez L (2023)

Validation of building models against legislation using shacl.
In: LDAC2023: Linked Data in Architecture and Construction
Week, volume 3633. CEUR, pp. 164–175. URL http://hd

l.handle.net/1854/LU-01HCHF9JK71QP7RQCEZ

CQK49WC.

Park Jr and Childress E (2009) Dublin core metadata semantics:
An analysis of the perspectives of information professionals.
Journal of Information Science 35(6): 727–739.

Perego A, Albertoni R, Browning D, Cox S, Winstanley P and
Beltran AG (2024) Data Catalog Vocabulary (DCAT) - Version
3. W3C Recommendation, W3C. URL https://www.w3

.org/TR/2024/REC-vocab-dcat-3-20240822/.
Poveda-Villalón M, Espinoza-Arias P, Garijo D and Corcho O

(2020) Coming to terms with fair ontologies. In: Keet CM and
Dumontier M (eds.) Knowledge Engineering and Knowledge
Management. Cham: Springer International Publishing. ISBN
978-3-030-61244-3, pp. 255–270.

Prokop D, Stenchlák Š, Škoda P, Klímek J and Nečaský M (2025)
Enhancing domain modeling with pre-trained large language
models: An automated assistant for domain modelers. In:
Maass W, Han H, Yasar H and Multari N (eds.) Conceptual
Modeling. Cham: Springer Nature Switzerland. ISBN 978-3-
031-75872-0, pp. 235–253. URL https://link.sprin

ger.com/chapter/10.1007/978-3-031-75872-0

_13.
Stenchlák S, Nečaský M, Škoda P and Klímek J (2022)

DataSpecer: A Model-Driven Approach to Managing Data
Specifications. In: The Semantic Web: ESWC 2022 Satellite
Events - Hersonissos, Crete, Greece, May 29 - June 2, 2022,
Proceedings, LNCS, volume 13384. Springer, pp. 52–56. DOI:
10.1007/978-3-031-11609-4_10. URL https://doi.or

g/10.1007/978-3-031-11609-4_10.
Tan H, Kebede RZ, Moscati A and Johansson P (2024) Semantic

interoperability using ontologies and standards for building
product properties. In: 12th Linked Data in Architecture and
Construction Workshop, Bochum, Germany, June 13-14, 2024.
CEUR-WS, pp. 23–35.

Thompson H, Beech D, Maloney M, Mendelsohn N, Sperberg-
McQueen M and Gao S (2012) W3C XML Schema
Definition Language (XSD) 1.1 Part 1: Structures. W3C
Recommendation, W3C. URL https://www.w3.org/T

R/2012/REC-xmlschema11-1-20120405/.
Vogt L, Strömert P, Matentzoglu N, Karam N, Konrad M, Prinz

M and Baum R (2025) Suggestions for extending the fair
principles based on a linguistic perspective on semantic
interoperability. Scientific Data 12(1). DOI:10.1038/s41597-0
25-05011-x.

Westermann T, Köcher A and Gehlhoff F (2025) Automated
validation of textual constraints against automationml via llms
and shacl. arXiv preprint arXiv:2506.10678 .

Wilkinson MD, Dumontier M, Aalbersberg IJ et al. (2016) The
FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data 3(1). URL http://dx.doi.o

rg/10.1038/sdata.2016.18.
Wood D, Lanthaler M and Cyganiak R (2014) RDF 1.1 Concepts

and Abstract Syntax. W3C recommendation, W3C. URL
https://www.w3.org/TR/2014/REC-rdf11-con

cepts-20140225/.
Wright A, Andrews H, Hutton B and Dennis G (2022)

JSON Schema: A Media Type for Describing JSON
Documents. Internet-Draft draft-bhutton-json-schema-01,
Internet Engineering Task Force. URL https://datatr

acker.ietf.org/doc/draft-bhutton-json-sch

ema/01/. Work in Progress.

Prepared using sagej.cls

https://w3id.org/dsv#
https://w3id.org/dsv#
https://ieeexplore.ieee.org/abstract/document/9921513
https://ieeexplore.ieee.org/abstract/document/9921513
https://doi.org/10.1016/j.websem.2018.12.009
https://doi.org/10.1016/j.websem.2018.12.009
https://www.w3.org/TR/2007/REC-sawsdl-20070828/
https://www.w3.org/TR/2007/REC-sawsdl-20070828/
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://doi.org/10.1145/3653317
https://doi.org/10.1145/3653317
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://ceur-ws.org/Vol-3073/paper24.pdf
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://hdl.handle.net/1854/LU-01HCHF9JK71QP7RQCEZCQK49WC
http://hdl.handle.net/1854/LU-01HCHF9JK71QP7RQCEZCQK49WC
http://hdl.handle.net/1854/LU-01HCHF9JK71QP7RQCEZCQK49WC
https://www.w3.org/TR/2024/REC-vocab-dcat-3-20240822/
https://www.w3.org/TR/2024/REC-vocab-dcat-3-20240822/
https://link.springer.com/chapter/10.1007/978-3-031-75872-0_13
https://link.springer.com/chapter/10.1007/978-3-031-75872-0_13
https://link.springer.com/chapter/10.1007/978-3-031-75872-0_13
https://doi.org/10.1007/978-3-031-11609-4_10
https://doi.org/10.1007/978-3-031-11609-4_10
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1038/sdata.2016.18
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://datatracker.ietf.org/doc/draft-bhutton-json-schema/01/
https://datatracker.ietf.org/doc/draft-bhutton-json-schema/01/
https://datatracker.ietf.org/doc/draft-bhutton-json-schema/01/

	Introduction
	Motivation and requirements
	Semantic Data Specification (SDS)
	Reuse and Application Profiles (AP)
	Reuse as-is
	Reuse with modifications

	Requirements
	Use case: Vocabularies
	Use case: Application profiles
	Use case: Technical interoperability
	General requirements
	FAIR principles

	Dataspecer
	Dataspecer core and backend
	Manager Application
	Conceptual Editor Application
	Structural Editor Application
	Dataspecer Development

	Related Work
	Evaluation: Improvement of DCAT application profiles
	DCAT - Data Catalog Vocabulary
	Dataspecer's approach

	DCAT-AP for European data catalogs
	DCAT-AP-CZ

	Evaluation: Other Specifications Created in Dataspecer
	Case study: Czech Formal Open Standards (FOSes)
	Dogfooding - Data Specification Vocabulary
	Impact in other areas

	Evaluation: productivity and usability
	Conclusions and Future Work

