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Abstract

Ontology engineering (OE) is a complex task in knowledge representation that relies heavily on
domain experts to accurately define concepts and precise relationships in a domain of interest, as
well as to maintain logical consistency throughout the resultant ontology. Recent advancements in
Large Language Models (LLMs) have created new opportunities to automate and enhance various
stages of ontology development. This paper presents a systematic literature review on the use
of LLMs in OE, focusing on their roles in core development activities, input-output characteristics,
evaluation methods, and application domains. We analyze 30 different papers to identify common
tasks where LLMs have been applied, such as ontology requirements specification, implementation,
publication, and maintenance. Our findings indicate that LLMs serve primarily as auxiliary ontology
engineers, domain experts, and evaluators, using models such as GPT, LLaMA, and T5 models.
Different approaches use zero and few shot prompt techniques to process heterogeneous inputs
(such as OWL ontologies, text, competency questions, etc.) to generate task-specific outputs (such as
examples, axioms, documentation, etc.). Our review also observed a lack of homogenization in task
definitions, dataset selection, evaluation metrics, and experimental workflows. At the same time, some
papers do not release complete evaluation protocols or code, making their results hard to reproduce
and their methods insufficiently transparent. Therefore, the development of standardized benchmarks
and hybrid workflows that integrate LLM automation with human expertise will become an important
challenge for future research.
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1 Introduction

For more than a decade, Knowledge graphs (KGs) have become a key technology to represent, use, and
share open knowledge in a wide range of domains and applications Hogan et al. (2021). To give these
rich datasets formal machine-readable structure and semantics Patel and Debnath (2024); Glauer et al.
(2024), ontologies are employed to define domain-specific concepts, relationships, constraints and logical
rules De Vergara et al. (2004); Patel and Debnath (2024); Glauer et al. (2024). Ontologies are typically
encoded in the W3C Web Ontology Language (OWL) Staab et al. (2004), and have been shown to work
effectively to integrate, validate, and reason with data in KGs Krétzsch and Thost (2016).

Ontology Engineering (OE) is the process of developing formal knowledge representations (i.e.,
ontologies) to describe aspects of reality for specific purposes Salamon and Barcellos (2022). Despite the
availability of structured methodologies such as Linked Open Terms (LOT) Poveda-Villalén et al. (2022),
NeOn Sudrez-Figueroa et al. (2012), the “Ontology Development 101” guide Noy and McGuinness (2001),
etc., ontology development remains a complex, time-consuming, and error-prone activity Gangemi and
Presutti (2009); Saeedizade and Blomqvist (2024). It demands deep domain expertise, careful conceptual
modeling, extensive collaboration among stakeholders, and precise alignment with intended use cases.

With the development of Artificial Intelligence (Al), significant advancements have been made in
Large Language Models (LLMs) to show remarkable advances in capturing complex language patterns
in different knowledge domains Doumanas et al. (2024). In recent years, LLMs have emerged as an
innovative technology for OE. Research efforts have explored their potential to assist developers in various
tasks, including generating and refining ontologies from text, aligning concepts with existing taxonomies,
and automatically detecting syntax errors in ontologies, among others Garijo et al. (2024).

Despite the promise of LLMs for OE, several key research gaps remain. Many studies have claimed
that LLMs are useful for ontology development tasks Lo et al. (2024); Joachimiak et al. (2024); Lippolis
et al. (2025, 2024); Ciatto et al. (2025), but do not clearly distinguish the specific development phases
where LLMs provide the most value. In addition, little is known about the specific roles LLMs can assume,
the types of inputs and outputs required by them, the need and extent of human involvement, and the
experimental setups, including datasets used, evaluation metrics, and reproducibility considerations used
to validate their effectiveness. Furthermore, while LLMs are increasingly applied in various domains,
few studies systematically address domain-specific challenges or necessary model adaptations. Although
recent surveys have offered valuable overviews of LLMs in OE Perera and Liu (2024); Garijo et al. (2024),
a detailed analysis focusing specifically on ontology development activities remains limited. A systematic
understanding of how LLMs contribute to different phases of ontology development, along with a critical
assessment of their capabilities and limitations, is essential for guiding future research and fostering their
successful integration into OE workflows.

To address these gaps, this study conducts a comprehensive and systematic review of how LLMs are
employed in OE. We extend the overview presented in our previous work Garijo et al. (2024) with the
following contributions: First, through a comprehensive systematic search, we broaden and update the
literature coverage, ultimately identifying 30 peer-reviewed papers published between 2018 and 2024,
significantly more than the 20+ papers included in the earlier overview. Second, we introduce a structured
analytical framework that categorizes existing research according to ontology engineering stages, LLM
roles, LLM technical details, and input/output formats for and from each LLM. Third, we examine dataset
usage, evaluation practices, and the degree of human involvement in LLM-supported workflows. Finally,
we analyze the application domains in which LLMs have been deployed for ontology development,
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offering additional cross-study insights. Building on these contributions, this extended study aims to
achieve the following objectives:

1. Identify the ontology development tasks where LLMs have been applied.

2. Analyze how LLM-based approaches contribute to ontology development, focusing on their roles,
model types, inputs, outputs, and the role of human participants in interactive workflows.

3. Examine how LLM performance is assessed in ontology development by identifying experimental
datasets, evaluation methods, and reported performance results.

4. Explore the application domains where LLMs have been effectively utilized for ontology
development.

We conduct our review following the systematic methodology proposed by Kitchenham et
al. Kitchenham et al. (2009), ensuring a rigorous and reproducible analysis. We also make publicly
available the complete corpus of resources used to generate or evaluate different OE tasks at our GitHub
repository.' In addition, the corpus is archived on Zenodo Li et al. (2025).

The remainder of this article is organized as follows. Section 2 presents background information on OE
and LLM technologies. Section 3 outlines our research objectives and key questions, and describes the
data collection and analysis methods. Section 4 presents the research results and the key insights. Section 5
shows the discussion from the analyzed studies, and Section 6 concludes the survey by highlighting open
research challenges. Finally, Section 7 describes supporting materials used in our work.

2 Background

In this section, we briefly introduce the main ontology development tasks identified in the literature and
provide an overview of the recent evolution of LLM:s.

2.1 Ontology Development Tasks

Ontologies are formal and explicit specifications of shared conceptualizations Studer et al. (1998), enabling
structured knowledge representation Dimitropoulos and Hatzilygeroudis (2024) and facilitating semantic
interoperability across systems and applications Bittner et al. (2005); Tan et al. (2024).

Ontology engineering (OE) provides the methodologies and tools necessary to construct domain-specific
and application-specific ontological models Gémez-Pérez (1999). An Ontology Engineering Methodology
(OEM) outlines a structured set of phases, processes, and tasks to systematically guide the development
process Kotis et al. (2020).

Traditional methodologies, such as METHONTOLOGY Fernandez-Loépez et al. (1997), On-To-
Knowledge Staab et al. (2001), DILIGENT Pinto et al. (2004), and the “Ontology Development 101”
guide Noy and McGuinness (2001), have significantly contributed to the formalization of OE practices.
However, they typically follow step-by-step workflows that may not fully address modern requirements
such as reuse, collaboration, and interoperability. The NeOn methodology Sudrez-Figueroa et al. (2012)

Ihttps://github.com/oeg—upm/llmdoe-slr
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introduced a more dynamic and flexible approach, emphasizing the creation of interconnected ontology
networks through mechanisms like import, versioning, mapping, and modularization.

To consider a basic group of activities usually carried out during ontology development we follow the
Linked Open Terms (LOT) methodology Poveda-Villalén et al. (2022) general workflow as it includes
ontology publication and maintenance phases. However, other activities not defined in detail in LOT may
appear in the reviewed works. In order to address these cases we also consider the NeOn glossary of
activities Sudrez-Figueroa and Gémez-Pérez (2008). It should be noted that both LOT and NeOn define
more activities than the ones listed below, however, we include in this section only those activities found
in the reviewed papers.

1. Ontology requirements specification phase: Gathering requirements is related to the specific
ontology goals, domain, and technical constraints Sudrez-Figueroa et al. (2009). From the activites
defined for this phase, in the analyzed papers the following activities are addressed:

* Functional requirements writing: Specifies the functionalities the ontology must support. It
should be noted that this activity refers to writing the functional requirements in natural
language text. This may occur in the form of competency questions or affirmative sentences in
natural language.

» Competency question reverse engineering: Involves generating CQs that an ontology must
answer, using the ontology itself as input. Although not explicitly covered in the LOT
framework, this activity appears in several studies (Alharbi et al. (2024a)) and aligns with
NeOn Ontological Resource Reverse Re-engineering Sudrez-Figueroa et al. (2012).

* Requirement formalization: This activity consists in translating functional requirements into
formal, machine-readable specifications.

2. Ontology implementation phase: Building the ontology using formal languages (e.g., OWL, RDF)
based on collected requirements. Key sub-activities include:
* Conceptualization: Structuring domain knowledge into concepts and relationships.

» Encoding: Formalizing conceptual models into machine-readable formats (e.g., Turtle,
RDF/XML, etc.).

* Evaluation: Validating the ontology against competency questions and domain needs.

* Matching: This activity’s definition is taken from NeOn which literally reads “the activity of
finding or discovering relationships or correspondences between entities of different ontologies
or ontology modules” Sudrez-Figueroa and Gomez-Pérez (2008).

3. Ontology publication phase: Making the ontology accessible both as human-readable
documentation and machine-readable files. This phase includes, among others not found in the
reviewed papers as the actual online publication, the following activity:

* Documentation: Generating human-oriented documentation usually consisting, but not limited
to HTML web pages, diagrams, examples of use, etc.

4. Ontology maintenance phase: Updating the ontology based on bug reports, improvements, and
new requirements throughout its lifecycle. This includes:
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* Bug detection: Identifying and reporting errors or inconsistencies.

2.2 A Brief History of Large Language Models

LLMs are Al systems able to generate coherent and contextually relevant language outputs that have
demonstrated remarkable performance across tasks like text generation Mishra et al. (2025); Wu
(2024), question answering Arefeen et al. (2024); Balepur et al. (2025), translation Brown et al. (2020),
summarization Azher et al. (2025), and sentiment analysis Kheiri and Karimi (2024). LLms are trained
on large amounts of textual data, and are built predominantly on deep learning architectures such as
transformers Vaswani et al. (2017).

The evolution of LLMs began with foundational advancements in sequential data processing. Rumelhart
et al. Rumelhart et al. (1986) introduced recurrent neural networks (RNNs), which were later enhanced by
the Long Short-Term Memory (LSTM) model developed by Hochreiter and Schmidhuber Hochreiter and
Schmidhuber (1997), significantly improving long-range dependency modeling Mienye et al. (2024). The
release of the Generative Pre-trained Transformer (GPT) by OpenAl in 2018 marked a pivotal moment.
Subsequent iterations (GPT-2, GPT-3, GPT-3.5) demonstrated increasingly sophisticated generative
capabilities Brown et al. (2020); Radford et al. (2019). GPT-3, for instance, was trained on 45TB of data
and contained 175 billion parameters. In 2023, Meta introduced LLaMA, an open-source LLM trained on
1.4 trillion tokens across multiple model sizes Raiaan et al. (2024). Since then, models such as Google
Gemini Team et al. (2024), OpenAI’s GPT-4 OpenAl et al. (2024), Meta LLaMA2 Touvron et al. (2023b),
and LLaMA3 Grattafiori et al. (2024) have further advanced the field. These models exhibit state-of-the-art
performance in reasoning Wei et al. (2022), code generation Vaithilingam et al. (2022); Jiang et al. (2024),
and multimodal tasks Zhang et al. (2023b); Wu et al. (2023); Zhang et al. (2024a), driven by larger datasets
and increasingly sophisticated architectures. Their ongoing evolution continues to expand the application
landscape for Al-driven systems across diverse domains Johnsen (2025).

Prompt engineering has emerged as a key methodology for enhancing the performance of pre-trained
LLMs Debnath et al. (2025). It involves the careful design of instructions, conveyed through text, images,
audio, or other modalities, that serve as the primary interface to guide LLMs in downstream tasks Marvin
et al. (2023). A wide variety of prompting strategies have been developed to steer models toward accurate
and contextually appropriate outputs. For example, zero-shot prompting is based exclusively on a task
description, allowing models to generalize to unseen tasks without any examples Radford et al. (2019).
In contrast, one-shot Kojima et al. (2022) and few-shot Brown et al. (2020) prompting incorporate one
or several demonstrations, helping the model better infer input—output relationships Kadam and Vaidya
(2018).

Other techniques aim to improve the structure and consistency of model outputs. Role prompting Zheng
et al. (2024); Olea et al. (2024) assigns the model a specific persona or professional role, thus shaping
its reasoning style and lexical choices. Template-based prompting Shin et al. (2020) employs predefined
templates populated with task-specific variables to enforce structured formats such as JSON, tables, or
logical expressions.

Chain-of-Thought (CoT) prompting Wei et al. (2022) augments few-shot learning by guiding models
to articulate intermediate reasoning steps before delivering final answers. Also referred to as Chain-
of-Thoughts in some studies Besta et al. (2024); Chen et al. (2023), this approach has been shown to
substantially enhance LLM performance in mathematical and reasoning tasks. Typical CoT prompts
include exemplar questions paired with reasoning traces and correct answers. The Reasoning and Acting
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(ReAct) framework Yao et al. (2022) extends CoT by interleaving reasoning with executable actions. When
solving a problem, the model iteratively generates a thought, takes an action, and observes the outcome,
maintaining a contextual memory by incorporating past reasoning steps, actions, and observations into the
prompt. Further advancing multi-step reasoning, self-consistency sampling enhances output reliability by
selecting the most consistent answer from multiple reasoning trajectories. Building on these foundations,
frameworks such as ReAct Yao et al. (2022) and Tree-of-Thought (ToT) Yao et al. (2023) integrate
systematic reasoning with action execution or structured search, supporting more sophisticated decision-
making processes.

Fine-tuning is a process in which a pretrained model, such as an LLM, is further trained on a custom
data set to adapt it for specialized tasks or domains. Complementing prompt-based approaches, fine-
tuning provides a parameter-level adaptation mechanism that aligns LLMs with specific domains or
tasks Anisuzzaman et al. (2024). Methods such as instruction tuning Zhang et al. (2023a), domain-specific
fine-tuning Gajulamandyam et al. (2025), and parameter-efficient Liu et al. (2022) approaches such as
LoRA Hu et al. (2022) or adapter tuning Le et al. (2021) enable models to internalize task patterns beyond
the reach of prompts alone. Fine-tuning enhances output stability, mitigates prompt sensitivity, and ensures
consistent performance in scenarios that require specialized knowledge or complex reasoning.

Overall, prompting techniques have evolved into a flexible and reusable interaction layer that
complements advances in LLM architectures. By enabling more accurate, controllable, and domain-
aligned outputs, prompt engineering has become central to the effective deployment of LLMs, serving as a
key driver of innovation across Al applications.

3 Research Methodology

To achieve our research objectives, we conducted a systematic literature review following Kitchenham
and Charters methodology Kitchenham et al. (2009): Section 3.1 defines the research questions (RQs)
of our study, Section 3.2 describes the selection of data sources, Section 3.3 presents the search strategy,
Section 3.4 explains the filtering criteria, and Section 3.5 details data extraction and synthesis. The
following subsections describe each step.

3.1 Research Questions

Our study investigates how LLMs have been adapted for ontology development by systematically reviewing
existing approaches to understand their capabilities and limitations. We formulate the following RQs to
guide our review:

RQ1 What are the key activities in ontology development where LLMs have been applied?
RQ2 How do LLM-based approaches support different ontology development activities?

RQ2.a What roles do LLMs play in these activities?
RQ2.b What types of LLMs are used?

RQ2.c What LLM prompt techniques are employed to support OE activities (e.g.,zero-shot prompt,
iterative prompt, fine-tuning)?

RQ2.d What are the typical inputs to the LLMs?
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RQ2.e What outputs are generated by the LLMs?
RQ2.f What are the roles of humans involved in these activities (e.g., domain experts, ontology
engineers)?

RQ3 How is the performance of LLMs in ontology development evaluated?

RQ3.a Are there evaluation experiments reported?
RQ3.b What datasets are used in the evaluations?
RQ3.c What evaluation methods are adopted (e.g., qualitative, quantitative, or hybrid)?

RQ3.d What metrics (e.g., F1 score, recall) are used, and what are the reported performance
results?

RQ4 What are the main application domains where LLMs have been applied in ontology development?

3.2 Source Libraries

During this phase, we conduct a systematic search across open-access digital libraries to ensure
comprehensive coverage of the area under investigation Vieira and Gomes (2009). We selected Google
Scholar, Web of Science, and Scopus for their broad multidisciplinary reach, along with the ACM Digital
Library and IEEE Xplore to specifically cover the computer science domain Hull et al. (2008). The selected
sources and their corresponding access points are: Google Scholar’, Web of Science’, Scopus*, ACM
Digital Library’, and IEEE Xplore®.

3.3 Search Strategy

The selection of primary studies depend on the following inclusion and exclusion criteria:

1. Publication Time Frame: We focus on papers published between 2018 and 2024 to capture the
most recent advances in ontology development driven by large language models (LLMs). The
year 2018 marks a pivotal milestone in NLP, corresponding to the introduction of the Transformer
architecture and the release of foundational models such as BERT Devlin et al. (2019) and GPT
Radford and Narasimhan (2018), which laid the groundwork for the modern LLM paradigm.

2. Peer-Review Status: Selecting peer-reviewed papers ensures rigorous expert evaluation, enhancing
the high quality, credibility, and reliability of our findings Kelly et al. (2014).

3. Language: We focus on papers, books, and book chapters published in English for accessibility
and consistency.

4. Search Keywords: Our search focuses on two categories of terms:

2https://scholar.google.com
Jhttps://www.webofscience.com
4https://www.scopus.com
Shttps://dl.acm.org
6https://ieeexplore.ieee.org
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(a) Semantic-Related Terms (SR): Keywords related to semantic technologies, such as ontolog*,
ontology development, and vocabulary.

(b) Model-Related Terms (MR): Keywords associated with large language models, including
Language Model, LM, and LLM*.

The particularities of each source were considered during the review. Logical operators (OR, AND)
combined terms into search strings, such as ("ontolog*’ OR ’ontology development’) AND LM’
OR "LLM*’), applied to meta-fields searched from Section 3.2. Depending on each source, the
search strings were tailored to content, title, abstract, and keywords.

3.4 Filtering Process

In this step, we apply our search criteria to the selected library sources through a two-stage filtering
process.

1. Automated Filtering: We first applied automated filters based on the predefined search standards
and removed duplicate papers by matching their titles.

2. Manual Filtering: To further ensure relevance, we conducted a multi-stage manual review,
comprising the following steps:

(a) Title Screening: We initially reviewed the titles of the retrieved papers to eliminate papers
that were clearly unrelated to our research topic.

(b) Abstract Screening: For the remaining papers, we examined the abstracts to assess their
alignment with our research objectives. Only peer-reviewed papers that explicitly addressed
the role of LLMs in ontology development were retained.

3.5 Data Extraction

To extract relevant information, we aligned the data extraction process with the RQs defined in Section 3.1.
Since a single article may involve multiple ontology development activity experiments, each activity was
recorded as a separate row in the dataset. The complete dataset is publicly available in our open repository
athttps://github.com/oeg-upm/llmd4oe-slr.

Specifically, we extracted the following information from each entry:

 Article metadata: Publication title, authors, publication year, peer-reviewed status, and language.

* Ontology Activity (RQ1): The ontology development activity supported by LLMs and its definition
(if provided).

¢ LLM Technology (RQ2): Role of the LLM in the activity, type of LLM used, technique of prompt
used, inputs provided to the LLM, outputs generated, whether human-in-the-loop involvement was
present (Yes/No), role of the human (e.g., ontology engineers and others), and tasks performed by
human participants.
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* Performance Evaluation (RQ3): Existence of evaluation experiments, links to experiments (if
available), datasets used, dataset types, baselines compared, evaluation methods (quantitative,
qualitative, or hybrid), metrics applied (e.g., F1 score, recall), and performance results, including
whether humans participated in the evaluation.

¢ Application Domains (RQ4): Domains where LLLMs were applied, such as healthcare, education,
and finance.

4 Search Results

Our initial search yielded 11, 985 results, which were reduced to 5, 275 unique papers after duplicate
removal. The title selection narrowed this set to 204 papers, and the subsequent abstract selection further
shortlisted 38 peer-reviewed papers related to the use of LLMs in OE. From these 38 shortlisted papers, we
excluded 2 review articles Garijo et al. (2024); Perera and Liu (2024) and 6 studies that primarily focused
on the extraction of knowledge or ontology population rather than the design or structural development
of the ontology itself Usmanova and Usbeck (2024); Mukanova et al. (2024); Sahbi et al. (2024); Tian
et al. (2023); Funk et al. (2023). Consequently, the 30 core studies were retained for the final analysis, as
illustrated in Figure 1. These 30 studies form the foundation for the systematic investigation presented in
the remainder of this paper.

o S & (= & &) &

Language Google Scholar: 199 Web of Science: 7,357 ACM Digital: 123 IEEE Xplore: 1,788 Scopus: 2518
l ‘11,985 papers
Automatic Filtering: Manually Filtering: y Filtering: y Filtering: Related to 30
: . . . N N . —>
Remove duplicate 5,275 Title screening 204 Abstract screening 41 Peer reviewed 38 engineering papers
papers papers papers papers

Figure 1. Paper selection process based on our methodology. From 11, 985 papers retrieved across five
libraries, 30 papers related to our LLM-based OE tasks were selected after duplicate removal and manual
filtering.

Figure 2 3 supported provides a summary of our results by grouping existing works by OE task, input
and output. The diagram integrates all tasks identified in the selected studies and organizes them according
to the four main OE phases: ontology requirements specification, ontology implementation, ontology
publication, and ontology maintenance. It also indicates the key aspects examined in our four research
questions, including LLM inputs and outputs, model types, prompting strategies, human participation,
functional roles of LLMs, and the availability of evaluation and datasets used across the 41 reported

"The figure groups tasks by OE phases and summarizes LLM models, prompting strategies, and human roles. Rounded rectangles
denote LLM inputs (e.g., natural language text (NL text), CQs, ontologies) and outputs, while icons indicate human involvement and
the availability of experiments or datasets.
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experiments. Building on this overview, the following subsections present detailed results for each research
question.

4.1 RQ1: What are the key activities in ontology development where LLMs have
been applied?

The first step in our study is to analyze in which ontology engineering activities are LLMs applied. Table 1
compiles the activities addressed in each of the analyzed approaches including the input and outputs
provided to the LLM for each activity. A paper may address more than one ontology development activity,
and therefore the same paper may lead to multiple rows in the table. As shown in Figure 3, most of the
attention is focused on activities related to ontology implementation tasks (encoding, conceptualization,
matching or evaluation) as well as the generation of requirements. Each approach is summarized in the
following section grouping them by OE activity addressed.

Ontology implementation 25 (61.0%) Requirements specification 10 (24.4%) Ontology
publication 5 (12.2%)

Ontology
Ontology matching 5 (12.2%) ion 5 (12.2%)
writing 2 (4.9%)

CQ reverse

Conceptualization 8 (19.5%) Encoding 8 (19.5%) s B A

Ontology
maintenance 1 (2.4%)

Ontology

evaluation 4 (9.8%) Requirement

formalization 3 (7.3%) Bug issues 1 (2.4%)

Figure 3. Distribution of LLM-supported tasks across ontology development phases based on 41 experiments
from 30 papers. Numbers represent the total tasks identified for each phase, and percentages indicate their
proportion relative to all tasks. Most tasks focus on ontology implementation (25 studies, 61.0%), followed by
requirements specification (10 studies, 24.4%), publication (5 studies, 12.2%), and maintenance (1 study, 2.4%).

4.1.1 Ontology requirements specification

In the task of functional requirements specification, Fathallah et al. (2024a) proposed a method
leveraging LLMs such as GPT-3.5, LLaMA, and PalLM to generate ontology requirements from natural
language texts and CQs, within the framework of the NeOn-GPT methodology, using a wine ontology as a
case study.

CQ reverse engineering has received growing attention by creating CQs directly from ontologies.
Alharbi et al. (2024a) developed a pipeline that parses existing ontologies to extract relevant information,
which is then used to instantiate prompts for the automated generation of candidate CQs. Rebboud et al.
(2024a) introduced a benchmarking strategy that includes generating CQs from ontologies, using tools
such as LangChain and Ollama.

3https://raw.githubusercontent.com/oeg-upm/llmdoe-slr/refs/heads/main/Figures/
Taxonomic%20framework%200£%$20LLM-supported$20ontology%$20engineering%$20tasks.svg
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Table 1. Summary of ontology development phases, tasks, resources, inputs, and outputs supported by LLMs.
For studies applying LLMs at multiple workflow stages (e.g., Doumanas et al. (2024), Kholmska et al. (2024)), we
list each task to separately to capture their distinct contributions.

Phase Task Resource Inputs Outputs
Functional Fathallah et al. (2024a) Natural language text Natural language text
requirements writing Antia and Keet (2023) Natural 1 text CQs
Rebboud et al. (2024a) Ontologies CQs
Alharbi et al. (2024a) Triples CQs
Requirements CQ reverse engineering Ciroku et al. (2024a) KGs CQs
specification Rebboud et al. (2024b) Ontologies CQs
Alharbi et al. (2024b) Triples CQs
Requirement Rebboud et al. (2024a) Ontologies and CQs Queries
formalization Tufek et al. (2024) Natural language text or CQs SPARQL Queries
Kholmska et al. (2024) Concepts SPARQL Queries
Rebboud et al. (2024a) CQs Ontologies
Goyal et al. (2024) Natural language text Binary decision
Coutinho (2024) Natural language text Summarization
Conceptualization Kholmska et al. (2024) Step 2:Natural language text Step 2: Classes
Step 3:Natural language text Step 3: Concepts
Dong et al. (2024) Natural language text, Ontologies Natural language text
Babaei Giglou et al. (2023) Task A: Natural language text, lexical Task A: Term type
term Task B: Binary decision
Task B: Natural language text Task C: Binary decision
Task C: Natural language text
Toro et al. (2024) Term JSON or YAML
Pisu et al. (2024) Nature language text Relationships
Ontology Doumanas et al. (2024) Phase 1: Natural language text Phase 1: Ontologies
implementation Phase 2: Domain documents Phase 2: Ontologies
Phase 3: Natural language text and CQs Phase 3: Ontologies
Fathallah et al. (2024a) Natural language text CQs, Triples and Ontologies
Encoding Caufield et al. (2024) Natural language text Ontologies

Eells et al. (2024)

Natural language text

Natural language text and RDF

Saeedizade and Blomqvist
(2024)

CQs

Ontologies

Mateiu and Groza (2023) Natural language text Axioms
Tang et al. (2023) Natural language text Ontologies, JSON and Triples
da Silva et al. (2024) Natural language text, Ontologies Ontologies

Ontology matching

Zamazal (2024)

Natural language text and verbalized
candidates

Binary decision

Kholmska et al. (2024)

Step 4: Natural language text
Step 6: Concepts, Ontologies, Natural
language text

Step 4: Documentation
Step 6: Mapping

Ontology evaluation

Hertling and Paulheim (2023) Ontologies and Natural language text Mapping

He et al. (2023) Natural 1 text Binary decision
Norouzi et al. (2023) Natural language text Mapping
Tsaneva et al. (2024) Natural language text Axioms

Kholmska et al. (2024)

Step 5: Ontologies

Step 5: Natural language text

Fathallah et al. (2024a)

Natural language text

Ontologies and Axioms

Zhang et al. (2025) Ontologies and CQs Binary decision
Bischof et al. (2024) Natural language text Terms
Ontology Ontology Rebboud et al. (2024a) Ontologies Documentation
publication documentation Kholmska et al. (2024) Step 9: Ontology Extensions, Natural Step 9: Documentation
language text
Fathallah et al. (2024a) Natural language text, Ontologies Documentation
Giri et al. (2024) Terms Documentation
Maintenance Bug issue Kholmska et al. (2024) Step 8: Natural language text Step 8: Natural language text

Several additional contributions enrich this area. For example, Ciroku et al. (2024a) introduced RevOnt,
a system for extracting CQs from knowledge graphs. Rebboud et al. (2024b) conducted a feasibility study
comparing LLM-generated CQs with ground-truth examples. Antia and Keet (2023) presented AgOCQs,
a pipeline that combines a text corpus with CQ templates with NLP techniques to generate CQs.

Once requirements and CQs are established, requirement formalization can automate transfer CQs
into executable queries, a crucial step in ontology development. Kholmska et al. (2024) investigate the
role of LLMs (e.g., ChatGPT, Bard, Perplexity Al) in OE with active learning, demonstrating their ability
to generate SPARQL queries from CQs. Similarly, Rebboud et al. (2024a) benchmarked LLM-generated
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ontology-aligned queries, evaluating them using structural metrics like Tree Edit Distance. Their results
show that LLMs are able to capture ontology structure and user intent. Further supporting this, Tufek et al.
(2024) successfully automated SPARQL query generation from natural language requirements, showing
that LLMs can effectively connect human requirements with machine readable formalisms in OE.

4.1.2 Ontology implementation

The conceptualization task in the ontology implementation phase involves defining terms, relationships,
and taxonomies. Our analysis identified 8 studies investigating the potential of LLMs in supporting these
activities, highlighting it as one of the most prominent research areas in the field. One key aspect of
ontology development is the generation of concept definitions. In addition, LLMs have also improved
taxonomy discovery and relationship extraction. Studies such as Goyal et al. (2024) and Babaei Giglou
et al. (2023) employed LLMs to support ontology formalization through automated reasoning and relation
identification, showing that LLMs can detect both hierarchical and non-taxonomic relationships between
concepts.

Several researchers have proposed integrated frameworks to support ontology conceptualization. For
example, Coutinho (2024) developed a system merge text-based languages for ontologies with LLMs
to generate new concepts based on contextual information for the unified foundational ontology (UFO)
Guizzardi et al. (2015).

Further contributions include Rebboud et al. (2024a), who framed this task as constructing an ontology
by generating missing classes and properties. Kholmska et al. (2024) applied LLMs to generate nearly 200
core concepts in the field of active learning, which were hierarchically organized and definitionally refined,
demonstrating the potential of LLMs for concept discovery and structuring. Dong et al. (2024) explored
concept generation, while Toro et al. (2024) introduced techniques to complete ontology terms. Pisu et al.
(2024) investigated the use of language models for research topic taxonomy generating and construction.

Encoding refers to the translation of conceptual models into formal ontology representation languages.
Our survey identified 8 studies that investigated how LLLMs can support this process. In the context of
domain-specific formalization, Doumanas et al. (2024) employed LLMs to develop an OWL ontology for
search and rescue missions (SAR). Their evaluation was performed against the gold reference ontology in
the SAR domain Masa et al. (2022).

Several studies propose tools for the translation of natural language into OWL. Mateiu and Groza
(2023) created a Protégé plugin® that converts natural language sentences into OWL axioms using LLMs.
Similarly, Caufield et al. (2024) developed a pipeline that extracts procedural knowledge from websites
(e.g., recipes) and have corresponding ontologies. Other works, including Eells et al. (2024) prompted
LLMs to generate ontologies for common nouns and assessed the output in terms of syntactic validity
and structural completeness. Saeedizade and Blomqvist (2024) investigated the use of LLMs to generate
OWL from structured narratives, highlighting the potential of LLMs to transform textual descriptions into
formal ontological representations. Tang et al. (2023) focused on domain-specific knowledge extraction,
demonstrating how LLMs can facilitate the construction of ontologies tailored to specific road traffic
domain for autonomous vehicles.

Next, da Silva et al. (2024) proposed a method to transform capability descriptions into ontological
models using LLMs, reducing ontology creation from input of natural language. Fathallah et al. (2024a)

8https://protege.stanford.edu/
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developed a pipeline that automates the ontology encoding task by instantiating structures with relevant
data.

LLMs have also been applied to ontology matching tasks, which are key to ensure interoperability
in diverse knowledge domains. Zamazal (2024) evaluated the effectiveness of LLMs in validating
complex mapping candidates, indicating promising results in correspondence validation tasks. Hertling
and Paulheim (2023) introduced OLaLa, a system that uses LLMs to generate high precision ontology
mappings. Additionally, studies by Norouzi et al. (2023) and He et al. (2023) benchmarked the performance
of LLMs in ontology alignment against reference mappings, revealing that modern LLMs can perform
comparable to specialized alignment systems. Kholmska et al. (2024) further explored LLMs in generating
initial mapping suggestions to support ontology extension, assessing concept coverage and inter-model
consistency.

In the ontology evaluation task, LL.Ms have been applied to assess the quality, consistency, and
correctness of ontologies. Tsaneva et al. (2024) utilized ChatGPT-4 to verify ontology restrictions,
achieving high accuracy in detecting logical inconsistencies and structural problems. Fathallah et al.
(2024a) explored a different approach, proposing an evaluation framework that leverages ChatGPT in
ontology syntax correction, using parsing errors detected by RDFLib and pitfall descriptions from the
OOPS! API Poveda-Villalén et al. (2014), particularly focusing on the missing disjointness axioms.
This demonstrates that LLMs can not only identify ontology issues but also suggest corrective actions.
Similarly, Zhang et al. (2025) introduced OntoChat, a framework for ontology verbalization and validation
through prompt driven unit tests, aiming to make ontology evaluation more accessible. Kholmska et al.
(2024) provided a broader evaluation of ontology quality, emphasizing relevance, content consistency, and
structural soundness in LLM-supported ontology development.

4.1.3 Ontology publication

The generation of human-readable documentation is essential for understanding the definitions and
relationships of an ontology. Our analysis identified 5 studies applying LLMs to ontology documentation
tasks.

Bischof et al. (2024) employed LLMs to produce context-sensitive annotations aligned with domain-
specific conventions. Rebboud et al. (2024a) explored the use of LLM to generate structured documentation
of key ontology components, such as classes and properties; their evaluation, based on semantic
similarity metrics, showed that the LLM-generated documentation is accurate and relevant. Fathallah et al.
(2024a) further addressed natural language generation for ontology entities and properties, enhancing
comprehensibility for both technical and non-technical users. In more specialized domains, Giri et al.
(2024) applied the T5 language model to summarize functional descriptions of Gene Ontology terms,
while Kholmska et al. (2024) leveraged LLMs to create comprehensive documentation for extended
ontologies, supporting knowledge sharing and reuse.

4.1.4 Ontology maintenance

Among the studies reviewed, only one paper specifically addressed maintenance tasks related to bug or
detection of issues. Kholmska et al. (2024) investigated the potential of LLMs to extract key improvement
suggestions, refine task lists, and identify missing concepts from human-evaluated reports(step 8 of their
proposed workflow). Their findings suggest that LLMs can effectively support ontology maintenance.

4.1.5 Summary
Based on the analysis of 41 studies from 30 papers, LLMs have been applied unevenly in different
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ontology development phases. The implementation phase dominates, with 25 studies focused on
conceptualization, encoding, matching, and evaluation. Requirements specification ranks second,
represented by 10 studies addressing functional requirements, competency question generation, and
formalization into SPARQL queries. Later stages receive limited attention: 5 studies focus on ontology
publication through documentation generation, while only one addresses maintenance tasks.

4.2 RQ2: How do LLMs-based approaches support different ontology development
activities?

Following the identification of ontology development tasks supported by LLMs in Section 4.1, we now
explore the internal workings of how LLMs contribute to these tasks. This includes analyzing their
functional roles (as ontology engineers or domain experts, etc.), model choices (from GPT series or other
open-source tools), input and output types utilized by LLMs, and whether the studies collaborate with
humans in the LLM-based activities. Table 1 displays the inputs and outputs associated with each ontology
development activity. For a more detailed breakdown, including specific model names, functional roles,
and human collaboration status, refer to Table 2 in the Appendix.

4.2.1 RQ2.a: What is the role of LLMs models in OE activities?

Based on the reviewed studies, LLMs take on several key collaborative roles within OE tasks, either
complementing or, in some cases, replicating tasks traditionally performed by human knowledge engineers.
These contributions can be grouped into four main categories:

1. Ontology Engineer: LLMs are increasingly functioning as automated Ontology Engineers,
actively supporting the design, development, and maintenance of ontologies throughout the entire
development lifecycle. More precisely, LLMs are utilized to (a) parse unstructured domain texts and
generate structured requirement specifications, thereby facilitating automated requirement elicitation
Alharbi et al. (2024a); Ciroku et al. (2024a); (b) transform competency questions into structured
queries (e.g., SPARQL) Rebboud et al. (2024a); Tufek et al. (2024); (¢) discover axioms, particularly
identifying hierarchical relationships between concept pairs during the conceptualization activity
Goyal et al. (2024); Babaei Giglou et al. (2023); (d) translate unstructured or semi-structured texts
directly into OWL code Doumanas et al. (2024); Eells et al. (2024); Saeedizade and Blomqvist
(2024); Tang et al. (2023); and (e) support the entire ontology lifecycle, from conceptualization
through to documentation, or provide end-to-end assistance under methodologies such as the
NeOn-GPT approach Kholmska et al. (2024); Fathallah et al. (2024a).

2. Domain Experts: LLMs act as domain experts by supporting knowledge extraction, term definition,
and ontology content validation. They perform tasks requiring domain-specific understanding, such
as (a) generating domain-relevant concepts Dong et al. (2024); (b) producing context-sensitive
term annotations Bischof et al. (2024); (¢) generating structured ontology documentation Rebboud
et al. (2024a); Giri et al. (2024); and (d) summarizing functional descriptions Consortium (2006).
They are also used in evaluation tasks requiring both technical and domain expertise to assess the
consistency and correctness of ontology content Tsaneva et al. (2024); Fathallah et al. (2024a). (e)
Additionally, LL.Ms assist in validating or suggesting domain-specific relations and constraints,
ensuring alignment with established domain semantics Babaei Giglou et al. (2023); Goyal et al.
(2024).
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3. Human Evaluator: In some cases, LLMs have been placed as human evaluators, for example, to
verify ontology axioms and assess their logical soundness Tsaneva et al. (2024).

4.2.2 RQ2.b: What types of LLMs are used in OE activities?
The LLMs employed in OE span a range of architectures and capacities. Based on our analysis, these
models can be grouped into four major categories, each playing distinct roles in the OE lifecycle.

e GPT series (GPT-3.5, GPT-4, GPT-4 Turbo/40): The GPT series is among the most widely
used for tasks involving CQ reverse engineering, encoding, and evaluation, owing to their strong
capabilities in natural language understanding and generation Rebboud et al. (2024b); Tufek et al.
(2024); Fathallah et al. (2024a). In particular, GPT-4 Turbo/40 has been leveraged for more complex
tasks requiring multi-formalism reasoning, such as verifying axioms across heterogeneous logical
representations Zamazal (2024).

* Open-Source large language models (LLaMA, Mistral, Claude, etc.): Open source LLMs
such as LLaMA Touvron et al. (2023a), Mistral” and Claude'® are also used mainly in ontology
development tasks, including functional requirement writing, conceptualization, encoding, etc.

Hertling and Paulheim (2023) fine-tuned LLaMA for ontology matching and reuse, aligning anatomy
ontologies in the OAEI benchmark. Goyal et al. (2024) leveraged LLaMA3 and Mistral to detect
hierarchical relations in GeoNames and Schema.org. Saeedizade and Blomqvist (2024) combined
LLaMA-generated outputs with expert feedback to iteratively refine a SAR ontology. da Silva
et al. (2024) demonstrated that Claude 3 and Gemini Pro can effectively convert natural language
descriptions into OWL axioms, supporting the ontology encoding process. Additionally, LLaMA
and PaLM were integrated into the NeOn-GPTframework proposed by Fathallah et al. (2024a),
supporting multiple stages of ontology development, including functional requirements, encoding,
evaluation, and documentation.

 Lightweight Instruction-Tuned Models (e.g., Mistral-7B, Falcon-7B-Instruct, etc.): Lightweight
instruction-tuned models have been applied in OE tasks, as demonstrated in two recent studies.
Alharbi et al. (2024b) employed models such as LLaMA-2-70B, Mistral 7B Jiang et al. (2023),
and Flan-T5-XL to generate CQs by embedding RDF triples into prompt templates enriched
with varying levels of contextual information. The resulting CQs were then filtered to produce a
final set of relevant, non-redundant questions. Saeedizade and Blomqvist (2024) further explored
the use of lightweight open-source models including LLaMA-7B, LLaMA-13B, LLaMA-2-70B,
Alpaca, Falcon-7B, and Falcon-7B-Instruct—for ontology encoding. Their study demonstrated
the capability of these models to process narrative ontology descriptions and associated CQs for
automated ontology creation, in comparison with models such as GPT-3.5, GPT-4, and Bard.

* Transformer-Based Architectures (T5, BERT): Beyond large-scale LLMs, pre-trained transformer
models, such as T5 and BERT, are powerful in supporting sentence encoding, classification, and
structured generation. Ciroku et al. (2024b) used T5 and SBERT within the RevOnt framework to

https://mistral.ai/
Ohttps://www.anthropic.com/
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automatically extract competency questions from knowledge graphs. Giri et al. (2024) applied TS in
the GO2Sum system to generate human-readable functional descriptions of Gene ontology terms,
supporting ontology documentation and publication. Furthermore, Pisu et al. (2024) proposed the
use of SciBERT for the generation of taxonomy of research publication topics, with the objective
of integrating domain-adapted language models into ontology encoding and KG construction
workflows.

4.2.3 RQ2.c: What LLM prompt techniques are employed to support OE activities?

To understand how LLMs are operationalized within OE workflows, this subsection examines the
prompting techniques used across the reviewed studies. The analysis covers the full range of strategies
used to guide or adapt LLM behavior, including zero-shot and few-shot prompting, role-based prompting,
template-based and representational prompting, reasoning-driven prompting, iterative refinement, retrieval-
augmented prompting, and fine-tuning.

¢ Zero-shot prompting: Zero-shot prompting is the most frequently used strategy and is applied
when tasks can be specified purely through natural-language instructions. It is used across
requirements specification, conceptualization, encoding, and ontology matching. In many cases,
zero-shot prompting is combined with structural templates to constrain output formats. Examples
include CQ generation from textual descriptions or triples Rebboud et al. (2024b); Alharbi et al.
(2024a), SPARQL query generation using instruction-only templates Tufek et al. (2024), and type
classification using only local context Goyal et al. (2024). In ontology encoding, natural-language
definitions are translated into OWL axioms via zero-shot templates specifying the expected syntax
Caufield et al. (2024). Alignment approaches relying solely on verbalized labels also follow a pure
zero-shot setup He et al. (2023); Norouzi et al. (2023). Zero-shot prompting is further used for
capability modelling based on TBox grounding da Silva et al. (2024).

* Few-shot and one-shot prompting: Few-shot prompting augments instructions with a small
number of examples, improving structural fidelity and reducing hallucinations. One-shot prompting
provides a single demonstration when minimal scaffolding suffices. These techniques are widely
used for CQ generation, conceptualization, evaluation, and matching. Few-shot examples improve
CQ extraction Rebboud et al. (2024b), guide entity—relation extraction in NeOn-GPT Fathallah
et al. (2024a), and support axiom evaluation and alignment Tsaneva et al. (2024); Hertling and
Paulheim (2023). One-shot prompting is used to illustrate user-state structures Zhang et al. (2025) or
capability modeling patterns da Silva et al. (2024). In several workflows, example-driven prompting
interacts with decomposition strategies.

* Template-based prompting: Template-based prompting uses fixed syntactic or structural scaffolds
such as JSON/YAML schemas, CQ templates, SPARQL skeletons, or OWL Functional Syntax, to
constrain and standardize model outputs. This technique often appears in combination with zero-shot
or few-shot prompting. Documentation templates specify fields like labels and definitions Bischof
et al. (2024). Triple-based templates standardize CQ phrasing Alharbi et al. (2024a). Encoding
pipelines frequently use JSON/YAML schemas specifying IRIs, definitions, and axioms Toro et al.
(2024). SPARQL templates enforce good form and reduce ambiguity Tufek et al. (2024). Many
workflows combine templates with iterative correction loops. Tsaneva et al. (2024) shows that
providing axioms in the Rector or Turtle format improves the verification accuracy. Verbalized
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labels, definitions, and structural fragments are also used in matching workflows Hertling and
Paulheim (2023).

* Role-based prompting: Role-based prompting frames the model as an “ontology engineer”,
“domain expert”, or “SPARQL specialist”, grounding instructions in domain expertise. This
technique often appears in combination with zero-shot, few-shot, CoT, or template-based prompting.
Role prompts are used in requirement specification Alharbi et al. (2024b), SPARQL generation
Kholmska et al. (2024), conceptualization Fathallah et al. (2024a), documentation Bischof et al.
(2024), ontology matching Kholmska et al. (2024), and evaluation Fathallah et al. (2024a).

Multi-step reasoning prompting (CoT, GoT, decomposition): Reasoning-oriented prompting
guides models through intermediate steps or decomposed subtasks. Chain-of-thought prompting
supports term extraction, classification, and axiom justification Fathallah et al. (2024a). Graph-
of-Thoughts prompting enables multi-branch exploration of ontology structures Saeedizade and
Blomgvist (2024). Decomposition strategies, often combined with templates or examples, break
workflows into sequential steps (e.g., concepts — definitions — properties — axioms) as in ontology
encoding Tang et al. (2023). Multi-step reasoning is also used in the validation of axioms Tsaneva
et al. (2024).

Iterative and conversational refinement prompting: Many OE workflows employ multi-turn
refinement, where the model progressively revises outputs based on constraints or feedback. This
includes SAR ontology construction Kholmska et al. (2024), multi-phase encoding pipelines
Doumanas et al. (2024), and multi-turn axiom correction Fathallah et al. (2024a). RevOnt Ciroku
et al. (2024a) implements staged refinement for verbalization abstraction, generalization, and CQ
filtering. Conversational refinement systems enable users to interactively adjust generated CQs or
alignments Zhang et al. (2025).

Fine-tuning and model adaptation: A small subset of studies use supervised fine-tuning to adapt
models to OE tasks. GPT-3 has been adapted for NL-to-OWL translation tasks through task-specific
prompting or tuningMateiu and Groza (2023).T5 is fine-tuned on GO annotations for documentation
Giri et al. (2024). The placement of Domain-specific concepts is enhanced through a fine-tuned
BERT cross-encoder Dong et al. (2024). SciBERT is fine-tuned for the extraction of scientific
relationships Pisu et al. (2024). In Rebboud et al. (2024b), most models are used in fine-tuned
configurations, including FusionNet_7Bx2_MOoE_14B SOLAR-10.7B-Instruct-v1.0, Mistral-7B
and another Mistral-7B-v(.1. Although rare in general, fine-tuning yields notable gains for tasks
requiring high structural or domain precision.

4.2.4 RQ2.d: What are the inputs given to LLMs? and What are the outputs from the LLMs?

To better analyze the use of LLMs during the OE lifecycle, we contextualize the input given to the LLMs
in relation to the expected output and the specific task at hand. For this reason, in this section we report the
results obtained for RQ2.c and RQ2.d and group the results according to RQ1 which acts as the backbone
for this survey and a natural way of grouping, as the OE activities are driven by the type of their expected
output.

* During the ontology requirement specification phase there are common patterns depending on
the activity at hand. More precisely: (a) taking as input natural language text to write functional
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requirements either in the shape of CQs (Antia and Keet (2023)) or natural language affirmative
statements (Fathallah et al. (2024a)); (b) transforming structured inputs (ontologies, triples or KGs)
to write CQs through reverse engineering (Rebboud et al. (2024a); Alharbi et al. (2024a); Ciroku
et al. (2024b); Rebboud et al. (2024b); Alharbi et al. (2024b)); and (c) taking ontologies and natural
language (including CQs) to generate queries as part of the requirement formalization activity.

* For the ontology implementation phase, there are common patterns for activities with clear output
formats such as ontology encoding and ontology matching. However, approaches addressing less
restricted activities, such as ontology conceptualization or evaluation, present higher variability.
More precisely:

— While all approaches take natural language text as input in different formats, as is typically
the case for OE projects, the ontology conceptualization activity leads to various types of
outputs. Some approaches generate machine-readable representations, such as ontologies in
OWL (Rebboud et al. (2024a)) or structured schemas in JSON or YAML Toro et al. (2024).
Others produce concepts or terms intended for ontology integration Kholmska et al. (2024);
Babaei Giglou et al. (2023). Also, some approaches generate natural language descriptions
(Dong et al. (2024)), or binary decisions to validate semantic relations or classify term types
(Goyal et al. (2024); Babaei Giglou et al. (2023)). A special classification task is presented
by Pisu et al. (2024), to predict semantic relations (e.g., supertopic, subtopic, same-as, other)
between topic pairs extracted from an existing ontology.

— For the ontology encoding activity, most analyzed approaches (Doumanas et al. (2024);
Fathallah et al. (2024a); Caufield et al. (2024); Eells et al. (2024); Mateiu and Groza (2023);
Tang et al. (2023); da Silva et al. (2024)) take natural language descriptions as input to generate
ontology artifacts in OWL, RDF, or related formats. An exception is Saeedizade and Blomqvist
(2024), which uses competency CQs as input to guide ontology generation in alignment with
user information needs. Regarding outputs, most approaches produce complete ontology code,
with exceptions like Mateiu and Groza (2023) which focuses specifically on generating OWL
axioms. In Eells et al. (2024), the LLM is prompted with a single noun (e.g., “air,” “book’)
and returns a mix of natural language text and RDF ontology content.

— To address ontology matching, some of the analyzed works take natural language inputs
to produce binary decisions indicating semantic alignment. For example, Zamazal (2024)
uses LLM:s to classify verbalized complex correspondence candidates as (probably) positive
or negative, while He et al. (2023) evaluates the equivalence of concept pairs based
on their names and hierarchical contexts, outputting a "Yes" or "No" response. Other
approaches directly generate ontology mappings. Norouzi et al. (2023) takes structured
representations of two ontologies (in the form of subject—predicate—object triples), and
outputs a set of proposed alignments between classes or properties. Kholmska et al. (2024)
approaches ontology reuse through a multi-step process: Step 4 employs LLMs to extract
key features—such as purpose, reused elements, and formats from existing ontologies to
support reuse decisions; Step 6 involves using LLMs to map new concepts to the previously
identified ontologies by analyzing their definitions, relationships, and properties. The output
consists of explicit mappings expressed as owl:sameAs, owl:equivalentClass,
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and owl:equivalentProperty statements. Similarly, Hertling and Paulheim (2023)
combines textual and structural information to generate formal ontology alignments.

— For ontology evaluation some approaches take natural language text as input (Tsaneva et al.
(2024); Fathallah et al. (2024a)), which may include evaluation reports (Fathallah et al. (2024a);
Kholmska et al. (2024)), while others also utilize structured ontology-related information or
ontologies (Kholmska et al. (2024); Zhang et al. (2025)). The ontology evaluation activity
results in various types of output. Some approaches generate machine-readable corrections
or modifications, such as class value replacements or the addition of disjointness axioms
Fathallah et al. (2024a). Others produce natural language assessments regarding ontology
relevance, structural completeness, and alignment with standard frameworks such as CRISP-
DM Kholmska et al. (2024). Another line of work focuses on classifying and verifying
individual axioms as correct or defective, optionally specifying the type of modeling defect
Tsaneva et al. (2024). Alternatively, one study outputs binary decisions such as Yes/No
judgments to validate the coverage of CQs based on the ontology content Zhang et al. (2025)

¢ To address ontology documentation activity, all analyzed approaches focus on generating human-
readable documentation. They take ontologies or terms as input (Rebboud et al. (2024a); Giri et al.
(2024)), and optionally incorporate additional natural language text sources (Kholmska et al. (2024);
Fathallah et al. (2024a)). Specifically, Rebboud et al. (2024a) emphasizes the production of readable
summaries highlighting key classes and properties. Giri et al. (2024) generates concise summaries
from Gene Ontology terms. Finally, Kholmska et al. (2024) leverages LL.Ms to assist in the writing
of technical reports.

* The only work explicitly addressing ontology maintenance is Kholmska et al. (2024), where LLMs
are used to support iterative refinement. In Step 8 of their workflow, domain expert feedback and
validation reports serve as input. These documents are uploaded to an LLM interface, where the
model reviews the content, extracts improvement suggestions, and generates refined task lists. The
output is human-readable text highlighting missing concepts, potential relationship issues, and areas
requiring adjustment within the ontology. While the ontology itself is not used as direct input, its
structure is implicitly referenced through the content of the validation reports.

4.25 RQ2.e: What is the role of humans in OE LLM-assisted activities?

Although many recent studies automate ontology development with LLMs, only 4 studies explicitly
involve human participants, typically domain experts or ontology engineers, to support tasks requiring
judgment, contextual understanding, and refinement.

Doumanas et al. (2024) highlight the crucial role of domain experts during the ontology encoding
phase. The experts were responsible for evaluating both existing ontologies and LLM-generated semantic
content, ultimately steering the model toward the creation of a new ontology tailored for SAR operations.
Similarly, Kholmska et al. (2024) describe the involvement of domain experts and end-users during
ontology maintenance and bug resolution. Their iterative feedback on errors and inconsistencies was
critical to refine the ontology structure and enhance overall quality. In the context of ontology evaluation,
Zhang et al. (2025) demonstrate how ontology engineers curated user stories that were manually authored
or derived from earlier development stages to support meaningful CQ extraction, emphasizing the need
for human input to link technical outputs to real-world use cases. Finally, Alharbi et al. (2024a) report
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interviewing human experts and ontology engineers to capture design intentions. These insights were
then used to generate contextually accurate CQs, particularly in support of functional specification and
requirements engineering.

4.2.6 Summary

Across the 30 reviewed studies, LLMs assume three functional roles in ontology engineering: Ontology
Engineer, Domain Expert, and Human Evaluator. Most studies rely on general-purpose models such
as GPT-3.5 and GPT-4, with growing adoption of open-source models including LLaMA, Mistral, and
Falcon. Current workflows predominantly use LLMs to automate the generation, transformation, and
verification of ontology artefacts, with human involvement remaining limited. Building on these model
choices, the studies apply a wide range of prompting strategies. Zero-shot and few-shot prompting are the
most common, while template-based prompts are adopted when outputs must follow predefined schemas.
Role-based prompting contextualizes instructions, and multi-step reasoning (CoT, GoT, decomposition)
together with iterative refinement supports staged modelling and corrective workflows. Fine-tuning is
used only in a minority of studies that require domain adaptation or high syntactic precision. Across
these prompting settings, inputs range from unstructured text and competency questions to structured
triples, knowledge graph fragments, and ontology modules. Outputs include classes, properties, OWL
axioms, SPARQL queries, competency questions, natural-language definitions, and documentation. Only a
small subset of studies involve explicit human feedback, typically through expert validation or interactive
refinement.

4.3 RQ3: How is the performance of LLMs in ontology development evaluated?

In this section, we analyze the experimental support provided in the reviewed studies to validate
their proposed frameworks and methodologies. Specifically, we examine whether these studies include
experiments and whether they are open-source, as transparency is essential for reproducibility and
independent validation. We also investigate the datasets used in these studies to determine if a common
benchmark was used across different studies. Most importantly, we assess the performance of LLMs
in ontology development, focusing on the evaluation methods (quantitative, qualitative, or hybrid) and
the specific metrics used, such as F1, BLEU, or others. These details allow us to thoroughly assess the
reported performance results from these papers and evaluate the effectiveness of LLMs in addressing
various ontology engineering challenges. Table 3 in Appendix 7 compiles and summarizes all information
on the availability of experiments, datasets used, evaluation types, and evaluation metrics applied across
reviewed studies.

4.3.1 RQ3.a Does an experiment exist?

Out of the 41 reviewed studies, 14 report no experimental evaluation. The remaining 27 include
experiments, among which 4 studies exclusively perform isolated LLM tests without baselines or
comparative analysis, all of which originate from the same paper Fathallah et al. (2024a), appearing
across multiple OE tasks. Another 4 studies report experiment results but do not provide public access link
Tsaneva et al. (2024); Alharbi et al. (2024b); Norouzi et al. (2023); Fathallah et al. (2024a). The remaining
19 studies include experiments with evaluation metrics and comparative analysis in their accessible
resources. Note that, not only Fathallah et al. (2024a) but also Kholmska et al. (2024) address multiple
tasks, ranging from requirements specification to addressing bug issues. Therefore, these approaches
appear multiple times in our analysis.
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4.3.2 RQ3.b What data sets are used in the evaluations?

Although not all studies include full experiments, many of them still explicitly mention the datasets used
in their work. An exception is the study by Bischof et al. Bischof et al. (2024), which does not specify any
dataset names. Instead, it refers to terms or concepts without providing detailed information about the
data sources involved. Through the other 40 studies, all explicitly describe their dataset types and provide
publicly accessible datasets through platforms such as GitHub, Zenodo, or some official ontology database
(e.g., GO, OntoDM Ontology). From these 40 studies, 38 use ontology related files (OWL, RDF, etc.) as
their primary dataset type.

Drilling into the detailed datasets used, Alharbi et al. Alharbi et al. (2024b) selected four ontologies
along with their associated CQ datasets to investigate CQ creation. Three of these ontologies: Video Game
(entertainment) Parkkila et al. (2017), Dem@care (healthcare) Karakostas et al. (2016), and VICINITY
Core (Internet of Things) Cimmino et al. (2019) were obtained from the CORAL Fernandez-Izquierdo et al.
(2019) repository, a comprehensive source for CQs. The fourth ontology, African Wildlife (ecology) Keet
(2019), was included to ensure diversity in both domain coverage and CQ styles.

Meanwhile, Dong et al. (2024) applied the MM-S14-Disease and MM-S14-CPP datasets Dong et al.
(2023), both from the biomedical domain, to evaluate LLM performance in ontology mapping. After
encoding the ontologies into OWL using syntax-aware concepts derived from textual descriptions, they
leveraged version differences in SNOMED CT Donnelly et al. (2006), a clinical terminology system,
to define new concepts and construct ground-truth placement edges. Similarly, Kholmska et al. (2024)
used the OntoDM suite Panov et al. (2008) and IOF Core Drobnjakovic et al. (2022), both rooted in the
industrial engineering domain, due to their maturity, comprehensive documentation, and validation within
real-world manufacturing settings.

Ciroku et al. (2024a) introduced the first implementation of RevOnt, which leverages the Web Data
Visualizer Knowledge Graph (WDV) Amaral et al. (2022) constructed from Wikidata Vrandeci¢ and
Krotzsch (2014), a collaborative knowledge base. WDV comprises 7.6K unique RDF triples and includes
manually annotated competency questions, providing explicit subject—predicate—object relationships
that serve as ground truth for CQ derivation. This resource enables the quantitative evaluation of data
verbalization models (e.g., via BLEU score), comparing LLM-generated questions to human-authored
ones. Tsaneva et al. (2024) used food domain Pizza Ontology in Protégé to benchmark LLM-driven defect
detection in OWL axioms. Giri et al. (2024) focused on the summarization of protein functions in the
bioinformatics domain, evaluating the generated outputs against GO Consortium (2006), a fundamental
resource in molecular biology. Similarly, Toro et al. (2024) evaluated the quality of LLM-generated
definition generation for biomedical Cell ontology Diehl et al. (2016) using BERTScore, supplemented
with manual expert review to ensure semantic validity.

We also observed that several studies share common experimental ontologies, enabling standardized
evaluation and comparative analysis. For ontology matching tasks, studies such as Zamazal (2024),
Hertling and Paulheim (2023), and Norouzi et al. (2023) utilized datasets from the OAEI 2022 benchmark
tracks, which provide both ontologies and KGs across diverse domains. Similarly, Babaei Giglou et al.
(2023) and Goyal et al. (2024) adopted benchmark ontologies from the LLMs4OL Challenge, designed
to assess LLM in various ontology learning tasks. This challenge spans multiple domains, including
WordNet (lexical) Miller (1995), GeoNames (geospatial) Volz et al. (2007), UMLS Bodenreider (2004)
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and SNOMED CT (biomedical) Donnelly et al. (2006), and Schema.org (web) Guha et al. (2016) 1
ontologies. These shared benchmarks facilitate consistent evaluation of LLM-based methods in structured
knowledge engineering.

Furthermore, several datasets have been reused in studies to enable consistent evaluation in tasks
and models. For example, Fathallah et al. (2024a) used the Wine Ontology as a gold standard in their
NeOn-GPT pipeline, covering tasks such as requirements writing, OWL encoding, publication, and
documentation. Rebboud et al. (2024a) and Rebboud et al. (2024b) evaluated LLM-generated outputs
using a consistent set of ontologies: DOREMUS Achichi et al. (2018), Polifonia de Berardinis et al. (2023),
Dem @ Care Karakostas et al. (2016), Odeuropa Lisena et al. (2022), NORIA-O Tailhardat et al. (2024)
and FIBO Bennett (2013) in multiple tasks, including CQ reverse engineering, conceptualization, and
ontology documentation.

In addition to ontology files, several studies have explored the use of unstructured datasets and natural
language texts as experimental input. Mateiu and Groza (2023) used 150 unstructured descriptions of
ontological elements to evaluate a Protégé plugin that translates natural language sentences into OWL
axioms. In a different setting, Antia and Keet (2023) used COVID-19 scientific papers as input to an
automated CQ reverse engineering pipeline, in order to extract meaningful queries for ontology validation.
Eells et al. (2024) focused on the construction of the ontology, using 101 high-frequency nouns from
the Corpus of Contemporary American English (COCA) Davies (2010) as prompts. These nouns that
cover general concepts were used to guide LLMs in generating ontological structures, which were then
evaluated for semantic coherence and alignment with human common sense knowledge. To support
further exploration of datasets used in LLM-based ontology engineering tasks, we provide Table 5 in the
Appendix. The table lists acronyms and the full name of the datasets, the official or commonly used access
link, and its associated domain, helping readers identify suitable datasets for specific domain applications.

4.3.3 RQ3.c: What evaluation methods are used?

Next, we examine how performance is evaluated, i.e., whether it is based on comparison against a
reference standard or by applying specific scoring metrics. We also examine the type of evaluation
methods used, distinguishing between quantitative approaches and qualitative approaches. In addition,
we explore the evaluation metrics applied in these studies, such as F1, BLEU score, or human evaluation
criteria. Finally, we assess whether human involvement is included in the evaluation process, through
expert reviews or manual selection.

Of the 41 reviewed studies, we found that 9 do not conduct any explicit evaluation. These studies span
different OE tasks and include the works reported in Fathallah et al. (2024a); Tang et al. (2023); Mateiu
and Groza (2023); Kholmska et al. (2024); Bischof et al. (2024). Specifically, several studies completely
lack experiment implementation and therefore do not provide any form of empirical evaluation Tang et al.
(2023); Mateiu and Groza (2023); Kholmska et al. (2024); Bischof et al. (2024). Moreover, the work in
Fathallah et al. (2024a) adopts a multi-step pipeline but only presents illustrative demonstrations, without
comparative baselines or metric-based analysis.

Here, we focus on studies that include an explicit evaluation. The remaining work assesses the
development of LLM-driven ontologies based on three main evaluation approaches, which are described
below.

Uhttps://schema.org
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¢ Quantitative Evaluation Approach
Most studies adopt quantitative methods, using automated metrics to assess LLM performance:

— Performance-based evaluation: Metrics such as precision, recall, and F1-score are widely
used, alongside specialized metrics like inter-model consistency or error rate reduction,
particularly in tasks like ontology matching and conceptualization. For example, Hertling
and Paulheim (2023) evaluated ontology matching results using precision, recall, and the F1
score, compared to the OAEI datasets. Similarly, Goyal et al. (2024) and Babaei Giglou
et al. (2023) apply the F1 score to measure the accuracy of LLM-generated outputs in
ontology conceptualization tasks, as part of the LLMs4OL challenge. Alharbi et al. (2024b)
and Kholmska et al. (2024) report task-specific metrics such as intermodel consistency, error
rate reduction, and concept coverage to assess the quality of generated ontologies. Dong et al.
(2024) evaluate hierarchical relation predictions using the Insertion Rate at top k (InR @k),
which reflects how accurately new concepts are inserted into a taxonomy. Tufek et al. (2024)
measure the accuracy of the exact match for the generation of SPARQL queries by comparing
the outputs with predefined targets.

— Similarity-based evaluation: Some studies apply semantic similarity measures, such as
SentenceBERT cosine similarity, to compare LLM-generated outputs against reference texts,
reducing the need for manual comparisons. Rebboud et al. (2024b) use SentenceBERT cosine
similarity to evaluate the semantic relationship between LLM-generated competency questions
and expert references. In a related setting, Rebboud et al. (2024a) propose cosine similarity to
compare generated ontology documentation with expert definitions, supporting an efficient
and consistent quality assessment.

— Ground-truth-based evaluation: Structural fidelity is evaluated through metrics like tree edit
distance (for SPARQL queries) Rebboud et al. (2024a) or BLEU score (for generated CQs)
Ciroku et al. (2024a), ensuring alignment with gold standard datasets. While BLEU focuses
on surface level lexical similarity, it remains a valuable metric of textual fidelity in structured
natural language generation tasks, particularly in the context of CQ reverse engineering .

¢ Qualitative Evaluation Approach
A smaller number of studies employ only human based evaluation. Domain experts assess LLM
outputs based on semantic precision, conceptual correctness, and domain relevance, providing
critical insights beyond automated metrics. Zhang et al. (2025) utilizes a qualitative assessment
approach through expert-driven questionnaires, where ontology engineers and domain experts
provide nuanced feedback. Bischof et al. (2024) incorporates a rigorous qualitative evaluation that
relies on experts in their work, in which specialized experts meticulously assess the definitions
generated by LLMs for semantic precision, conceptual precision, and domain-specific correctness.

e Hybrid Evaluation Approach
Several studies integrate both quantitative and qualitative evaluations. They combine metric-based
assessments with expert reviews to validate both the structural quality and practical usability
of the LLM outputs, enhancing evaluation robustness. da Silva et al. (2024) combine SHACL-
based syntax checks with expert review to ensure logical consistency and eliminate redundancy

Prepared using sagej.cls



Lietal. 25

in generated ontologies. Giri et al. (2024) integrate human evaluation to validate the embedding-
based confidence scores used for assessing LLM-generated biomedical summaries. The study
examines the correlation between automated and expert ratings, particularly when high embedding
scores are observed. Coutinho (2024) adopt a hybrid evaluation approach, combining quantitative
measures (e.g., task completion time, model quality metrics) with qualitative insights from expert
interviews and user satisfaction assessments. This strategy improves inter-model consistency and
enhances overall usability by balancing automation with human feedback. Alharbi et al. (2024a)
also implement both quantitative and qualitative evaluation. On the quantitative side, they compare
the number and distribution of generated CQs against existing ones, using metrics such as mean
questions per triple, precision, recall, and F1-score. Qualitatively, they conduct expert interviews
with ontology developers to assess the intent and relevance of generated CQs, further involving
ontology editors to rate predicted versus curated definitions. Finally, Tsaneva et al. (2024) examine
the use of ChatGPT-4 for verifying ontology restrictions. The study compares the performance of
LLM-driven evaluations against human expert assessments to determine the feasibility and reliability
of automated verification.

4.3.4 RQ3.d: What are the performance results from the evaluation?

As reported in previous sections, the reviewed works use different input datasets and metrics, and hence
are not directly comparable. However, here we discuss the overall reported results, grouped by activity, to
obtain a qualitative overview of the state of the art.

Among the requirements specification phase, LLMs are reported to be effective in producing CQs
aligned with original ontology design intentions, achieving high recall across various benchmarks Rebboud
et al. (2024b); Antia and Keet (2023); Alharbi et al. (2024a). Proprietary models consistently outperformed
open-source ones, while the latter showed greater variance in performance (recall ranging from 0.58 to
1.00), largely due to differences in training data and architecture Rebboud et al. (2024a). Lower temperature
settings were found to reduce hallucinations without compromising accuracy Rebboud et al. (2024a).

Notably, the RevOnt framework Ciroku et al. (2024a) achieved strong performance, with a median
BLEU score of 0.41 in verbalization and 0.30 in question generation. Over 75% of its outputs were rated
as good to high quality, particularly excelling in object-centric questions. Rebboud et al. (2024b) focused
on automated CQ reverse engineering as the primary task. Specifically, Zephyr 3 and UNA achieved high
precision when evaluated on their ability to generate relevant CQs for RDF-based ontologies such as
DOREMUS and Odeuropa. Furthermore, the AgOCQs framework Antia and Keet (2023) demonstrated
strong performance in generating CQs aligned with ontology design expectations. In a manual evaluation
by domain experts, over 80% of the LLM-generated CQs were rated as both grammatically correct and
semantically relevant, indicating the effectiveness in model to produce high quality queries.

In a complementary line of work, the RETROFIT-CQ pipeline Alharbi et al. (2024a) focused on adapting
CQs to existing ontologies by generating questions from RDF triples. The evaluation showed that more than
75% of the generated CQs were directly executable as SPARQL queries without requiring manual revision,
demonstrating the development of high structural ontology compatibility. In the requirement formalization
task, LLMs demonstrated strong performance in translating natural language into SPARQL queries. Tufek
et al. (2024) reported F1 scores ranging from 88% to 96%, with prompt template optimization significantly
enhancing output quality. The execution modality also mattered: the use of a web interface yielded 100%
F1, outperforming API-based execution 93%.
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In the ontology implementation phase, particularly in conceptualization, GPT-40 demonstrated strong
zero-shot performance in the LLMs4OL challenge tasks, achieving an F1 of 72.78% and winning six
subtasks Goyal et al. (2024); Babaei Giglou et al. (2023). Fine-tuning of the Flan-T5 models led to
substantial improvements, 25% in Task A and 45% on WordNet-related tasks. In domain-specific ontology
construction, SciBERT achieved 91.29% F1 and over 91% accuracy by supporting term typing and
taxonomy discovery Pisu et al. (2024). For hierarchical concept placement, models enhanced with
explainability-driven instruction tuning, such as LLaMA-2-7B, outperformed larger general-purpose
LLMs Dong et al. (2024).

During encoding and implementation, prompt engineering and iteration were reported to produce mixed
results. In the SPIRES framework, GPT-3.5-turbo enabled perfect entity alignment, but for zero-shot
chemical-disease relation tasks, SPIRES achieved 43.8 F1 Caufield et al. (2024). Claude and similar
fine-tuned models showed superior performance in constraint generation, outperforming the baseline
GPT in capability ontology generation da Silva et al. (2024). In SAR use cases, GPT-4 with Chain-of-
Thought prompting produced reusable OWL ontologies Doumanas et al. (2024), i.e., ontologies that
exhibit semantic consistency, modular design, and generalizability across multiple domains.

In ontology matching and reuse, GPT-40 correctly validated complex alignments with 100% accuracy
in rejecting false correspondences Zamazal (2024). The OLaLa study showed F1 score improvements with
LLaMA 2 (70B), optimized for efficiency Hertling and Paulheim (2023). Flan-T5-XXL also performed
best overall in alignment tasks across benchmarks He et al. (2023), while conversational prompting
approaches reported balanced recall and precision, benefiting from expert feedback Norouzi et al. (2023).

In ontology evaluation, ChatGPT-4 verified axioms with 92.2% accuracy, improving to 96.7% via
ensemble aggregation Tsaneva et al. (2024). OntoChat received 87.5% positive ratings from experts for
clustering competency questions Zhang et al. (2025). DRAGON-AI demonstrated high precision but
moderate recall, iteratively improving with user input Toro et al. (2024). In a controlled educational
setting, LLMs using CQ-by-CQ prompting approximated student-level ontology quality Saeedizade and
Blomgqvist (2024).

Finally, in the bug issue task, GO2Sum Giri et al. (2024) shown strong performance in summarizing Gene
ontology annotations. It produced readable and semantically coherent descriptions even for low-confidence
predictions. These scores reflect the percentage of summaries judged as helpful for understanding low-
scoring Gene ontology predictions, indicating the effectiveness of LLMs in supporting ontology debugging
and interpretation.

4.3.5 Summary

Evaluation practices in LLM-based ontology engineering mainly adopt quantitative metrics such as
precision, recall, F1-score, and semantic similarity. Several studies combine these with qualitative expert
reviews to assess conceptual validity and domain relevance. Most evaluations focus on overall system
output rather than isolating LLM performance, often using existing ontologies (e.g., SNOMED CT, FIBO)
as benchmarks. Open-source datasets are increasingly used to improve reproducibility, while standardized
protocols remain scarce. Several emerging initiatives, such as OAEI and LLMs4OL, have begun to define
shared datasets and metrics. In general, evaluation remains fragmented in all studies, lacking unified
criteria and alignment of the standards.
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4.4 RQ4: What are the main application domains where LLMs have been applied
in the development of ontology?

In this section, we examine the domain-specific applications of LLMs in OE. Healthcare and life sciences
represent one of the most extensively explored areas. LLMs have been applied to validate ontological
constraints in major biomedical terminologies such as SNOMED CT and UMLS Tsaneva et al. (2024),
and to assist in developing domain-specific ontologies like DemCare for dementia care Rebboud et al.
(2024a,b). Furthermore, they support biomedical knowledge enrichment tasks in widely adopted resources
such as the GO, MONDO, and the Cell Ontology, either by generating functional summaries Giri et al.
(2024) or extending axioms and class definitions Caufield et al. (2024); Toro et al. (2024). Cultural heritage
industries also benefit from LLMs. Ontologies such as DOREMUS, Polifonia, and Odeuropa are enhanced
for music and olfactory heritage representation Rebboud et al. (2024a,b); Zhang et al. (2025). In the finance
domain, LLMs are used for automated CQ reverse engineering and benchmarking of ontologies such as
the Financial Industry Business Ontology (FIBO) Rebboud et al. (2024a,b), thus contributing to a more
systematic knowledge organization in regulatory and investment contexts. Within emergency and safety
domain, LLMs have been utilized to construct SAR ontologies based on related knowledge, including
environmental conditions, hazard classification, and resource planning through structured prompting
strategies Doumanas et al. (2024). In the autonomous systems and smart technologies domain, LLMs have
been used to model traffic scenarios in autonomous driving ontologies Tang et al. (2023) and to define
concepts for smart building systems Bischof et al. (2024), allowing automation and validation processes.
For academic and research domains, LLLMs help structure and classify research topics, as seen in the
Computer Science Ontology (CSO) Pisu et al. (2024), offering scalable solutions for scientific knowledge
organization and retrieval. In the food field LLMs support the enrichment of ontologies like FoodOn by
extracting structured data from recipe texts Caufield et al. (2024), aiding in the classification of ingredients,
preparation methods, and nutritional profiles.

4.4.1 Summary

Overall, these applications highlight the versatility of LLMs across diverse ontology-driven domains (see
Table 4 in the Appendix for more details). Most research focuses on life sciences and healthcare, followed
by cultural heritage, finance, emergency management, autonomous systems, and academic knowledge
organization. Typical applications include ontology enrichment, documentation, CQs generation, and
schema extension. Biomedical ontologies such as SNOMED CT, UMLS, and Gene Ontology dominate
dataset usage, while cultural and financial ontologies (e.g., DOREMUS, FIBO) are also recurrent.

5 Discussion

Below, we explore the implications of our findings in relation to our RQs, highlighting the challenges and
opportunities they present.

5.1 Supporting ontology development activities with LLMs

Among the studies reviewed, LLMs have been integrated into various stages of the ontology development
lifecycle, with research concentrated predominantly in the early and middle phases. Activities related
to ontology implementation, particularly conceptualization and encoding, have received the greatest
attention, together representing about 88% of the reviewed works, while later stages such as evaluation
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and maintenance remain comparatively underexplored. In these core phases, LLMs demonstrate notable
advantages: by leveraging their strong natural language understanding and generative reasoning capabilities,
they can automatically extract domain specific concepts, infer hierarchical relations, and identify semantic
patterns from unstructured text. Empirical evidence indicates that the resulting concept taxonomies often
approximate expert-curated ontologies in terms of scalability and semantic coherence Caufield et al.
(2024); da Silva et al. (2024); Doumanas et al. (2024), accelerating the creation of structured and high
quality knowledge representations in ontology development.

Despite notable advances, the application of LLMs across the ontology lifecycle remains uneven.
Later-stage activities such as documentation, evaluation, and maintenance, receive limited attention, as
they demand capabilities that current LLMs cannot reliably provide. Evaluation requires strict logical
consistency verification, which exceeds the intrinsic reasoning capacity of LLMs without external
validation mechanisms such as rule checkers or expert review Toro et al. (2024); Liu et al. (2025b).
Maintenance, in turn, depends on dynamic knowledge integration, whereas LL.Ms are statically trained
and cannot incorporate new information without retraining, which limits their suitability for the long-term
evolution of the ontology Mundlamuri et al. (2025). Furthermore, while early-stage tasks benefit from
well-defined and quantifiable metrics, later stages often involve complex, less formalized objectives such
as semantic coverage robustness and sustained ontology refinement.

Addressing these limitations requires reframing later-stage OE not as autonomous LLM driven
processes but as collaborative hybrid workflows. Future research should prioritize the development
of hybrid architectures that integrate LLMs generated content with formal reasoning engines for constraint
verification, the use of retrieval augmented generation techniques to maintain knowledge currency without
full model retraining, and the design of human centered workflows in which LLMs assist experts in
validation and refinement rather than operating independently. Such approaches would leverage the
generative flexibility of LLMs while preserving the analytical discipline and domain expertise essential
for sustainable and trustworthy ontology engineering.

5.2 Configuration workflows of LLMs in ontology development activities

Our findings show that LLMs can effectively assume multiple roles within OE tasks, notably as ontology
engineers and domain experts. In these roles, LLMs support the automation of ontology construction
and the enrichment of domain-specific knowledge, aiming at reduging the manual effort and transfer of
domain-specific expertise traditionally required by ontology engineers.

In the surveyed literature, a consistent trend can be observed regarding model selection and application.
GPT-series models are predominantly employed for reasoning-intensive tasks, whereas open-source and
lightweight models (e.g., LLaMA, Mistral) are increasingly favored for tasks like ontology matching and
conceptualization. This reflects a rapidly diversifying LLM ecosystem where model choice is strategically
aligned with task demands. For instance, tuned variants of LLMs like GPT-3 have been used to produce
ontological constructs for knowledge formalization, while smaller models such as Mistral-7B offer faster
inference and perform efficiently on smaller or domain-specific datasets.

Prompting techniques have a significant impact on performance in all models. Zero-shot prompting
is widely used for its efficiency in well-defined tasks, while template-based prompting is essential for
enforcing strict output schemas such as OWL axioms and SPARQL queries. Role-based prompting
enhances semantic reliability in specialized domains, and more advanced strategies including chain-
of-thought reasoning, task decomposition, and iterative refinement are adopted in heterogeneous or
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multi-stage workflows to stabilize outputs and improve accuracy. Furthermore, the interaction between
prompting and model behavior is further demonstrated by the input and output configurations of the
OE workflows. LLMs can handle unstructured, semi-structured, and fully structured data, producing
outputs ranging from natural language descriptions and competency questions to executable queries
and formal axioms. Although natural language remains the most common input modality, there is a
clear shift toward structured formats that better constrain model behavior and ensure the production
of machine-actionable results. These structured formats often operate in tandem with the prompting
strategies discussed above, constituting an integrated configuration approach that enhances the reliability
and usability of LLM-generated ontological artifacts.

Building on these foundations, the integration of LLMs introduces more conversational and iterative
workflows compared to traditional methodologies. LLMs enable broader participation from engineers,
domain experts, and non-specialists through natural language inputs, which the models transform into
ontology fragments, refinements, or validation feedback. This shift increases flexibility, accelerates
development cycles, and improves the scalability and accessibility of OE practices.

Despite these advantages, several limitations remain. LLMs require substantial computational resources
for access and fine-tuning, which restricts their scalability Hoffmann et al. (2022); Treviso et al. (2023).
Their generalization across specialized domains is often poor unless guided by carefully designed prompts,
and without such guidance they may produce incomplete or semantically irrelevant outputs Barman
et al. (2024). Parameter adaptation methods, including full fine-tuning and parameter-efficient approaches
such as Low-Rank Adaptation (LoRA), still demand considerable human expertise for data preparation,
supervision, and quality control, thereby further increasing costs and resource limitations Wang et al.
(2025). Compared with formal logic systems Baader et al. (2017); Heindorf et al. (2022),LLM reasoning
abilities remain shallow, and issues such as hallucinations, limited transparency and violations of
fundamental ontological constraints persist Xu et al. (2025); Petroni et al. (2019); West et al. (2022);
Huang et al. (2025). These shortcomings require external validation, post-processing, and expert correction
to ensure logical and semantic soundness.

Notably, only four studies in our review involve human participants in LLM-based OE tasks, revealing
a clear gap in current research. Human experts remain essential because LLMs often struggle to accurately
interpret specialized knowledge. Expert review and iterative validation are therefore necessary throughout
OE tasks to ensure the accuracy, clarity, and overall reliability of the outputs. The limited use of human
participation can be attributed to methodological and resource-related constraints, such as the high cost
of involving experts participation, the difficulty in standardizing human-involved interaction workflows
and the prevailing tendency to prioritize automation. Few studies that incorporate human input focus on
tasks that require semantic judgment or complex reasoning, areas where LLMs remain less reliable. This
pattern indicates that future research should integrate expert participation more systematically to maintain
semantic and logical integrity and improve the reliability and usability of LLM-generated ontology output.

To address these limitations, a broader and more coordinated research agenda is required. Future
work should emphasize hybrid neuro-symbolic architectures that integrate the generative capabilities
of LLMs with the formal precision of symbolic reasoners, enabling continuous validation of logical
constraints Servantez et al. (2024); West et al. (2022); Hitzler et al. (2022). Given the limited use of fine-
tuning in current practice, an important direction is the development and adoption of parameter-efficient
fine-tuning (PEFT) techniques Wang et al. (2025). Such approaches support more stable and focused
adaptation of LLMs to ontological structures while avoiding the substantial cost of full model retraining.
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In parallel, more robust prompting strategies that can adapt to evolving knowledge contexts are needed
to mitigate hallucinations and semantic drift Zhang et al. (2024b); Liu et al. (2025a). To improve the
scalability of validation processes, automated verification pipelines should combine ontology checks
with streamlined expert oversight. To address the human involvement gap, future methodologies should
establish clear and systematic frameworks for integrating human validation into LLM-supported workflows,
reducing the cost of expert participation and incorporating human judgment into evaluation practices.

Finally, enhancing the transparency of LLMs remains an open challenge to build trust and support the
long-term maintenance of the OE based on LLMs. Zhao et al. (2024). For example, enabling models to
explain how each answer is generated and to trace the provenance of every produced result would not only
increase user trust but also facilitate the future reuse and maintenance of outputs from OE activities.

In general, achieving the full potential of LLMs in OE requires technical advances in both models
and workflows, along with stronger human oversight, richer domain knowledge, and reliable formal
verification.

5.3 Evaluation gaps and challenges for LLMs in ontology development activities

Our review shows that empirical validation has become a central practice in research on the use of
large language models in ontology engineering. Nearly two thirds of the surveyed studies include full
experimental evaluations, often built on open source domain ontologies in OWL or RDF that serve as
expert curated benchmarks. Most papers employ quantitative, qualitative or combined evaluation methods,
reporting metrics such as precision, recall, F1 score and semantic similarity, while complementing these
with expert assessments of conceptual soundness and domain relevance. It is important to note that these
evaluations usually assess entire pipelines rather than isolating the contribution of the large language
model component. Since each study adopts its own baselines and datasets, direct comparisons across
papers are rarely meaningful. However, evaluation practices consistently indicate that the use of large
language models increases automation and often improves task performance across several stages of the
ontology engineering lifecycle.

Across the reviewed studies, we also observe a growing use of publicly available datasets, which
supports the development of more reproducible evaluation frameworks. Shared ontologies increasingly
function as common baselines that later research can replicate or extend, and several studies employ gold
standard datasets to ensure fairness and comparability. Early efforts toward standardized and transparent
evaluation protocols have begun to emerge. Initiatives such as the OAEI !> and LLMs4OL Giglou et al.
(2024) challenge explicitly define datasets, subtasks, and evaluation metrics, marking a move toward
greater consistency and reproducibility within the field. From a methodological perspective, quantitative
evaluations provide scalable, reproducible and transparent measurements of system performanceLiu
(2011); Toannidis and Maniadis (2024). Qualitative assessments by domain experts capture semantic
coherence, contextual relevance, and conceptual correctness that numerical metrics often overlookDenzin
et al. (2006); Patton (2014); Parfenova et al. (2025). Integrating both forms of evaluation combines
statistical rigor with semantic depth, thereby helping to ensure that the resulting ontologies are not only
formally sound but also contextually meaningful and usable.

2nttps://oaei.ontologymatching.org/
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Despite these advances, several limitations remain. First, evaluation methods are highly inconsistent, as
most studies define their own tasks, datasets, metrics, and benchmarks. This lack of uniformity makes
the results difficult to compare, and even minor differences in cue design or corpus selection can lead to
discrepancies. More fundamentally, a coherent evaluation framework has yet to be established in the field.
In addition, many studies do not standardize task definitions or input and output formats, which further
complicates comparisons across different works. The lack of benchmark datasets for evaluating different
ontology engineering tasks and the absence of clear and comprehensive evaluation metrics continue to
constrain the development of the LLM-based OE community. Another important limitation is that the
performance of LLMs is often conflated with the behavior of the entire pipeline. Many studies assess only
the final output, making it difficult to identify the model’s actual strengths and weaknesses. Although
the use of both quantitative metrics and expert evaluations has improved current practice, challenges
remain. Quantitative metrics do not capture deeper semantic or domain specific nuances, and qualitative
assessments are time consuming Queir6s et al. (2017), require expertise and introduce subjectivity, which
limits scalability.

To address these limitations, future research should prioritize the development of standard evaluation
protocols for LLMs-based based OE. A first step is the creation of unified benchmarks with clearly
defined datasets, tasks and metrics that enable consistent comparisons across studies and across different
OE activities. Standardizing task definitions and the formats of inputs and outputs would further reduce
variability and support greater reproducibility. In addition, modular evaluation frameworks Wu and Yu
(2024) are needed to separate the contribution of the large language model from other components of the
pipeline. Such frameworks would help evaluate specific capabilities, identify failure cases and provide a
clearer understanding of model behavior. Evaluation metrics should also be refined to capture semantic
correctness, conceptual validity and domain relevance, rather than relying mainly on surface level accuracy
measures. More systematic error analysis would help to identify and address model issues.

Finally, new evaluation strategies should be explored to improve both depth and scalability. These may
include automated semantic validation tools, structured expert review procedures, and hybrid approaches
that combine statistical measures with targeted human validation. Together, these efforts can contribute to
a more robust and reliable evaluation ecosystem for LLMs-based OE.

5.4 Application domains of LLM-based ontology development

Across the reviewed studies, a clear trend emerges: while early applications were concentrated in healthcare
and life sciences, the adoption of LLMs is rapidly expanding into domains such as cultural heritage, finance,
emergency management, autonomous systems, and academic research. This highlights the inherent
adaptability of models to address core ontology tasks from extraction and enrichment to validation and
conceptual modeling in highly heterogeneous knowledge domains.

However, a cross-domain analysis reveals that the specific role of LLMs varies significantly from one
domain to another. The uneven distribution of this progress provides important insight into the conditions
that enable successful LLM—OE integration. For instance, Life sciences Fathallah et al. (2024b) and
healthcare Yang et al. (2023) remain methodologically mature, supported by a powerful combination of
factors such as abundant high-quality textual corpora (e.g., scientific literature, clinical documentation),
an urgent need for interoperability, and, critically, the availability of mature, gold-standard ontologies
such as SNOMED CT and the Gene Ontology (GO). These well-established resources offer the structural
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scaffolding and authoritative examples needed to guide LLMs effectively, supporting tasks that include
constraint validation and axiom generation.

In contrast, domains such as finance, disaster response, and cultural heritage often lack mature
vocabularies and established development workflows. In these settings, LLMs are used less for refining
existing ontologies and more for constructing domain knowledge from the beginning, including tasks such
as knowledge extraction, conceptual modeling and ontology completion. Examples range from interpreting
regulatory documents for financial ontologies (FIBO) to synthesizing search and rescue procedures in SAR
ontology development. These studies show that LLMs can extract useful information from domain-specific
resources, and that expert validation helps improve the quality of the results. With access to large amounts
of unstructured text, LLMs support domain experts in transforming natural language descriptions into
initial conceptual structures.

LLMs have been consistently used as intermediaries that bridge unstructured text and formal
representations, although their efficacy remains contingent upon the clarity of target schemas. Therefore,
robust domain-specific adaptation remains a significant challenge Mai et al. (2024). Models trained on
general corpora often struggle with specialized terminologies and evolving knowledge structures, leading
to semantic imprecision. Furthermore, scalability issues arise because LLMs, being statically trained,
struggle to dynamically incorporate new knowledge without retraining, which restricts their long-term
applicability Du et al. (2024). Consequently, ensuring formal consistency in regulated domains still
requires substantial expert validation Perera and Liu (2024).

To address these limitations, future research should focus on improving the ability of LLMs to adapt to
specialized and evolving knowledge domains. This involves developing methods that support the creation
and refinement of domain specific vocabularies, schema templates and conceptual patterns, particularly in
areas where consolidated ontologies are not yet available. At the same time, more effective mechanisms
for integrating iterative expert feedback are needed so that domain specialists can actively shape and
validate emerging conceptual structures throughout the development process. To ensure the long term
applicability and accuracy of LLMs driven systems, techniques for dynamic knowledge updating and
domain aware adaptation are also essential. This includes continued advancement of continual learning
strategies Shi et al. (2025) and dynamic update mechanisms Fan et al. (2024) that enable models to
incorporate new terminology, regulatory changes and evolving domain understanding without requiring
complete retraining.

By advancing these directions, the community can better leverage the generative scalability of LLMs
while ensuring that the resulting ontological knowledge remains precise, reliable, and sustainable across
domains with different levels of knowledge maturity.

6 Conclusion

Our study employs a systematic literature review methodology to examine the technical applications
and current state of LLMs in ontology OE. After searching multiple academic databases for literature
published between 2018 and 2024 using keywords related to LLMs and OE, 30 papers covering 41
independent experiments were selected through a multi-stage screening process. It should be noted that
earlier Transformer-based studies not explicitly identified as language models may fall outside the scope
of this review. Four research questions (RQs 1-4) were formulated around the dimensions of LLM
involvement in ontology development, focusing on supported core activities, technical implementation
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methods, performance evaluation strategies, and application domains. Key information was systematically
extracted, including research context, details of LLM usage (roles, model types, prompting strategies,
input/output formats, if human involved in OE tasks), evaluation settings, and target domains.

Across the 41 examined studies, LLMs show clear strengths in early and middle stages of
ontology development, especially in domain conceptualization, requirements specification, and ontology
implementation. Models such as GPT and LLaMA, often used with zero-shot, template-based, or role-
based prompts, can generate competency questions, formal axioms, and documentation. In these settings,
they effectively take on responsibilities traditionally carried out by ontology engineers or domain experts.
Their use in fields such as healthcare, cultural heritage, and autonomous systems illustrates the broad
adaptability of current LLM-based approaches.

Although these findings highlight significant potential, several limitations remain. The support provided
by current LLMs throughout the ontology lifecycle is uneven and subsequent activities, such as
documentation and long-term maintenance, receive comparatively little attention. Their reasoning remains
shallow, often leading to hallucinated facts and limited transparency Bakker et al. (2024); Manda (2025),
which requires expert correction to ensure logical and semantic soundness. Evaluation practices also
present substantial difficulties. Existing studies rely on heterogeneous tasks, datasets, and metrics, leading
to inconsistent and often incomparable results. Current evaluation measures capture only part of the
semantic or conceptual quality of the generated content, and the lack of unified and contamination-free
benchmark datasets restricts systematic comparison between studies Paulheim (2025).

These limitations are particularly pronounced in application domains that lack mature and stable
ontological resources. In such contexts, vocabularies and schemas are still evolving, making it difficult for
LLMs to interpret specialized terminology and preserve semantic consistency. Their static training further
limits the timely incorporation of newly emerging knowledge, and in regulated or safety-critical settings,
expert validation remains essential to ensure correctness.

Given these challenges, several research directions have become urgent:

¢ Lifecycle Coverage Expansion: Extend LLM applications to underrepresented ontology lifecycle
stages, particularly documentation, maintenance, to ensure long-term sustainability and continuous
evolution of ontology development.

* Hybrid Neuro-Symbolic Reasoning: Develop hybrid systems that integrate LLM-generated content
with formal logic validation, including OWL reasoning, ontology constraint checking, and semantic
consistency verification, improving semantic accuracy, maintaining constraint consistency, and
reducing hallucinations.

¢ Enhancing LLM Adaptability: Improve prompt methods and reduce the reliance on structured
inputs to make LLMs more adaptable in OE tasks. Using parameter-efficient fine-tuning (PEFT)
can further help models adjust to ontological structures without the high cost of full retraining.

» Standardized Evaluation Frameworks: Establish reproducible benchmarks based on expert-
curated and publicly documented datasets, and evaluation metrics that combine quantitative measures
with expert validation. Such expert-supported benchmarks are essential for reliably evaluating LLM-
based OE systems, coping for dataset contamination and for ensuring fair comparisons across
different methods, ultimately contributing to a more robust and trustworthy evaluation ecosystem.
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¢ Continuous Learning and Dynamic Adaptation: Develop domain-adaptive LLMs that can
integrate evolving knowledge without requiring full retraining. This requires effective mechanisms
for dynamic knowledge updates and domain-aware adaptation, supported by advances in continuous
learning and dynamic update methods. These improvements help models maintain scalability and
relevance in dynamic domains.

The dispersed nature of the reviewed tasks reflects the early stage of the development of LLM-based OE
rather than the methodological inconsistency. As the field matures, research is likely to converge toward
more unified frameworks, shared resources, and standardized workflows.

By addressing these challenges, LLMs may progress from task specific assistants to reliable collaborators
in ontology engineering, supporting scalable, transparent, and high quality knowledge representation
across different domains. Achieving this vision will require not only technical innovation, but also stronger
methodological foundations, richer models of human and model interaction, and robust community
standards.
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7 Appendix

This appendix presents additional material supporting the main text, including extended tables and detailed
data referenced throughout the study.

7.1 LLM-supported Ontology Development Activities

Table 2 provides a comprehensive mapping of how LLMs contribute to specific ontology engineering
activities across the 41 reviewed studies. Each row represents one distinct studies and several studies
might belong to the same paper, that is, for the cases in which one paper uses LLMs to support more
than one activity. The table highlights the role, model used, input and output formats, and whether human
participants were involved in the LLMs supported component.

Table 2. Details of LLM-supported ontology engineering activities, including the assigned roles of LLMs, model

types used, input formats, generated outputs, and whether human involvement was required (indicated as

YES/NO).
Resource Role Model Prompt Inputs Outputs Human
involved

Requirements Specification — Functional Requirements Writing
Fathallah et al. |Ontology Engineer |GPT-3.5 Few-shot Natural language text Natural language NO
(2024a) LLaMA Role-based text

PaLM CoT
Antia and Keet | Ontology Engineer |T5 N/A Natural language text CQs NO
(2023)
Requirements Specification - CQ Reverse Engineering
Rebboud et al. | Domain Experts Not mentioned N/A Ontologies CQs NO
(2024a)
Alharbi et al. |Ontology Engineer |GPT-3.5-turbo Zero-shot Triples CQs YES
(2024a) GPT-4

LLaMA2
Ciroku et al.  |Ontology Engineer |MiniLM Zero-shot KGs CQs NO
(2024a) TS Iterative refinement

SBERT
Rebboud et al. |Ontology Engineer |DPO ' Zero-shot Ontologies CQs NO
(2024b) SOLAR™ Few-shot

UNA Fine-tuned FusionNet_7Bx2_MOoE_14B

Zephyr3 Fine-tuned SOLAR-10.7B-Instruct-v1.0

GPT-3.5 Fine-tuned Mistral-7B

GPT-4 Fine-tuned Mistral-7B-v0.1

B3Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
14SOLAR-10B-OrcaDPO-Jawade
15 UNA-TheBeagle-7b-v1
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Resource Role Model Prompt Inputs Outputs Human
involved
Alharbi et al. |Ontology Engineer |GPT-3.5-turbo Zero-shot Triples CQs NO
(2024b) GPT-4 Role-based
LLaMA-2-70B Template-based
Mistral 7B
Flan-T5-XL
Requirements Specification — Requirement For tion
Rebboud et al. |Ontology Engineer |Not mentioned N/A Ontologies and CQs Queries NO
(2024a)
Tufek et al. Ontology Engineer |ChatGPT Zero-shot Natural language text or CQs |SPARQL NO
(2024) Template-based Queries
Kholmska et al.| Ontology Engineer |ChatGPT Zero-shot Concepts SPARQL NO
(2024) Bard Template-based Queries
Role-based
Iterative refinement
Ontology Impl tation — Conceptualization
Rebboud et al. |Domain Experts Not mentioned N/A CQs Ontologies NO
(2024a)
Goyal et al. Ontology Engineer |LLaMA3 Zero-shot Natural language text Binary decision NO
(2024) GPT-40 Few-shot
Mistral
Coutinho Ontology Engineer |Not mentioned Zero-shot Natural language text Summarization NO
(2024) Few-shot
CoT
Kholmska et al.| Step 2:Ontology Step 2: ChatGPT, |Zero-shot Step 2:Natural language text |Step 2:Classes | Step 2: NO
(2024) Engineer Bard Template-based Step 3:Natural language text |Step 3:Concepts | Step 3: NO
Step 3:Ontology Step 3: ChatGPT, |Role-based
Engineer Bard Iterative refinement
Dong et al. Domain Expert, GPT-3.5 Zero-shot Natural language text, Natural language NO
(2024) Ontology Engineer |LLaMA2 Template-based Ontologies text
FLAN-TS Fine-tuned PLM
GPT-4
Babaei Giglou |Ontology Engineer |BERT, Zero-shot Task A: Natural language text,| Task A: Term NO
et al. (2023) BLOOM lexical term type
LLaMA Task B: Natural language text |Task B: Binary
GPT-3 Task C: Natural language text |decision
GPT-3.5 Task C: Binary
GPT-4 decision
BART
Flan-T5
Toro et al. Ontology Engineer |GPT-4 Few-shot Term JSON or YAML NO
(2024) GPT-3.5-turbo Template-based
Pisu et al. Ontology Engineer |BERT Fine-tuned SciBERT Nature language text Relationships NO
(2024)
Ontology Impl tation — Encoding
Doumanas Ontology Engineer |GPT-4 Zero-shot Phase 1: Natural language text|Phase 1: YES
et al. (2024) GPT-3.5 Template-based Phase 2: Domain documents |Ontologies
Bard Iterative refinement Phase 3: Natural language text | Phase 2:
LLaMA and CQs Ontologies
Phase 3:
Ontologies
Fathallah et al. |Ontology Engineer |GPT-3.5 Few-shot Natural language text CQs, Triples and NO
(2024a) LLaMA Role-based Ontologies
PalLM CoT
Caufield et al. |Ontology Engineer |OntoGPT Zero-shot Natural language text Ontologies NO
(2024)
Eells et al. Ontology Engineer |GPT-4 Zero-shot Natural language text Natural language NO
(2024) Template-based text
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Resource Role Model Prompt Inputs Outputs Human
involved
Saeedizade and | Ontology Engineer |GPT-3.5 Zero-shot CQs Ontologies NO
Blomqvist GPT-4 CoT
(2024) Bard GoT
LLaMA-7B
LLaMA-13B
LLaMA2-70B
Alpaca
Falcon-7B
Falcon-7B-Instruct
WizardLM
Alpaca-LoRA
Mateiu and Ontology Engineer |GPT-3 Zero-shot Natural language text Axioms NO
Groza (2023) Davinci model Few-shot
Fine-tuned GPT-3
Tang et al. Ontology Engineer |ChatGPT Zero-shot Natural language text Ontologies, NO
(2023) Template-based JSON and
Iterative refinement Triples
Decomposition
da Silvaetal. |Ontology Engineer |GPT-4, Turbo4, Zero-shot Natural language text, Ontologies NO
(2024) Claude3, Gemini Template-based Ontologies
Pro Few-shot
One-shot
Ontology Development — Ontology Matching and Reuse
Zamazal Domain Experts GPT-40 Zero-shot Natural language text and Binary decision NO
(2024) verbalized candidates
Kholmska et al.| Ontology Engineer |ChatGPT Zero-shot Step 4: Natural language text |Step 4: NO
(2024) Bard Template-based Step 6: Concepts, Ontologies, | Documentation
Role-based Natural language text Step 6: Mapping
Iterative refinement
Hertling and  |Ontology Engineer |LLaMA Zero-shot Ontologies and Natural Mapping NO
Paulheim Few-shot language text
(2023)
He et al. Ontology Engineer |Flan-T5-XXL Zero-shot Natural language text Binary decision NO
(2023) GPT-3.5-turbo Template-based
Norouzi et al. |Ontology Engineer |ChatGPT Zero-shot Natural language text Mapping NO
(2023)
Ontology Development — Ontology Evaluation
Tsaneva et al. |Domain Experts, GPT-4 Few-shot Natural language text Axioms NO
(2024) Human Evaluator Zero-shot
Kholmska et al.| Ontology Engineer |ChatGPT Zero-shot Step 5: Ontologies Step 5: Natural NO
(2024) Bard Template-based language text
Role-based
Iterative refinement
Fathallah et al. | Domain Expert, GPT-3.5 Few-shot Natural language text Ontologies and NO
(2024a) Ontology Engineer |LLaMA Role-based Axioms
PalLM CoT
Zhang et al. Ontology Engineer |GPT-3 One-shot Ontologies and CQs Binary decision YES
(2025) Few-shot
Iterative refinement
Ontology Publication — Documentation
Bischof et al. |Domain Experts Mistral 7B Zero-shot Natural language text Terms NO
(2024) Template-based
Role-based
Rebboud et al. |Domain Experts Not mentioned N/A Ontologies Documentation NO
(2024a)
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Kholmska et al.| Ontology Engineer |ChatGPT Zero-shot Step 9: Ontology Extensions, |Step 9: NO
(2024) Bard Template-based Natural language text Documentation

Role-based

Iterative refinement
Fathallah et al. |Ontology Engineer |GPT-3.5 Few-shot Natural language text, Documentation NO
(2024a) LLaMA Role-based Ontologies

PalLM CoT

Giri et al. Domain Experts, TS Fine-tuned T5 Terms Documentation NO
(2024) Ontology Engineer
Maintenance — Bug Issue
Kholmska et al.| Domain Expert ChatGPT Zero-shot Step 8: Natural language text |Step 8: Natural YES
(2024) Bard Template-based language text

Role-based

Iterative refinement

7.2 Experimental Setup and Evaluation Overview

Table 3 summarizes the experimental validation practices across all 41 reviewed studies. It records whether
an experiment was performed, provides open-source access links when available, identifies the datasets
utilized, and details the evaluation methodology (quantitative, qualitative, or mixed by both) along with
the specific metrics employed. By including dataset sources and tool repositories, the table aims to support
reproducibility and offers insights into the evaluation rigor and maturity within the field.

Table 3. Summary of experiments, data sources, evaluation types, and evaluation metrics used in
LLM-supported ontology engineering studies.

Paper resource

[ Experiment

[ Data source

\ Evaluation type \ Evaluation metric

Requirements specification — Functional requirements writing

Fathallah et al. (2024a) |YES,a Wine N/A N/A
test’’
Antia and Keet (2023) YES™ Covid19 articles’ Qualitative Human comment
Requirements specification — CQ Reverse Engineering
Rebboud et al. (2024a) N/A DOREMUS, Polifonia, DemCare, Odeuropa, NORIA- | Quantitative Cosine Similarity
O, FIBO
Ciroku et al. (2024a) YES' WDV Quantitative BLEU score
Rebboud et al. (2024b) YES™® DOREMUS, Polifonia, Dem@Care, Odeuropa, Quantitative Cosine Similarity
NORIA-O, FIBO
Alharbi et al. (2024a) YES VideoGame, Dem@care, VICINITY Core, African Hybird Number of CQs, Precision,
Wildlife Recall, F1
Alharbi et al. (2024b) YES Video Game, VICINITY Core; and Dem@care, Solar | Quantitative Precision, Recall, F1
System Ontology
Requirements specification — Requirement formalization
Rebboud et al. (2024a) N/A DOREMUS, Polifonia, DemCare, Odeuropa, NORIA- | Quantitative Tree Edit Distance
0O, FIBO
Tufek et al. (2024) YES™ Smart Applications REFerence, OPC UA Robotics Quantitative Precision, Recall, F1
Kholmska et al. (2024) | N/A OntoDM Quantitative Model Consistency
Error Rate Reduction
Coverage of Relevant
Concepts
Ontology implementation — Conceptualization
Rebboud et al. (2024a) N/A DOREMUS, Polifonia, DemCare, Odeuropa, NORIA- | Quantitative Precision, Recall, F1,
0O, FIBO Accuracy, Consistent
Ontology
Goyal et al. (2024) YES™T Task B: GeoNames, Schema.org, UMLS, GO Quantitative Precision, F1-score
Task C: UMLS
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Paper resource Experiment | Data source Evaluation type | Evaluation metric
Coutinho (2024) N/A UFO Hybrid Time, Model Quality
Metrics, User Satisfaction,
Domain Experts Feedback
Kholmska et al. (2024) |N/A OntoDM Quantitative Inter-Model Consistency,
Error Rate Reduction,
Coverage of Relevant
Concepts
Dong et al. (2024) YES’ MM-S14-Disease, MM-S14-CPP Quantitative InRank @k, InRecall@k
Babaei Giglou et al. YES” WordNet, GeoNames, UMLS, National Cancer Quantitative MAP@K, Fl1-score
(2023) Institute, MEDCIN, SNOMEDCT US, Schema.org
Toro et al. (2024) YES™ Cell Ontology, UBERON, GO, Human Phenotype Quantitative and | Accuracy, Recall, F1,
Ontology, Mammalian Phenotype Ontology, MONDO, | Qualitative Manual Assessment
Environment Ontology, Food Ontology, Ontology of
Biomedical Investigations, Ontology of Biological
Attributes
Pisu et al. (2024) YES” Computer Science Ontology Quantitative Accuracy, Precision,
Recall, F1
Ontology implementation — Encoding
Doumanas et al. (2024) | YES™® Wildfire Hybrid Analysis of False Positives
Precision, Recall, F1-score
Fathallah et al. (2024a) | YES, atest”’ | Wine N/A N/A
Caufield et al. (2024) YES’ GO, EMAPA, MONDO Disease Ontology Quantitative F1, Precision, Recall
Eells et al. (2024) YES’ 101 nouns from COCA N/A N/A
Saeedizade and YES” Music, Theater, Hospital Qualitative Score Evaluation
Blomqvist (2024)
Mateiu and Groza (2023) | N/A 150 sentences N/A N/A
Tang et al. (2023) N/A OpenXOntology N/A N/A
da Silva et al. (2024) YES™ CaSk Quantitative and | Mean Error Score
Qualitative
Ontology development — Ontology matching and reuse
Zamazal (2024) YES® EDOAL, Manchester from OAIE Hybrid Precision, Relaxed
Precision, Recall
Kholmska et al. (2024) | N/A OntoDM N/A N/A
Hertling and Paulheim | YES~ Ontologies from OAIE Quantitative Precision, Recall, F1, Size,
(2023) Time
He et al. (2023) YES” NCIT-DOID, SNOMED-FMA Quantitative Precision, Recall, F1, Hits,
MRR, RR
Norouzi et al. (2023) YES Ontologies from OAIE Quantitative Precision, Recall, F1
Ontology develop t — Ontology evaluation
Tsaneva et al. (2024) YES Pizza Ontology Hybrid Accuracy, Precision,
Recall, F1, Majority Vote
Aggregation
Kholmska et al. (2024) | N/A OntoDM N/A N/A
Fathallah et al. (2024a) | YES, atest”’ | Wine N/A N/A
Zhang et al. (2025) YES™ Music Meta Qualitative Feedback Scores
Ontology publication — Documentation
Bischof et al. (2024) N/A N/A Qualitative Expert reviews
Rebboud et al. (2024a) N/A DOREMUS, Polifonia, DemCare, Odeuropa, NORIA- | Quantitative Cosine Similarity
0O, FIBO
Kholmska et al. (2024) |N/A OntoDM Quantitative Inter-Model Consistency,
Error Rate Reduction,
Coverage of Relevant
Concepts
Fathallah et al. (2024a) | YES, atest”’ | Wine N/A N/A
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Table 3
Paper resource Experiment | Data source Evaluation type | Evaluation metric
Giri et al. (2024) YES™ GO Quantitative and | Correlation with
Qualitative Embedding Scores,
Confidence Scores

Maintenance — Bug issue
Kholmska et al. (2024) | N/A OntoDM Quantitative Inter-Model Consistency,
Error Rate Reduction,
Coverage of Relevant
Concepts

7.3 Application Domains of LLMs in OE

Table 4 presents a categorization of application domains where LLMs are used in ontology development.
For each domain, we list representative ontologies and the key studies that utilized them across our review.
This offers insights into how LLM applications vary across domains such as healthcare, cultural heritage,
and autonomous systems.

Table 4. Key application domains, example ontologies, and representative studies using LLMs for ontology
development.

Application Domain Example Ontologies Key Papers

Healthcare & Medicine DemCare, SNOMED CT, UMLS | Tsaneva et al. (2024), He et al. (2023)
Cultural Heritage DOREMUS, Polifonia, Odeuropa | Rebboud et al. (2024a,b), Zhang et al. (2025)
Finance & Banking FIBO Rebboud et al. (2024a,b)

Search & Rescue (SAR) | SAR Ontology Doumanas et al. (2024)

Biology & Life Sciences | Gene Ontology (GO), MONDO Giri et al. (2024), Caufield et al. (2024)
Autonomous Driving Road traffic ontologies Tang et al. (2023)

Education & Research Computer Science Ontology Pisu et al. (2024)

Food & Agriculture FoodOn Caufield et al. (2024)
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7.4 Ontology Datasets Used Across Studies

Table 5 lists all experiment datasets utilized in the reviewed studies, with their corresponding names, access
URLSs, and associated domains. This compilation supports transparency and facilitates future replication

or comparative benchmarking using the same datasets.

Table 5. Summary of experiment datasets used across the reviewed studies, including their names, access
links, and corresponding application domains.

Acronym Name Full Name URL Domain
African Wildlife African Wildlife Ontology http://www.meteck.org/teaching/ontologies- Ecology
/AfricanWildlifeOntology1.owl

CaSk Capability and Skill https://github.com/CaSkade- Automation/CaSkMan Robotics
Ontology

CL Cell Ontology https://github.com/obophenotype/cell-ontology Anatomy

CSO Computer Science Ontology | https://cso.kmi.open.ac.uk/home Computer Science

DemCare Dementia Care Ontology https://demcare.eu/ontologies Healthcare

DOREMUS Music Ontology http://data.doremus.org/ontology Arts

EMAPA Mouse Developmental https://obofoundry.org/ontology/emapa.html Anatomy
Anatomy

ENVO Environment Ontology https://github.com/EnvironmentOntology/envo Environment

FIBO Financial Industry Business | https://github.com/edmcouncil/fibo Business
Ontology

FOODON Food Ontology https://github.com/FoodOntology/foodon Food

GO Gene Ontology http://geneontology.org Biology

HP Human Phenotype Ontology | https://github.com/obophenotype/human-phenotype-ontology Phenotype

MONDO Mondo Disease Ontology https://github.com/monarch-initiative/mondo Disease

MP Mammalian Phenotype https://github.com/obophenotype/mammalian-phenotype- Phenotype
Ontology ontology

MusicMeta Music Metadata Ontology https://w3id.org/polifonia/ontology/music-meta Music

NORIA-O Norwegian Al Ontology https://w3id.org/noria Al

OAIE Ontology Alignment https://oaei.ontologymatching.org Benchmark
Evaluation Initiative

https://github.
https://github.
Bnttps://github.
Yhttps://github.
Mhttps://github.

com/pymj/AgOCQs
com/pymj/AgOCQs/tree/main/AgOCQs/inputText
com/King-s—-Knowledge-Graph-Lab/revont
com/gabrielmaia7/WDV
com/Siemens-OKE/llm-query-pipeline

2pttps://drive.google.com/drive/folders/1vRynlNH6LouIveIlymHsm6DwYKSOUoAaA

Zhttps://github.
Bhttps://github.
Xhttps://github.
Dhttps://github.
https://github.
Thttps://github.
Bhttps://github.
Phttps://github.
Ohttps://github.c
3lhttps://github.

com/KRR-Oxford/LM-ontology—-concept-placement
com/HamedBabaei/LLMs40L
com/monarch-initiative/dragon-ai-results
com/aleessiap/LeveraginglLMforGeneratingOntologies
com/dimitrisdoumanasl9/New-Experiments—-LLMs.git
com/monarch-initiative/ontogpt
com/kastle-lab/commonsense-micropatterns
com/LiUSemWeb/LLMs40ntologyDev-ESWC2024
om/CaSkade-Automation/llm-capability-generation
com/OndrejZamazal/ComplexOntologyMatching-SEMANTiCS2024

32https ://figshare.com/articles/code/OLaLa_for OAEI
Bnttps://github.com/KRR-Oxford/LLMap-Prelim
3nttps://github.com/King-s-Knowledge-Graph-Lab/OntoChat
Bnttps://github.com/kiharalab/G0O2Sum
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Table 5

Acronym Name Full Name URL Domain

OBA Ontology of Biological https://github.com/obophenotype/biological-attributes-ontology | Attributes
Attributes

OBI Ontology for Biomedical https://github.com/obi-ontology/obi Methodology
Investigations

Odeuropa Olfactory Heritage Ontology | https://odeuropa.eu Cultural Heritage

OntoDM Ontology of Data Mining https://lod-cloud.net/dataset/bioportal-ontodm Data Science

OpenXOntology Open Exchange Ontology https://openxontology.org Business

OPC-UA OPC Unified Architecture https://github.com/OPCFoundation/UA-Nodeset Industrial

Polifonia Polifonia Ontology Network | https://github.com/polifonia-project Music

SAREF Smart Appliances Reference | https://saref.etsi.org IoT
Ontology

UBERON Uberon Multi-species https://github.com/obophenotype/uberon Anatomy
Anatomy Ontology

UFO Unified Foundational https://ontouml.readthedocs.io/en/latest/intro/ufo.html Foundational
Ontology

UMLS Unified Medical Language | https://www.nlm.nih.gov/research/umls Medicine
System

VICINITY 10T Core Ontology http://iot.linkeddata.es/def/core IoT

WDV Web Data Vocabulary https://github.com/gabrielmaia7/WDV Web

Pizza Pizza Ontology https://protege.stanford.edu/ontologies/pizza-/pizza.owl Food

NCIT National Cancer Institute https://bioportal .bioontology.org/ontologies/NCIT Oncology
Thesaurus

DOID Human Disease Ontology https://bioportal.bioontology.org/ontologies/DOID Disease

SNOMED CT Systematized Nomenclature |https://www.snomed.org/ Medicine
of Medicine Clinical Terms

FMA Foundational Model of https://bioportal.bioontology.org/ontologies/FMA Anatomy
Anatomy

MEDCIN MEDCIN Ontology https://www.sciencedirect.com/topics/nursing-and-health- Medicine

professions/medical-ontology

SNOMEDCT US SNOMED CT United States | https://www.nlm.nih.gov/healthit/snomedct/ Medicine
Edition

Schema.org Schema.org Vocabulary https://schema.org/ Web

Video Game Ontology | Video Game Ontology https://vocab.linkeddata.es/vgo/ Entertainment

MM-S14-Disease/CPP | MM-S14-Disease/CPP https://zenodo.org/records/10432003 Medicine
Dataset

Wine Ontology Wine Ontology https://github.com/UCDavisLibrary/wine- Food

ontology/blob/master/wine-ontology.owl

36nttps://github.com/D2KLab/1l1lmdke
https://github.com/andreamust /NEON-GPT
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