
Semantic Web 0 (0) 1 1
IOS Press

Solving Guesstimation Problems Using the
Semantic Web: Four Lessons from an
Application
Editor(s): Krzysztof Janowicz, University of California, Santa Barbara, USA
Solicited review(s): Simon Scheider, University of Münster, Germany; Lael Schooler, Max Planck Institute for Human Development, Berlin,
Germany

Alan Bundy a,∗, Gintautas Sasnauskas a Michael Chan a

a School of Informatics, University of Edinburgh,
A.Bundy@ed.ac.uk, gintautas.sasnauskas@gmail.com, michael.chan.is@gmail.com

Abstract. We draw on our experience of implementing a semi-automated guesstimation application of the Semantic Web, GORT,
to draw four lessons, which we claim are of general applicability. These are:

1. Inference can unleash the Semantic Web: The full power of the web will only be realised when we can use it to infer new
knowledge from old.

2. The Semantic Web does not constrain the inference mechanisms: Since we must anyway curate the knowledge we extract
from the web, we can take the opportunity to translate it into what ever representational formalism is most appropriate for
our application. This also enables the use of whatever inference mechanism is most appropriate.

3. Curation must be dynamic: Static curation is not only infeasible due to the size and growth rate of the Semantic Web, but
curation must be application-specific.

4. Own up to uncertainty: Since the Semantic Web is, by design, uncontrolled, the accuracy of knowledge extracted from it
cannot be guaranteed. The resulting uncertainty must not be hidden from the user, but must be made manifest.

Keywords: Guesstimation, Semantic Web, inference, dynamic curation, uncertainty

1. Introduction

As a result of the advocacy of the Semantic Web and
Linked Data in, for instance, [3,4], new data is being
added to The Web of Linked Data at an exponential
rate. If we add to this data that that can be mined from
semi-structured, web-based sources, then the amount
of potential data is even larger. For instance, the Know-
ItAll Project [6] claims to have formed a 6 billion item

*The research reported in this paper was supported by ONR
project N000140910467 and EPSRC project EP/J001058/1. We
would like to thank two SWJ referees: Simon Scheider and an
anonymous referee.

ontology by extracting RDF triples and rules from En-
glish statements on the web with a 90% accuracy1.

Existing applications of this wealth of data have
only scratched the surface of the possibilities. The pur-
pose of this paper is to emphasise some of the pre-
viously unexplored potential directions. This potential
is illustrated by an unusual application to the solving
of guesstimation problems: the system GORT (Guessti-
mation with Ontologies and Reasoning Techniques).

1This is an estimate of the number of original English assertions
that have been correctly formalised, not the accuracy of the original
source information.

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

More details about GORT, including a discussion of its
version history, can be found in §2.3.

2. Guesstimation Using the Semantic Web

Guesstimation is the task of finding an approximate
answer to a quantitative problem based on a combi-
nation of intuition, facts, and reasoning [23,15]. Such
problems are sometimes called Fermi problems, after
Enrico Fermi who had been known to use the tech-
nique.

An example guesstimation problem is:

– How much would it cost to meet all the UK’s elec-
tricity demand by solar panels?

– What area would they cover?

The number of solar panels required can be guessti-
mated by dividing the UK’s electricity demand by the
capacity of a typical solar panel. The cost can then be
guesstimated by multiplying this number of panels by
the cost of a typical panel. The area can be guessti-
mated by multiplying the number of panels by the area
of a typical panel. More examples can be found in Ta-
ble 1 in §2.3.3.

Traditionally, human guesstimators have to supply
facts, such as the UK’s electricity demand, and the ca-
pacity and area of a typical solar panel from their own
background knowledge. We are now in the lucky posi-
tion, however, that many of these facts can be retrieved
from the Semantic Web using a search engine, such as
SINDICE[19].

2.1. The Formalisation of Guesstimation

Guesstimation requires a new calculus for both rep-
resenting the restricted kind numbers permitted in an-
swers and to reasoning with these numbers to infer new
approximate answers from old ones. In this section we
define this calculus, which we call the SINGSIGDIG
Calculus [2].

2.1.1. The Single Significant Digit Calculus
According to [23], the normal form for guesstima-

tion answers is a number, in SI units, in single signifi-
cant digit form, d×10i, where d is a digit from 1, . . . , 9
and i is an integer. Where quantities are not originally
in this normal form, non-SI units must be converted
to SI and numeric values must be approximated to the
form d× 10i .

Definition 1 (SINGSIGDIG Normal Form)

– Let R∼ = {d.10i|d ∈ {1, . . . , 9} ∧ i ∈ Z} be the
type of normal form numbers.

– Let nf∼ : R 7→ R∼ be the function that converts
a real number into its nearest single significant
digit normal form.

– Let U be the type of SI units.
– Let P be the product type R × U and P∼ be the

product type R∼ × U, i.e., P and P∼ are pairs of
numbers and units. Note that P∼ is a subtype of
P.

– ∀〈r, u〉 : P.nf∼(〈r, u〉) ::= 〈nf∼(r), u〉.

For instance, nf∼(3.142) = 3.100. We will usu-
ally write 〈r, u〉 : P∼ as ra, e.g., 4.101w instead of
〈4.101, w〉, where w is the symbol for watts. For di-
mensionless quantities the unit will be omitted.

Definition 2 (SINGSIGDIG Formulae) Formulae in
the SINGSIGDIG Calculus are first-order expressions
whose domain of discourse consists of pairs of type
P∼, plus everyday objects and sets of such objects.

Any function f (or predicate p) defined on P can be
abstracted into a function f∼ (or predicate p∼) defined
on P∼.

Suppose, without loss of generality, that all argu-
ments of type P of function f (predicate p) are initial,
i.e., that:

f : Pm × τ1 × . . .× τn 7→ P

p : Pm × τ1 × . . .× τn 7→ bool

where τi is the type of the ith non-P argument of f and
n ≥ 0.

For every such function f (predicate p), we define
a corresponding f∼ : P∼m × τ1 × . . . × τn 7→ P∼
(p∼ : P∼m × τ1 × . . .× τn 7→ bool) as follows:

f∼(r∼1 , . . . , r
∼
m, t1, . . . , tn)

::= nf∼(f(r∼1 , . . . , r
∼
m, t1, . . . , tn))

p∼(r∼1 , . . . , r
∼
m, t1, . . . , tn)

::= p(r∼1 , . . . , r
∼
m, t1, . . . , tn)

For instance,

2.1011w ÷∼ 3.101w/m2 = nf∼(2.1011w ÷ 3.101w/m2))

= nf∼(
2

3
.1010m2)

= nf∼(
2

3
.1010)m2

= nf∼(7.109)m2

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 3

In particular, we define the equality predicate =∼:
P∼2 7→ bool by abstracting =. Where the context
makes clear that an approximate function (predicate)
is being used, we will usually drop the ∼ superscript.

These definitions ensure that f∼ (p∼) is uniquely
defined on its first m numeric arguments. In order to
ensure uniqueness for the next n non-numeric argu-
ments, we need to make the following assumption.

Assumption 1 Similarity Assumption:
For all functions f∼ (predicates p∼) and sets

S, to ensure that f∼(. . . , S, . . .) (p∼(. . . , S, . . .)) is
uniquely defined, we assume that:

∀s1, s2 ∈ S. f∼(. . . , s1, . . .) =∼ f∼(. . . , s2, . . .)

(∀s1, s2 ∈ S. p∼(. . . , s1, . . .) ⇐⇒ p∼(. . . , s2, . . .))

For instance, if Solar is the set of all solar panels,
then power∼(Solar) is uniquely defined iff any pair
of solar panels in Solar have equal power∼s, i.e., their
outputs in watts are equal up to one significant digit.
If this is not the case then guesstimates based on their
power may be inaccurate.

We will frequently want to describe a typical ele-
ment of a set. To formalise this2, we will designate εS
to be a typical representative element of the set S. All
we are allowed to know about εS is that εS ∈ S, not
which specific element it is. ε is used in the methods
law of averages, energy, rate of change, arbitrary ob-
jectand generalisation.

We will use upper-case letters to represent sets and
lower-case letters to represent objects. We will some-
times use polymorphic functions which apply to both
objects and sets of those objects. If S is a set, the se-
mantics of f(S) is f(εS). An exception to this seman-
tic rule is the function ‖. . .‖ : Set(τ) 7→ P∼ where
‖S‖ returns the approximate number of elements in the
set S.

2.1.2. Guesstimation Methods
To solve guesstimation problems, GORT uses a set

of proof methods which reason over the SINGSIGDIG

Calculus. All the methods were developed by GORT

developers by abstracting from the solutions to guessti-
mation problems provided in [23] and similar sources.

2Our notation is borrowed from Hilbert’s ε operator [9], which he
introduced as an alternative to quantification and an aid to proving
consistency. Technical knowledge of this operator is not needed in
this paper.

Each method is represented as a second-order, con-
ditional, approximate, rewrite rule of the form:

Cond =⇒ LHS RHS,

where is an oriented version of =∼. Such rewrite
rules are applied to guesstimation goals as follows. If
Cond is true and LHS matches a sub-expression of
the current goal with substitution σ, then replace this
sub-expression with RHSσ to form the next goal.

We divide the methods into primary and secondary.
Primary methods are called by the user using the GUI

described in §2.3.2. Secondary methods are applied
automatically by GORT to solve the sub-goals created
by the secondary methods. This section only describes
the primary methods in detail. For more information
on the secondary methods see [2].

The Count Method: The count method has been gen-
eralised from its original restricted definition in [2].
It is now a general method for dividing one quantity
by another. An example is: What area of solar pan-
els would be needed to meet the UK’s electricity con-
sumption? Here, Y is the UK’s electricity consumption
measured in watts, Z is the power per area of a typical
solar panel measured in watts per square metre and Y

Z

is the answer we require in square metres.
We can formalise the count method as:

Definition 3 (The count method)

Z 6= 0 ∧X.Z =∼ Y =⇒ X
Y

Z
·

The Total Size Method: The total size method is ap-
plicable in cases where a guesstimation question re-
quires the sum of some function f over a set S. An ex-
ample is: What is the total cost of a set of solar pan-
els?, e.g., the set required to meet all of the UK’s elec-
tricity demand. Here, S is the set of solar panels and
f(s) is the cost of a solar panel s.

We can formalise the total size method as:

Definition 4 (The total size method)∑
s∈S

f(s) f(S)× ‖S‖,

where S is a set of non-numeric objects of type τ and
f is a function f : τ 7→ P∼.

4 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

The Law of Averages Method: The law of averages3

method uses the fact that, on average, the proportion
of times an object has a given property is equal to the
proportion of objects in a larger population with that
property at a given time. For example, the proportion
of time that an average person spends asleep is equal
to proportion of people on Earth asleep at any time,
where S is the set of people, T is a finite set of equal
time intervals in a day, and φ(s, t) asserts that person
s is asleep during time interval t.

The law of averages method can be formalised as:

Definition 5 (The law of averages method)

S 6= ∅ ∧ T 6= ∅ =⇒
‖t ∈ T |φ(εS, t)‖

‖T‖

‖s ∈ S|φ(s, εT)‖

‖S‖
·

Using this method, information about a wider popula-
tion at a particular time can be found from an arbitrary,
representative object over a period of time.

The Distance Method: The distance method is a
domain-specific technique for calculating the distance
between two locations on Earth. It applies in the case
of a problem such as, How much time would it take to
drive from London to Manchester?, where two loca-
tions are given and a distance is required.

The distance method can be formalised as:

Definition 6 (The distance method)

∆σ̂

2 arcsin

(√
sin2

(
∆φ

2

)
+ cosφs cosφf sin2

(
∆λ

2

))
·

For two points 〈φs, λs〉 and 〈φf , λf 〉, where the φs rep-
resent latitudes and λs represent longitudes, the planar
angle between the points is calculated from the above
formula as ∆σ̂. Then the distance along the surface of
the Earth is r·∆σ̂, where the single significant digit ap-
proximation of r, the radius of the Earth, is 6×104 km.

Simon Scheider has suggested using navigation ser-
vices, such as The Google Directions API4, to improve
the accuracy of distance measures. This is an interest-
ing suggestion, which we plan to investigate as further
work.

3This name is adopted from [23]. The normal pejorative use of
this phrase is not intended.

4https://developers.google.com/maps/
documentation/directions/

The Energy Method: The energy method is used to
calculate the total kinetic, potential, chemical or latent
energy of a set of objects S.

To calculate the total energy, the method requires
two parameters and a constant. Both parameters and
the constant depend on the type of energy measured.
The constant must be set to c = 1 when calculating
latent or chemical energy, c = 1

2 when calculating ki-
netic energy and c = 10m/s2 when calculating poten-
tial energy. Furthermore, a fourth parameter, ‖S‖, is
required to be supplied which indicates the size of the
set S. These four parameters are multiplied together.

For example, the following set of substitutions could
be used to answer the question How much potential en-
ergy does an average skyscraper have?, where poten-
tial energy is calculated using the formula E = mgh.

– c = 10m/s2, which is gravitational acceleration
(g) on the Earth’s surface;

– f(εS), which is the mass of an typical skyscraper;
– g(εS), which is the height of the centre of mass

of a typical skyscraper, which can also be defined
as half of the height of the skyscraper;

– ‖S‖ = 1, which stands for the number of
skyscrapers we are interested in. If we were in-
terested in finding the potential energy of all
skyscrapers in Manhattan, then the number of
skyscrapers in Manhattan would be used instead.

The energy method can be formalised as:

Definition 7 (The energy method)

E c× f(εS)× g(εS)× ||S||·

Rate of change method: The rate of change method
is used to calculate the rate of change, when the size
and the duration of the whole task is known. Alter-
natively it can be used for calculating the duration
of the task when the size of the whole task and the
rate of change is known. An example is How long
would it take to fill St Paul’s Cathedral with water us-
ing a bucket?. Here S would be a set of bucket loads
of water needed to fill the Cathedral, f(s) would be
the time taken to pour one bucket load of water, s,
into the Cathedral and g(s) would be the volume of a
bucket load of water, so

∑
s∈S g(s) is the volume of

the Cathedral.
The rate of change method can be formalised as:

Definition 8 (The rate of change method)∑
s∈S

f(s)
f(εS)×

∑
s∈S g(s)

g(εS)
·

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 5

Get Data: The methods above break an initial ques-
tion into sub-questions. Eventually, they reach ques-
tions that can be retrieved from the Semantic Web, e.g.,
using a semantic web search engine. This is done by
the get data method. It constructs an RDF query con-
sisting of a subject, predicate and a variable for the ob-
ject. During data retrieval, the object is instantiated to
the answer to the question. The latest version of GORT
version 4.0, uses the SINDICE search engine.

The User Input Method: Unfortunately, the solution
to a guesstimation question may require data that
SINDICE cannot find on the Semantic Web. The user
input method then asks the user for the required value.

Secondary Methods In addition to these primary
methods, a set of secondary methods are applied auto-
matically by GORT. These secondary methods are used
to solve open subgoals arising from the primary meth-
ods. The secondary methods are just briefly mentioned
below. More details can be found in [2,16].

The Arbitrary Object Method uses the ε operator to
convert the value of some function of a set into
the value of that function on a typical member of
that set. This is formalised as:

f(S) f(εS)

For example, S might be the set of humans and
f(s) the height of the human s.

The Average Value Method guesstimates a numeric
value for some f(εS) by computing the arith-
metic mean of all f(s), s ∈ S: This is formalised
as:

S 6= ∅ =⇒ f(εS)

∑
s∈S f(s)

‖S‖
·

The Aggregation over Parts Method guesstimates the
value of an attribute of a large object composed
of many non-overlapping parts by summing the
values for each of these parts. This is formalised
as:

f(o)
∑

p∈Parts(o)

f(p),

where Parts(o) is a function that returns the set
of all non-overlapping parts of o.

The Generalisation Method guesstimates the aver-
age value of an attribute of the objects in a set by
returning the average value of the attribute in a
superset. This is formalised as:

S ⊂ T =⇒ f(εS) f(εT)

The Geometry Methods calculate one attribute of a
physical object from its other attributes. For in-
stance, the circumference, Circ(s), of a circular
object, s, can be calculated from of its radius,
Radius(s) by:

Circ(s) 2πRadius(s)

2.2. Worked Example

To illustrate the rewriting process used by these
methods we apply them to the guesstimation problem:

What area of solar panels would be needed to meet
the UK’s electricity consumption?

The goal can be formulated as eleccons(uk)
powperarea(solpanel) ,

where eleccons(uk) is the UK’s electricity consump-
tion measured in watts and powperarea(solpanel) is
the power per area of a typical solar panel measured in
watts per square metres. As discussed in §2.1.2, in the
preamble to Definition 3, the count method is applica-
ble to problems of this sort and rewrite rule (3) can be
instantiated to:

powperarea(solpanel) 6= 0 ∧

area.powperarea(solpanel) =∼ eleccons(uk) =⇒

area
eleccons(uk)

powperarea(solpanel)
·

The user is currently required to confirm the correct-
ness of the two conditions and assumption 1 in this
case.

The get data method can now be used to find the val-
ues of both eleccons(uk) and powperpanel(solpanel),
which are returned as 3.1012w and 1.102w/m2, re-
spectively. The calculation can then be continued.

area
eleccons(uk)

powperarea(solpanel)

2.1011w

1.102w/m2

 2.109m2

to give the required answer, i.e., about two billion
square metres.

Questions 8 and 9 in Table 1 are variants of this
question, both requiring a second application of the
count method. Question 8 is also used as the example
in the illustration of GORT’s GUI in Figure 1.

6 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

2.3. The GORT System

GORT (Guesstimation with Ontologies and Rea-
soning Techniques) is a semi-automatic guesstimation
system implemented in SWI-Prolog and Java. It has
been developed in successive stages via four student
projects.

GORT 1.0: In his 2008-9 MSc project [1], Jonathan
Abourbih built the initial version. It used lo-
cally stored RDF ontologies for looking up facts.
Queries for the system had to be provided in the
Prolog language, which limited the usability of
the system.

GORT 2.0: In his 2009-10 UG4 project [5], Luke
Blaney added a web front-end, which allowed
constructing queries by using a drag-and-drop
interface. Furthermore, he replaced the majority
of local data sources with remote RDF databases
accessible via SPARQL end points. [2] describes
GORT 2.0.

GORT 3.0: In his 2010-11 MSc project [22], Yanyang
Wang introduced new proof methods, which were
able to solve a larger variety of problems. Fur-
thermore, new compound units were constructed
from atomic ones, e.g., m/s from m and s.

GORT 4.0: In his 2011-12 UG4 project [16], Gintautas
Sasnauskas improved the data retrieval by switch-
ing to the SINDICE search engine and adding a
query decomposition module that broke queries
into sub-queries. SINDICE retrieved more data,
but this included more noisy data, so answer fil-
tering was used to deals with multiple, possibly
conflicting, values. Since units were often miss-
ing from RDF triples, he developed a method for
guessing missing units. Subsequently, he has im-
plemented a method for assigning an uncertainty
value to the guesstimates.

2.3.1. The SINDICE Semantic Web Search Engine
The SINDICE Semantic Web search engine [19] was

chosen for data retrieval in GORT 4.0 because is gives
access to data from a large variety of sources. Fur-
thermore, the SINDICE API presents RDFs grouped into
documents or small ontologies covering single top-
ics. This allows GORT to not only look for individual
triples but also for documents containing information
about an object using keyword search. An assumption
was made that all RDF triples in a document which
was found using keyword search describe the keyword.
Following empirical observations, this assumption was
found to be correct in the majority of cases.

2.3.2. The GUI

Users interact with GORT using a drag and drop,
graphical user interface, which is illustrated in Figure
1. Users build up a query as a tree structure in which
each node corresponds to a primary method, whose
daughters provide its inputs, if any. The user builds this
tree by dragging and dropping methods from the left-
hand margin. In the case of the get data and user in-
put methods, the user is prompted to supply additional
information, namely subject plus predicate and value
plus unit, respectively. As each method receives its in-
puts, it asynchronously updates itself and any methods
that it is inputting too, allowing users to work on other
parts of the tree in parallel. Completed methods turn
from black to green and display their respective results.
Results are presented in nodes as the preferred value,
e.g., 2.1011w , together with:

– their error bounds, indicated as an interval, e.g.,
[2.108, 3.1012], and

– for get data method nodes, the number of data
points in that interval, e.g., 10 and 7 in Figure 1,
which we call the rarity value.

The preferred value of get data method nodes is ei-
ther the mode, if a threshold is exceeded, otherwise
the median (see §3.3.1 for more details). The preferred
value of non-leaf nodes is calculated from the pre-
ferred value of their daughters. For more discussion
of these values see §3.4. Sample queries are supplied
on the right-hand side, to give the user exemplars of
GORT’s working. Commands are also supplied on the
right-hand side for providing help, saving queries, re-
setting the system and closing it.

2.3.3. Evaluation of GORT

GORT 4.0 was evaluated on a test set of 12 examples
[16]. Earlier versions of GORT were similarly evalu-
ated on different test sets [1,5,22]. The list of problems
is given in Table 1 and the results are summarised in
Table 2

There are inherent problems of fragility and non-
reproducibility of results when evaluating a system
such as GORT. The results depend on what SINDICE

finds on the internet, which is in continual flux. Con-
sequently, the same query made at different times may
return different results. Also, the results depend on the
exact form of the queries. For instance, the area of the
UK and the area of the United Kingdom may return
different data points, medians and/or ranges.

Since GORT 4.0 is an interactive system it is only
meaningful to give timing data for sub-processes that

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 7

Fig. 1. The GORT GUI: The screenshot shows an intermediate stage in the solution of question 8 from Table 1. The left-hand margin contains
buttons for each of the primary methods. The centre contains a tree representing the current query. Each node represents a proof method whose
calculation, when complete, consists of the preferred value, the error interval and, for get data method nodes, the rarity value expressed as the
number of data points found. The right-hand margin contains various commands and some example queries.

are fully automated, such as queries to the SINDICE

API. The subsequent calculations made with the re-
trieved data are just simple arithmetic and are negligi-
ble compared to the retrieval times. An initial call is
made to SINDICE’s Search API. This, typically, takes
an average of 2 seconds, and returns a list of up to
20 relevant records, which SINDICE caches. To com-
plete its get data queries, GORT typically retrieves
about 8 of these records, via SINDICE’s Cache API,
each of which takes about 0.5 seconds. The complete
retrieval procedure, therefore, typically takes about 6
seconds. Queries involving query decomposition usu-
ally take longer because they require a larger number
of SINDICE calls. GORT 4.0 is much slower than GORT

3.0, because SINDICE is able to access far more sources
of data than SPARQL. Some sample complete SINDICE

query timings are summarised in Table 3.

3. Lessons Learnt

In this section we draw some lessons from the ex-
perience of automating guesstimation. We argue that

these are general lessons that apply to other applica-
tions of the Semantic Web, so should be taken into ac-
count by the developers of these applications.

3.1. Lesson 1: Inference can Unleash the Semantic
Web

The Text Retrieval Conferences (TREC) (http:
//trec.nist.gov/) host a number of workshops,
each focusing on a different information retrieval (IR)
research area. At each conference competitions are run
for information retrieval in each of these areas. The
task in each competition is, given some search term, to
find just those online documents that are relevant to the
search term. Scores are based on recall and precision
measures, i.e., the percentages of all and only the rele-
vant documents found. Note that information is merely
retrieved in the form that it was originally stored. There
is no attempt to discover new information by old com-
bining information from different sources.

It used to be the case that the field of question
answering did infer new information from old. If
the Wikipedia overview of this field (http://en.

8 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

ID Question
1 How many cars would we need for a bumper-to-

bumper traffic jam from Edinburgh to Glasgow? (as-
suming one-lane highway)

2 How many baths of water are there in Loch Ness?
3 How many buffalo equivalent of meat does a typical

dog eat in his lifetime?
4 How much fuel per person is used flying a Boeing

767 from London to New York?
5 How many cups of water would it take to fill a dou-

ble decker bus?
6 How much peak electricity could we generate if we

covered the entire Sahara desert with solar panels?
7 What proportion of the UK would need to be cov-

ered by solar panels to cover all the UK’s electricity
needs?

8 How much would it cost to meet all the UK’s elec-
tricity needs with solar panels?

9 What proportion of the UK would need to be cov-
ered by wind turbines to cover all the UK’s electricity
needs?

10 How many wind turbines would we need to cover
the electricity needs of the UK?

Table 1
Questions used in evaluation of GORT 4.0.

Subject Predicate Time

Automobile length 5.7 sec
Boeing 747 weight 2.9 sec
Cup volume 11.7 sec
Solar panel wattage per area 10.4 sec

Table 3
Some typical complete SINDICE query timings.

wikipedia.org/wiki/Question_answering)
is accurate, however, then it too has degenerated into
document and fact retrieval. Even the much celebrated
IBM Watson system [18] focuses only on fact retrieval
(see §3.5.1).

Information retrieval systems mostly search over
online documents written in natural language. To en-
able inference on the information in these documents
they need to be formalised, e.g., into RDF triples or de-
scription logic. There are several projects that are at-
tempting to do this on a large scale, e.g., the Know-
ItAll Project [6], which claims to have automatically
constructed an ontology of six billion triples, with 90%
accuracy, from online natural language sources.

The Semantic Web consists of a huge number of for-
malised ontologies, using databases, taxonomies, RDF
triples, description logics, etc. It thus has the potential

to support inference to infer new information from old.
Most Semantic Web search engines, however, such as
SINDICE, are also restricted to fact retrieval5. Most in-
ference systems are restricted to reason over individual
databases or ontologies, custom-built for a particular
application.

Of course, it’s very useful to be able to access any
of the information that other people know and have
stored online. How much more wonderful, though, to
discover information that no one knows, by combining
known information from diverse sources in new ways.
GORT is one of several systems that show that this is
possible. Some similar systems are discussed in §3.5.

Some of GORT’s discoveries are novel only because
no one would seriously be interested in knowing them,
e.g., the number of cups of water needed to fill a dou-
ble decker bus. But, as some of the questions in Ta-
ble 1 illustrate, guesstimation can also be used, for in-
stance, to give ball-park estimates of the environmen-
tal and financial impact of diverse solutions to the en-
ergy and climate crises. As MacKay has argued, [13],
more widespread knowledge of these estimates are es-
sentially to better inform the debate. Indeed, Mackay’s
book inspired us to tackle these guesstimation prob-
lem.

3.2. Lesson 2: The Semantic Web does not Constrain
the Inference Mechanisms

RDF triples and the OWL description logic are both
W3C standards. Most ontologies on the Semantic Web
are formalised as databases or RDF and many of the
rest in OWL. This has created a presumption that infer-
ence over the Semantic Web will be conducted using a
logic based on SQL, RDF or in OWL. The GORT Project
illustrates, however, that this need not be the case.
GORT uses second-order, SINGSIGDIG Calculus proof
methods §2.1.2 to reason about SINGSIGDIG formulae
§2.1.1. These proof methods work by a second-order,
rewriting process that would be very difficult, if not
impossible, to formalise in a description logic. This is
despite the use of SINDICE to collect the atomic facts
in the form of RDF triples. What is going on?

GORT mines the Semantic Web for the information
it needs, curates that information and then uses it dy-
namically to custom-build a local ontology tuned to the

5Data-mining is an exception in that it does try to discover new
information by looking for patterns in old information. The machine
learning techniques used for data-mining are, however, outside the
scope of the current discussion.

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 9

guesstimation problem it is currently trying to solve.
It takes this opportunity to reformalise the RDF into
SINGSIGDIG Calculus format, so that it can be rea-
soned with by SINGSIGDIG methods.

This solution is a general one. Developers of appli-
cations using the Semantic Web are free to use what-
ever inference engine best suits their application. Stan-
dard web search engines can be used to collect data
in source formats. Dynamic curation §3.3 can then be
used to create a custom-built, domain-specific ontol-
ogy in the target format.

3.3. Lesson 3: Curation must be Dynamic

The information stored in the Semantic Web is
noisy. There is no central control over who enters in-
formation into it and it would defeat its raison d’être
to try to impose such control. Although there are W3C

representation standards, information be represented in
a wide variety of formats. Errors can occur due to care-
lessness, omission, ignorance, deliberate misinforma-
tion, etc. In addition, errors may be introduced during
the retrieval process.

By way of illustration, in a recent mini-project to de-
tect errors in the automatically constructed KnowItAll
ontology [6], we discovered triples for the capital of
Japan with the following answers: Tokyo, Kyoto and
Paris [8]. “Tokyo” is the correct answer; “Paris” came
from a tutor on logic and exemplified a false assertion;
“Kyoto” used to be the capital of Japan but was curated
to the present tense as a side effect of retrieval. In this
case, “Tokyo” was by far the most popular answer re-
trieved, so could be selected by taking the mode, giv-
ing a reliable answer from noisy data. This was not
always the case. Therefore, before it can be used, in-
formation must be curated to remove errors, put it in
a common format, etc. By static curation I mean the
pre-processing of the whole or a large part of the infor-
mation stored in the Web to construct an ontology that
can then be used for retrieval, such as proposed in [6].
Static curation is unrealistic for several reasons.

– The Semantic Web is huge: in 2011, the Web
of Linked Data was estimated at 32 billion RDF
triples6. Curating it all would be a mammoth
under-taking and impossible without significant
automated assistance.

– It is growing very fast: in 2011 The Web of
Linked Data was estimated was estimated to have

6http://events.linkeddata.org/ldow2012/

doubled every year since it’s creation 7. It will
be impossible to keep up with this exponential
growth. A (semi-)automated solution that just
works in one year will fail in the next.

– Curation is application-specific. There is no one
curation fits all. In §3.3.2, we give an example of
this arising from our project.

The answer is to curate dynamically, i.e., selectively
and on an as-needed basis for the current application in
an application-specific way. In §3.3.1, we outline how
this was done in the GORT Project.

3.3.1. GORT’s Dynamic Curation
GORT forms a custom-built, locally-stored ontology

for each question. Forming this local ontology involves
the following process, which includes different kinds
of dynamic curation.

– The ontology is initialised with GORT’s general-
purpose proof methods, such as those outlined in
§2.1.2.

– The guesstimation problem is formalised as a
goal to be proved and these proof methods are ap-
plied to it in a top-down process to grow the proof
as a tree, as illustrated in Figure 1.

– The leaves of this tree are factual queries to be
solved by the get data or user input methods. In
the case of get data applications, SINDICE is used
to retrieve the relevant facts and these are subject
to curation with the aim of augmenting the local
ontology. Facts input via user input are also cu-
rated and added to the ontology.

– Curation includes:

∗ normalisation into the SINGSIGDIG Calculus;
∗ abstraction of some concrete subjects into

generic ones; and
∗ augmentation with additional information.
∗ where, even after normalisation, SINDICE pro-

vides multiple different values, two forms of
averaging are used to construct one preferred
value.

These forms of curation are further discussed in
§3.3.2

When multiple values are returned by SINDICE
GORT must use them to construct a single preferred
value. Firstly, normalisation to the SINGSIGDIG en-
sures that minor differences between values disappear.

7http://www.readwriteweb.com/cloud/2011/01/
the-concept-of-linked-data.php

10 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

Subject Predicate Value

dbr:Dino_automobile dbpp:length 166.25
dbr:Astra_(1954_automobile) dbpp:length 114
dbr:Mercedes-Benz_W201 dbpp:length 4420
dbr:Ford_Taurus_(third_generation) dbpediaowl:length 5.0165
dbr:Xtra_(automobile) dbpp:length 106

The top 5 results from SINDICE context-sensitive search for
triples in format (∗, length,X) in documents found using the
keyword “automobile”.

Table 4
Lengths of automobiles

If there is still a list of multiple values (duplicates in-
cluded) after normalisation then two kinds of averag-
ing are attempted in turn: mode and median.

Mode: The mode is the number that appears most of-
ten in a list of numbers. If one value is returned
at least twice more often than the second most
common value, then GORT assumes that this is the
correct answer and that the other values are erro-
neous and can be ignored.

Median: Otherwise the preferred value is the median
of the ordered list of returned values. The median
is the value that breaks this ordered list into two
equal sized sub-lists. If the list has an odd number
of values then it will be the middle value; it has an
even number then it will be the arithmetic mean
of the two middle values. The median is preferred
over the arithmetic or geometric mean because it
undervalues outliers. One large outlier can dispro-
portionately skew either mean. Since outliers are
quite likely to be erroneous, then it is better to use
the median.

3.3.2. Application-Specific Curation
As an example of application-specific curation from

the GORT Project, consider Table 4.
This table shows some of the information retrieved

by SINDICE to answer the guesstimation question
“How many cars would we need for a bumper-to-
bumper traffic jam from Edinburgh to Glasgow?”. To
answer this question it was necessary to guesstimate
the length of a typical car. This kind of generic infor-
mation is rarely stored directly in the Semantic Web.
What is stored, however, is information on the length
of particular makes and models of cars: indeed the
manufacturers are keen to supply this information on
their web sites. To obtain this model-specific infor-
mation GORT takes advantage of the context-sensitive

search feature of SINDICE. Firstly, GORT chooses an
appropriate context: automobile in this case. Then
GORT constructs the wild-card triple (∗, length,X)
and asks SINDICE to use this as a query in the automo-
bile context.

So, the first step of application-specific curation nec-
essary for GORT to make use of this data is abstraction:
all the different car makes and models in the subject
heading of Table 4 must be abstracted to ‘automobile’.
This abstraction is application specific because, for a
different problem, it might be important to preserve the
details about make and model. Indeed, it might be nec-
essary to refine it, e.g., by distinguishing the different
the years of manufacture of each model.

Note that the various values in Table 4 are numbers
without units. From the diversity of these numbers it is
clear that these lengths are expressed in different units,
e.g., centimetres, feet, etc. The unit used is implicit in
the source ontology of the triple, e.g., a particular man-
ufacturer might always express distances in centime-
tres. The various numbers cannot be compared unless
they are translated into the same units, e.g., SI units,
which in this case is metres.

This kind of omission is commonplace in RDF

triples. The triple format limits the amount of infor-
mation that can be recorded. This limitation could
be overcome if compound entries were normally per-
mitted, e.g., a pair of number and unit, but com-
pound entries are not normally permitted. Alterna-
tively, there is a standard translation of an n-ary re-
lation into n + 1 triples: rel(t1, . . . , tn) is repre-
sented as (rel0, arg1, t1), . . . , (rel0, argn, tn), where
rel0 names this particular n-ary relation and arg − i
is the name of the ith argument of rel. This is the
method used by RDF Schema, but it has not been
widely adopted. Ontologies specifically for describing
units also exist, for instance, [20], but they also are not
widely known or used. GORT has, therefore, been de-
signed to cope when units are absent. In future work,
we will explore the use of unit ontologies, not only be-
cause this will reduce uncertainty, but also to encour-
age their use by others.

To overcome the omission of units, we have em-
ployed a heuristic based on the ratios of the numbers,
especially between imperial and metric units. Note that
the ratios between these units is often unique, e.g., that
between centimetres and feet. If we assume (as we do,
see Assumption 1) that the normalised values of the
length of the different car makes are equal, then we
can often work out what the units must be. Consider,

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 11

Fig. 2. Clustered values for the length of a car

Fig 2. The x-axis8 is a logarithmic scale representing
the car lengths returned by SINDICE, some of which
are given in Table 4. GORT scores a variety of models
against such clusters. For the values in Fig 2 the best
fitting model is millimetres, inches and metres. Con-
verting all the numeric values according to this model
and then taking the median gives a typical car length
in SI units of 3.909 metres. The final stage of curation
is to normalise this value to 4.101 metres.

3.4. Lesson 4: Own up to Uncertainty

As discussed in §3.3, information retrieved from the
Semantic Web is inherently noisy.

It is important that users of information retrieved
from the Semantic Web know how much trust to put in
the answers. There is an obligation, therefore, to own
up to the uncertainty in an answer and to try to esti-
mate how uncertain it is. In GORT we decided to indi-
cate uncertainty by providing the range and diversity
of values that SINDICE obtained for each fact and the
consequences as these facts were propagated by infer-
ence. The range and diversity were summarised in two
ways:

– An interval is used to indicate the error bounds,
i.e., the minimum and maximum values, e.g.,
[2.108, 3.1012].

– A rarity value is used to indicate how many value
instances were found.

Ideally, the same (hopefully correct) value will be
found many times and no other values (presumed erro-
neous) will be found. This ideal situation will be indi-
cated by a high rarity value and an error bound interval
covering only one value, i.e., [n, n]. The wider the in-
terval and the lower the rarity value the more uncertain
the preferred value is to be correct.

This is only a heuristic. For instance, when SINDICE
was used find the diameter of a golf ball, we got lots

8The y-axis is only used to separate the dots and has no signifi-
cance.

of values of 6.10−2, even through the correct answer
is 4.10−2. This is because SINDICE found lots of refer-
ences to the diameter of golf ball light bulbs and none
to real golf balls. Never-the-less, the heuristic worked
well in most cases.

Other ways of indicating uncertainty are, of course,
possible. For instance, we also considered trying to es-
timate a probability of correctness. We also thought of
giving a distribution, e.g., a gaussian, of the values in-
stead of just an interval in order to indicate which val-
ues were most common. In the end we decided that
the interval and rarity value provided the best balance
between explanatory content and understandability. Of
course, this solution is geared to the return of numer-
ical values. For more qualitative values, the interval
would not work, although the rarity value would. We
only advocate that some uncertainty indication be pro-
vided as a basis for user trust.

3.5. Related Work

In this section we compare GORT with related sys-
tems on the dimensions of:

SW: Whether they retrieve information in a closed
way by accessing only fixed, pre-stored knowl-
edge bases (7), or in an open way from the Se-
mantic Web or similar open knowledge source
(4).

Inf: Whether they just retrieve information that is al-
ready represented in the knowledge source (7), or
are able to infer new knowledge not already rep-
resented (4).

Uncon: Whether they are constrained to the inference
mechanisms provided for the formalism in which
their knowledge source is represented (7), or
whether they employ additional inference mecha-
nisms, perhaps by translating the retrieved knowl-
edge to a different formalism (4).

DynCur: Whether the knowledge not curated or is cu-
rated statically (off-line) (7), or whether it is cu-
rated dynamically, as required for the current ap-
plication (4).

Uncert: Whether some measure of the uncertainty is
provided for the knowledge retrieved or inferred
(4), or not (7).

These dimensions are based directly on the four
lessons which form the claims of this paper. Following
the discussion of each related system, the results are
summarised in Table 5. Unfortunately, it is not possible

12 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

to give a quantitative comparison, as no other system
solves the same problems as GORT.

Given the huge number and variety of related sys-
tems we have restricted this discussion to some of
the foremost representatives of the principle classes of
these systems.

IBM’s Watson: was chosen to represent the class of
information-retrieval systems.

BotE-Solver: was chosen to represent the class of
guesstimation systems.

QUARK: was chosen to represent the class of question-
answering systems.

We believe that the conclusions reached for each rep-
resentative system also broadly hold for the class of
systems that it is representing.

A comparison of some of the same related systems
on four different dimensions can be found in [2], which
describes GORT 2.0. This previous related work com-
parison includes QUARK and the following four other
systems:

Power-Aqua a Semantic Web-based question answer-
ing system [12];

CS Aktive Space a system for tracking UK computer
science research [17];

Cyc a general-purpose ‘common-sense’ reasoning
system [11]; and

Wolfram|Alpha a system that calculates answers to
numerical questions on a wide range of topics9.

3.5.1. IBM’s Watson
Watson was originally built to compete in the US

Jeopardy!
TM

competition, where three contestants try
to answer general knowledge questions and puzzles
[7]. It famously beat the two best human players in
a nationally televised Jeopardy! competition on 14th

January 2011. The underlying technology of Watson is
now being applied to more practical challenges, e.g.,
in health care.

Watson employs a very wide range of complemen-
tary natural language processing and information re-
trieval techniques orchestrated by a massively-parallel
architecture, called DeepQA, and running on a large
bank of high-performance servers. It generates many
candidate answers for each question and assigns each a
score, which estimates the probability that this answer
is correct. It buzzes in and provides the highest scor-
ing answer only if it exceeds a dynamically calculated

9http://www.wolframalpha.com/

threshold. The rules of Jeopardy! preclude it from con-
sulting external information sources, so its knowledge
is pre-stirred using a wide range of knowledge bases,
i.e., it does not access any open knowledge source,
such as the Semantic Web, although it could probably
be readily adapted to do so. Watson does not currently
reveal its degree of uncertainty in the answer, but it
could be easily adapted to do so, if this was appropriate
for the application.

Only about 2% of the required answers to questions
are found directly in a knowledge source. So, Watson
uses various forms of curation and inference to com-
bine information from different knowledge sources
into the required answers. These inference mecha-
nisms include type coercion, geospatial and temporal
constraints, rule-based reasoning, and statistical and
machine learning techniques, as well as specialised
techniques for particular kinds of puzzles, puns and
missing links [10].

3.5.2. Back of the Envelope Reasoning
The BotE-Solver solves guesstimation problems us-

ing seven strategies [14]. These strategies are based on:

Analogical reasoning: to transform solutions to pre-
vious problems into solutions to the current one,
and

Qualitative reasoning: to abstract exact values into
order-of-magnitude approximations.

It uses the CYC knowledge base as a source of fac-
tual information [11]. It has been successfully tested
on a corpus of 13 problems. Some of the BotE-Solver’s
strategies are similar to GORT’s, e.g., its Mereology
strategy is similar to GORT’s total size in dividing an
object into parts and summing the attributes of each
part. Other strategies are very different, e.g., its Simi-
larity strategy transforms an object into a similar one,
say Australia into Switzerland as a way of estimating
population size.

The BotE-Solver is similar to GORT in inferring new
information from old and in being unconstrained in
its inference mechanisms. Since it uses a statically cu-
rated knowledge base, it does not need to curate dy-
namically, as GORT does. It does not take advantage of
the Semantic Web in retrieving information. Nor does
it assign an uncertainty measure to its results. Instead,
users are recommended to solve each problem in mul-
tiple ways in order to estimate the robustness of the
results.

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 13

System SW Inf Uncon DynCur Uncert
Watson 7 4 4 4 4

BotE-Solver 7 4 4 7 7

QUARK 7 4 4 7 7

GORT 4 4 4 4 4

Table 5
Related work summary:

3.5.3. The QUARK Deductive Question Answerer
QUARK answers questions posed in English by com-

bining knowledge from multiple sources [21]. Al-
though it embodies several novel features, for the pur-
poses of this comparison with related work, it can be
regarded as typical of question-answering systems. It
uses the GEMINI English parser to translate the in-
put questions into a logical form and then the SNARK

theorem prover to derive the required answer from
pre-stored knowledge. It draws that knowledge from
a variety of third-party ontologies, which include: the
Alexandria Digital Library Gazetteer, the CIA Fact-
book and various NASA sources. It also uses the ASCS

Semantic Web search engine, but that appears only to
be used to search the above ontologies and not to do
unbounded searches on the Semantic Web. Curation is
used to translate between the formalisms of the vari-
ous source ontologies and the internal formalism used
by SNARK. The forms of inference used by SNARK

are resolution, paramodulation and procedural attach-
ment, which calls domain-specific procedures, e.g., for
numeric calculation, on certain goal types. Procedural
attachment is also used by SNARK to access the various
third-party ontologies.

QUARK is similar to GORT in inferring new infor-
mation from old and in being unconstrained in its in-
ference mechanisms. Since it uses a statically curated
ontologies, it does not need to curate dynamically, as
GORT does. It does not take advantage of the Semantic
Web in retrieving information. Nor does it assign an
uncertainty measure to its results.

4. Conclusion

In this paper we have argued that to make best use
of the Semantic Web we must accommodate the fol-
lowing four lessons:

1. Factoid retrieval only scratches the surface of
what is possible. We want not just to retrieve
known information from the internet, but com-

bine it in novels ways to infer previously un-
known information.

2. We can draw on a wide range of different in-
ference mechanisms to infer this new informa-
tion. We need not be constrained to those infer-
ence mechanisms associated with the format in
which the retrieved information is stored, e.g.,
description logic decisions procedures. The re-
trieved information can, instead, be curated into
whatever format is required by our preferred in-
ference mechanism.

3. The curation of information must be dynamic,
i.e., done at retrieval time in an application-
specific way. This is not only because the Seman-
tic Web is too big and growing too fast for static
curation to be feasible. It is also because curation
has to be application and inference mechanism
specific.

4. The Semantic Web is very noisy. A large amount
of its content is inaccurate or downright false.
Uncertain results should not be presented to users
as if their truth was guaranteed. Some measure
of their uncertainty must be calculated and made
available to the user, so they can judge how much
faith to put into any decisions based on them.
This may involve trying to answer a question in
independent ways and comparing the different
answers.

We have illustrated these four lessons by describing
the GORT system, which we claim embodies all four
of them. We have contrasted it with rival approaches.
Only IBM’s Watson provides a comparable illustration.

References

[1] Abourbih, Jonathan A. (2009). Method and system for semi-
automatic guesstimation. Msc project, University of Edinburgh,
Scotland.

[2] Abourbih, J.A., Blaney, L., Bundy, A. and McNeill, F. (2010).
A single-significant-digit calculus for semi-automated guessti-
mation. In Giesl, Jürgen and Hähnle, Reiner, (eds.), Automated
Reasoning, volume 6173 of Lecture Notes in Computer Science,
pages 354–368. Springer.

[3] Berners-Lee, Tim, Hendler, James and Lassila, Ora. (May
2001). The Semantic Web. Scientific American, 284(5):34–43.

[4] Bizer, Christian, Heath, Tom and Berners-Lee, Tim. (2009).
Linked data—the story so far. International Journal on Semantic
Web and Information Systems. In press.

[5] Blaney, L. (2010). Semi-automatic guesstimation. Undergrad-
uate project, University of Edinburgh, Scotland.

[6] Etzioni, O., Fader, A., Christensen, J., Soderland, S. and
Mausam, M. (2011). Open information extraction: The second
generation. In Proceedings of IJCAI, pages 3–10.

14 Bundy, Sasnauskas & Chan / Solving Guesstimation Problems

[7] Ferrucci, D. A. (May/July 2012). Introduction to “this is wat-
son”. IBM J. Res. & Dev., 56(3/4):1:1–1:15.

[8] Gkaniatsou, A., Bundy, A. and McNeill, F. (2012). Towards
the automatic detection and correction of errors in automatically
constructed ontologies. In 8th International Conference on Sig-
nal Image Technology and Internet Based Systems, pages 860–
867.

[9] Hilbert, David and Bernays, Paul. (1939). Die Grundla-
gen der Mathematik — Zweiter Band. Number L in Die
Grundlehren der Mathematischen Wissenschaften in Einzel-
darstellungen. Springer.

[10] Kalyanpur, A. et al. (May/July 2012). Structured data and
inference in deepqa. IBM J. Res. & Dev., 56(3/4).

[11] Lenat, D.B. (November 1995). CYC: a large-scale investment
in knowledge infrastructure. Commun. ACM, 38(11):33–38.

[12] Lopez, Vanessa, Guidi, Davide, Motta, Enrico, Peroni, Silvio,
d’Aquin, Mathieu and Gridinoc, Laurian. (October 2008). Eval-
uation of semantic web applications. OpenKnowledge Deliv-
erable D8.5, Knowledge Media Institute, The Open University,
Milton Keynes, England, Accessed 10 August 2009.

[13] MacKay, D. J.C. (2009). Sustainable Energy - without the hot
air. UIT Cambridge Ltd., Cambridge, United Kingdom.

[14] Paritosh, P.K. and Forbus, K.D. (2005). Analysis of strategic
knowledge in back of the envelope reasoning. In Proceedings
of the 20th National Conference on Artificial Intelligence (AAAI-
05).

[15] Santos, A. (2009). How Many Licks: Or, How to Estimate
Damn Near Anything. Perseus Books.

[16] Sasnauskas, G. (2012). Semi-automatic guesstimation iv. Un-
dergraduate project, University of Edinburgh, Scotland.

[17] Shadbolt, N., Gibbins, N., Glaser, H., Harris, S. and Schraefel,
M.C. (2004). CS AKTive space, or how we learned to stop
worrying and love the semantic web. IEEE Intelligent Systems,
19(3):41–47.

[18] Systems, IBM and Group, Technology. (February 2011). Wat-
son — a system designed for answers: The future of workload
optimized systems design. An IBM white paper, IBM.

[19] Tummarello, G., Delbru, R. and Oren, E. (2007). Sindice.com:
Weaving the open linked data. In Aberer, K. et al, (ed.), The Se-
mantic Web, volume 4825 of Lecture Notes in Computer Science,
pages 552–565. Springer Berlin / Heidelberg.

[20] van Assem, M., Rijgersberg, H. and Top, J. (2013). Ontology
of units of measure and related concepts. Semantic Web, 4(1):3–
13.

[21] Waldinger, Richard J., Appelt, Douglas E., Dungan, Jen-
nifer L., Fry, John, Hobbs, Jerry R., Israel, David J., Jarvis, Pe-
ter, Martin, David L., Riehemann, Susanne, Stickel, Mark E. and
Tyson, Mabry. (2004). Deductive question answering from mul-
tiple resources. In New Directions in Question Answering’04,
pages 253–262.

[22] Wang, Y. (2011). Semi-automatic guesstimation 3. Msc
project, University of Edinburgh, Scotland.

[23] Weinstein, L. and Adam, J.A. (2008). Guesstimation: solving
the world’s problems on the back of a cocktail napkin. Princeton
University Press.

Bundy, Sasnauskas & Chan / Solving Guesstimation Problems 15

ID
Correct
Answer

GORT 4
Answer

Range Comments

1 2.104m 2.104m [2.104m, 3.104m] Average car length is accurately guesstimated at 5m based on 9 data points, which
are given in a variety of units, none explicitly defined.

2 4.1010 4.1010 [1.10−2, 7.1010] Wide range arises from Loch Ness related products when guesstimating its volume.
Bathtub volume available in gallons and litres, none explicitly defined.

3 5.10−1 5.10−1 [1.10−1, 5.105] Weight of the heaviest recorded buffalo was retrieved. Average lifespans of different
breeds of dogs are available. User assumes a dog eats one portion of “dog food” a
day and inputs the number of hours a day has.

4 1.103 1.103 [1.103, 2.103] Value directly unavailable, must decompose into passenger capacity, fuel capacity
and range. Fuel capacity directly unavailable; must rely on manual discovery.

5 5.106 1.100 [1.10−1, 2.100] Cup volume directly unavailable; must decompose into height and diameter. Bus
volume directly unavailable; must decompose into width, height and length. Volume
of toy double decker bus is retrieved.

6 9.1014w 3.1013w [2.1013w, 2.1014w] The area of the Western Sahara only is retrieved, leading to under-guesstimate.
Watts per area of a solar panel is not directly available but is a little under-
guesstimated by decomposing into watts and area, then area into width and height
from 7 data points.

7 2.10−3 1.10−2 [1.10−5, 2.10−1] Electricity consumption of UK under-guesstimated at 2.1011w/yr from 10 data
points with wide range [2.108w/yr,3.1012w/yr] and no explicitly defined units.
Units guesstimated to be Watts, Megawatts and kWh per year.

8 $9.1011 $2.1012 [$1.109, $6.1013] Price per watt of solar panels not directly available; decomposed into price and
wattage then a little under-guesstimated at 10 $/w from 7 data points.

9 2.10−2 2.10−2 [4.10−6, 2.10−2] Value directly unavailable; must decompose to the area of UK, the consumption
in UK, the occupied area of a wind turbine and the production value of a wind
turbine. Production value of wind turbines directly unavailable; must rely on manual
discovery.

10 2.106 2.106 [4.102, 2.106] Value directly unavailable; must decompose to electricity consumption of UK and
the production value of a wind turbine. Production value of wind turbines directly
unavailable; must rely on manual discovery.

Table 2
Evaluation results for GORT 4.0. The answers to the questions in
Table 1 are given together with correct answers, which were derived
manually from a variety of publicly available sources.

