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Abstract. The vision of Linked Topographic Data is critical for the Semantic Web, since topographic data are fundamental to 
a wide range of geoscientific analyses and mapping of geographic phenomena. Terrain datasets are probably the most im-
portant for Linked Topographic Data. Terrain is computationally represented using a continuous field data model (2-D surfac-
es), but the Semantic Web needs discrete objects for assigning URIs. This prevents terrain surface datasets from being shared 
on the Semantic Web—which is ironical given the availability of incredibly high resolution terrain data. Surface networks, 
which are a topologically connected set of shape-critical points, lines, and areal districts, can be used to share information 
about surfaces on the Semantic Web. In this paper, we reinterpret surface network theory for Linked Topographic Data, and 
present two OWL ontology design patterns. Surface Network is a template pattern intended for any type of surface network. It 
formalizes only the topological connections between surface network elements, since formalized of the metric properties re-
quires commitment to a domain-specific spatial ontology. Geospatial SNODP extends SNODP for metric geographic space 
through alignment with the GeoSPARQL geospatial ontology. It can be used to annotate any geospatial surface network, but 
is expected to primarily serve as a core terrain ontology for Linked Topographic Data. 
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1.  Introduction 

1.1 Why ontology design patterns for the Semantic 
Web? 

The Semantic Web is a long-term vision of provid-
ing common frameworks for sharing, integrating, and 

reusing diverse data. Linked Data is the current prac-
tical expression of the Semantic Web for publishing 
data in accordance with a set of best practices. In 
words of the originator of both concepts, Tim Bern-
ers-Lee, Linked Data is “Semantic Web done right” 
[3]. Linked Data ideally breaks barriers between data 
and liberates them from hitherto inaccessible data 
silos. Linked Data is still mostly about instance level 
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data to keep entry barriers low, but as argued by [27], 
sensible reuse of such data requires conceptual level 
integration between data sources and awareness of 
the societal context of the origins and reuse of data. 
In this regard, ontologies are essential pillars for the 
success of Linked Data. They define the semantics of 
data and clarify valid contexts of reuse. Misunder-
standings and incorrect use of data are ultimately 
attributable to vague or insufficient descriptions and 
unintended interpretations by human designers [19]. 
For the heterogeneous Semantic Web, to be of any 
practical value, standardized approaches to ontology 
design need to be replaced or complemented with 
contextual and/or domain-oriented ontologies [24, 
34]. Large, comprehensive ontologies are difficult to 
design and reuse due to complexity and lack of rea-
son-ability [58]. An emerging consensus seems to be 
that Semantic Web ontologies will be most useful if 
they are minimalist in scope, and serve only to con-
strain, not completely specify, interpretations [28, 
29]. Semantic Web ontologies will be necessarily 
heterogeneous, so multiple ontologies reflecting di-
verse ontological commitments will also be needed to 
capture socially situated, context-dependent interpre-
tive frameworks [1, 6].  

A significant challenge generally has been the lack 
of people with both domain expertise and ontology 
engineering skills. However, for the Semantic Web 
community, it seems to have been a blessing in dis-
guise, since it created a synergy between domain 
experts and engineers resulting in an ontology design 
process wherein domain experts are actively engaged 
in the design process and not merely providing feed-
back to the engineers [24]. Ontology Design Patterns 
(ODPs) are a recent design paradigm to address this 
and several other issues discussed above. They are 
pragmatic alternatives to foundational ontologies, 
such as DOLCE [35], BFO [18, 55] or SUMO [39], 
which are too abstract to be understood by non-
logicians interested only in Linked Data. The idea of 
a design pattern was first introduced in architecture 
as an archetypal solution to standard design problems. 
The idea also caught fire later in software engineer-
ing [10, 12] and DBMS design [20]. Solutions to 
commonly encountered software component design 
problems were published as abstract software pat-
terns, which tremendously increased efficiency and 
robustness of the software design process. Similarly, 
ontology design patterns have become very popular 
in ontology engineering as a modeling solution for 
recurrent ontology design problems [13, 58]. ODPs 
are easy to understand and act as ready-to-use build-
ing blocks in larger scale ontology engineering ef-

forts [14]. The primary benefits of ODPs are that 
they are very specific in scope serving as well-
defined “units” of knowledge, and are easily com-
prehensible and reusable, factors critical for a fast-
growing, but conceptually robust, and culturally di-
verse Semantic Web.  

1.2 Surface network ontology patterns for Linked 
Topographic Data 

Inspired by several of the ideas discussed above, 
since 2008, a series of VoCamp (Vocabulary Camp) 
workshops 1

In this paper, we report on two related ontology 
design patterns: Surface Network ODP (SNODP) and 
Geospatial Surface Network ODP (Geospatial 
SNODP) that we developed at the 
GeoVocampSOCop2012 workshop

 have engaged academic scholars and 
practitioners from several types of institutions and 
industries to work in a few small groups to create 
lightweight vocabularies and/or ontologies for the 
Semantic Web. Between 2011 and 2013, seven 
GeoVoCamps were organized for creating geospatial 
vocabularies and ontology patterns, in response to the 
growing recognition of the Geospatial Semantic Web 
[4, 9, 30], which is a special interpretation of the Se-
mantic Web centered on the spatiotemporal aspects 
of Linked Data and other Semantic Web resources 
[16, 26, 65]. GeoVoCamp participants include both 
ontology engineers and domain experts, who are 
cognizant of the benefits of philosophical, founda-
tional ontologies, but also appreciate the bottom-up 
approach of capturing partial domain semantics.  The 
goal is to focus on a tractable concept and create pre-
liminary versions of a geospatial ontology pattern. 
The work is revised and finalized later by the collab-
orators. Most outcomes from GeoVoCamps are 
available online in some form for public review on 
the workshop wiki or website, and some are eventu-
ally reported in a formal publication (such as this 
paper and [23].  
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. There are mul-
tiple motivations for choosing the niche and technical 
topic of surface networks, and as discussed later, the 
patterns have great relevance to the Semantic Web—
but the primary motivation is to introduce and pro-
mote the concept of Linked Topographic Data. In a 
nutshell, it is our vision of making topographic da-
tasets stored in various object, network, and field 
data models easily accessible and interoperable 
through Semantic Web technologies. The most fun-

http://www.vocamp.org for an overview of all VoCamps. 
2 URL: http://www.vocamp.org/wiki/GeoVoCampSOCoP2012.  
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damental component of topographic databases—and 
of Linked Topographic Data—is terrain, i.e., the 
shape of the earth’s surface, which serves as the 
physical backdrop for all human activities, and is a 
critical factor in most geoscientific studies. From a 
data modeling perspective, terrain can be conceived 
as a spatially continuous (scalar) field of elevations 
measured with respect to a datum such as mean sea 
level. (A scalar geospatial field is represented math-
ematically as a surface that covers some part of the 
Earth’s surface). Since scalar fields can be sampled 
in reality only at discrete locations, if a spatially con-
tinuous representation is desired, they must be math-
ematically approximated by surfaces, which are sin-
gle-valued mathematical functions [z = f(x, y)] of 
position in 2-D space. The surface function is the 
basis of spatial interpolation at unsampled locations, 
and the form of the function depends on the spatial 
characteristics of the field it approximates. However, 
the field data model poses a general problem for the 
Semantic Web because fields store measurements of 
a spatial property without reference to any identifia-
ble object. This makes it difficult to share field based 
datasets on the Semantic Web which requires stable 
objects that can be assigned independent identities 
(URIs) [25]. This is preventing an enormous amount 
of geoscientific data, stored as fields, to be shared on 
the Semantic Web.  

This fundamental problem is the reason for us se-
lecting SNODP and Geospatial SNODP as the found-
ing patterns for Linked Topographic Data. Surface 
networks abstract the global spatial shape of any sur-
face in terms of a topological network of shape-
critical points (peaks, passes, and pits), lines (ridges, 
course, slope, and contour lines), and areas (hills, 
dales and territories). Surface network elements make 
it possible to share, at least, the basic shape semantics 
of their source surfaces (which are mathematical 
models of fields) on the Semantic Web.  Surface 
networks substantially advance the vision of Linked 
Topographic Data because of the well-established 
importance of terrain shape (or geomorphometric) 
measurements in terrain analysis [66], and also in 
studying people’s naïve, culturally and linguistically 
rooted cognition and communication about topogra-
phy [33, 56]. Another major contribution of this work 
is the realization that surface network ontology can 
serve as the core ontology for both geoscientific and 
culturally based conceptualizations of the terrain. 

Linked Topographic Data is not just a vision for 
the Semantic Web, but also aligns well with the pub-
lic service goals of national mapping organizations, 
such as the United States Geological Survey (USGS) 

and the UK Ordnance Survey, which are developing 
topographic map ontologies to support semantic 
search for mapped topographic features [15, 37, 61]. 
Although these efforts are not coordinated across 
organizations, all are similarly challenged by the 
need to integrate field and object topographic data 
models. For example, if the current version of The 
National Map3

A noteworthy point about our work is that the 
scope of the patterns we designed is actually wider 
than the cause of Linked Topographic Data that orig-
inally inspired it. Two-dimensional surfaces are easi-
ly associated with the surface topography because we 
live on it, but there are many other surfaces that can 
also be conceptualized. Thus, we consciously de-
signed the patterns such that we could stay true to 
both the spirit of ODP design and the theory of sur-
face networks, which is a general theory for all (not 
just terrain) surfaces. Our fundamental pattern 
(SNODP) can be used for capturing shape semantics 
of any type of surface, while our second pattern (Ge-
ospatial SNODP) is applicable to any geospatial sur-
face, including surfaces representing the physical 
terrain. The topic of surface networks was also quite 
suitable for a GeoVocamp workshop, because its 
basic principles are relatively compact, well-
understood, and unambiguous. Given the limited 
time at the workshop and diversity in backgrounds of 
participants at GeoVoCamps, it was important to 
select a topic that could be easily understood, de-
manded minimalistic shifts in participant’s perspec-
tives, and would yield ontology patterns that can 
benefit a large community of users. Surface network 
theory met these criteria very well.  

, an online mapping and topographic 
data exploration service from the USGS is queried 
for a named landform, the answer is effectively a 
point location associated with the named landform, 
not the spatial extent and other physical properties or 
descriptors of that landform. That problem can only 
be addressed by creating and storing object-based 
representations of landforms in topographic data-
bases. However, extracting and characterizing land-
form objects from topographic data [53] and formali-
zation of the semantics of these and many other types 
of topographic features [62] are complex goals, 
which demand collaborations between several re-
search groups if Linked Topographic Data is to be 
successful.   
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2. Review of surface network theory and 
applications 

2.1 Surface network theory 

The basic theory of the surface network was pro-
posed more than 150 years ago by mathematicians 
and physicists [7, 36, 49]. Considering a two-
dimensional continuous smooth closed surface float-
ing in space with surface values relative to an internal 
reference point, Reech [49] described ideas surround-
ing three types of local extrema, or critical (singular) 
points, existing on the surface: maxima (i.e. peaks), 
minima (i.e. pits), and mixed extrema (saddle points) 
which are maxima across one axis and minima across 
another. The mixed extrema fall into two types, 
which Warntz [63] later called passes (lowest point 
between peaks) and pales (highest point between 
pits). Cayley [7] independently presented a theory of 
surfaces, focusing on contour lines and slope lines, 
where contour lines run horizontally and slope lines 
are orthogonal to contour lines running directly up 
and down slopes. He noted different shapes of the 
indicatrix and contour lines just surrounding each 
critical point. Peaks and pits have elliptical shapes 
and the saddles have hyperbolic shapes approaching 
the point where the contour has a knot and crosses 
itself. Two basic types of knotted contour lines exist: 
outloops, which are similar to a figure-eight, and 
inloops, which have one loop entirely contained 
within the other. Cayley [7] also identified special 
slope lines, ridge lines and course lines, which are 
particular slope lines that connect critical points. 
From each normal saddle point (pass), the slope lines 
of steepest ascent are called ridge lines, and ascend to 
peaks (rarely, to the same peak); the two slope lines 
of steepest descent from a saddle point (pale) are 
called course lines and descend to pits (rarely, to the 
same pit). The definitions and relations among these 
critical points and lines form the foundation of sur-
face networks. 

Maxwell [36] further developed surface network 
theory by describing and naming two types of re-
gions (called districts) on a surface bounded by 
ridge-lines and/or course-lines. A district around a 
peak and bounded by course-lines form a hill, and 
similarly a region around a pit and bounded by ridge-
lines was called a dale. All of the slope lines in a hill 
ascend to a single peak, and all of the slope-lines in a 
dale descent to a single pit, respectively. Using both 
special lines and districts along with the previous 
point relations, Maxwell proposed a set of numerical 

relations among the surface features. In the 1960s, 
William Warntz rediscovered the work of Cayley and 
Maxwell and synthesized much of the previous sur-
face theory [63, 64]. Warntz [63] also extended 
Maxwell's [36] concepts of districts by introducing 
territories which are subsets of districts and are 
bounded, in general, by two ridge lines and two 
course lines. Finally, Warntz also tabulated the 
vergency of forces flowing down the surface to lower 
values:  peaks, ridges, and hills have divergence; pits, 
courses, and dales have convergence; and passes, 
pales, and territories have mixed vergency. 

In an independent line of work, apparently not 
linked to Cayley and Maxwell, Morse [38] estab-
lished the mathematical theory of critical points on 
differentiable surfaces in Euclidean space and gener-
alized the results to multiple dimensions. Another 
mathematician, Reeb [48] conceived the splitting and 
merging of contours at critical points as forming 
what is a  now called Reeb Graph (also equivalent to 
the  Contour Tree) with critical points as nodes, ridge 
lines and course lines as edges, and territories as fac-
es. Peaks and pits, with infinitely small contours, are 
terminal nodes which are connected by edges, for 
ridge and course lines, to nodes representing the 
inloop and outloop contours of passes and pales. The 
pass and pale nodes represent points of topological 
change with hills or dales being split or merged in the 
graph. Later, Pfaltz [42] also developed a type of 
graph to represent relationships of surface network 
features and increase efficiency of storage and selec-
tion. Peaks and pits are connected via saddles with 
edges representing ridge and course lines. His math-
ematical interpretation and proofs strengthened the 
mathematical basis of the theory and led to its adop-
tion in computer science fields such as medical imag-
ing, and computer vision. Pfaltz [42] also proposed a 
graph-theoretic method called homomorphic contrac-
tion for simplifying surface networks in order to in-
crease efficiency of storage, selection, and retrieval. 
This process identified and simplified sets of related 
features without creating or destroying any topologi-
cal circuits. General patterns are maintained while 
redundant details could be stored as secondary linked 
data, accessed only if necessary. It is notable, howev-
er, that not all such simplifications resulted in general 
patterns that might be intuitively identified by people.  

An important point to note about surface network 
discussions in the literature is that over the years dif-
ferent authors have presented the same concepts in 
slightly different ways and using different terminolo-
gies. For a comprehensive review of surface network 



theory, equivalent terminologies, and challenges, we 
recommend [45, 46]. 

2.2 Practical applications 

Surface networks abstract surface-specific infor-
mation about surface structure of single-valued fields 
in a highly condensed form using identifiable fea-
tures such as critical points and special slope lines. 
Whether represented in a spatially embedded net-
work or as a graph, this limited set of data offers effi-
ciency in modes of storage, query, selection, visuali-
zation, and transfer. With surface network features 
available, most of the remaining surface data need 
not be stored or readily available for every stage of 
processing and analysis. This has benefits for visual-
izing surfaces (see a discussion in [46]). Some anal-
yses may be performed with only the surface network 
features, such as identifying regions of high variabil-
ity that may benefit from additional sampling or 
identifying courses or topographic watershed bound-
aries [31]. Also, a surface network is an objective and 
efficient aid for selecting values from the field data. 
For instance, using only the reduced set of network 
features, a manual or automatic selection may be 
performed to identify all of the relevant field data for 
a particular analysis.  The “Very Important Point” 
algorithm for constructing Triangular Irregular Net-
work (TIN) data models uses surface network theory 
to find a sparse set of points that maximize infor-
mation about the surface configuration. Spatial or 
graphical relationships among surface network fea-
tures can aid in such a selection, possibly finding all 
of the downslope values comprising a hill bounded 
by courses and associated with a particular peak or 
the inverse case for a pit. More complex features 
might also be identified. For example, generally de-
fined patterns of surface network features may help 
to find volcanoes, craters, or other features with 
characteristic configurations. It may be possible to 
match surface network features to intuitive, identifia-
ble features named by people in either general or 
specific terms with extended potential for location 
and navigation tasks, as well. A relatively unexplored 
application area of surface networks is comparison of 
surfaces [50, 51] and even tracking the morphology 
of a surface as it evolves in the real world or in digi-
tal animations and artificial simulations.  

3. Representing and interpreting surface networks 
for the Semantic Web 

3.1 Importance of surface network theory for the 
Semantic Web 

Surface network theory is amenable for formaliza-
tion as an ontology design pattern because of its 
compactness, and applicability to any kind of surface 
modeling. Apart from the above mentioned scientific 
applications, surface networks can benefit the Se-
mantic Web specifically in many ways: 

i. As already mentioned, many significant vol-
umes of scientific data, especially in the geosci-
ences, are stored as fields, but Semantic Web 
ontologies are object-based [25]. The basis of 
Linked Data is URIs assigned to every discrete 
entity on the Web, but field datasets are mere ar-
rays of stored values, with no explicitly encoded 
objects that could be assigned URIs. Fields are 
also stored using special format data models 
(e.g., raster, TIN, netCDF) and using complex 
data reduction methodologies—conversion to 
RDF results in intractably large data files. Clear-
ly, fields present tremendous interoperability 
challenges for Linked Data and the Semantic 
Web. In general, only objects extracted from 
fields should become part of Linked Data (e.g., 
landcover objects from remotely sensed elec-
tromagnetic fields, topographic features from 
terrain fields), but feature extraction methods 
are domain specific and highly context depend-
ent. Surface network theory can help by allow-
ing, at least, the shape semantics of any surface 
to be easily expressed and shared through sets of 
discrete objects.  

ii. As noted in [41] notes, advances in computer 
visualization facilitate human comprehension of 
shapes, but computational reasoning with irregu-
lar shapes is a significant challenge. Because of 
its well-defined structure, a surface network 
provides a way to logically reason about geo-
metric, topological, and mereo-topological rela-
tionships between distant features observed on a 
surface. It also forms a hierarchy that can be ex-
ploited for scale sensitive queries and abstrac-
tion of data.  

iii. A surface network also serves as an objective 
data reduction knowledge pattern for sharing 
large surface datasets. Surface networks can also 
be further generalized. The net reduction could 
be as much as 90% according to one study of 



vector representations of surfaces [21]. This in-
creases the efficiency of both human compre-
hension, and computational storage and pro-
cessing of surfaces, especially for high resolu-
tion surfaces represented with ten to hundreds of 
millions pixels or data points, creating tremen-
dous data processing and transmission problems. 

iv. One of the critiques of the Semantic Web is that 
its ontologies often are engineering artifacts and 
lack cognitive validity [47]. Surface network 
theory scores highly on that account, since it has 
strong cognitive validity, despite being a math-
ematical construct. Its basic elements are easily 
conceptualized and visualized due to its reliance 
on shape patterns derived from topographic fea-
ture types (e.g., peak, pit, pass, ridge line, course 
line, and slope lines) that are simple and generic 
enough to make intuitive sense to most people, 
irrespective of their linguistic or cultural back-
ground. 

v. The surface network patterns proposed here are 
not just ontology engineering artifacts, but en-
capsulations of well-established scientific con-
cepts. The original theory is already known to 
have several scientific applications. Availability 
and popularity of ontology patterns for surface 
networks will hopefully spur more innovative 
approaches to surface data modeling and shar-
ing, and advance the cause of e-Science on the 
Semantic Web [5]. 

vi. From the perspective of ontology and the Se-
mantic Web, various domains, such as physics, 
mathematics, computer vision, geomorphology, 
hydrology, or human and physical geography, 
could use a common analytic vocabulary of sur-
face network features and their relationships. 
With surface network ontology patterns availa-
ble for Linked Data in the Semantic Web, gen-
eral patterns and processes may be revealed 
within or across research domains. 
 

3.2 Importance of surface network theory for Linked 
Topographic Data   

The Linked Topographic Data initiative will suc-
ceed if there is ubiquitous adoption, applicability and 
interoperability of different types of topographic data 
models. It is critical to start with methods that bridge 
the conceptual and technological divide between two 
historically disparate approaches to terrain data mod-
eling: (a) 2-D field-based data models suited for sci-
entific computations and the de facto standard for 

storing and sharing terrain data, and (b) the object-
based data models that are needed to support intui-
tive, natural language driven terrain information re-
trieval [34]. Surface networks are clearly quite im-
portant to Linked Topographic Data. For example, 
surface network theory was used in [53] for linking 
elevation field to object representations of topograph-
ic eminences. The method can be similarly useful for 
linking field and object versions of watersheds, val-
leys and many other landforms. A recent pilot study 
by the USGS extracted and quantified characteristic 
attributes of Meteor Crater from a digitally scanned 
topographic map and an orthophoto, published the 
data on the Semantic Web, and also implemented a 
query interface [60]; however, for semi-automated 
topographic object extraction, elevation and deriva-
tive fields are preferable to digitally scanned topo-
graphic maps and satellite imagery. Terrain surface 
network elements can act as topographic markers 
[32] that can be used to extract landforms, for auto-
mated location and annotation in visual displays of 
topographic data, and for geospatial registration and 
alignment of many types of topographic datasets. 

Many types of semantic queries about topographic 
relationships can be answered quickly once surface 
networks are created for the earth’s surface. As 
shown in [52], watershed and mountain hierarchies 
can be derived from terrain surface networks, which 
when combined with the topological information, and 
toponym databases, allows determination of river 
networks, ridge networks, mountain-valley connec-
tions, constituting mountains of mountain ranges, etc. 
Such queries can be resolved by processing only the 
much more compact surface network, without rea-
soning with complex topographic feature geometries. 
When a surface network is examined in combination 
with its source surface, even more detailed infor-
mation emerges about surfaces. For example, the 
spatial pattern of ridge and course lines may suggest 
certain erosion regimes of consequence to geomor-
phologic and hydrologic analyses. Advantages also 
accrue in computational data modeling of terrain. 
Algorithms for converting topographic surfaces from 
a raster to a TIN representation model rely on surface 
network theory to find Very Important Points (VIPs) 
(i.e., critical points), preservation of which as nodes 
in the TIN ensures that the basic topographic struc-
ture is maintained. This increases the visual fidelity 
of terrain based visualizations, and also maintains the 
spatial, topological, and hydrologic properties of ter-
rain features.  



3.3 Understanding surface network semantics rele-
vant for designing ontology patterns 

While Semantic Web ontologies were always in-
tended to be reusable, designing easily reusable on-
tologies has proven more challenging for a number of 
reasons: size and complexity of the ontology, incom-
patible assumptions about the domain, required com-
prehension of concepts unrelated to the task at hand, 
and demanding inferential requirements. FOAF4 and 
SKOS5

The two Surface Network ODPs are examples of 
content patterns, and an example of a growing list of 
geospatially motivated patterns that act as small re-
sources of geospatial domain knowledge on the Se-
mantic Web. It is important to note that because this 
is the first known ontology of a surface network and 
created specifically for the Semantic Web, it encap-
sulates only the core theoretical concepts needed for 
data sharing. A much more expressive ontology of 
surface networks would be needed for creating a 
comprehensive ontology of all possible entities and 
relationships. That ontology would also not be small 
or modular enough, and too complex for only sharing 
data on the Semantic Web. As such, all choices were 
made to create a streamlined, maximally reusable 
ontology pattern, and eschew the trappings of a com-
prehensive reference ontology for surface networks. 

 are two popular ontologies that show the po-
tential of small, portable, or “sustainable” ontologies. 
Ontology modularization [17] or knowledge patterns 
[8] can alleviate the problem through small ontolo-
gies that represent only a slice of a domain. As men-
tioned earlier, a similar approach is that of ontology 
design patterns (ODPs), which are designed as do-
main independent solutions to a general class of 
problems, and readily expressible in any logical lan-
guage [13]. While ODPs can be of several types [14], 
only Content Ontology Design Patterns (CPs) are 
relevant here since they encode domain concepts 
using non-logical, domain-specific vocabulary—the 
other types of patterns pertain to abstracting ontology 
engineering processes. CPs are characterized as 
“computational, small, autonomous, hierarchical, 
cognitively relevant, linguistically relevant, and best 
practices”, and often reused through specializations, 
extensions, or compositions [43]. 

The key to designing surface network patterns is to 
understand that unlike physical road, river or blood 
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vessel networks, the surface network is a network of 
abstract entities. The surface from which it originates 
is similarly a mathematical entity that represents both 
material surfaces extending in physical space (e.g., 
earth’ crustal surface, earth’s gravitational (Geoidal) 
surface, exterior of an animal body, and microscopic 
surfaces as studied in physics and chemistry) and 
abstract surfaces extending in conceptual space (e.g., 
surfaces of: population density, crime potential, sim-
ulated terrain, and grayscale images). In case of a 
physical surface (e.g., the earth’s surface), some of 
the pattern’s classes may correspond to observable 
features of the real world surface (e.g., peaks, passes, 
ridge tops, valleys), but they remain mathematical 
entities that should not be confused with the real 
world physical entities that they idealize. 

In a purely topological surface network, the spatial 
configuration of network objects may be avoided (i.e., 
no coordinates for points or lines are recorded). The 
exclusively graph theoretic representation still allows 
resolution of several queries related to the topology 
of the surface, by facilitating selective access and 
retrieval of information about surface shape [42]. 
However, the inability to embed the surface network 
in metric space means the lack of support for spatial 
analysis, visualization in metric space, and optimiza-
tion of queries for surfaces. A purely topological 
network may still support storing the surface height 
associated with the critical points, which allows addi-
tional inferences to be made (e.g., calculating peak 
prominence and pit depths with respect to saddle 
points). Surface heights also allow the realization of a 
weighted surface network, where weights are calcu-
lated as the difference in surface values between the 
critical points [70].  

Realization of metric surface networks [67] re-
quires a surface network to remain spatially co-
registered with its source surface, and spatial coordi-
nates of at least the critical points need to be stored 
in the surface network. These points act as ‘entry 
points’ to the surface for information retrieval algo-
rithms seeking to use surface networks in combina-
tion with surfaces [42]. The coordinates for the ridge 
and course lines may also be recorded to a desired 
degree of precision to yield their approximate geo-
metric signatures. However, automated extraction of 
critical lines from digital surfaces is not trivial [44, 
46]. When the geometric details of lines are not 
available, critical point coordinates can be used to 
compute approximate lengths of ridge/course lines, 
by calculating Euclidean (straight-line) distances 
between peaks/pits and saddle points and even stored 

http://xmlns.com/foaf/spec/�
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properties of edges. These calculated lengths can also 
be used as edge weights.  

Accordingly, two surface network ODPs, one top-
ological, and the other extended with geometric ca-
pabilities, are presented below. The topological, do-
main-independent Surface Network ODP (SNODP) 
captures only the semantics needed to create a topo-
logically consistent surface network, with the addi-
tional capability to store surface heights for critical 
points. SNODP can be extended with metric proper-
ties, but only through a separate extension pattern 
that must first commit to an ontology of the space in 
which the surface network is supposed to be embed-
ded. The Geospatial SNODP is such an extension of 
SNODP specifically for the geospatial domain. Both 
ODPs were developed in schematic form and later 
formalized in the OWL 2 language using the Protégé-
OWL ontology editing software. 

4. Surface Network ODP 

The Surface Network pattern discussed here is 
based on [7, 36, 42, 63]. Figure 1 is a schematic rep-
resentation of the classes that capture the essential 
semantics of the topological surface network and 
jointly form the first pattern called Surface Network. 
This pattern’s class names are derived from Warntz’s 
[63] paper, since his terms are quite similar to Max-
well’s and his modifications are more appropriate for 
describing general surface semantics on the Semantic 
Web (cf. use of pit and peak, instead of Maxwell’s 
terms summit and immit).6 Class relationship names 
are based on descriptive phrases in the literature, but 
not necessarily attributable to a particular author. The 
OWL formalization of the SNODP ontology is host-
ed online at a resolvable URI 7

4.1 Surface 

. In the interest of 
space, we will focus our discussion below on special 
conceptual issues that are not already evident from 
the schematic and the OWL ontology.  

As mentioned earlier, surface datasets generally 
should not be serialized as RDF triples due to con-
ceptual and technical reasons. Therefore, this class 
captures only the semantics of the fundamental rela-

                                                           
6  The OWL file includes comments that mention alternative 

terms used in the literature to refer to exactly the same entities as 
represented by the classes of the SNODP.   

7 The SurfaceNetwork OWL file is available @: 
http://purl.org/geovocamp/ontology/SurfaceNetwork.  

tionship that exists between a surface and its surface 
networks, and nothing else. A surface is ontologically 
prior to the surface network because the former is a 
pre-requisite for the extraction of the latter. The sur-
face network’s component critical points, lines, and 
districts completely inherit their topological and spa-
tial configuration from the source surface. The nature 
of this dependency is captured by the embeds and its 
inverse isEmbeddedIn properties, which are together 
meant to imply (albeit implicitly) that the location of 
all parts are fixed in space and derivable only from 
the specific locations in the surface where they are 
embedded. These properties are transitive under 
parthood, implying that every part of the embedded 
surface network must also be embedded in the sur-
face. This is specified axiomatically using a property 
chain [22], a built-in functionality in OWL 2 to allow 
axiomatic definition of new properties by a chain of 
object properties—in this case embeds and 
hasPart_directly, where the latter property is defined 
in the W3C recommended best practice 
SimplePartWhole OWL pattern that is imported by 
SNODP to model straightforward cases of part-whole 
mereological relations.8

                                                           
8 Simple part-whole relations in OWL Ontologies. Accessed 

August 30, 2013 @ 

 Property chain reasoning for 
the inverse properties isEmbeddedIn and 
partOf_directly holds automatically in OWL. A limi-
tation of using property chaining is that reasoners 
must be OWL 2 compliant to infer these axiomatical-
ly specified properties.  

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
simple-part-whole-relations-v1.5.html  
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http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.5.html�
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/simple-part-whole-relations-v1.5.html�


The surfaceData object property supported by the 
class is not a semantic property per se, but is needed 
for the technical purpose of storing a link to an exter-
nal resource hosting the surface dataset. It takes If 
access to the external surface dataset does not need to 
be provided, the class can remain uninstantiated to 
eliminate the overhead of providing access to surface 
data. Note that because we support this flexibility, a 
design consequence is that the isEmbeddedIn proper-
ty cannot be restricted with a cardinality of 1 to spec-
ify that the surface network and its parts are all em-
bedded in only one surface. Restricting the cardinali-
ty would also entail the mandatory instantiation of 
the Surface class because otherwise OWL rules 
would infer an unknown class to honor the cardinali-
ty. The result would be a vacuous assertion for every 
instance in the ontology that it is embedded in some 
unknown object (actually supposed to be the surface). 
Not enforcing the cardinality is an elegant safeguard 
against such redundant assertions and gives users the 
flexibility to decide whether to provide access to sur-
face datasets. 

4.2 SurfaceNetwork 

In addition to being the only class of the pattern re-
lated directly to the Surface class, the 
SurfaceNetwork class also serves as the collection 
class for all other classes needed to model the seman-
tics of a topological surface network. As shown in 

Figure 1, the hasPart_directly and its inverse 
partOf_directly properties from the SimplePartWhole 
pattern are used to specify the partonomic relation-
ship between the SurfaceNetwork class and 
CriticalPoint, SlopeLine, District, and Territory clas-
ses. These represent the four types of entities essen-
tial to the specification of the semantics of a surface 
network. 

The most common use case of SNODP will be for 
sharing data for only one surface network. In such 
cases, instantiation of the SurfaceNetwork class is not 
necessary since it only leads to redundant assertions 
that every instantiated individual is part of a surface 
network. The real purpose of this class is to help par-
tition the collection of different surface network parts, 
when multiple surface networks are generated and 
managed as part of the same resource (e.g., SPARQL 
graph, RDF document). However, an unintended 
consequence of not instantiating the SurfaceNetwork 
class is the disruption of the property chain needed to 
infer that the components or parts of the surface net-
work are embedded in the surface. That renders the 
Surface instance as a redundant stand-alone object in 
the ontology with no relationships to any other object 
in the ontology. 

4.2.1 CriticalPoint 
CriticalPoint has three subclasses: Peak, Pit, and 

SaddlePoint, which model, respectively, local maxi-
ma, local minima, and saddle (i.e., non-extrema) sta-

Fig. 1. Schematic representation of (only) the relationships between the classes of the Surface Network ODP. The inverse 
relationships are not shown in the diagram for maintaining clarity, but are mentioned in the diagram key. For other properties 
specific to a particular class only, consult the full ontology and the main text. 



tionary points (i.e., points where the first derivative 
(gradient) in all directions on a surface is zero mak-
ing the tangential plane at that point is parallel to the 
base plane of the surface). SaddlePoint has two sub-
classes: Pass and Pale. Since authors have used the 
term pass in two senses: i) to refer to any saddle 
point, and ii) the special case of saddle points that are 
the lowest point between two peaks, but are not bars 
(pales), in this pattern, we use SaddlePoint to cover 
all saddle points, and created Pass and Bars sub-
classes to distinguish between saddle points that are 
the lowest point connecting two peaks, from those 
which are the highest point connecting two pits, re-
spectively. All CriticalPoint classes also support a 
surfaceValue datatype property (of type double) to 
record surface heights as measured along an axis 
oriented orthogonal to the base plane domain of the 
surface.  

Critical points are the most basic elements of a 
surface network and in many cases, they are the only 
elements extracted when the full topological surface 
network is not needed or difficult to extract. Merely 
having knowledge of critical points or even a subset 
of them (e.g., only peaks or pits) is relevant in a lot of 
applications. For example, topographic maps general-
ly need to shown only peaks and some passes of stra-
tegic importance; finding only the pits for a terrain 
surface approximated through a digital elevation 
model is an important step in hydrological analysis; 
and in [53], only peaks and saddles were needed to 
guide algorithms for extracting the spatial extents of 
topographic eminences. 

4.2.2 SlopeLine 
Critical points are connected via slope lines, whose 

semantics are modeled via the SlopeLine class. Al-
most every slope line trends on the surface between a 
peak and a pit—except ridge and course slope lines 
which have saddle points at one of the extremities 
and a peak or pit, respectively, at the other. Ridge-
Line and CourseLine are subclasses to recognize spe-
cial slope lines which are the steepest slope lines be-
tween a saddle point and a peak or pit, respectively, 
and deemed critical to surface shape description. 
Other slope lines do not signify anything unique 
about surface shape, and they are normally not ex-
plicitly stored in databases. The exact shape of ridge 
and course lines is not of interest in SNODOP, since 
it only aims to capture the topological connection of 
the lines with critical points. The lack of metric space 
support in the topological SNODP also means that 
ridge and course lines cannot be ‘overlaid’ spatially 

on the source surface. However, the property chain-
ing axiom for the isEmbeddedIn property of 
SurfaceNetwork instances ensures that all ridge and 
course lines are, at least, inferred to be embedded in 
the surface. 

Topological connections between critical points 
and lines are modeled through two slope line proper-
ties: hasUpperEnd and hasLowerEnd which distin-
guish the upper and lower ends of ridge and course 
lines, where up and down directions correspond to 
the direction of convexities (maxima) and concavities 
(minima), respectively. The range of the two proper-
ties must be some CriticalPoint. Additionally, OWL 
exact cardinality restrictions are used to specify that a 
ridge line has exactly one peak and exactly one sad-
dle point, while a course line has exactly one saddle 
point and exactly one pit, at the upper and lower ends, 
respectively. Ridge lines never reach pits, and course 
lines never reach peaks. The rest of the slope lines 
have a peak and pit at their upper and lower end, re-
spectively, but this is left unspecified because no 
separate subclass is included in the pattern for such 
slope lines. 

4.2.3 District and Territory 
The District class captures the semantics of the ar-

eas that the surface is partitioned into by the network 
of ridge and course lines that form the boundaries of 
the districts. The class subsumes Hill and Dale clas-
ses. The boundedBy property with a minimum cardi-
nality of 1 is used for specifying that every Hill has 
one or more CourseLine instances defining its 
boundary, and similarly every Dale has at least one, 
and often more, RidgeLine instances as its boundary. 
boundaryOf is declared in SNODP as the property 
inverse of boundedBy. Since a hill or dale is defined 
as the union of all slope lines converging at the same 
peak or pit, respectively, OWL cardinality constraints 
enforce that every Hill instance has exactly one Peak, 
and every Dale instance has exactly one Pit as a di-
rect part. Every instance of District must also have at 
least one instance of Territory (typically many) as a 
direct part. Every Territory instance is always 
boundedBy by at least one instance of SlopeLine, and 
is also a direct part of exactly one Hill and also one 
Dale instance. A territory in surface network theory 
represents a contiguous shared area between a hill 
and a dale.  



5. Extending SNODP for the geospatial domain 

SNODP eschews spatial semantics to avoid com-
mitment to a particular ontology of space and limit-
ing the applicability of the pattern, since different 
contexts need different formalizations of space (and 
time) semantics. SNODP semantics will suffice when 
only the locations of critical points and lines are not 
of interest—but such use cases will be less common 
than those requiring explicit spatial embedding of the 
surface network. Hence, SNODP should be interpret-
ed as a template ontology pattern that defines the 
fundamental topology semantics of a surface network, 
but it must be extended with spatial semantics such 
that the locations of critical points and (optionally of 
critical lines) can also be shared to explicitly embed 
the surface network in the space occupied by its 
source surface. We discuss here only one extension 
of SNODP for the entire geospatial domain, since the 
inspiration and majority of use cases still arise from 
geospatial analysis and visualization needs. Special 
attention is paid to topographic surface networks 
since the vision of Linked Topographic Data is the 
primary motivation for this project.   

5.1 Extending SNODP with GeoSPARQL 

SNODP covers most of the required semantics of 
surface networks. The extension for the geospatial 
domain only needs to additionally link the various 
surface network elements to their locations in geo-
graphic space, which already provides the framework 
for locating the source geospatial surface. For com-
patibility with the Semantic Web, a desirable end 
result would be serialization of locations in RDF tri-
ples. The Open Geospatial Consortium (OGC) re-
cently proposed a standard called GeoSPARQL, 
which extends SPARQL, a W3C recommended RDF 
query language, with geospatial information repre-
sentation and retrieval capabilities on the Semantic 
Web [40]. GeoSPARQL is based on existing OGC 
standards and also addresses several limitations with 
previously proposed geospatial vocabularies (see [2] 
for an extensive review). GeoSPARQL supports a 
small ontology for representing geospatial data se-
mantics. This ontology can be attached to any ontol-
ogy that needs to describe the location of entities. 
GeoSPARQL is not an ontology of the geospatial 
domain, but only a vocabulary for asserting and que-
rying the location of geospatial entities using Euclid-
ean geometry primitives. There are several properties 
of spatial entities that GeoSPARQL cannot handle. 

Nonetheless, for the modest technical goal of extend-
ing SNODP with geospatial capabilities, it is current-
ly the best publicly available solution. Still, we do 
not discuss this alignment with GeoSPARQL pre-
scriptively, but only to highlight  some important 
conceptual issues related to Geospatial SNODP de-
sign that must be considered regardless of which spe-
cific spatial ontology is used.  

5.2 Geospatial Surface Network ODP 

Figure 2 schematizes Geospatial SNODP as de-
rived by alignment with GeoSPARQL ontology. The 
OWL formalization of Geospatial SNODP is availa-
ble online at a resolvable URI.9

                                                           
9  The GeospatialSurfaceNetwork OWL file is available @: 

 The primary class in 
GeoSPARQL is geo:SpatialObject which represents 
all spatial entities, and subsumes two subclasses: 
geo:Feature and geo:Geometry. These are declared 
to be Disjoint to clearly distinguish that geospatial 
entities are different from the geometric abstractions 
needed to represent them as objects in spatial data-
bases. A geo:Feature is an abstraction of any entity 
which can have a real world location. No further spe-
cialization of this class is entailed since that is left to 
domain ontologies. The hasGeometry object property, 
which has geo:Feature as its domain and 
geo:Geometry as its range, links all geo:Features to 
their geometric representations. The geo:Geometry 
class subsumes all the geometry classes typically 
needed for representing the spatial extension of geo-
spatial entities. A geo:Feature can have multiple 
geo:Geometrys to support different reasoning con-
texts, and one them (usually the most detailed) may 
also be declared as the geo:defaultGeometry for typi-
cal use cases.  

http://purl.org/geovocamp/ontology/GeospatialSurfaceNetwork.  
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For RDF compatibility, the spatial location of 
geo:Geometry must be converted from traditional 
spatial database storage formats and serialized as a 
geometric literal, which can be based either on the 
Well-Known Text (WKT) 10  or the Geographic 
Markup Language (GML)11 vector geometry repre-
sentation standards. Unlike many other standards, 
GeoSPARQL supports multiple coordinate reference 
systems (CRSs) as defined by EPSG system.12

Any geospatial entity declared in other ontologies 
can be subsumed by geo:Feature to inherit geospatial 
properties and its location can be declared using the 
geo:Geometry subclasses. The geospatial ‘feature’ in 
most OGC standards, and the SDTS

 The 
geo:Geometry class further depends on the 
hasSerialization data property, which has two 
subproperties: geo:asWKT and geo:asGML, to link to 
the appropriate WKT or GML geometric literal rep-
resentation, respectively. Values for these properties 
use the geo:wktLiteral and geo:gmlLiteral data types 
respectively.  

13

                                                           
10 WKT was originally specified in Simple Feature Access (Part 

1: Common Architecture), an OGC® and ISO standard (19125). 

, a US Federal 
government standard, generally refers to an abstrac-
tion of a geospatial entity, which is typically assumed 
to have a physical extent in the real world. Geospatial 
surfaces present an interesting case in this regard. On 
one hand they are conceptual entities with no direct 
correspondence supposedly to physical entities; on 
the other, they acquire their significance only by be-
ing represented in geographic space, and in relation 
to other geographic entities. How should they be in-
terpreted in GeoSPARQL? One might argue for sur-

11 http://www.opengeospatial.org/standards/gml 
12 European Petroleum Survey Group (EPSG): http://www.epsg-

registry.org 
13 http://mcmcweb.er.usgs.gov/sdts/ 

face network elements to be declared as subclasses of 
geo:Geometry since they are, after all, idealized 
points, lines, and areas. However, there are several 
reasons not to do so. First, that would limit the repre-
sentation of a surface network element to only a par-
ticular geometric representation, precluding its repre-
sentation at different levels of detail with multiple 
geometries, all linked via its hasGeometry property 
to the same geo:Feature (and to each other). Second, 
because multiple surface networks may be realized 
for a surface, if the elements were only instances of 
geo:Geometry, tracking identical, shared elements 
across multiple surface networks is precluded. Final-
ly, and most importantly, such a choice would also be 
conceptually flawed since surface network elements 
are not mere geometric shapes; they also have specif-
ic spatial and topological properties, and there are 
many domain rules that apply to them.  

It is evident that for both technical and conceptual 
reasons, surface network elements cannot be sub-
classes of geo:Geometry, and must be subsumed by 
geo:Feature. Accordingly, the Geospatial SNODP 
classes: CriticalPoint, SlopeLine, District, and Terri-
tory are declared subclasses of geo:Feature. Their 
subclasses automatically inherit geo:Feature proper-
ties as well. All other properties from SNODP are 
retained. The geo:Geometry classes can be used for 
instantiating the location and shape of all surface 
network elements in Geospatial SNODP—an option 
that is not available in SNODP. Note that the 
SurfaceNetwork class does not need to be aligned 
with GeoSPARQL ontology since only instances of 
its contained classes can have spatial representation. 

Geospatial SNODP also supports elevation as a 
specialized sub-property of surfaceValue to support 
the most common use case of terrain surface net-

Fig. 2. Schematic representation of the top level classes of the Geospatial Surface Network ODP. 
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works. The property can simply be ignored for non-
terrain geospatial surfaces. This design choice is an 
efficient compromise because it precludes the crea-
tion of a separate pattern for terrain on account of 
just one sub-property, especially when Geospatial 
SNODP is predominantly expected to be used for 
terrain data sharing. Terrain features are formed un-
der the influence of gravity, and, therefore, terrain 
elevations must be orthometric, i.e., measured with 
respect to a level surface (e.g., Geoid or mean sea 
level) perpendicular to the gravity vector [36]. This is 
an indirect method of ensuring the correct vertical 
orientation of the surface in geographic space. Any 
orientation change of the surface effectively changes 
the shape of the surface and results in a different set 
of surface network elements. If the terrain surface is 
not constrained to be oriented in the gravitational 
“up” direction (by using orthometric elevations), the 
mathematically extracted shape elements will be just 
that—they will not be guaranteed to match in type or 
overlap in geographic space with observed terrain 
shapes. As one extreme case, if a surface were to be 
inverted, peaks get exchanged with pits, passes with 
pales, and course lines with ridge lines. Despite such 
constraints on the elevation sub-property, specifying 
the semantics of elevation is not within the scope of 
Geospatial SNODP—it must be addressed through 
another ontology pattern. We annotated the ontology 
file to describe the intent and terrain specific use of 
the elevation sub-property. 

5.3 Geospatial SNODP as a “core” terrain ontology  

Geospatial SNODP can be used for any type of 
geospatial surface network, physical or abstract, but 
we envision the primary use of this pattern to be for 
terrain surface data sharing. We contend here that 
geospatially embedded surface network elements are 
desirable as the primary constituents of a fundamen-
tal or core ontology that can underlie all other terrain 
ontologies because the shape elements can be clearly 
defined, and have clear correspondence with nearly 
universal topographic features. We outline the nature 
of these correspondences below. 

Peaks are universally known topographic features, 
while many morphologically salient passes are rec-
ognized, at least, by some groups, as part of paths 
from one mountain to another. Bodies of standing 
water fill basins or low lying areas, but if those areas 
were imagined to be dry, the lowest point within each 
basin would correspond to a pit in the surface net-
work. If outlets for the standing water bodies exist, 

they may be recognized as “natural” gateways from 
one basin to another—these are idealized as pales in 
surface networks. The shorelines of those water bod-
ies would be contour lines that self-cross (or self-
touch) at those pales. Watercourses (i.e., stream or 
river beds) are places where streams and rivers flow, 
and these should coincide with course lines. Drainage 
basins are perceived more for their function than 
morphology—they are  units of land that drain water 
‘together’ into watercourses that also lie within the 
extent of these basins. Drainage basins are equivalent 
to surface network dales, and are separated by drain-
age divides, which coincide often with ridge lines. 
Course and ridge lines, therefore, correspond to bona 
fide physical boundaries on the earth’s surface [57]. 
People also recognize mountain sides and valley 
walls as shared areas—these are territories in a sur-
face network. There is probably very little intuitive 
value to (surface network) hills, which represent land 
parcels partitioned by watercourses. Neither do those 
parcels correspond to natural, functional spatial units 
for explaining a spatial process, nor do they have a 
characteristic morphologic shape. In terrain with high 
relief, they may correspond approximately to areas 
occupied by mountains and hills, but in most other 
areas hill units may just contain, not exactly corre-
spond to landforms. It is also unlikely that people 
perceive the topological network that can be formed 
between the elements, but, individually, surface net-
work elements clearly have a correspondence to 
commonly understood terrain features. Surface net-
work elements therefore can function as the common 
vocabulary, and more formally, as a ‘core’ terrain 
ontology underlying both cultural (object-based) and 
geoscientific (field-based) topographic ontologies.  

Geospatial SNODP is well-positioned to serve as 
the ‘core’ terrain ontology since it covers most of the 
basic concepts needed for terrain ontology. However, 
it is not a comprehensive ontology of terrain surface 
networks, since there are some terrain features and 
relationships that are unaccounted for in the tradi-
tional theory. We list below several ways in which 
Geospatial SNODP cannot capture what holds for 
real terrain, because of limitations of the original 
theory it formalizes. 
− In surface network theory, saddle points are lo-

cations where exactly two ridge and two course 
lines meet. For real terrain, sometimes more than 
two ridge and course lines can meet at “monkey 
saddles” and neither is it necessary that ridges 
and valleys always meet at saddle points.  



− The real terrain often has flat areas which may 
act as local peaks, pits or saddle points, but they 
are hard to resolve during surface network con-
struction because of how algorithms generally 
encode how critical points are detected.  

− The mathematically defined ridge lines must 
trend along paths of steepest ascent between 
passes and peaks. However, in reality, many lo-
calized spurs and ridge networks that do not 
make it up to the peak or a pass can be ob-
served— these features cannot be represented as 
ridge lines in a surface network. Similarly, if 
there is a long near-planar valley wall, gullies 
can develop that do not extend up to the ridge 
and therefore do not have saddles at their tops, 
so they cannot be course lines even if they are 
ravines with large streams. Other cases of stream 
channels not connecting to passes also may re-
sult.  

− Conversely, many ridges and course lines in a 
surface network may have no noticeable terrain 
expression if the terrain is near-planar, so some 
surface network elements are practically redun-
dant if the ontology must include only morpho-
logic features of interest. This was shown in [53] 
as causing significant problems for computa-
tional analysis of DEMs for detecting the 
boundaries of isolated topographic eminences 
standing above planar lands.  However, the ridge 
and course lines will still play an important role 
in hydrological analysis of the terrain. 

− In the mathematical theory of surface networks, 
peaks/pits, passes/pales, and ridge line/course 
line systems are supposed to be complementary 
and equivalent duals of each other. However, 
when the actual terrain surface of the earth is 
considered, there are several differences between 
the semantics of terrain features and those of 
idealized surface network elements. On earth 
there are fewer pits, whereas highlands are much 
more dissected and there are many more peaks 
than pits on the earth’s surface. Watercourses 
serve an important geophysical function in the 
landscape since water flows downhill under the 
influence of gravity, eroding and transporting 
sedimentary material. Watercourses are, there-
fore, mostly monotonically connected terrain 
features because their morphology is reinforced 
over time with sustained hydrological (or gla-
cial) flow. In comparison, ridges are merely di-
vergent morphologic features which lose water 
and where minimum erosion occurs. Because 

nothing flows through ridges and they are often 
discontinuous features, which makes it difficult 
to detect them as topologically continuous fea-
tures extending from peak to pass.  

 
The implication of all these caveats is that for a 

complete representation of topographic semantics, 
Geospatial SNODP must be further extended with 
additional surface network semantics, and comple-
mented with other topography specific ontology pat-
terns. Some authors have suggested adding new ele-
ments and modifying or adapting the definitions of 
the classical elements to address these limitations [52, 
70]. It may be worthwhile to examine the suggestions, 
and if necessary, extend Geospatial SNODP with 
another pattern that is specialized exclusively for 
terrain surface networks. 

 
5.4 Geospatial SNODP as a “core” ontology for 

Linked Topographic Data 

Topographic information can be available in object, 
network, and field based geospatial datasets which 
must be all made to interoperate transparently to real-
ize Linked Topographic Data. Ontologies that define 
semantics of surfaces or fields are yet to be designed, 
but they will be scientific in scope and relatively free 
of linguistic and cultural impacts. In contrast, ontolo-
gies of terrain objects will be quite diverse, reflecting 
people’s varying ontological commitments rooted in 
cultural and linguistic differences. Several ontologies 
will be necessary to cater to the specialized semantics 
of different topographic sub-domains (e.g., eminenc-
es, surface water, land cover), and to account for var-
ying ontological commitments. This heterogeneity is 
nothing new for the Semantic Web, but fundamental, 
commonly shared concepts should be condensed as 
“core” ontologies that can be imported by all other 
topographic ontologies.  

We recognize Geospatial SNODP as one such core 
ontology that will be critical to the Linked Topogra-
phy Data initiative. On one hand, its purpose is to 
represent information about the geometric and topo-
logical structure of surfaces and make it accessible 
on the Semantic Web. On the other, Geospatial 
SNODP formalizes semantics of those entities that 
can be treated as the building blocks of higher level 
terrain objects (landforms) that have social im-
portance. Thus, in a Linked Topographic Data con-
text, Geospatial SNODP is positioned to play the 
pivotal role of a mid-tier ontology functioning to 
“vertically align” semantically sparse field ontologies 
at the lowest tier with semantically rich landform 



object ontologies at the uppermost tier. Tiered ontol-
ogy design has been suggested for spatiotemporal 
database design in [11], and particularly in the con-
text of hierarchically integrating terrain field and 
object database models [54]. We recommend this 
approach, for Linked Topographic Data, in general, 
because queries about topographic objects or loca-
tions often will need to be run across multiple linked 
topographic databases. Surface networks provide 
only a partial account of a surface; many use cases 
will use surface network elements to limit the search 
domain on the original surface. Similarly, even if 
topographic landforms or land cover areas are availa-
ble as objects with pre-calculated properties, users 
may still need access to the original elevation field 
and imagery for the covered area to calculate new 
properties or for visualization purposes. Without on-
tologies to explain how such databases and objects 
relate to each other, there cannot be ‘Linked’ Topo-
graphic Data. 

6. Discussion 

A universal ontology of space would (ideally) 
eliminate the need for domain-specific spatial ontol-
ogies, but the ontology of space (and time) has been 
argued philosophically for a long time, and it seems 
unlikely that a universal ontology will emerge any-
time soon. Currently, there is not even an established 
ontology for the geospatial domain—only standards 
for geometric representation and reasoning are avail-
able. Recently Descartes-Core was proposed at one 
of the GeoVocamps as a community-wide collection 
of geo-ontology patterns and vocabularies, best-
practice guides, examples and case studies, software 
and services. 14
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 We are hopeful that the effort will 
yield ontology patterns that can benefit the SNODP 
patterns. There are three patterns that we believe will 
greatly benefit surface network patterns. The biggest 
benefit will, however, be realized if SNODP can be 
aligned with a fundamental ontology pattern for 2D 
fields or surfaces. That would eliminate the need for 
the ad-hoc Surface class and empower users with 
semantic reasoning with both surfaces and surface 
networks. Second, the semantics of topological and 
mereo-topological connections are not explicitly 
specified in SNODP, and so it stands to undoubtedly 
benefit if an OWL ontology pattern formalizing 
mereo-topological semantics can be incorporated in 
the future. Final Geospatial SNODP will benefit from 
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its alignment with a general purpose Semantic Web 
ontology pattern that captures the general semantics 
of any network embedded in metric space. 

Geospatial SNODP’s reliance on GeoSPARQL is 
a practical choice for enabling the pattern with mod-
est geospatial capabilities. But, even if a comprehen-
sive and foundation ontology of space were to re-
place GeoSPARQL in the distant future and the pat-
terns were extended to cover all special cases ignored 
currently, still only semantics pertaining to the shape 
of the surface can be encoded using SNODP and de-
rivative patterns. There also will always remain other 
surface semantics, which can be extracted only by 
contextualizing surface values with background do-
main knowledge. For example, two topographic 
peaks at elevations of 1000 meters and 6000 meters 
will be associated with starkly different environmen-
tal conditions, but the semantics of terrain elevation 
as an environmental factor cannot ever be captured 
within Geospatial SNODP. In fact, even specifying 
basic elevation semantics (i.e., how it is defined or 
measured) is not within its scope. This is why surface 
network ontology must be complemented with do-
main-specific surface ontologies for sharing surface 
information.   

We also debated the value in aligning SNODP or 
Geospatial SNODP to a foundational ontology such 
as DOLCE [35], BFO [18, 55] or SUMO [39]. While 
ontologies cannot truly fix meaning, they are sup-
posed to restrict the interpretations of the classes and 
relations of a particular ontology. For example, in 
SUMO, a surface network element would be declared 
explicitly as an Abstract object. In BFO critical 
points, lines and areas could be declared as zero, one, 
or two dimensional spatial region entities, respec-
tively, but only if “spatial region” covers not just the 
physical space but also abstract mathematical spaces. 
In DOLCE, probably surface network elements 
should be defined as Abstract entities, although we 
wonder if surface network elements corresponding to 
physical entities, as for terrain features, would be 
better described as Mental Objects, which are Non-
Physical Endurant, but not Abstract entities. The 
problem seems to be though that none of the choices 
can completely capture some essential meta-level 
semantics that can help in general pattern interpreta-
tion. In our opinion, the benefits of aligning SNODP 
to a foundational ontology would be minimal and 
may even restrict the intended interpretation. Moreo-
ver, alignment with these ontologies implies com-
mitment to a much larger body of assertions than is 
required to complete the relevant tasks. Since the 
patterns are well documented and complemented by 
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this paper, interested parties can easily align SNODP 
and its extensions with one or more of the founda-
tional ontologies, if it suits their objectives.  

Finally, we comment about the current status of 
the technical feasibility of realizing surface network 
instances from surfaces. Computational surfaces are 
digital approximations of the ideal, smooth, continu-
ous surface, which is often considered a pre-requisite 
for deriving surface networks. However, in reality, 
digital surfaces such as DEMs or TINs of topograph-
ic surfaces are discrete approximations that will not 
guarantee the extraction of a consistent surface net-
work for which all theoretical properties hold. The 
methods of surface networks extraction employed so 
far include simple manual [68], triangulation [59], 
and complex surface fitting techniques [69]. Yet, for 
all practical purposes, fully automated extraction of a 
complete and consistent surface network is still ex-
tremely difficult to implement successfully. Thus, in 
the near future, users should be ready to accept only 
subsets of surface network elements (e.g., only criti-
cal points) being extracted from surface datasets. Our 
view is that even such partial surface network data is 
a step forward and may suffice for many types of 
surface related queries. It is quite common to instan-
tiate ontologies only partially on the Semantic Web, 
and it is with this flexibility in mind that we proceed-
ed to design the two patterns. 

7. Conclusion 

The primary motivation for designing SNODP and 
Geospatial SNODP is Linked Topographic Data, for 
which a critical problem remains the interoperability 
of object and field representations of terrain data. The 
patterns, if used and adopted by the Semantic Web 
community, will unlock a wealth of information in 
surface datasets, currently outside the realm of Se-
mantic Web technologies. Overall, we believe that 
our patterns meet the general expectations of an 
ODP:  

i. Expressive: SNODP clearly captures surface 
network element relationships and also specifies 
their embedding in the surface. The spatial 
properties of GeoSPARQL are quite adequate to 
cover the needs of the Geospatial SNODP pat-
tern. Both patterns are quite expressive since 
OWL is the primary Semantic Web language 
and its use opens up the patterns to a wide range 
of inferences. 

ii. Simple: We deliberately eschewed many ad-
vanced surface network issues in designing 
SNODP and Geospatial SNODP since ontology 
patterns are about data sharing, not comprehen-
sive formalization of all domain semantics. The 
patterns support a minimum number of classes 
that are needed to semantically annotate typical 
surface network datasets included in the pat-
terns. We decided to create two separate patterns 
to isolate the core topological foundations from 
the extensions that would additionally support 
metric space capabilities. These are patterns for 
sharing scientific data, but anybody familiar 
with even the basics of surface networks can re-
use these patterns easily. The names of the clas-
ses are in accordance with the literature and 
property names are chosen to clearly communi-
cate their function. We foresee very little unin-
tended interpretations of this pattern. 

iii. Reusable: The two patterns are quite generalized 
to be reusable easily. SNODP is applicable to 
any kind of surface, whereas Geospatial SNODP 
is specialized only for geospatial surfaces, not 
just for terrain data. The use of GeoSPARQL is 
also not prescriptive in any way since it can be 
easily replaced with a geospatial ontology of 
choice. For other domains, available spatial on-
tologies must be substituted for GeoSPARQL to 
realize extensions of SNODP that support repre-
sentation of metric spatial properties in accord-
ance with domain principles. 

iv. Scalable: Surface networks are data reduction 
patterns since they are much more compact than 
any other form of expressing the surface. Sur-
face networks can themselves be further gener-
alized, but multiple surface networks can be 
stored in one combined dataset and still be se-
mantically annotated by the patterns. The sepa-
ration of the Feature and Geometry concepts in 
GeoSPARQL also ensures that multiple geomet-
ric realizations of a surface network can be 
linked and share common critical points.   

v. Well-documented: The OWL ontology files con-
tain comments to explain our intentions, but this 
paper should really serve to clarify the contexts 
of use that inspired us to design the patterns, and 
how we intend them to be used. 

As stressed in this paper, surface network ontolo-
gies bring to the fore a fundamental problem that cuts 
across all topographic sub-domains—i.e., the tech-
nical problem of integrating field and object based 
conceptualizations. However, for Linked Topograph-



ic Data to matter and be functional, we clearly need 
several other topographic and landscape reasoning 
ontologies for representing both geoscientific and 
culturally based concepts relating to topographic em-
inences, hydrological features, maritime features, 
vegetation, soil, lithology, settlements, and other sub- 
domains. There exist data related to such domains 
already, but there is no standardized way to describe 
the semantics of those topographic sub-domains. 
Through this work, we hope to foster more discus-
sion and encourage others to think about this problem 
that prevents the Semantic Web from harnessing in-
formation in surface datasets of so many different 
types. Based on our experience, we recommend 
GeoVocamps as an appropriate venue and vehicle for 
exploring ontology patterns for Linked Topographic 
Data. 
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