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Abstract. In this work we present External Transaction Logic, a logic that extends Transaction logic with the ability to model
and execute transactions requiring interactions with external entities, as e.g. external web-source, web-services or agents.

Transactions are defined in a logic programming style by the composition of internal and external primitives. These primitives
are incorporated in a quite general manner, as a parameter of the External Transaction Logic theory, allowing the specification
of transactions integrating knowledge and actions from multiple sources and semantics.

Since one has different control over internal and external domains, different transaction properties are ensured depending on
where actions are executed. Namely, internal actions executed in a knowledge base that we fully control, follow the standard
ACID model of transactions. Contrarily, transactional properties over actions executed externally need to be relaxed, as it is
impossible to rollback actions executed in a domain that is external. To deal with this, external actions can be defined along with
compensating operations. If a transaction fails after executing some external action, then these compensations are executed in a
backward order to achieve a relaxed model of atomicity.

We provide a model theory for External Transaction Logic, that can be used to reason about the conditions of execution of
transactions that require the issuing of both internal and external actions on abstract knowledge bases with potentially different
state semantics. We also present here a corresponding proof theory (sound and complete w.r.t. the model theory) that provides
means to execute such transactions in a top-down manner.
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1. Introduction and Motivation

Several semantics exist to represent and reason
about knowledge each with different meaning, expres-
sivity and complexity depending on the domain for
which these semantics have been designed. Addition-
ally, normally such semantics are not static in the sense
that they also deal with the problem of evolving its
knowledge base (KB) by means of updates and actions.

1Some of the results in this paper were preliminary presented in
[25] and [26]. This work was partially supported by project ERRO
(PTDC/EIA-CCO/121823/2010).

*Author supported by the FCT grant SFRH/BD/64038/2009

Independently of the semantics chosen for a given
application, it is often important to guarantee proper-
ties on the execution of these updates as for instance,
that the KB is always left consistent independently on
what and how updates are executed. The problem of
what properties should be ensured has been widely
studied in the database community, where actions are
required to follow the ACID transactional model in or-
der to be considered reliable. ACID stands for Atomic-
ity, Consistency, Isolation and Durability, and an ACID
transaction is a set of actions that must be executed re-
specting all of these properties.

Transaction Logic (T R) is an extension of predicate
logic proposed in [6] to reason and execute updates
following this ACID transaction model independently
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of the state and update semantics adopted. T R’s rea-
soning is supported by a model-theory that allows the
study of general properties as equivalence and impli-
cation of transactions. Additionally, execution is pro-
vided by a proof theory that, being sound and complete
with the semantics, can answer practical questions like
“can this action be executed in this state” or “how does
my database evolve if this action is executed”.

In order to achieve its flexibility, both T R’s model
and proof theory are parameterized by a pair of ora-
cles defining the semantics of elementary operations
(like “insert(p)” or “delete(p)”) that query and up-
date the knowledge base. This allows T R to reason
and execute transactions according to a wide vari-
ety of state change semantics as relational databases,
well-founded semantics, first-order logic or other non-
standard semantics. These characteristics make T R
a powerful tool for reasoning about actions [49], ar-
gumentation theories [18], AI planning [6], work-
flow management and semantic web services [50],
databases [9], and general KB representation [5].

Example 1 (T R Financial Transactions). As illus-
tration of T R, consider a knowledge base of a bank
(taken from [6]) defined by a transactional database
and where the balance of a bank account is given by
the relation balance(Acnt,Amt). To modify this re-
lation, we are provided with a pair of elementary up-
date operations: balance(Acnt,Amt).del to delete a
tuple from the relation, and balance(Acnt,Amt).ins
to insert a tuple into the relation. Using these two up-
date primitives, we define four possible transactions:
changeBalance(Acnt,Bal, Bal′) to change the bal-
ance of an account; withdraw(Amt,Acnt) to with-
draw an amount from an account; deposit(Amt,Acnt)
to deposit an amount into an account, and finally,
transfer(Amt,Acnt,Acnt′) to transfer an amount
from one account to another. These transactions can
be defined in T R in a logic programming style by the
following four rules and where the operator⊗ denotes
serial conjunction. Thus, withdraw(Amt,Acnt) ⊗
deposit(Amt,Acnt′) means execute the (trans)action
withdraw(Amt,Acnt) and immediately afterwards
execute deposit(Amt,Acnt′).

transfer(Amt,Acnt,Acnt′)←
withdraw(Amt,Acnt)⊗ deposit(Amt,Acnt′)

withdraw(Amt,Acnt)← balance(Acnt,B)⊗
changeBalance(Acnt,B,B −Amt)

deposit(Amt,Acnt)← balance(Acnt,B)⊗
changeBalance(Acnt,B,B + Amt)

changeBalance(Acnt,B,B′)←
balance(Acnt,B).del ⊗ balance(Acnt,B′).ins

Intuitively, the first rule states that a transfer of amount
Amt from account Acnt to account Acnt′ is per-
formed if first a withdrawal of Amt from Acnt is per-
formed, and then a deposit of the same amount to
Acnt′ is performed. The last rule states that changing
the balance of account Acnt from B to B′ is true (in
a sequence of knowledge base states) in case first the
truth of balance(Acnt,B) is deleted from the knowl-
edge base according to the update-oracle, and then
balance(Acnt,B′) is inserted.

A key feature of T R is that, unlike many other logic
systems, the KB is imposed to evolve only into con-
sistent states respecting ACID properties as it is re-
quired in databases. As a result, instead of providing
means to reason about what formulas are true in a
KB (as e.g. [22,1,21]), or about the direct and indi-
rect effects resulting from a given action in a knowl-
edge base (as e.g. [23,34,40,54]), the semantics of T R
talks about how an update can be executed in a KB re-
specting the ACID model. That is, given a fixed seman-
tics of states and a fixed semantics of updates (given
as a parameter, by oracle instantiations), T R seman-
tics specifies what are the paths that allow an update to
succeed following the ACID model. Then, T R state-
ments have the form P, (D1, D2, . . . , Dn−1, Dn) |= t
with the meaning that transaction t succeeds in pro-
gram P when executed in the (arbitrary) state D1 by
changing the system into state Dn through the path
D1, D2, . . . , Dn−1, Dn.

As a result of this abstraction, T R is especially
suited for dealing with transactions in contexts where
the semantics is not fixed a priori, or where one has to
deal with KBs each equipped with a different seman-
tic, such as the Semantic Web.

However, as an inherent consequence of forcing ev-
ery transaction to be ACID, T R fails to model situa-
tions where some ACID properties need to be relaxed.
Since every action is interpreted as a strict ACID trans-
action, T R requires domains where a complete control
and specification of the KB exists. As a result, T R is
not able to express richer situations where the internal
database needs to interact and execute actions in exter-
nal domains, as e.g. an interaction with a web-service,
with several ontologies in the web, or with a real exter-
nal entity. The problem about external domains is that
it is no longer possible to ensure the same ACID trans-
action model as in the internal KB. In fact, since one
does not control the external environment on which
these actions are executed, the rollback of external ac-
tions is impossible. However, in case of a transaction
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failure, something must be done to preserve some kind
of external consistency if an external action was previ-
ously performed.

Example 2 (Travel). As a very simple example, con-
sider a transaction that makes a reservation for a
travel in some given dates D, comprising both the
booking of a hotel room and flight. Such a transaction
can be written (in a very simplified way) in a T R-like
form as follows:

bookTravel(City,D)←
findHotel(City,D,H)⊗ findF light(City,D, F )
⊗reserveHotel(H,D)⊗ reserveF light(F,D)

where reserveHotel(H,D) is an action performed
externally, e.g. by introducing a tuple corresponding
to the reservation in an external KB about hotels, and
similarly for flights.

If such a transaction fails e.g. because the flight
is no longer available, then something must be done
about the previously reserved hotel. But since the
KB taking care of hotel reservations is external, sim-
ply rolling back might not be an option. For exam-
ple, a money penalty may be associated for cancel-
ing a room reservation, in which case the rollback of
reserveHotel(H,D) could not simply be the deletion
of the added tuple (and which, in principle, one does
not have permission to change directly).

While in this travel example, all the actions are ex-
ternal, in general an interaction interleaving internal
and external actions is required.

Example 3 (Product request). Consider now a KB
describing knowledge about an organization, stor-
ing information about customers, sales, etc. As in a
database, this KB should always comply with the ACID
properties. I.e. if some action performed by the orga-
nization fails, then its internal knowledge base should
be rolled back to a consistent state.

In a general setting, we want the organization to in-
teract with other organizations, customers, suppliers,
via web-services, or even by prompting external users
to provide information. For example, we may want to
define a transaction of satisfying a custom’s request
for an amount of a product. Such a transaction could
(again, in a quite simplified way) be expressed in a
T R-like form as follows:

request(Prd,N,Cust)← decreaseStock(Prd,N)
⊗dispatch(Prd,N,Cust)

where decreaseStock(Prd,N) is an internal update
of decreasing the stock of product Prd by N (fail-
ing when N is greater than the current stock), and
dispatch(Prd,N,Cust) is the action of dispatching
N units of product Prd to customerCust. In this case,
complying with the ACID properties means that, if the
dispatch action fails, then the update of decreasing the
stock must be rolled back.

Now, consider that another way the organization
has to satisfy the request is by asking an associated
company whether it has the product, asking the cus-
tomer whether she accepts that the product is supplied
by that other company, and requesting the company to
send it to the customer:

request(Prd,N,Cust)← askComp(Prd,N)
⊗askCust(Cust, Prd)⊗ requestDisp(Prd,N,Cust)

Here, if the action of asking the customer fails (e.g.
because she does not accept it), then unlike the up-
date of decreasing the stock, the action of asking the
company cannot really be rolled back. Note that, this
action can have long lasting effects on the associated
company (e.g. by reserving the product). But, since the
organization does not control the KB of the associ-
ated company, all it can do is to signal that the cus-
tomer did not accept it. Of course, this would have to
be coded in the transaction, and in our proposal it is
done by replacing askComp(Prd,N) in the rule by
e.g. ext(askComp(Prd,N), forget(Prod,N)).

Putting these two rules together, one would expect
the transaction to succeed in case the associated com-
pany has the product, the customer accepts it, and the
product is dispatched by the associate, or by decreas-
ing the stock and dispatching the product. Moreover,
the transaction should also succeed in a path where
the associate is asked, the customer does not accept
the change, the associate is notified to forget about it,
and finally by decreasing the stock and dispatching the
product.

As an example requiring more elaborate KBs, that
is explored further in the remainder of this paper:

Example 4 (Diagnosis example). Consider the sce-
nario of an agent with the goal to help in the triage
process of an emergency room. For that, the agent’s in-
ternal KB is defined by a Description Logic comprising
medical information about diseases, medication and
so on. Externally, the agent needs to interact with the
patient: check her temperature for fever, heart rate,
blood pressure, etc. and eventually give medication for
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her condition. If the agent is able infer the treatment
to be performed and give the patient some medication,
then the patient is put in the low priority list.

However, every medication can have adverse side-
effects that, when present, need to be addressed im-
mediately. If that is the case, then the internal infor-
mation about the patient’s priority must change, and
something must be given to the patient to counter such
side-effects.

The previous examples motivate the need to en-
sure transaction properties on environments that have
both an internal and an external component. In this
sense, the idea of what to do to impose external con-
sistency corresponds with the notion of compensation,
proposed originally in the database literature for long-
running transactions [20]. Whenever rollbacking is an
impediment, the solution is to define compensating op-
erations for each external action to be executed. If each
compensation reverts the effects of the original action,
by executing these compensations in backward order,
we obtain an external state considered equivalent to the
initial one, achieving a relaxed model of consistency
and atomicity externally.

In this work we propose ET R, an extension of T R
to reason and execute transactions executed on knowl-
edge bases defined by an internal KB and an external
KB. While actions performed in the internal KB fol-
low the strict ACID model, actions executed externally
follow a relaxed model based on compensations.

As in T R, assuming this external oracle allows
ET R to reason and execute transactions that require
interaction with external sources without committing
to any semantics for the external KB. By instantiating
this external oracle with a Description Logics [1] se-
mantics, or with logics for dynamic external domains
like Action Languages [23] or Event Calculus [34],
ET R becomes suitable for a wide range of scenarios
like multi-agent systems or the Semantic Web.

In the following, we start by overviewing Transac-
tion Logic’s theory (Section 2) which will be used for
our contributions. Then we formalize External Trans-
action Logic (Section 3) by extending T R’s theory to
deal with failed paths and compensating operations.
For that we define ET R’s syntax (Section 3.1), ora-
cles (Section 3.2), model theory (Section 3.3) and ex-
ecutional entailment (Section 3.4), proving the equiv-
alence to T R whenever no external actions are pre-
sented. Afterwards we construct a SLD-style proof
theory for a Horn-like subset of the logic that is sound
and complete w.r.t. the model theory (Section 3.5).

Then we elaborate on the definition of oracles for a Se-
mantic Web context (Section 4), namely Description
Logic oracles for both the internal and external KB,
and the dynamic description languages – Action Lan-
guages, Situation Calculus and Event Calculus – for
describing the external domain. We end with a discus-
sion of related work (Section 5) and conclusions (Sec-
tion 6). To not disrupt the reading flow, all the proofs
of the enunciated results are presented as appendix.

2. Background: Transaction Logic

Before introducing External Transaction Logic, we
first provide an overview on the T R framework, in-
cluding its model and proof theory.

We start by presenting T R’s syntax. For that, with-
out loss of generality (cf. [8]), we work with a Her-
brand instantiation of the language as defined in [8]. As
usual, the Herbrand universe U is the set of all ground
first-order terms that can be constructed from the func-
tion symbols in the language L; the Herbrand base B
is a set of all ground atoms in the language; and a clas-
sical Herbrand structure is any subset of B.

To build complex logical formulas, T R uses the
classical logic connectives ∧,∨,¬,→ and a new con-
nective ⊗, denoted serial conjunction operator. Infor-
mally, the formula φ ⊗ ψ represents an action com-
posed of an execution of φ followed by an execution of
ψ. Additionally, φ ∧ ψ defines the action of executing
simultaneously φ and ψ; while φ ∧ ψ defines the non-
deterministic choice of either executing φ,ψ or both si-
multaneously. Finally φ← ψ says that one way to sat-
isfy the execution of φ is by executing ψ. Then a T R
program is a set of rules of the form h← φ, where h is
an atom of the language and φ is any complex formula.

A key feature of T R is the separation of elementary
operations from the logic of combining them. With
this goal, T R’s theory is parametric to two differ-
ent oracles allowing the incorporation of a wide vari-
ety KB semantics (from classical to non-monotonic to
various other non-standard logics). These oracles ab-
stract the representation of KB states and how to query
them (data oracle Od); but also abstract the way states
change (transition oracle Ot).

As a result, the language of primitive queries and
actions is not fixed as neither is the definition of a
state. Consequently, to distinguish between states, T R
works with a set of state identifiers that uniquely iden-
tify a state. ThenOd is a mapping from state identifiers
to sets of formulas. Intuitively, given a state identifier i,
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Od(i) retrieves the set of formulas consider to be true
in d. The state transition oracleOt(i1, i2) is a function
that maps pairs of KB states into sets of ground atoms
denoted as elementary transitions.

The data and transition oracle are strongly related.
Particularly, the state identifiers of these two oracles
are defined under the same domain. Next we present
some examples of data and transition oracles taken
from [6].

Relational Oracles A state identifier D is a set of
ground atomic formulas. The data oracle simply
returns all these formulas, i.e., Od(D) = D.
Moreover, for each predicate symbol p in D,
the transition oracle defines two new predicates,
p.ins and p.del, representing the insertion and
deletion of single atoms, respectively. Formally,
p.ins ∈ Ot(D1, D2) iff D2 = D1 + {p}. Like-
wise, p.del ∈ Ot(D1, D2) iff D2 = D1 − {p}.
SQL-style bulk updates can also be defined by the
transition oracle [8] as primitives for creating new
constant symbols.

Well-Founded Oracle A state id D is a set of gener-
alized Horn rules1 and Od(D) is the set of liter-
als in the well-founded model of D. Such oracles
can represent any rule-base with well-founded se-
mantics, which includes Horn rule-bases, strati-
fied rule-bases, and locally-stratified rule-bases.
For advanced applications, one may want to aug-
ment Od(D) with rules in D. The transition or-
acle provides primitives for adding and deleting
clauses to/from states.

Generalized-Horn Oracle A state D is a set of gen-
eralized Horn rules andOd(D) is a classical Her-
brand model of D. Such oracles can represent
Horn rule-bases, stratified rule-bases, locally-
stratified rule-bases, rule-bases with stable-model
semantics, or any rule-base whose meaning is
given by a classical Herbrand model. Again, one
may want to augment Od(D) with rules in D.

Note that although in the previous examples, states
identifiers are defined by sets of formulas, nothing pre-
vents a state identifier to be a set of natural numbers,
or some non-logical objects like a disk page or a XML
file. Since a state identifier uniquely identifies a state,
from this moment forward we employ the terms of
“state” and “state identifier” interchangeably.

1Generalized Horn rules are rules with possibly negated premisses

2.1. T R Model Theory

Since the goal of T R is to impose transactional
properties on abstract knowledge bases, satisfaction is
not related to what formulas hold in what states (as this
is encapsulated by the oracles) but rather on how ac-
tions can be executed in a transactional way. Thus, sat-
isfaction of T R formulas means execution: a formula
is said to be true if it can be executed successfully re-
specting the ACID properties. As a result, contrarily to
most logics of state change, formulas are not evaluated
on states but on paths, i.e. sequence of states of the
form 〈D1, . . . , Dn〉, where each Di represents a state.
A formula is said to be satisfied in a path if that path is
a valid execution trace for that formula.

As most logics, T R model theory is based on in-
terpretations. An interpretation determines what atoms
are true on what paths by defining mappings from
paths to a Herbrand structures. If φ ∈ M(π) then, in
the interpretation M , path π is a valid execution for
the formula φ. Additionally, interpretations need to be
compliant with the specified oracles. The oracles de-
fine elementary primitives for the internal and exter-
nal KB which all interpretations must model. By lim-
iting the set of possible interpretations to satisfy these
restrictions, we can force the satisfaction of primitive
formulas on the paths that the oracles define it so.

Definition 1 (Interpretations). An interpretation is a
mapping M assigning a classical Herbrand structure
(or >2) to every path. This mapping is subject to the
following restrictions, for all states Di and every for-
mula ϕ:

1. ϕ ∈M(〈D〉) if Od(D) |= ϕ
2. ϕ ∈M(〈D1, D2〉) if Ot(D1, D2) |= ϕ

Afterwards, satisfaction of complex formulas over
paths, requires the prior definition of operations on
paths. For example, the formula φ⊗ψ is true (i.e. suc-
cessfully executes) in a path that executes φ up to some
point in the middle, and executes ψ from then onwards.
To deal with this:

Definition 2 (Path Splits). A split of a path π =
〈S1, . . . , Sk〉 is any pair of subpaths, π1 and π2, such
that π1 = 〈S1, . . . , Si〉 and π2 = 〈Si, . . . , Sk〉 for
some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦π2.

2For not having to consider partial mappings, besides formulas, an
interpretation can also return the special symbol >. The interested
reader is referred to [8] for details.
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Building on these notions of path splits and interpre-
tations, we can now define the general satisfaction of
formulas in T R as follows.

Definition 3 (T R Satisfaction of Formulas). LetM be
an interpretation, π a path and φ a formula. IfM(π) =
> then M,π |= φ; otherwise:

1. Base Case: M,π |= φ iff φ ∈ M(π) for any
atom φ

2. Negation: M,π |= ¬φ iff it is not the case that
M,π |= φ

3. “Classical” Conjunction: M,π |= φ ∧ ψ iff
M,π |= φ and M,π |= ψ.

4. Serial Conjunction: M,π |= φ⊗ ψ iff M,π1 |=
φ and M,π2 |= ψ for some split π1 ◦ π2 of path
π.

In the sequel we also mention the satisfaction of dis-
junctions and implications, where as usual φ∨ψ means
¬(¬φ ∧ ¬ψ), and φ← ψ means φ ∨ ¬ψ.

Example 5 (T R’s Model Theory). Assume a Rela-
tional Database Oracle as defined previously. Since
every interpretation M needs to be compliant with the
oracles then for every M , a.ins ∈ M(〈{}, {a}〉) and
b.ins ∈M({a}, {a, b}). Then, it holdsM, 〈{}, {a}〉 |=
a.ins and M, 〈{}, {a}, {a, b}〉 |= a.ins⊗ b.ins.

2.2. T R Logical Entailment

After defining how satisfaction of complex formu-
las is performed w.r.t. a given interpretation, we now
define which of these interpretations model a formula
and a program.

Definition 4 (Models). An interpretationM is a model
of an T R formula φ if M,π |= φ for every path π.
In this case, we write M |= φ. An interpretation is
a model of a set of formulas if it is a model of every
formula in the set.

This notion of models is mostly used together with
the notion of program. Here, a program is a set of for-
mulas of the form h ← φ where h is an atom in the
language and φ is any complex formula. Since rules
are just complex formulas, a program can be seen as a
set of formulas. To say thatM models a given program
implies that M models every rule in every path. Intu-
itively and as intended, this means that in every path π,
M either satisfies the head h or it does not satisfy the
body φ.

Example 6. Assume a Relational Database Oracle as
defined previously, and the following program P .

P :

p← a.ins
q ← b.ins
q ← c.ins
t← p⊗ q

For every interpretation M that models P it is true
that M, 〈{}, {a}〉 |= p and M, 〈{}, {a}, {a, b}〉 |= t.
Moreover, it is also true that M, 〈{}, {a}, {a, c}〉 |= t

Based on this notion of models, it is also possible to
define the notion of entailment in the usual way.

Definition 5 (Logical Entailment). Let φ and ψ be two
T R formulas. Then φ entails ψ if every model of φ is
also a model of ψ. In this case we write φ |= ψ.

2.3. Executional Entailment and Proof Theory

Besides the concept of a model of a T R theory,
which allows one to prove properties of the theory in-
dependently of the paths chosen, T R also defines the
notion of executional entailment. A transaction is en-
tailed by a theory given an initial state, if there is a
path starting in that state on which the transaction suc-
ceeds. As such, given a transaction and an initial state,
the executional entailment determines the path that the
KB should follow in order to succeed the transaction
in an atomic way. Non-deterministic transactions are
possible, in which case several successful paths exist.

This notion is formalized as follows.

Definition 6 (Executional Entailment). LetP be a pro-
gram, φ be a formula and S1, . . . , Sn be a path:

P, (S1, . . . , Sn) |= φ (1)

is true if M, 〈S1, . . . , Sn〉 |= φ for every model M
of P . We write P, S1– |= φ when there exists a path
S1 . . . , Sn that makes (1) true.

Example 7. Recall example 6. Here P, ({}, {a}) |=
p, P, ({a}, {a, b}) |= q and P, ({}, {a}, {a, b}) |= t.
Also, P, ({a}, {a, c}) |= q and P, ({}, {a}, {a, c}) |=
t, making t and q non-deterministic transactions.

Based on this, T R defines a proof theory and corre-
sponding implementation to a special class of T R the-
ories denoted serial-Horn programs [4]. A serial-Horn
program P is a set of serial-Horn rules of the form
h← b1⊗. . .⊗bn where every bi is an atom and n ≥ 0.



A.S. Gomes and J.J. Alferes / External Transaction Logic 7

For this serial-Horn version of T R, a proof theory
sound and complete with the executional entailment
exists, providing the theory for executing T R pro-
grams in a top-down manner. This proof theory shares
some similarities with the SLD-Resolution proof strat-
egy for logic programs. Its goal is to construct a path
that corresponds to a valid execution of formula G,
i.e. a path D0, D1, . . . , Dn that makes the formula
P,D0, D2, . . . , Dn |= G true.

This derivation is parametric to the database and
transition oracles, Od and Ot which provide the se-
mantics for querying and updating a giving state D.

Definition 7 (Proof Theory for T R Programs). Let
P be a T R serial-Horn program and D,D0, D1, D2

states. Let G a serial-Horn goal of the form b1⊗ . . . bk
(where every bi is an atom and k ≥ 0. The proce-
dure deals with sequents of the form P,D− ` G. The
special propositional constant () expresses a tautology
formula that is true in every path of length 1.

Then, a derivation P ∪{G} consists of a finite or in-
finite sequence of sequents seq1, seq2, . . . , seqn where
seq1 = P,D0− ` G and each seqi is either an axiom
sequent or is derived from the earlier sequents by the
following rules.

Axioms: P,D− ` ()
Inference Rules: Let a and be an atomic formula,

while φ and rest are serial goals.

1. Applying transaction definitions:
Let a← φ be a rule in P , then

P,D− ` φ⊗ rest
P,D− ` a⊗ rest

2. Querying the knowledge base:
Let Od(D) |= a, then

P,D− ` rest
P,D− ` a⊗ rest

3. Performing elementary updates:
Let Od(D1, D2) |= a, then

P,D2− ` rest
P,D1− ` a⊗ rest

Based on this, for a given goal G an executional
derivation (or proof) is said to be successful if the se-
quence seq1, seq2, . . . , seqn is finite and ends in the
axiom sequent. In this case we sayP,D0, D1, . . . , Dn `
G whereD0, D1, . . . , Dn corresponds to the sequence

of states appearing respectively in every sequent of the
derivation.

Theorem 1 (Soundness and Completeness [6]). Let G
be a serial-Horn goal, D0, D1, . . . , Dn a path and P
a serial-Horn program. Then P,D0, D1, . . . , Dn ` G
iff P,D0, D1, . . . , Dn |= G

3. Extending Transaction Logic with External
Actions

The previously defined Transaction Logic is not
suitable for situations where a transaction needs (be-
sides other things) to execute actions in an external do-
main. In order to better grasp the problem, consider the
following example.

Example 8. Assume the following T R program P
where external a, external b and external c are
actions performed externally.

t← p.ins⊗ external a⊗ external b
t← q.ins⊗ external c

In T R, transaction t has two non-deterministic ways
to succeed: if the insertion of predicate p followed by
the actions external a and external b succeeds; or
if the insertion of predicate q followed by external c
succeeds.

However, let’s consider that external b fails after
the execution of external a. Then, t is only satisfied
in the path where external c is performed after q.ins
(2nd rule).

Yet, the 1st rule defines an alternative way for exe-
cuting t and thus, it can be non-deterministic selected
as a legitimate try to succeed it (in T R’s proof theory).
If this is the case, the actions p.ins and external a
are meant to be rolled back (in the implementation ver-
sion of the proof theory procedure), and this execution
is considered to have never happened. However, since
external a corresponds to an external action (e.g. a
request to a web-service) it may simply be impossi-
ble to rollback such action. Nevertheless, succeeding
t in that state may still be possible. For that we need
to compensate for external a (e.g. send a message to
cancel the previous request), rollback p.ins and then
execute the 2nd rule.

The previous example shows an important charac-
teristic of T R’s model and proof theory: it only re-
trieves the paths were a formula completely succeeds
without failures. Particularly, Definition 7 says that a
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path for transaction t exists if we can construct a proof
by making the “right” choices non-deterministically.

This is as expected because we have a complete con-
trol over the KB. I.e. because we can assume that it is
always possible to restore any state before any execu-
tion try. Thus, in a implementation perspective, when-
ever the system makes a choice that leads to a non-
successful derivation, then it simply rollbacks the state
previous to that choice and tries to succeed in an al-
ternative branching. In a proof theory perspective, this
execution where a rollback is performed is equivalent
to the one where the right path was chosen directly.

However, when dealing with external environments
and external actions, this is is no longer the case. Since
it is impossible to rollback an external state, then the
alternative is to compensate for the external actions
already executed, and then succeed in an alternative
branching. Contrarily to a simple rollback, such execu-
tion is not equivalent to choosing the right path directly
as it requires an additional interaction with the external
world that needs to be reflected in the final path.

Next we propose ET R, an extension of T R to
model such behavior about external domains. For that,
ET R’s model theory provides three satisfaction rela-
tions for an interpretation M .

Classical Satisfaction Equivalent to T R’s satisfac-
tion of formulas but integrating paths with an ex-
ternal component. M,π |=c φ if φ can execute in
π without failures.

Partial Satisfaction Provides the first ingredient to
define failures. M,π |=p φ if either φ succeeds
without failures (i.e. if M,π |=c φ) or if it fails
because a primitive action in φ cannot be exe-
cuted in a given state.

General Satisfaction Corresponds to the real satis-
faction of formulas making use of the previous
two notions. M,π |= φ if φ succeeds classically
over path π or; if we can split π into π = π1 ◦ π2
such that φ fails and recovers form this failure in
π1 (by rollbacking internally and compensating
externally) and succeeds in π2.

The first two satisfaction relations represent the
building blocks for defining failures and are not use to
satisfy formulas directly. As it shall be precisely de-
fined, a formula φ is said to fail in a path π if φ can
be partially satisfied but not classically satisfied (i.e. if
M,π 6|=c φ but M,π |=p φ). If this is the case, then
recovery is in order. For that we need to rollback in-
ternally and compensate externally. This is encoded in
M,π  φ meaning that π is a recovery path obtained

after failing to execute φ and executing actions exter-
nally.

Similarly to what is done in T R, the theory of ET R
has an additional parameter - the external oracle Oe -
defining the states and operations in the external do-
main. This makes ET R flexible to be used in a wide
range of external domains. Transactions are then de-
fined by the composition of internal and external ac-
tions in a logic-programming style, allowing the spec-
ification of programs that integrate knowledge and ac-
tions from multiple sources and semantics.

Next we continue by defining ET R’s theory. We
start by introducing ET R’s syntax and external oracle
(Sections 3.1 and 3.2). Then we define ET R’s model
theory and executional entailment by providing precise
meaning for these relations (Sections 3.3 and 3.4). And
finally, we introduce a proof procedure that we prove
to be sound and complete with ET R’s semantics (Sec-
tion 3.5).

3.1. ET R Syntax

To deal with external environments and external ac-
tions, ET R operates over a KB including both an in-
ternal and an external component. For that, formally
ET Rworks over two disjoint propositional languages:
LP (program language), and LO (oracles primitives
language). Propositions in LP denote actions and flu-
ents that can be defined in the program. As usual, flu-
ents are propositions that can be evaluated without
changing the state and actions are propositions that
cause evolution of states. Propositions inLO define the
primitive actions and queries to deal with the internal
and external KB. LO can still be partitioned into Li
and La, where Li denotes primitives that query and
change the internal KB, while La defines the exter-
nal actions primitives that can be executed externally.
For convenience, it is assumed that La contains two
distinct actions failop and nop, respectively defin-
ing trivial failure and trivial success in the external do-
main.

Based on the latter notion of language, ET R formu-
las are defined as follows.

Definition 8 (ET R Atoms, Formulas and Programs).
An ET R atom is either a proposition in LP , Li or an
external atom. An external atom is either a proposi-
tion in La or ext(a, b1 ⊗ . . . ⊗ bj) where a, bi ∈ La.
An ET R literal is either φ or ¬φ where φ is an ET R
atom. An ET R formula is either a literal, or an ex-
pression, defined inductively, of the form φ ∧ ψ, φ ∨ ψ
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or φ⊗ψ, where φ and ψ are ET R formulas. An ET R
program is a set of rules of the form φ← ψ where φ is
a proposition in LP and ψ is an ET R formula.

One of the novelties in ET R’s semantics is the re-
trieval of some paths were a formulas is not successful
(but where some external action was executed and now
needs to be compensated). To be better explained be-
low, the difficulty of this notion is that there are several
paths where a formula may fail, and not all of them cor-
respond to a valid execution try. To precisely deal with
this, we slightly restrict the language of ET R w.r.t.
negation. This is a technical detail that will allow us to
better handle failures of formulas. As a result, negation
is only applicable to atoms, and thus φ ← ψ can no
longer be syntactic sugar for φ∨¬ψ (since ψ is defined
as a complex formula).

External actions can appear in a program in two dif-
ferent ways: 1) without any kind of compensation as-
sociated, i.e. ext(a, nop), and in this case we write
ext(a) or simply a, where a ∈ La and; 2) with a user
defined compensation, written ext(a, b1 ⊗ . . . ⊗ bj)
where a, bi ∈ La. Note that there is no explicit relation
between a and b1 ⊗ . . . ⊗ bj , and that it is possible to
define different compensating actions for the same ac-
tion a in the same program. It is thus the programmer’s
task to determine which is the correct compensation
for action a in a given moment for a given rule.

Based on this, we define L∗a as the augmentation
of La with the formulas ext(a, b1 ⊗ . . . ⊗ bj) where
a, bi ∈ La
Example 9. Recall example 4 from the Introduction
where an agent has the task to triage patients in emer-
gency rooms. To do so, the agent needs to interact with
the patient, perform a small diagnosis, and assign a
priority accordingly. The diagnosis and the priority
decision is done internally, using the agent’s internal
KB defined by a Description Logic. Using this KB, the
agent can identify simple cases of flu, and if so, provide
treatment to the patient. If this is the case, the agent
can give Phenylephrine (PLP) as a treatment. How-
ever, this treatment is not eligible for pregnant women
or for people suffering from hypertension.

To encode this, imagine that we have a TBox which
includes the following assertions (among many others)
related to the Flu and the PLP medicine:

Flu v Fever uHeadache u StuffyNose u ¬Serious
PLPeligible v ¬Pregnant
PLPeligible v ¬Hypertense
StrongFever v Serious
HeartFailure v Serious

To respectively query and and update this DL, the
agent has the primitives dlquery() and dladd(). A
triage has three possible outcomes: green g, yellow y
and red r, respectively ranging from less to high pri-
ority. Based on this, the process of triage of a given
patient X can be encoded in ET R by the following
rules:

triage(X, r)← diagnosis(X)⊗ dlquery(Serious(X))
⊗dlquery(HeartFailure(X))

triage(X, y)← diagnosis(X)⊗ dlquery(Serious(X))
⊗dlquery(¬HeartFailure(X))

triage(X, g)← diagnosis(X)⊗ dlquery(¬Serious(X))
triage(X, g)← diagnosis(X)⊗ dlquery(Flu(X)))
⊗dlquery((PLPeligible(X)))
⊗ext(giveMeds(X, plp), giveMeds(X, cplp))
⊗statsOK(X)

statsOK(X)← diagnosis(X)⊗ dlquery(¬Serious(X))

In these (very simplified) rules it is stated that if we
conclude that the patient’s condition is serious and
that she suffers from a heart failure, then she must be
seen treated immediately, and thus her priority is de-
fined as red. (1st rule). However, if her condition is se-
rious but she does not show heart failure signs, then
the patient’s priority is defined as yellow (2nd rule). If
the patient’s condition is not serious then she is given
the green priority (3rd rule). Additionally, if we can
conclude that the patient has the flu, and is eligible to
receive the treatment, then the agent can give the pa-
tient some PLP medication (4th rule). However, if this
medication is given, then the agent should ensure that
the patient does not become worse afterwards. This
is tested by statsOK that re-performs the diagnosis
and checks if the status of the patient has become se-
rious (e.g. with the appearance of a strong fever or
a heart failure). If this is the case, the call statsOK
will fail and the agent will give the patient a medicine
to counter the effects of PLP (cplp). Then, depending
on the patient displaying symptoms of heart failure or
not, the agent will employ the first or the second rule
to assign the patient a higher priority. The expression
ext(giveMeds(X, plp), giveMeds(X, cplp)) defines
an external action with compensation. In this case
it states to give patient X the medication plp but, if
something fails afterwards, to give cplp as a compen-
sation.

The agent assigns each value according to the re-
sults of the diagnosis. A diagnosis corresponds to a
battle of tests to check the patient’s condition. To per-
form it, the agent executes external actions to mea-
sure (query) the patient’s stats. As queries, these ac-
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tions do not have compensations and thus have the
form ext(temperature(X,Y )) (which retrieves the
temperature Y of patient X). A simplified version of a
diagnosis can be encoded as follows:

diagnose(X)← checkTemp(X)⊗ checkHeadache(X)
⊗ . . .⊗ checkHeartRate(X)

checkTemp(X)← ext(temperature(X,Y ))
⊗[(37 < Y < 41⊗ dladd(Fever(X)))∨
(Y >= 41⊗ dladd(StrongFever(X)))∨
(Y < 37⊗ dladd(¬Fever(X)))]

checkHeadache(X)← ext(hasHeadache(X,Y ))⊗
[(Y = true⊗ dladd(Headache(X)))∨
(Y = false⊗ dladd(¬Headache(X)))]

Note that the compensations for external action are
stated directly in the program. In this sense, it is the
programmer’s responsibility to state the right compen-
sation for each case. This is necessary if the external
KB semantics is left opened. If we assume nothing on
the semantics of states and updates, then it is also im-
possible to reason on how to repair the effects of a par-
ticular action in a given KB.

However, if such assumptions are made regarding
the semantics of the external environment, then it may
be possible to automatically infer from the external se-
mantics what are the correct compensations for a given
action. Although the domains where such notions of
automatic compensations can be applied are out-of-
scope of this paper, this notion was further developed
in [26] and we refer the interested reader to such work
for additional details.

Next we continue by explaining how this external
oracle is incorporated in ET R’s theory.

3.2. ET R External States, and External Oracle

As in T R, both the language and the semantics of
ET R are parameterized by a set of oracles to reason
about basic actions and queries. Consequently, besides
the data oracle Od and the transition oracle Ot that
reason about the semantics of the internal KB, ET R
integrates an additional external oracle Oe to evaluate
elementary external operations and to abstract the se-
mantics of external states.

As before, states are simply defined by state iden-
tifiers. Since ET R is meant to operate on both an in-
ternal and external KB, two disjoint sets of state iden-
tifiers are needed: one for internal states, and another
for uniquely identifying states of the external domain
(external states). Then, Oe is a mapping from a pair

of external states identifiers into formulas in L∗a. If
Oe(E1, E2) |= ϕ then the primitive external action
ϕ is said to execute from state identifier E1 into state
identifier E2.

Dealing with state identifiers instead of materialized
states is of particular importance when considering ex-
ternal domains. In fact, it may be at all impossible
for the internal system to know what does a particular
state identifier mean, as e.g. when dealing with web-
services as an external domain. Then, to interact with
such external domains, all we need to know is the ele-
mentary primitives that can be used to perform queries
and updates, and abstract the notion of states to state
identifiers. As before, in the following we will use the
the terms state as state id.

Since we stipulated that the actions failop and
nop always belong to L∗a with a precise meaning,
we also force that for every external oracle and ev-
ery pair of external states Oe(E1, E2) 6|= failop and
Oe(E1, E1) |= nop (i.e. failop always fails, and nop

always succeed leaving the state unchanged, as de-
sired).

External actions with compensations, ext(a, b1 ⊗
. . .⊗bj), are evaluated by the external oracle solely ac-
cording to what is known about a, i.e. Oe(E1, E2) |=
ext(a, b1 ⊗ . . . ⊗ bj) iff Oe(E1, E2) |= a for any
a, bi ∈ La. Thus, as expected, it is not the task of the
oracle (but rather of the ET R semantics, as we shall
see) to deal with compensations.

Note that, T R requires two oracles, Od and Ot,
to respectively define the semantics of queries and
updates. This separation promotes the distinction be-
tween the static semantics of states and its dynam-
ics. However, these two oracles are not independent of
each other and they must share the same set of state
identifiers. In practice, although this separation may
ease the task of implementing these oracles (because of
the separation of the two concepts), nothing prevent us
from expressing both oracles using a single mapping.

Because of this, in ET R we assume that only one
external oracle is needed to characterize the behav-
ior of the external environment w.r.t. a given primitive
(both queries and updates). Since little may be known
about the external domain, it may not be possible to
distinguish between an external query and an external
update. Thus, we assume that every external primitive
can cause a state transition and defineOe as a function
that maps primitives to a pair of states. If q is a query,
then the primitive is mapped to a pair with the same
state, i.e. q ∈ Oe(S, S).
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The external oracle abstracts the theory and seman-
tics of the external domain, encapsulating the elemen-
tary operations that can be performed externally. In the
sequel we see this oracle as a black box, that encodes
the behavior of the external domain in a completely in-
dependent way. However, if one wants to reason about
both the internal and the external KB, one can fix Oe
by formalizing it with some logic for describing exter-
nal worlds. Thus, after defining ET R’s Theory we also
elaborate upon the role of this external oracle in Sec-
tion 4.2 and show how can be instantiated using De-
scription Logics, Action Languages, Event Calculus or
Situation Calculus.

3.3. ET RModel Theory

As in T R, formulas in ET R are evaluated on paths,
i.e. sequence of states. Since ET R deals with an exter-
nal environment a state S is now a pair (D,E) where
D represents an internal state and E denotes an exter-
nal state. Based on this, a path is just a sequence of
states defined as follows.

Definition 9 (States and Paths). An ET R state S is a
pair (D,E) where D and E are, respectively, internal
and external states. A path of length k, or a k-path, is a
finite sequence of states, S1,

A1 . . . ,Ak−1 Sk where Ais
(1 ≤ i < k) are atoms from L∗a or Li.

For convenience and to help the semantics recover
from external failures, the previous definition of path
also records the operations performed between states.
Then Si,

Ai , Si+1 means that action Ai caused the
change from state Si into state Si+1. If A is a formula
of the form ext(a, b1 ⊗ . . . ⊗ bj) then this allow us
to know that b1 ⊗ . . . ⊗ bj is the compensation to be
performed in the advent of a failure after the execution
of the external action a.

Interpretations are then defined in the usual way, but
now catering also for the external oracle.

Definition 10 (Interpretations). An interpretation is a
mapping M assigning a classical Herbrand structure
(or >) to every path. This mapping is subject to the
following restrictions, for all states Di,Ej and every
formula ϕ:

1. ϕ ∈ M(〈(D,E)〉) iff Od(D) |= ϕ for any ex-
ternal state E

2. ϕ ∈M(〈(D1, E),ϕ (D2, E)〉) iff Ot(D1, D2) |=
ϕ for any external state E

3. ϕ ∈ M(〈(D,E1),ϕ (D,E2)〉) iff Oe(E1, E2) |=
ϕ for any internal state D

Interpretations in ET R (and as referenced also the
language of programs) are slightly restricted when
compared to T R. Since we are dealing with an or-
acle that is external, it now makes little sense to al-
low interpretations to satisfy external primitives in ar-
bitrary paths. This precludes the possibility of redefin-
ing oracles primitives in a ET R program, making or-
acles primitives only true whenever the oracles say it
so. Although we could have introduced this restriction
solely on external primitives, we decided to impose
the overall separation between oracle primitives and
complex actions defined in a program. This makes the
logic cleaner without particularly limiting the expres-
sivity of the language. In fact, note that every T R pro-
gram can be re-written to comply with this restriction
and achieve the same results. For instance if the rule
a.ins← c.ins⊗ d.ins exists in the program, then we
can re-write it as:

new a.ins← a.ins
new a.ins← c.ins⊗ d.ins

and substitute all the remaining occurrences of a.ins
in the program by new a.ins.

Besides the notion of path splits inherited from T R,
we require additional notions on paths as the prefix and
the ending of a path. These are intuitive notions that
will be needed to isolate the exact point of failure of a
transaction.

Definition 11 (Prefix of a Path). A prefix of a k-path π
corresponds to a m-path (where 1 ≤ m ≤ k) obtained
from π where the order of states and the corresponding
annotated transitions is preserved.

Definition 12 (Ending of a Path). An ending of a k-
path π corresponds to the 1-path πend composed by the
last state of π, i.e. if π = 〈S1,

A1 . . . ,Ak−1 Sk〉 then
πend = 〈Sk〉.

The definition of satisfaction of the standard T R
can now easily be generalized to the notion of path in
ET R, where states are pairs with the internal and ex-
ternal state:

Definition 13 (Classical Satisfaction). Let M be an
interpretation, π a path and φ a formula. IfM(π) = >
then M,π |=c φ; otherwise:

1. Base Case: M,π |=c φ iff φ ∈ M(π) for any
atom φ

2. Negation: M,π |=c ¬φ iff it is not the case that
M,π |=c φ
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3. “Classical” Disjunction: M,π |=c φ ∨ ψ iff
M,π |=c φ or M,π |=c ψ.

4. “Classical” Conjunction: M,π |=c φ ∧ ψ iff
M,π |=c φ and M,π |=c ψ.

5. Serial Conjunction:M,π |=c φ⊗ψ iffM,π1 |=c

φ and M,π2 |=c ψ for some split π1 ◦ π2 of path
π.

This latter satisfaction, coming from T R, does not
consider the possibility of failure. Since ET R allows
external actions as transaction formulas, it must take
into the account the possibility of a transaction to fail.
Particularly, if a failure occurs after the execution of
some external actions, then we need to execute some
compensating operations to invert the external actions
already performed and recover a consistent state in the
external KB.

Note that, since T R only deals with domains where
one has complete control, this need to deal with fail-
ures in the perspective of T R’s model theory does not
exist. In fact, since in case of internal failures, a previ-
ous consistent state can just be reinstated, then T R’s
model theory only needs to obtain the paths where the
formula completely succeeds. Contrarily, this not the
case in ET R. Since rollbacking of external actions is
often impossible, ET R’s model theory needs also to
address how the external recovery can be ensured in
case of external failures.

The partial satisfaction relation below is the first in-
gredient to deal with such failures. The idea is to, given
a path, determine the formulas that either “completely”
succeed, or at least succeed up to some point and then
fail to execute some action or query.

Example 10 (Running Example). Recall example 8,
but where external expressions like external a are re-
placed by external actions with compensations:

t← p.ins⊗ ext(a, a1 ⊗ a2)⊗ ext(b, b1)
t← q.ins⊗ ext(c, c1)

Moreover, assume that the internal KB is a relational
database formalized as explained in Section 2, and the
external oracle includes:Oe(E1, E2) |= a, (i.e. the ex-
ternal execution of a in state E1 succeeds, and makes
the external world evolve into E2), Oe(E1, E5) |= c,
and that for every state E, Oe(E2, E) 6|= b (i.e. the
execution of b in state E2 fails).

Then, formulas p.ins⊗ext(a, a1⊗a2) and q.ins⊗
ext(c, c1) are classically satisfied respectively in
paths 〈({}, E1),p.ins ({p}, E1),ext(a,a1⊗a2) ({p}, E2)〉
and 〈({}, E1),q.ins ({q}, E1),ext(c,c1) ({q}, E5)〉. Fur-

thermore, it is easy to check that ext(b, b1) cannot
succeed in any path starting in state E2 (given the ex-
ternal oracle definition).

The idea of partial satisfaction is to identify the
path 〈({}, E1),p.ins ({p}, E1),ext(a,a1⊗a2) ({p}, E2)〉
as one that satisfies the formula p.ins ⊗ ext(a, a1 ⊗
a2)⊗ext(b, b1) up to some point, though it eventually
fails.

In partial satisfaction, we allow primitives to fail at
some point, or to completely succeed. In the case of
the serial conjunction, when satisfying φ⊗ψ, if φ can-
not succeed classically, it suffices to satisfy part of the
conjunction. Specifically:

Definition 14 (Partial Satisfaction). Let M be an in-
terpretation, π a path and φ a formula. If M(π) = >
then M,π |=p φ; otherwise:

1. Base Case: M,π |=p φ iff φ is an atom and one
of the following holds:

(a) M,π |=c φ
(b) M,π 6|=c φ, φ ∈ Li, π = 〈(D,E)〉 and
¬∃Di s.t. M, 〈(D,E),φ (Di, E)〉 |=c φ

(c) M,π 6|=c φ, φ ∈ L∗a, π = 〈(D,E)〉 and
¬∃Ei s.t. M, 〈(D,E),φ (D,Ei)〉 |=c φ

2. Negation: M,π |=p ¬φ iff it is not the case that
M,π |=p φ

3. “Classical” Disjunction: M,π |=p φ ∨ ψ iff
M,π |=p φ or M,π |=p ψ

4. “Classical” Conjunction: M,π |=p φ ∧ ψ iff
M,π |=p φ and M,π |=p ψ

5. Serial Conjunction: M,π |=p φ ⊗ ψ iff one of
the following holds:

(a) M,π |=p φ and M,π 6|=c φ
(b) ∃ split π1 ◦π2 of path π s.t. M,π1 |=c φ and
M,π2 |=p ψ

For the usage below of this definition, it is crucial
to know the exact failure point of the transaction, so
that external actions priorly performed can be compen-
sated. For that, the previously defined partial satisfac-
tion statement M,π |=p φ says that either φ succeeds
in path π w.r.t. to the interpretation M , or φ “legiti-
mately” fails in π (and in this case, the last state in π
corresponds to the exact point of failure).

There are several reasons for a formula to not be
satisfied in a given path. Obviously, given a relational
oracle, the query a cannot be classically satisfied in
the path 〈({a}, E),b.ins ({a, b}, E)〉 for any interpre-
tation M . Similarly, the action b.ins does not suc-
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ceed in the 1-path 〈({a}, E)〉. However, these fail-
ures are not interesting in the sense that they do
not correspond to a real execution-try. Particularly,
b.ins can classically succeed in a path starting in
〈({a}, E)〉, and the query a is true in the 1-paths
obtained by any of the singleton states 〈({a}, E)〉
and 〈({a, b}, E)〉. As a result, although for any M ,
M, 〈({a}, E),b.ins ({a, b}, E)〉 6|=c a (i.e. a fails), it is
also the case that M, 〈({a}, E),b.ins ({a, b}, E)〉 6|=p

a.
So the partial satisfaction definition only deals with

with failures that come from a real impediment of exe-
cuting a primitive action from a particular state S0. In
the case of atomic queries, this means that the given
query is not true in a particular 1-path, and in the case
of atomic action, it means that there is no possible
evolution from S0 that successfully satisfies the action
(points 1b and 1c respectively).

Based on this, we define “legitimate” fails the ones
where a formula is partially but not classically satisfied
in a path. Moreover, the path where such happens must
always end exactly in the state prior to the failure (cf.
point 1 of Proposition 1 below), and it is why failures
of primitives are constraint to 1-paths in points 1b and
1c. These 1-paths represent the state where the trans-
action failed.

Next in Proposition 1 we enunciate some additional
properties of the partial satisfaction definition. In this
sense, point 2 states that we can weaken a formula that
is partially but not classically satisfied using the serial
conjunctive operator ⊗, i.e. that in any path π where
a φ can be partially but not classically executed, then
M,π |=p φ ⊗ ψ for every formula ψ. Additionally,
for formulas without negation, the partial satisfaction
is a relaxed version of the classical satisfaction, (point
3) and the two satisfaction relations coincide whenever
they are evaluating atoms that are not specified by the
oracles (point 4).

Proposition 1. Let M be an interpretation, π a path,
πend the 1-path containing the last state of π, φ and ψ
any ET R formulas, φ′ a formula without negation, φP
an atom from LP and a an atom such that a ∈ Li or
a ∈ L∗a.

1. If M,π |=p φ and M,π 6|=c φ then
∃a s.t. M,πend |=p a and M,πend 6|=c a

2. If M,π |=p φ and M,π 6|=c φ then
M,π |=p φ⊗ ψ

3. If M,π |=c φ
′ then M,π |=p φ

′

4. M, π |=c φP iff M,π |=p φP

Consider again example 8. Just like in logic pro-
gramming, transaction t can be seen as the disjunction
of the two bodies of the rules. In this sense, in T R
and in logic programming we can satisfy t by satisfy-
ing either the first body or the second. Furthermore, in
ET Rwe consider an additional way of satisfying such
disjunction. Namely, the disjunction is satisfied if the
first body is “tried”, compensated, and then the second
disjunct is successfully executed. With the definitions
above, we made precise what is meant by the “tried”,
viz. it is partially but not classically satisfied. The next
definitions specify what is left, i.e. how to successfully
compensate a formula that is partially but not classi-
cally satisfied.

However for this, some additional operations on
paths need to be defined. We start by defining the no-
tion of a rollback path. This path is the first step for
recovering consistency of a KB with an internal and
external component. Here one has to collect all exter-
nal actions that have been executed in a path and need
to be compensated; and to rollback the internal state.
This is encoded as follows:

Definition 15 (Rollback Path, and Sequence of Ex-
ternal Actions). Let π be a k-path of the following
form 〈(D1, E1),A1 (D2, E2),A2 . . . ,Ak−1 (Dk, Ek)〉.
The rollback path of π is the path obtained from π by:

1. Replacing all Dis by D1

2. Keeping just the transitions where Ai ∈ L∗a.

The sequence of external actions of π, denoted Seq(π),
is the sequence of actions of the form ext(a, b1⊗ . . .⊗
bj) that appear in the transitions of the rollback path
of π.

Note that the operator Seq(π) only collects the ex-
ternal actions that have the form ext(a, b1 ⊗ . . . ⊗
bj). Since this operation aims to compensate the exe-
cuted actions, then actions without compensations are
skipped. Alternatively, to define compensations that al-
ways fail, one should use the the primitive failop as
in ext(a, failop).

Building on this, we define the notion of a recovery
path. After rollbacking the internal state and retriev-
ing all the necessary compensations, external recovery
is achieved from executing each compensation opera-
tions defined in Seq(π) in the inverse order.

Definition 16 (Inversion, and Recovery Path). Let S =
〈ext(A1,A−11 ), . . . ext(An,A−1n )〉 be a sequence of
actions from L∗a, and A−1i is a sequence of actions of
the form (a′1 ⊗ . . . ⊗ a′k). Then, the inversion of S is
the transaction formula Inv(S) = A−1n ⊗ . . .⊗A−11 .
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πr is a recovery path of Seq(π) w.r.t.M iffM,πr |=c

Inv(Seq(π)).

Example 11 (Rollback and Recovery). Recall the pre-
vious example 10 and consider the following path π =
〈({}, E1),p.ins ({p}, E1),ext(a,a1⊗a2) ({p}, E2)〉. Also,
assume that Oe(E2, E3) |= a1 and Oe(E3, E4) |=
a2. Then, the rollback path π0 of π is the path as
follows 〈({}, E1),ext(a,a1⊗a2) ({}, E2)〉. Additionally,
Seq(π0) = 〈ext(a, a1 ⊗ a2)〉 and Inv(Seq(π0)) =
a1 ⊗ a2. Finally, 〈({}, E2),a1 ({}, E3),a2 ({}, E4)〉 is
a recovery path of Seq(π) w.r.t. any interpretation M .

Equipped with these auxiliary definitions, we can fi-
nally make precise what we mean by compensating a
formula that is partially but not classically satisfied. To
this end, M,π  φ states that given an interpretation
M , the path π is a path where all external actions is-
sued due to the execution of formula φ are compen-
sated, and the internal state is rollbacked.

Definition 17 (Compensating Path for a Transaction).
Let M be an interpretation, π a path and φ a formula.
M,π  φ iff all the following conditions are true:

1. ∃π1 such that M,π1 |=p φ and M,π1 6|=c φ
2. ∃π0 such that π0 is the rollback path of π1
3. Seq(π1) 6= ∅ and ∃πr such that πr is a recovery

path of Seq(π1) w.r.t. M
4. π0 and πr are a split of π, i.e. π = π0 ◦ πr

Example 12 (Compensating Path). In the scenario of
the previous examples 10 and 11, the following state-
mentM, 〈({}, E1),ext(a,a1⊗a2) ({}, E2),a1 ({}, E3),a2

({}, E4)〉 p.ins⊗ext(a, a1⊗a2)⊗ext(b, b1) holds
for any interpretation M . Note that this path does not
satisfy the formula (since ext(b, b1) fails). Instead, it
leaves the internal and external KBs in a state some-
how equivalent to the initial state: the operations done
in the internal KB are rolled back, and the externally
executed actions are compensated.

The previous definition retrieves paths where a for-
mula φ is not successfully executed, but where external
recovery can still be guaranteed. Consequently, notice
that consistency preserving paths are only defined for
cases where besides a primitive action fails, some ex-
ternal actions with compensations were executed. This
is achieved since the operator Seq(π1) only collects
external actions of the form ext(a, b1⊗ . . .⊗bj). This
is as expected: if no external actions were executed in
π1 or if all the external actions executed are not meant
to be compensated (e.g. if they are external queries),
then Seq(π1) = ∅. Intuitively, if this is the case then no

compensations are needed, and the formula just fails
(as in standard T R).

Based on these definitions, we are finally able to
formalize what (complex) formulas are true on what
paths.

Definition 18 (General Satisfaction). Let M be an in-
terpretation, π a path and φ a formula. If M(π) = >
then M,π |= φ; otherwise:

1. Base Case:M,π |= φ if φ ∈M(π) for any atom
φ

2. Negation: M,π |= ¬φ if it is not the case that
M,π |= φ

3. “Classical” Disjunction: M,π |= φ ∨ ψ if
M,π |= φ or M,π |= ψ.

4. “Classical” Conjunction: M,π |= φ ∧ ψ if
M,π |= φ and M,π |= ψ.

5. Serial Conjunction:M,π |= φ⊗ψ ifM,π1 |= φ
and M,π2 |= ψ for some split π1 ◦ π2 of π.

6. Compensating Case: M,π |= φ if M,π1  φ
and M,π2 |= φ for some split π1 ◦ π2 of π

7. For no other M,π and φ, M,π |= φ.

Note that the previous definition strongly resembles
Definition 13. Intuitively, with this general notion of
satisfaction, a formula φ succeeds if it succeeds classi-
cally, or if although a primitive action failed to be ex-
ecuted, the system can recover from the failure and φ
can still succeed in an alternative path (point 6). As ex-
pected, recovery only makes sense in situations where
some external actions were performed before the fail-
ure. Otherwise we can just rollback for the initial state
and try to satisfy the formula in an alternative branch-
ing.

Example 13. Recall examples 10 and 11, and as-
sume Oe(E4, E5) |= c. Based on this, the complex
formula (p.ins ⊗ ext(a, a1 ⊗ a2) ⊗ ext(b, b1)) ∨
(q.ins ⊗ ext(c, c−1)) is satisfied both in the path
〈({}, E1),q.ins ({q}, E1),ext(c,c1) ({q}, E5)〉 (without
using compensations), and also where the first rule is
tried in 〈({}, E1),ext(a,a1⊗a2) ({}, E2),a1 ({}, E3),a2

({}, E4),q.ins ({q}, E4),ext(c,c1) ({q}, E5)〉 (by using
point 6).

As previously stated, the general satisfaction is
strongly related with the classical satisfaction. Partic-
ularly, besides the compensating case, the definition
of general satisfaction exactly coincides with classical
satisfaction (Definition 13). We formalize this corre-
spondence as follows.
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Theorem 2. Let M be an interpretation, φ an ET R
formula and π, π′ paths such that π′ is a path where
no external actions appear in the transitions. Then:

If M,π |=c φ then M,π |= φ (2)

M,π′ |=c φ iff M,π′ |= φ (3)

After this, we can now define what is a model and
the notion of logical entailment. Due to the restriction
we imposed on ET R’s use of negation, we alterna-
tively define that an interpretation is a model of a rule
if it models the disjunction of the bodies of that rule.

Definition 19 (Models and Logical Entailment). Let
φ and ψ be two ET R formulas and M be an inter-
pretation. M is a model of φ (denoted M |= φ) iff
M,π |= φ for every path π. Let Bodies(A) be the
disjunction of the bodies of all rules with head A.
An interpretation M is a model of a program P if,
for every atom A ∈ LP and every path π, whenever
M,π |= Bodies(A) then M,π |= A.
We say that φ logically entails ψ (φ |= ψ) if every
model of φ is also a model of ψ.

Based on the definition of a model, logical entail-
ment specifies a general entailment that takes into ac-
count all the possible execution paths of a transaction
formula. Hence, this entailment can be used to define
general equivalence and implication of formulas, as
one can express properties like “whenever transaction
φ is executed, ψ is also executed” (φ |= ψ) or “transac-
tion φ is equivalent to transaction ψ” (φ |= ψ∧ψ |= φ).

3.4. Executional Entailment

The previously defined general notion of entailment
is very powerful since it considers all the paths of ex-
ecution that satisfy a given formula. However, some-
times one needs a simpler kind of reasoning that is con-
cerned only with a particular execution of a formula.
As such, similarly to T R, in addition to logical entail-
ment ET R supports another entailment called execu-
tional entailment. Whilst logical entailment allows one
to reason about ET R theories, executional entailment
provides a logical account to execute ET R programs.
This entailment is inherit from T R.

Definition 20 (Executional Entailment). Let P be a
program, φ be a formula and S1,

A1 . . . ,An−1 Sn be a
path:

P, (S1,
A1 . . . ,An−1 Sn) |= φ (4)

is true ifM, 〈S1,
A1 . . . ,An−1 Sn〉 |= φ for every model

M of P . We write P, S1– |= φ when there exists a path
S1,

A1 . . . ,An−1 Sn that makes (4) true.

The expression P, (S1,
A1 . . . ,An−1 Sn) |= φ de-

notes that given a transaction program P , the path
(S1,

A1 . . . ,An−1 Sn) represents a valid execution for
transaction φ. In our running example, both statements
hold:P, 〈({}, E1),ext(a,a1⊗a2) ({}, E2),a1 ({}, E3),a2

({}, E4),q.ins ({q}, E4),ext(c,c1) ({q}, E5)〉 |= t and
P, 〈({}, E1),q.ins ({q}, E1),ext(c,c1) ({q}, E5)〉 |= t.

Further, the statement P, S1– |= φ accounts for
situations where all one wants to know is whether
φ can succeed starting from state S1 under P , e.g.
P, ({}, E1)– |= t (meaning that t succeeds if executed
in that initial state).

Based on this notion of executional entailment, we
can now precise the relation between T R and ET R.
Namely we can conclude that if φ and P are valid in
both logics (e.g. do not contain external actions), then
the two logics coincide, i.e. they satisfy the same for-
mulas in the same paths. This is encoded in Theorem 3.
Obviously, since paths in ET R have an additional ex-
ternal component than in T R, the paths only coincide
in their shared internal path.

Theorem 3 (Relation to T R). Let P be a transaction
program and φ a transaction formula such that P and
φ are valid both in T R’s and in ET R’s syntax. Then:

P, π′ |=TR φ iff P, π |=ETR φ

where π′ is obtained from π by removing the external
component and the annotated transitions in every tran-
sition of states.

3.5. A Proof Procedure for ET R

The previously defined executional entailment de-
termines what is the meaning of executing a transac-
tion defined in a program, starting from an initial state.
Our next step is to define a procedure for executing
transactions in that way. In this section we extend the
proof theory for the ground3 serial-Horn T R fragment
as described in Definition 7. The advantage of this
fragment is that it can be formulated as a least-fixpoint
in a logic programming style.

A serial-Horn program P is a finite set of serial
goals. A serial goal is a transaction formula of the

3The restriction to ground formulas is not essential and can be
easily lifted. We only require it in order to simplify the presentation.
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form a1 ⊗ a2 ⊗ . . . ⊗ an, where each ai is an atom
and n ≥ 0. When n = 0, we write (), which de-
notes the empty goal. A serial-Horn rule has the form
b← a1 ⊗ . . .⊗ an, where the body a1 ⊗ . . .⊗ an is a
serial goal and the head b is an atom.

Here, we present a procedure to verify thatP, S0– |=
φ, i.e, that a transaction φ can succeed starting from
the state S0 = (D0, E0) and, in case of success, to
obtain a path starting in S0 that satisfies φ.

This procedure starts with a program P , an initial
state S0 and a serial goal φ and manipulates resolvents.
At each step the procedure non-determinstically ap-
plies a series of rules to the current resolvent until it ei-
ther reaches the empty goal and succeeds, or no more
rules are applicable and fails. Moreover, if the proce-
dure succeeds, it also returns a path in which the goal
succeeds. To cater for this last requirement, resolvents
contain the information about the path obtained so far.
A resolvent is of the form π, Si P φ, meaning that,
we want to execute transaction φ in P from the initial
state Si; where π records the path history.

A proof, or successful derivation, for P, S0– |= φ
starts with 〈S0〉, S0 P φ and applies the rules defined
below, until eventually it reaches a resolvent π, Sf P
(). If such a proof is found, then we further conclude
that P, π |= φ (where π starts with S0 and ends with
Sf ). i.e. not only we have prove that φ can succeed
starting from S0, but we also found a path where φ
succeeds.

Most of the derivation rules are equivalent to the
ones of T R’s proof theory and are pretty easy to fol-
low: when proving an atom which is at the head of
some rule, replace the atom in the resolvent by the
body of the rule; when proving an atom that is true in
an oracle, just remove the atom from the resolvent, and
update the path and state appropriately. This forms the
basis of the so called SLDET R classical derivation.

Moreover, contrarily to T R proof theory, SLDET R
includes an additional rule to deal with compensations.
For that, we need, besides the usual notion of success-
ful derivation, to handle also with derivations that do
not succeed, but end in the execution of an action that
fails in the oracle. If that is the case, then we need
to rollback, compensate the executed actions, and pro-
ceed. To handle derivations that fail we further spec-
ify the notion of action-failed derivations. These cor-
respond to SLDET R derivations that end in a resol-
vent of the form π, Sf P L1⊗ . . .⊗Ln and L1 is an
action primitive that cannot be executed in Sf .

Definition 21 (SLDET R Derivation and Classical
Derivation). An SLDET R-derivation (resp. classi-
cal derivation) for a serial goal φ in a program P
and state S0 is a sequence of resolvents starting with
〈S0〉, S0 P φ, and obtained by non-deterministically
applying the rules r1–r5 (resp. r1–r4) specified in Fig-
ure 1.

Definition 22 (Successful and Action-failed Deriva-
tions). Let P be a program, φ a serial goal and S0 an
initial state. An SLDET R-derivation (resp. classical
derivation) for φ in P starting in S0 is successful if it
ends in a resolvent of the form π, Sf P (). In this
case we write P, π ` φ (resp. P, π `c φ).
The derivation is action-failed if it ends in a resolvent
of the form π, Sf P L1 ⊗ . . .⊗ Ln s.t.:

(i). L1 ∈ Li, Od(Df ) 6|= L1 and ¬∃Di s.t.
Ot(Df , Di) |= L1, or

(ii). L1 ∈ L∗a and ¬∃Ei s.t. Oe(Ef , Ei) |= L1

Taken together, definitions 21 and 22 determine a
sound and complete procedure to find the paths that
satisfy a transaction φ given a program P and an initial
state S0. This procedure resembles an SLD-style pro-
cedure and can be seen as an extension of the inference
system for serial-T R as presented in [4]. The main
differences when compared to such inference system
are the evaluation of external actions w.r.t to an exter-
nal oracle Oe and the non-deterministic possibility of
executing compensations in the derivation.

Theorem 4 (Soundness and Completeness of `). Let
P be a serial-Horn program, φ a serial-Horn goal, and
π be a path starting in state S0 and ending in Sf . Then,
P, π |= φ iff P, π ` φ.

4. ET R Oracles for the Web

A basic requirement of the Semantic Web is the abil-
ity to reason and retrieve knowledge simultaneously
from multiple web-sources described using one of the
several W3C standards. Additionally, the need to rea-
son differently according to the internal or external
provenance of knowledge has been the primer motiva-
tion for the works of [31,14,27], aiming to integrate
closed and open world reasoning for this Web context.
Simply put, closed world reasoning assumes that ev-
erything that is not known to be true is false. Contrar-
ily, open world reasoning denies this principle by as-
suming that the current description of the world is in-
complete and thus, the lack of ability to infer knowl-
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Let π, (D1, E1) P L1 ⊗ . . .⊗ Ln be a resolvent. Then the next resolvent in the derivation is defined by:

r1. π, (D1, E1) P B1 ⊗ . . .⊗Bj ⊗ L2 ⊗ . . .⊗ Ln if L1 ← B1 ⊗ . . .⊗Bj ∈ P
r2. π, (D1, E1) P L2 ⊗ . . .⊗ Ln if Od(D1) |= L1

r3. π ◦ 〈(D1, E1),L1 (D2, E1)〉, (D2, E1) P L2 ⊗ . . .⊗ Ln if Ot(D1, D2) |= L1

r4. π ◦ 〈(D1, E1),L1 (D1, E2)〉, (D1, E2) P L2 ⊗ . . .⊗ Ln if Oe(E1, E2) |= L1

r5. π ◦ 〈S1,
A1 . . . ,Ap−1 Sp,

A−1
k . . . ,A

−1
1 Sq〉, Sq P L1 ⊗ . . .⊗ Ln if all conditions hold:

- There is an action-failed classical derivation starting in 〈S1〉, S1 P L1 ⊗ . . . ⊗ Ln (where
S1 = (D1, E1)) ending in 〈S1,

A1 . . . ,Aj−1 Sj〉, Sj P φ, for some transaction φ
- S1,

A1 . . . ,Ap−1 Sp is the rollback path of S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗ . . .⊗A

−1
1 (cf. Definition 16)

- There is successful classical derivation for 〈Sp〉, Sp P A−1k ⊗ . . . ⊗ A−11 ending in
〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq P ()

Fig. 1. SLDET R-derivation rules

edge never implies falsity. While this latter reasoning
makes sense in a open web context where one cannot
presume to have complete knowledge of the environ-
ment, this is not the case when reasoning about inter-
nal knowledge. Since we fully control internal infor-
mation, employing closed world assumption is useful
and much more natural. To address this, several seman-
tics like [43,45,32] have been proposed to reason and
retrieve knowledge in the so called hybrid knowledge
bases, i.e. knowledge bases described by both a non-
monotonic internal KB (defined by rules) and a mono-
tonic external Web Ontology (defined by a Description
Logic).

Furthermore, the highly dynamic facet inherent to
a Web environment has triggered the appearance of
update operators proposals for updating and revising
knowledge over Description Logics [24,39,37] but also
over these hybrid knowledge bases [52,53].

Based on the development of such operators, the fol-
lowing step is to provide transactional properties over
such evolution of knowledge. In this sense, by provid-
ing means to reason and execute transactions defined
over internal and external independent domains, ET R
can be used to achieve this goal. In fact, the flexibil-
ity obtained by the inclusion of oracles allows ET R to
be suitable, independently of which W3C standard is
selected for the particular moment. Also, it should be
noted that achieving different transactional properties
over actions, depending on whether they are internal or
external, is in line with the previous arguments for the
combination of closed and open world reasoning.

However, for such Semantic Web usage, specific in-
stantiations of the oracles are in order. With this goal,
and since depending on the application Description
Logics can be used to describe both the internal and

external KB, next we start by providing an example of
a Description Logic instantiation for these domains.

Additional semantics may also be useful in this con-
text, as for instance to model interactions with external
entities or agents (as in example 9). For that, languages
with the goal of encoding the dynamic effects of ac-
tions in external environments are natural candidates.
With this in mind, in this section we also provide an in-
stantiation for Action Languages, Situation Calculus,
and Event Calculus as external oracle definitions.

4.1. Description Logics Oracles

With the goal to be useful in a Semantic Web con-
text, we exemplify how the internal oracles can be de-
fined for a Description Logic KB. Description Log-
ics [1] have been largely used to describe knowledge
in the Semantic Web and are the underlying represen-
tation formalism of the standard Web Ontology Lan-
guage (OWL) [41].

As decidable subsets of first-order logic, Descrip-
tion Logics comprise several family languages with
different expressivity and complexity features. Every
Description Logic (DL) knowledge base K is com-
posed by knowledge described over a TBox (T ) and
a ABox (A). Here, the TBox defines the concepts and
terminologies of the world while the ABox defines as-
sertions of particular instances.

Based on just this, we can abstractly define the
database oracle Od as a mapping from a DL knowl-
edge base K to the set of formulas that are true in that
state. Then, a state identifier D can be defined as the
pair 〈T ,A〉 where T is a TBox and A is a ABox, and
Od is such that a formula is true in it iff it is a conse-
quence of the TBox plus the ABox.
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Different oracle instantiations can be defined for dif-
ferent Description Logics. Here, for the purpose of this
illustration, we provide an instantiation for the DL-Lite
Family [11]. DL-Lite is the backbone of the OWL-2
QL profile [17] and known for its low computational
complexity on large volumes of instance data (ABox
size). OWL 2 [44] is the second edition of the standard
OWL and is fragmented upon three different profiles
with the goal to address different application require-
ments. In this sense, the OWL 2 QL is designed to deal
with very large amounts of data and in contexts where
query answering is the most important task.

DL-Lite also defines a family of languages and thus
to be more concrete let us pick DL-LiteFR that enjoys
from polynomial algorithms to update the ABox [24,
13].

As any DL language, elementary descriptions are
partitioned between atomic concepts and atomic roles,
and complex descriptions can be built from these using
concept constructors. To build complex descriptions,
DL-LiteFR has the following constructs:

B ::= A | ∃R
C ::= B | ¬B
R ::= P | P−

where A denotes an atomic concept, B a basic con-
cept, C a general concept, P an atomic role and R a
basic role. Based on these, the ABox A is composed
by a set of membership assertions of the form B(a)
and P (a, b) where a and b are object constants. The
TBox T is a set assertions of the following:

B v C concept inclusion assertion
R1 v R2 role inclusion assertion
(funct R) role functionality assertion

As any Description Logic, its semantics is defined
by first-order logic interpretations. An interpretation
I = (∆, ·I) provides a non-empty set of interpretation
domain ∆, and a mapping ·I which maps individuals,
concepts and roles to ∆ as follows:

AI ⊆ ∆
P I ⊆ ∆×∆
(P−)I = {(a2, a1) | (a1, a2) ∈ P I}
(∃R)I = {a | ∃a′.(a, a′) ∈ RI}
(¬B)I = ∆ \ BI

To simplify, we assume to have standard names, i.e.
that there is no distinction between the alphabet of con-

stants and ∆. Finally, an interpretation I is said to
model a given TBox or ABox assertion F (denoted
I |= F ) if the following is true.

– I |= D1 v D2, if DI1 ⊆ DI2
– I |= (funct R), if (a1, a2) ∈ RI and (a1, a3) ∈
RI implies a2 = a3

– I |= B(a), if a ∈ BI
– I |= R(a, b), if (a, b) ∈ RI

An interpretation satisfies a knowledge base K =
〈T ,A〉 (written I |= K) iff it satisfies each assertion
in K. Finally, let Mod(K) be the set of all models of
K. Then, K is satisfiable iff Mod(K) 6= ∅ (i.e. if it has
at least one model) and unsatisfiable otherwise.

4.1.1. DL-Lite database oracle
After specifying the background for DL-Lite we can

now elaborate on a example for a database oracle de-
fined for such Description Logic. For that we can make
use of DL-Lite characteristics and employ a query-
answering algorithm for conjunctive queries as defined
in [12]. Here, a conjunctive query q over K is an ex-
pression of the form:

q(~x)← ∃~y.conj(~x, ~y) (5)

where ~x and ~y are respectively known as the distin-
guished variables and non-distinguished variables of
query q. The conjunctive query is defined by the for-
mula conj(~x, ~y) which denotes a conjunction of atoms
of the form B(z) or R(z1, z2) where B is a basic con-
cept andR a role inK, and z, z1, z2 are either constants
in K or variables in ~x or ~y.

Formula (5) above is interpreted in an interpreta-
tion I as the set of qI of tuples ~c ∈ ∆ × . . . × ∆
such that when the variables ~x are substitute with the
constants ~c, the formula ∃~y.conj(~x, ~y) is true in I.
Then, ans(q(~x),K) is the set of such tuples such that
∃~y.conj(~x, ~y) is true in every I that is a model of K.

We say that a query q(~x) is true in the knowledge
base K if ans(q(~x),K) 6= ∅. If ~x is ground, then q is
said to be boolean, and in such case ans(q,K) con-
sists of the empty tuple whenever q holds in every
model of K. Additionally, if K is unsatisfiable, then
ans(q(~x),K)) is the set of all possible tuples of con-
stants in K with the same arity as ~x.

To query with such a DL-Lite KB K, we can define
as primitive dlquery(~c, conj(~c, ~y)) where conj(~c, ~y)
is a conjunctive query, and ~c the set of constants that
appear in it. Then the database oracle Od can be as
follows.
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Definition 23 (DL-Lite database oracle). Let K be a
state (i.e. a TBox and an ABox in DL-Lite).

Od(K) |= dlquery(~c, conj(~c, ~y)) iff
q ← ∃~y.conj(~c, ~y) and ans(q,K) 6= ∅

Note that, with this definition, we are assuming all
DL queries to be boolean. This is because, from the
start, we are working with Herbrand interpretations of
the transaction logic formulas. As such, all rules are
ground, and so are the the DL queries possibly appear-
ing in them. For the general case of rules with vari-
ables, a condition similar to DL-safety [46] would have
to be imposed, so as to guarantee that the instantiation
of the variables in ET R rules would not depend on the
result of the queries. In this context, DL-safety must
guarantee for every transaction rule that every variable
in ~x of a query is instantiated before the query call.
Then for such rule, this implies that every variable in
~x to occur previously (i.e. in a sequence of rule bodies
with ⊗) in a predicate defined in LP . Since in this pa-
per we only present the ground version of ET R, and
since for that the discussion on safety is not crucial,
here we do not elaborate further on this topic.

4.1.2. DL-Lite transition oracle
After specifying an oracle to query ET R’s internal

KB, we further exemplify on how this internal KB can
be updated.

For that we restrict to instance-based updates, i.e.
updates on the membership assertions of the ABox.
Then, an update U is simply a set of ABox assertions
that is integrated into the current knowledge base K,
achieving a new knowledge base K′.

However, the updated information may leaveK′ un-
satisfiable, and in this case, the conflicts between U
and the old information from K need to be addressed.
Since the resulting knowledge base K′ may not be ex-
pressible in the original DL where it was defined [2],
solving such conflicts may not be trivial (even only for
ABox updates).

To address this problem, several formal operators
have been proposed either based on models and on for-
mulas updates, and the interested reader is referred to
[39] for more details.

For the purpose of this illustration, we assume the
Careful Semantics Update as presented in [13]. Never-
theless note that any other update semantics could be
as easy defined (based either on TBox, ABox updates
or both).

A careful update is defined for a DL-LiteFR K =
〈T ,A〉 as follows:

c upd(T ,A,U) := Acm ∪ U

whereAcm is the careful maximal set of assertions sub-
set of the closure of A w.r.t. T compatible with U .

Based on this, we define dladd() as the primitive to
add a given update to a Description Logic. Then, the
transition oracle can be defined as follows.

Definition 24 (DL-Lite transition oracle). Let a state S
be a pair 〈T ,A〉 where T is a TBox and A is a ABox.
Let U be a set of ABox assertions to update the ABox
and c upd the careful semantics update algorithm ref-
erenced earlier.

Ot(〈T ,A〉, 〈T ,A′〉) |= dladd(U) iff
A′ = c upd(T ,A,U)

4.2. External oracles

As stated, ET R’s logic is parametric on the oracles
Od,Ot, andOe, that encapsulate a specific representa-
tion of states and describe, respectively, what holds in
each state of the internal KB, the possible transitions
of the internal KB and the external domain.

While instantiating the internal oracles is required
to use ET R (or T R), the external oracle can be left
open if all we want is execute an ET R program. This
is as expected since in most cases it is impossible to
know how the external oracle is specified. However, to
reason about general properties of ET R transactions,
like equivalence or implication, then an external rep-
resentation of states must be chosen and the external
oracle must be properly defined. This leaves open the
question of how this external oracle Oe can be instan-
tiated and what semantics are useful to characterize the
external KB.

In a Semantic Web environment the external KB can
also be described by a Description Logic. This is e.g.
the case when we have an ontology distributed across
several web-sources, or when a rule system interacts
with an ontology on the web (like e.g. in hybrid knowl-
edge bases). Consequently, in the following we define
anOe for a DL-Lite Description Logic similar to what
we have done for the internal oracles Od and Ot.

However, in general, acting upon an external envi-
ronment is not restricted to querying or (trying) to add
or delete information from external KBs. In fact, the
acting on external sources (e.g. when interacting via
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web-services) is in general much richer, and these ex-
ternal sources usually admit a great diversity of ac-
tions. Several languages for describing this diversity of
actions, have been defined and studied in the literature.
To make ET R fully integrated with external environ-
ments whose interaction is established by this variety
of actions, one has to define external oracles for such
languages. Because of that, we also provide aOe spec-
ification for Action Languages, Situation Calculus, and
Event Calculus.

4.2.1. External Description Logic Oracle
Defining a Description Logic external oracle is just

equivalent to defining the internal oracles Od and Ot
for a given DL. Yet, since Oe works always with pairs
of states even when evaluating queries, then querying
Oe is equivalent to the definition ofOd(K) for a given
state K, but where the pair state does not change, i.e.
Oe(K,K).

Moreover, it may make sense to modify such oracle
for a scenario where the intentions of the involved par-
ties is unknown. In this sense, it may be useful to re-
strict the set of information that can be updated in Oe
by external entities. This is a common feature of sev-
eral systems where one is required to authenticate in
order to haver permission to access and change a given
table, tuple or webpage.

To achieve this, we can define in Oe a permission
list, linking users with sets of ABox assertions that can
be modified. Then, when updating the KB, we must
verify that the update is safe, i.e. that only the permit-
ted assertions are modified. Based on this, an external
oracle for a DL-Lite DL can be defined as follows:

1. Oe(K,K) |= dlquery(c, φ(c, ~x)) iff q ← φ(c, ~x)∧
ans(q,K) 6= ∅

2. Oe(〈T ,A〉, 〈T ,A′〉) |= dladd(U) iff A′ =
c upd(T ,A,U) ∧ safe(A,A′, List(User))

where safe(A,A′, List(User)) denotes that every
assertion that is present in A′ and not in A is defined
in the allowed list for that user.

As previously argued, other languages and domains
are also possible in the external KB. Thus, in the fol-
lowing we illustrate how the external oracle can be de-
fined for languages with the aim of encoding the dy-
namic effects of actions, as Action Languages, and Sit-
uation and Event Calculus.

4.2.2. Action Language Oracle
Action Languages are a family of languages pro-

posed in [23] with the goal to model the dynamics of
external environments.

Every action language defines a series of laws de-
scribing actions in the world and their effects. Which
laws are possible as well as the syntax and semantics
of each law depends on the action language in ques-
tion. Several solutions like STRIPS, languagesA,B, C
or PDDL, have been proposed in the literature, each
with different applications in mind. A set of laws of
each language is called an action program description.
The semantics of each language is determined by a
transition system which depends on the action program
description.

Let 〈{true, false},F ,A〉 be the signature of an
action language, where F is the set of fluent names
and A is the set of action names in the language. Let
〈S, V,R〉 be a transition system where S is the set of
all possible states, V is the evaluation function from
F × S into {true, false}, and finally R is the set of
possible relations in the system defined as a subset of
S ×A× S. We assume a function T (E) that from ac-
tion program E defines the transition system 〈S, V,R〉
associated with E, and the previously defined signa-
ture. We also define La = F ∪A.

Equipped with such notions, an ET R external state
is a pair, with the program E describing the exter-
nal domain and a state of the transition system. Thend
the general external oracle Oe is (where T (E) =
〈S, V,R〉):

1. Oe((E, s), (E, s′)) |= action iff action ∈ A ∧
〈s, action, s′〉 ∈ R

2. Oe((E, s), (E, s)) |= fluent iff fluent ∈ F ∧
V (fluent, s) = true

To be more concrete, let us show the instantiation of
this general oracle, with Action Language B, an action
language simple enough for the purpose of this illus-
tration, but still interesting by its ability to describe the
direct and indirect effects of actions.

A program E in language B is composed by static
laws and dynamic laws. A static law is a statement
of the form: “L if F ” where L is a literal and F a
conjunction of literals. A dynamic law has the form:
“A causes L if F ” where A is an action name, L is a
literal and F a conjunction of literals.

For the semantics of B, the states are simply sets of
literals. Then, a central notion is the concept of clo-
sure under the static laws. This says that a set of lit-
erals s is closed under a set of laws E if, for every
rule “L if F ” in E such that F ⊆ s, then L must
belong to s. Based on this, CnE(s) is denoted the
set of consequences of s under E, and defined as the
smallest set of literals that contains s and is closed un-
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der E. Finally, EffectsE is a function that gets the ef-
fects of a given action A in a state s based on the dy-
namic laws specified in E: EffectsE(A, s) = {L :
there exists A causes L if F in E and F ⊆ s}.

With this, the oracle for B can be defined as:

1. Oe((E, s), (E, s′)) |= action iff s′ =
CnE(EffectsE(action, s) ∪ (s ∩ s′))

2. Oe((E, s), (E, s)) |= fluent iff fluent ∈ s

For further detail on B, and in particular on how the
frame problem is dealt with by the above definition of
s′, we refer to [23].

4.2.3. Situation Calculus Oracle
In the seminal Situation Calculus [40], external do-

mains are described in a second-order language with
a basic ontology partitioned into actions (A), fluents
(F) and situations. An action is a predicate that has
the ability to change the state of the world, while a flu-
ent is a predicate whose truth value can change over
time (or more precisely, situations). Finally, a situation
represents the complete state of the universe at a given
instance defined by a finite sequence of actions. More
precisely, situations are either represented by a con-
stant s0 denoting an initial situation, or by do(a, s) de-
noting the situation that results from executing action
a in situation s.

The conditions for executing actions, and their ef-
fects, are expressed by using the second order pred-
icates Poss(a, s), meaning that action a can be exe-
cuted in situation s, andHolds(f, s), meaning that flu-
ent f is true in situation s.

The semantics of these predicates and operators is
defined by axioms describing the world, actions and
their effects. For the purpose of this illustration, we do
not elaborate on how these axioms are defined or how
the frame problem is solved, and refer e.g. to [48] for
more details. All we assume is a satisfaction relation
|=SitCal that satisfies primitive formulas w.r.t. a set of
axioms that we define as a domain description E. In-
tuitively, a domain description is just a set of action
axioms, domain axioms and frame axioms.

Based on this, the external language is La = A∪F ,
and external states are pairs (E,S), where S is a situa-
tion and E is the external domain description. Finally,
an external oracle based on Situation Calculus can be
given by:

1. Oe((E,S)), (E,S)) |= f iff f ∈ F and
E |=SitCal Holds(a, S)

2. Oe((E,S1), (E,S2)) |= a iff a ∈ A and
E |=SitCal Poss(a, S1) ∧ S2 = do(a, S1)

Note that the external oracle only executes actions
that are possible to be executed in a given situation s1.
This precludes the system to evolve into an inconsis-
tent situation that results from an action that is not al-
lowed in that state. This also results in the possibility
of failed external actions, which are then dealt in ET R
by rolling back the internal KB and executing compen-
sating actions externally.

Equipped with a formalism that is able to deal both
with internal KBs, with ACID transactions, and with
external actions, let us show some simple illustrative
examples of what it can express, and how results are
obtained.

Example 14 (Medical Diagnosis). Recall example 9.
After defining the transaction rules and the internal
knowledge described over a Description Logic, we left
open the definition of the external KB.

This external KB, describing the effects of actions,
and also some facts about the patient, can be modeled
using Situation Calculus descriptions, e.g. including:

Holds(temperature(sam, 39), s0).
Holds(hasHeadache(sam, t), s0).
Holds(stuffyNose(sam, t), s0).
Holds(heartRate(sam, 80), s0).
Holds(dyspnea(sam, f), s0).
Holds(heartRate(sam, 160), do(giveMeds(sam, plp), s0)).
Holds(dyspnea(sam, t), do(giveMeds(sam, plp), s0)).

Given this instantiation of the external domain, the
system will conclude that Sam likely suffers from flu
and thus it may decide to give the medicine plp as
treatment. If this is the case, then Sam will experience
some symptoms of heart failure: dyspnea (difficulty of
breathing) and increase of heart rate. Note that if this
happens, it is crucial to perform some compensation in
order to make Sam feel better. In this case, the system
can give Sam cplp that is known to address the effects
of a heart failure resulting from giving plp.

4.2.4. Event Calculus Oracle
Similarly, in Event Calculus [34] predicates can be

actions or fluents, where actions can change properties
of the world and fluents denote these properties whose
truth value may change. The main innovation of Event
Calculus is that actions are events, i.e. changes asso-
ciated with a particular moment in time that influence
the state of the world. Then, fluents are evaluated w.r.t.
time points usually defined by non-negative real num-
bers and denoting an explicit moment in the system.



22 A.S. Gomes and J.J. Alferes / External Transaction Logic

An external domain is described in Event Calculus
by the predicates4: initially(f), denoting that fluent
f hold at time 0; initiates(f, a, t), stating that action
a initiates fluent f at time t; terminates(f, a, t) stat-
ing that action a terminates fluent f at time t; and
happens(a, t) denoting that action a happened at time
t. Truth of fluents at time points is obtained by the
predicate holdsAt(f, t), whose meaning can be ob-
tained by a logic program:

holdsAt(P, T )← 0 ≤ T, initially(P ),
not clipped(0, P, T ).

holdsAt(P, T )← happens(E1, T1), T1 < T,
initiates(E1, P, T1),not clipped(T1, P, T ).

clipped(T1, P, T )← happens(E2, T2), T1 < T2, T2 < T,
terminates(E2, P, T2).

Based simply on this, one may represent states of an
external domain described in Event Calculus as pair,
with a logic program P containing the description of
the domain, and a time point t. The definition of the
oracle itself can be done in a very similar way as in the
Situation Calculus case, by:

1. Oe((P, t), (P, t)) |= p iff P `LP holdsAt(p, t)
2. Oe((P, t), (P ′, t + 1)) |= a iff P ′ = P ∪
{happens(a, t)}

Some words are in order regarding this representa-
tion of (external) states. Internal formulas (i.e. queries
evaluated in Od, updates evaluated in Ot, or complex
formulas combining these) do not change the external
state. Consequently, with our representation of states,
from the perspective of the external domain the evalu-
ation of all these formulas are instantaneous. In other
words, this definition does not cater for cases where
the external domain changes while the formulas are be-
ing evaluated. Allowing changes in the external world
to occur simultaneously with the evaluation of inter-
nal formulas would require some explicit representa-
tion of the external time in the formulas of ET R the-
ory, as well as a global clock with the role to instanti-
ate correctly the time component of the external state,
and this is beyond the scope of this paper.

Another aspect worth discussing, is that with this
formalization of the oracle, “actions” never fail. This
is so because the Event Calculus was primarily defined
to reason about events, and thus it makes no sense for

4We assume the simplified version of the calculus as defined
in [51]. More basic predicates can be found in the full version of the
calculus.

the occurrence of an event to fail. However, ET R, as a
logic that talks about actions and state change, assumes
that actions (and, especially, external actions) can fail.
In fact, it is important for the internal knowledge base
to know whether a given external action can be suc-
cessfully executed. Without this possibility, the need to
ensure transaction properties externally, as well as the
notion of compensation become redundant.

To include the possibility of failure, we extend the
Event Calculus oracle, with executable(A, T ) to ex-
press that action A can be executed at time T . Since
in the end, Event Calculus can be defined as a logic
program, incorporating a new predicate is as sim-
ple as defining a new rule as executable(A, T ) ←
preconditions, where the preconditions denote the
set of preconditions that need to be true in order for
executable(A, T ) succeed. For instance, in the well-
known Yale shooting problem [28], one can express
the possibility of killing turkey Fred as follows:

executable(kill, T )← holdsAt(alive, T ),
holdsAt(loaded, T ).

Based on this, an alternative version of Oe can be de-
fined as:

1. Oe((P, t), (P, t)) |= p iff P `LP holdsAt(p, t)
2. Oe((P, t), (P ′, t+ 1)) |= a iff P `LP
executable(a, t) ∧ P ′ = P ∪ {happens(a, t)}

Example 15 (Ski Resort Hotel). Consider the sce-
nario of a hotel in a ski resort where the internal KB
manages room reservations. Given the location of the
hotel, one possible package is to combine a hotel room
with the acquisition of the ski pass for the resort. More-
over, the price of this package depends on the dates of
the calendar (if it is high season or not) but also on the
amount of snow on the slopes. If the amount of snow
on the slopes is higher than 100cm then the quality is
considered “premium”, and the Hotel takes this oppor-
tunity to increase the price of the ski-pass reservation
by 30%. However, if the slopes are closed due to some
storm or lack of snow, the ski pass cannot be sold.

Ski passes are external to the system and handled by
the external environment which also gives information
about the resort, namely: the quantity of snow on the
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slopes and if the resort is open or not.

priceFF (Price, T )← ext(isOpen)⊗ ext(snowCM(CM))
⊗ CM <= 100⊗ basePrice(Price, T )

priceFF (Price, T )← ext(isOpen)⊗ ext(snowCM(CM))
⊗ CM > 100⊗ basePrice(P, T )⊗ Price is 1.3 ∗ P

reservation(N,T )← priceFF (PF, T )⊗
priceHotel(PH, T )⊗ addResHotel(N,T, PF + PH)
⊗ ext(printFF, cancelFF)
⊗ext(askPayment(N,X))

addResHotel(N,T,X)← roomsAvailable(Nr) > 0
⊗roomsAvailable(Nr).del
⊗roomsAvailable(Nr − 1).ins
⊗reservation(N,T,X).ins

In this case, the external domain of the ski resort could
be described by an Event Calculus program with:

holdsAt(isClosed, T )← holdsAt(stormStart, T1),
T1 ≤ T, T1 ≤ T2 ≤ T,not holdsAt(stormEnd, T2).

holdsAt(isOpen, T )← not holds(isClosed, T ).
holdsAt(stormStart, 150313).
holdsAt(stormEnd, 180313).
holdsAt(snowCM(10, 150313).
holdsAt(snowCM(150, 183113).

External predicates like isOpen and snowCM(CM)
rely on weather conditions whose truth value naturally
depend on moments in time. In the example we know
that between 15th and 18th of March a snow storm oc-
curred. During this snow storm the resort was closed
and thus the hotel was unable to sell reservations with
ski passes for that period. However, after this storm,
the amount of snow increased and the slopes on the 18
of March had around 1,5 meters of fresh snow which
led to more expensive reservations.

Note that time is an important component of this
system. It is assumed that a shared clock exists for
both internal and external component. Whenever a
new reservation request reservation(name, time) is
posed, the system must check whether the program ex-
ecutionally entails this transaction, given an initial in-
ternal state and external with a common appropriate
value for time.

4.3. Combining n−ary External Oracles

Up until now we have consider external oracles de-
scribed by a single semantics. However, the previously
example 15 exemplifies a situation where more than
one external semantics is required to describe the ex-
ternal domain. Particularly, in such example, besides
the ski resort, the hotel system interacts with one more

external entity: the client. And clearly, the external ac-
tion of asking the payment to a client is performed
in a completely independent domain than the action
printFF. Other examples of this need are common
of the Semantic Web context where a system needs
to combine knowledge published across different web-
sources described over different W3C standards.

Although formally ET R only supports integration
with one external oracle, nothing prevents this ora-
cle to be instantiated with more than one external se-
mantics. This can be done by partitioning the external
KB language (La) into as many languages as needed.
Then, the oracle Oe works as a “meta-oracle” decid-
ing in which semantics a formula should be evaluated.
In the case of example 15, to define the two domains,
viz. the ski resort and the client, then two sub-oracles
(one for each domain) must be defined and incorpo-
rated within Oe.

Assuming a disjoint language on the two sub-
oracles allows Oe to simply decide in what semantics
each formula must be evaluated. This approach can
also be used to employ an arbitrary number of oracles.

5. Related Work

Although several logics exist to model transaction
behavior, to the best of our knowledge, there is none
with ET R’s characteristics, where one can reason and
execute transactions simultaneously in internal and ex-
ternal KB defined by an abstract semantics.

In this sense, logics like Action Languages [23],
the Situation Calculus [40], the Event Calculus [34],
Process Logic [29], etc.; and some of their variations
like [19,38,33,35] provide means to reason about state
change and the related phenomena of time and action.
However, the goal of such logics is to describe very
expressibly the dynamics of a given domain, by rea-
soning about the possible actions that can be executed
and their (direct and indirect) effects on the domain.
Thus, they provide very expressive language construc-
tors and focus heavily in resolving the frame problem.
ET R (as T R) was designed with a different intent,

as its semantics centers in the combination of atomic
primitives to define transactions and programs. More-
over, the meaning of these atomic primitives is ab-
stracted from the semantics definition, and ET R does
not provide any solution for the frame problem. For
that, ET R theory receives three oracles as a parame-
ter describing the dynamics of the internal and exter-
nal domain. Thus, rather than an alternative to ET R,
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these logics can be used together with ET R via the
formalization of these oracles, providing instantiations
of ET R states and meaning to its atomic primitives.
For a detailed comparison between T R and some of
these logics the interested reader is referred to [6].

Additionally, such semantics can also be used to rea-
son about the possible compensations for a given exter-
nal action. In this sense, we can lift the programmer’s
burden of always defining the compensating actions di-
rectly in the program, and automatically retrieve the
correct compensation of a given action according to a
domain description. This notion was further developed
in [26] for an action language oracle. Here we employ
a relaxed notion of action reversals proposed in [15] to
define an external oracle able to instantiate an external
action with its correct compensation.

Moreover, since ET R’s proof theory enables the
execution of transactions, one can also compare ET R
to formalisms like [10,55,3]. These provide tools
to describe the interactions and communications be-
tween concurrent processes during long-running trans-
actions. For that, they are based on algebraic systems
for modeling concurrent communicating processes, as
Milner’s CCS [42] or Hoare’s CSP [30], among others.

Clearly, one big difference between ET R and these
calculus based solutions is that ET R does not sup-
port concurrency and synchronization. Yet, providing
these features to ET R is an obvious future work mile-
stone and is in line with what has been done in Concur-
rent Transaction Logic [7]. However, these solutions
are conceptually very different from ET R. Since their
focus is mostly on the correctness of conversations be-
tween processes, they provide a very powerful opera-
tional semantics to ensure correctness and termination
of execution. This allows the enclosing of rich oper-
ators that for instance, can construct the correct com-
pensation for each action “on-the-fly” as in [55]. How-
ever, these solutions are mostly operational and fail to
be used as knowledge representation formalisms. Their
lack of model theory and knowledge of state makes it
impossible to model what is true at each step of the
execution or to specify constraints on their execution
based on this knowledge.
ET R stands in between the two worlds. It provides

a clean model-theoretic semantics, parametric on the
meaning of the particular KB on which it operates, al-
lowing us to talk about properties of transactions like
equivalence and implication that hold independently of
what execution path is chosen. But also, by providing
a proof-theory that is sound and complete with the se-
mantics, ET R is able to talk about a particular execu-

tion of a transaction and what are the possible evolu-
tion paths for a given formula. Moreover, given its ab-
straction of states and primitives, ET R can be easily
adapted for a wide range of situations, being specially
useful in open contexts where several different seman-
tics can be applicable, as e.g. in the Semantic Web.

Another interesting related work that tackles the is-
sue of modeling transactions in arbitrary domains is
the rule-based language ULTRA [16]. ULTRA is based
on minimal model semantics and is very similar to T R
(in fact, the logics are proven to have the same mod-
eling power for their sequential version). Similarly to
ET R, ULTRA’s implementation allows the definition
of compensating subtransactions for every transaction
committed. However, contrarily to ET R this notion is
not reflected in ULTRA’s model theory which does not
provide means to soften the ACID transactional model.
Thus there is no formal correspondence between the
procedure of ULTRA and its model theory as in ET R.

In [49] the authors propose an extension of Transac-
tion Logic with Partially Defined Actions (T RPAD)
to encode axioms defining direct and indirect effects
of actions and to directly define partial descriptions
of states. This allows T RPAD to model external en-
vironments with incomplete information and reason
about actions and their effects in the domain. Its proof-
theory, being sound and complete with the model the-
ory allows T RPAD to also execute these actions. Nev-
ertheless, T RPAD goes against some of the original
ideas of T R. Particularly, the information about the
domain and actions is defined directly in the logic, the
notion of oracles is abandoned and states can only be
defined by ground propositional formulas. This swift
of paradigm makes the theory less flexible as it pre-
cludes the possibility of changing the semantics of
states or combine several semantics to reason with
more than one domain. It is also unclear how the trans-
action properties of T R can benefit the T RPAD or
how can they be ensured in an external domain like
defined in ET R. In addition, it is impossible to relax
some properties of transactions as in ET R.

Statelog [36] is a logic-programming like language
with support for ACID transactions that has some in-
teresting features as the ability to encode reactive rules
and results about termination of programs. A funda-
mental difference between Statelog and ET R is its
Kripke-style semantics based on states rather than
paths. As a result, to encode evolution, states are hard-
wired in the syntax each predicate as p[S](t1, . . . , tn)
or p(S, t1, . . . , tn), meaning that p(t1, . . . , tn) holds in
state S. Furthermore, although simple transactions can
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still be defined using rules, nested transactions need
the notion of procedures. In these, one needs to de-
fine explicitly when a transaction must fail and com-
mit, making nested transactions harder to encode (cf.
T R and ET R). Moreover, Statelog does not consider
an interaction with an external entity as ET R, and so
it does not provide any mechanisms for relaxing ACID
properties.

Finally, as a Semantic Web related solution we ref-
erence the RDF Triggering Language (RDFTL) [47].
RDFTL is a Event-Condition-Action language for
RDF metadata on P2P environments, and also deals
with the problem of interacting with external entities
(i.e. other peers). Similar to ET R, the authors agree
that in such conditions it is necessary to relax atomicity
and isolation properties of transactions. With this goal
RDFTL also implements compensations and allows
for concurrent transactions. However, RDFTL rule op-
erational semantics as well as its definition of com-
pensations are completely procedural and lack from a
declarative semantics.

6. Conclusions

In this work we provided a complete formalization
for ET R, an extension of Transaction Logic to rea-
son and execute (trans)actions performed both in an in-
ternal and an external knowledge base. To accommo-
date this, ET R guarantees different kinds of properties
according to the domain where the actions were exe-
cuted. Then, when executed in an internal KB, actions
are guaranteed to follow the ACID model of trans-
actions, meaning that either the transaction can suc-
ceed completely, or the execution is considered to have
never happened. In opposition, when executed in an
external KB, actions follow a relaxed version of this
ACID model, achieved using compensations. Since ex-
ternal actions are executed in a domain in which, in
principle, we cannot rollback actions, then it is no
longer possible to guarantee that the external KB will
remain the same after some failure. As an alternative
to restore external consistency, ET R issues a sequence
of compensating operations whenever a failure occurs
after the execution of external actions.

With a model-theoretic semantics and a sound and
complete top-down procedure, ET R is useful for ex-
ecuting and reasoning about systems that update both
an internal and external component and need to guar-
antee properties on the outcome of these updates.

Examples of such systems are commonly found on
the web, as e.g. a web-service with an internal database
interacting with another web-service, or a web-source
with a knowledge described by a Description Logic
that needs to consult and execute actions in other web-
sources.

An important feature of ET R is that its semantics
of states and primitive operations is abstract. I.e. ET R
allows execution and reasoning of transactions inde-
pendently of the semantics chosen for the internal and
external KB. This is achieved by defining oracles as a
parameter of the theory. These oracles define the most
appropriate semantics for the application in question,
allowing ET R to be useful in a wide range of domains.

Since ET R “outsources” the decision of what is a
state and what formulas hold in what states and state
transitions, the goal of ET R is substantially different
from other logics of state change. Particularly, ET R
centers on the notion of execution paths that satisfy
a given transaction. Then, when used for reasoning,
ET R can talk about general properties of transactions
that hold in every possible path of execution, as e.g.
saying that in every possibility of execution, transac-
tion φ implies the execution of transaction ψ, or what
constraints are always true in every execution of φ. In
addition, when used for execution, ET R can materi-
alize the changes of a given transaction according to
the model-theory, and find a particular path where the
transaction is successfully executed (if that path ex-
ists).
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[25] Ana Sofia Gomes and José Júlio Alferes. Extending transaction
logic with external actions (technical communication). The-
ory and Practice of Logic Programming, On-line Supplement,
2013.
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Lawrence, editors, WWW, pages 48–57. ACM, 2003.

[28] S. Hanks and D. McDermott. Nonmonotonic logic and tempo-
ral projection. Artif. Intell., 33(3):379–412, November 1987.

[29] David Harel, Dexter Kozen, and Rohit Parikh. Process logic:
Expressiveness, decidability, completeness. J. Comput. Syst.
Sci., 25(2):144–170, 1982.

[30] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[31] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, Mike Dean, et al. Swrl: A semantic
web rule language combining owl and ruleml. W3C Member
submission, 21:79, 2004.
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Appendices

Auxiliary Results

Lemma 1. Let M be an interpretation, π a path and
φ an atom

M,π |= φ iff φ ∈M(π)

Proof. If φ is defined in the oracles languages, then
this result is trivial by Definition 10. So let’s assume
that φ is not defined in the oracles. Then M,π |= φ if
one of the two cases occur:

1. φ ∈M(π) and thus the proof is complete, or;
2. ∃π1◦π2 splits of π s.t.M,π1  φ andM,π2 |=
φ.
We will prove that M,π1  φ is always false
for these cases, and for that let’s consider the
definition of  . If M,π1  φ then it exists
a split π0 ◦ πr of π1 s.t. M,π′1 |=p φ and
M,π′1 6|=c φ, and π0 is the rollback path of π′1.
However, since φ is an atomic formula but does
not belong to the language of the oracles, then
M,π′1 |=p φ and M,π′1 6|=c φ is impossible by
the definition of the base case of the partial sat-
isfaction. Then since M,π1  φ does not hold,
then M,π |= φ can only hold by the the first
case and thus M,π |= φ iff φ ∈M(π).

Lemma 2. Let M be an interpretation, and π be a
path such that for every annotated action Ai that ap-
pears in π,Ai is not an external action. Then for every
formula φ, M,π 6 φ

Proof. For M,π  φ to be true, then it must exist a
recovery path πr and a SM (πr) 6= ∅. If π does not
contain external actions, then it is impossible to have
the previous two conditions and thus M,π  φ for
any formula φ

Lemma 3. Let P be a program and π a path. If
head ← body ∈ P and M |= P then M,π |=c body
implies M,π |=c head

Proof. Note that if M |= P , head ← body ∈ P
and M,π |=c body implies that M,π |= body and
M,π |= head. By definition of P , head ∈ LP and
thus by Lemma 1 we know that M,π |= head iff
head ∈ M(π). Based on this, we can conclude that
M,π |=c head

Lemma 4. Let P be a transaction program and φ a
transaction formula. If φ and P do not contain exter-
nal actions then: P, π |= φ only if π does not contain
external actions

Proof. P, π |= φ iff for all modelsM of P ,M,π |= φ.
Since this holds for every model, then it must also hold
for the model Ms, the skeptical model that only makes
true the actions defined in paths of the oracle, and the
heads of the rules in P where the bodies are necessarily
true w.r.t. paths.

Since there are no external actions in P , then for
any head of rules in P , Ms, π |= head is only true in
paths where π does not contain external actions. Con-
sequently, for any formula φ such that φ is not an ex-
ternal action and P does not have external actions in
the body, Ms, π |= φ only in paths where π does not
have external actions.

Lemma 5. Let P be a a transaction program both
valid in T R and ET R. Let M be an interpretation
s.t. M is a valid interpretation in ET R. Then M is a
model in T R of P then M is a model in ET R of P .

Proof. M is a model in T R of P iff M models ev-
ery rule h ← body of P . I.e. for every path π′

M,π′ |=TR ¬body or M,π′ |=TR head. This is
equivalent to say that whenever M,π′ |=TR body
holds then M,π′ |=TR head must hold as well.
Note that this corresponds with the definition of model
of ET R. Furthermore we know that since P does
not contain external actions, then for every path π1
M,π1 |=ETR body only if π1 does not contain exter-
nal actions (by Lemma 4). Let π be the path obtained
from π′ adding the constant state E0. Then it is easy
to see that M,π′ |=TR φ iff M,π′ |=c φ as both re-
lations coincide with the definitions. Since π′ does not
contain external then by Equation 3 of Theorem 2 we
know that M,π′ |=TR φ iff M,π |=ETR φ.

Lemma 6. LetM be an interpretation, φ any transac-
tion formula, ψ an atomic action defined in the oracles
and π a path s.t. π = π1 ◦ π2. If M,π1 |=c ψ and
M,π2 6|=c φ then M,π 6|=c ψ ⊗ φ

Proof. Assume M,π |=c ψ ⊗ φ then ∃ a split π′, π′′

s.t.M,π′ |=c ψ andM,π′′ |=c φ. Since ψ is an atomic
action then such split must be π1 ◦ π2 and thus since
M,π2 6|=c φ then the assumption fails.
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Definition 25 (Unfolding of formulas). Let P be a
serial-Horn program and φ is a serial-goal of the
form: φ = φ1⊗ . . .⊗φi⊗ . . .⊗φk. The unfolding of φ
is repeatedly processed until it is complete as follows:
For every atomic formula φi, if φi ← body ∈ P then
φ = φ1⊗ . . .⊗ body⊗ . . .⊗φk. The unfolding is said
to be complete if every φi is an action formula defined
in the oracles.

Theorem 5 (Soundness of | ). Let P be a serial-Horn
program, π a path, φ a serial-Horn goal and M an
interpretation such that M |= P . Let φ1 ⊗ . . .⊗ φi be
the complete unfold of formula φ w.r.t. P . If P, π | 
φ1⊗ . . .⊗ φi then M,π |=p φ1⊗ . . .⊗ φi ∧M,π 6|=c

φ1 ⊗ . . .⊗ φi

Proof. From Lemma 8 and 9

Lemma 7. Let φ be a completely unfolded serial-Horn
goal, andM an interpretation s.t.M |= P . IfM,π |=p

φ ∧M,π 6|=c φ, then ∀ψ s.t. ψ is a serial-Horn goal,
then M,π |=p φ⊗ ψ ∧M,π 6|=c φ⊗ ψ

Proof. Base Case, k = 1:
Let φ be an atom. Then for the statement to be true, π
must be a 1-path. By definition of |=p it comes imme-
diately that M,π |=p φ ⊗ ψ. Moreover, since π is a
1-path, and M,π 6|=c φ then by definition of the serial
conjunction ⊗ in |=c the only split that can be done
from π is π◦π and thus it follows thatM,π 6|=c φ⊗ψ.
Inductive Case:
Assume it is true for φ1 ⊗ φ2 ⊗ . . . ⊗ φk. Then we
want to prove it is still true for φ1 ⊗ . . . ⊗ φk+1. So
assume that M,π |=p φ1 ⊗ . . . ⊗ φk+1 ∧ M,π 6|=c

φ1 ⊗ . . .⊗ φk+1. This is equivalent to:
[(M,π |=p φ1⊗ . . .⊗φk ∧M,π 6|=c φ1⊗ . . .⊗φk)∨
(∃π1◦π2 = π s.t. M, π1 |=c φ1⊗. . .⊗φk∧M,π2 |=p

φk+1)] ∧ ∀π3 ◦ π4 = π. M, π3 6|=c φ1 ⊗ . . . ⊗ φk ∨
M,π4 6|=c φk+1

We can partition this in two cases:
(1) Assume M,π |=p φ1 ⊗ . . .⊗ φk ∧M,π 6|=c φ1 ⊗
. . .⊗φk is true and then by I.H. we know that ∀ψ1 s.t.ψ
is a serial-Horn goal, thenM,π |=p φ1⊗ . . .⊗φk⊗ψ1

and M,π 6|=c φ1 ⊗ . . . ⊗ φk ⊗ ψ1. Moreover, since
this is valid for any formula ψ1 s.t. ψ is a serial-Horn
goal, then it is also true for ψ1 = φk+1 ⊗ ψ and thus
M,π |=p φ1 ⊗ . . . ⊗ φk+1 ⊗ ψ and M,π 6|=c φ1 ⊗
. . .⊗ φk+1 ⊗ ψ.
(2) Assume that ∃π1◦π2 = π s.t. M, π1 |=c φ1⊗. . .⊗
φk∧M,π2 |=p φk+1 and that ∀π3◦π4 = π. M, π3 6|=c

φ1⊗. . .⊗φk∨M,π4 6|=c φk+1. Then, sinceM,π1 |=c

φ1⊗ . . .⊗φk then it must be true that M,π2 |=p φk+1

and M,π2 6|=c φk+1. Consequently, we are in the base
case that was already proven, and thus we can conclude
that M,π2 6|=c φk+1 ⊗ ψ. Finally, since M,π1 |=c

φ1 ⊗ . . .⊗ φk and every φi is an atom, then M,π 6|=c

φ1 ⊗ . . . ⊗ φk ⊗ φk+1 ⊗ ψ (as the split where φ1 ⊗
. . . ⊗ φk is true is fixed to π1, and in any other split
φk+1 does not hold). Note that M,π |=p φ1 ⊗ . . . ⊗
φk ⊗ ψ comes immediately by definition of the serial
conjunction case of |=p.

Lemma 8 (Soundness of | Axiom). If P, π | L1⊗
. . . ⊗ Lk then M,π |=p L1 ⊗ . . . ⊗ Lk and M,π 6|=c

L1 ⊗ . . .⊗ Lk

Proof. Base Case k = 1
If k = 1, this case is only true for 1-paths 〈Sf 〉 =
〈(Df , Ef )〉. Thus, since P, 〈(Df , Ef )〉 | L1 ⊗ . . .⊗
Lk then the derivation starts and ends in the resolvent
〈(Df , Ef )〉, (Df , Ef ) P L1 ⊗ . . . ⊗ Lk and one of
the two cases occur:

(i). L1 ∈ Li, Od(Df ) 6|= L1 and ¬∃Di s.t.
Ot(Df , Di) |= L1, or

(ii). L1 ∈ L∗a and ¬∃Ei s.t. Oe(Ef , Ei) |= L1

Since L1 belongs to the language of the oracle, then it
means that, for any M , then L1 6∈ M, 〈(Df , Ef )〉 and
that ¬∃Di, Ef s.t. L1 ∈ M〈(Df , Ef ),L1 (Di, Ef )〉
or L1 ∈ M〈(Df , Ef ),L1 (Df , Ei)〉. As a result, by
definition of the classical and partial satisfactions,
M, 〈(Df , Ef )〉 6|=c L1 although M, 〈(Df , Ef )〉 |=p

L1.
Inductive Case:
Assume it is true for L1⊗ . . .⊗Lk, then it must also be
true for L1 ⊗ . . .⊗Lk+1. If P, π | L1 ⊗ . . .⊗Lk+1

then it exists a resolvent P, 〈S1, . . . , Sf 〉, Sf P Li ⊗
Lk+1 where (1 ≤ i ≤ k+1). Then there are two cases:
(1) (1 ≤ i ≤ k) and thus P, π | L1⊗ . . .⊗Lk which
by I.H. we know that M,π |=p L1 ⊗ . . . ⊗ Lk and
M,π 6|=c L1 ⊗ . . . ⊗ Lk and by Lemma 7 we know
that M,π |=p L1 ⊗ . . . ⊗ Lk ⊗ Lk+1 and M,π 6|=c

L1 ⊗ . . .⊗ Lk ⊗ Lk+1.
(1) (i = k + 1) and thus it exists a classical deriva-
tion starting in 〈S1〉, S1 P L1 ⊗ . . . ⊗ Lk and end-
ing in π, Sf P (). Then by Lemma 19 M,π |=c

L1 ⊗ . . .⊗Lk. Moreover, we also have a action-failed
derivation starting in 〈Sf 〉, Sf P Lk and ending in
〈Sf 〉, Sf P Lk and thus (as proven in the base case),
M, 〈Sf 〉 |=p Lk andM, 〈Sf 〉 6|=c Lk. Then, since π =
〈S1,

A1 . . . ,Af−1 Sf 〉 we can conclude that M,π |=p

L1 ⊗ Lk ⊗ Lk+1 and M,π 6|=c L1 ⊗ Lk ⊗ Lk+1 (as
the split for |=c is fixed and M, 〈Sf 〉 6|= Lk+1).
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Lemma 9 (Soundness of | Rules). We prove for each
case individually:

1. We don’t need to prove for this case since by defi-
nition the formula is completely unfolded and thus
the rule is not applicable.

2. Assume that Od(D1) |= L1:
If M,π 6|=c L2 ⊗ . . . ⊗ Lk and M,π |=p L2 ⊗
. . .⊗ Lk then
M,π 6|=c L1⊗. . .⊗Lk andM,π |=p L1⊗. . .⊗Lk

3. Assume that Od(D1, D2) |= L1:
If M, 〈(D2, E2),A2 . . . ,Af−1 (Df , Ef )〉 6|=c L2 ⊗
. . .⊗Lk andM, 〈(D2, E2),A2 . . . ,Af−1 (Df , Ef )〉
|=p L2⊗. . .⊗Lk thenM, 〈(D1, E2),L1 (D2, E2),A2

. . . ,Af−1 (Df , Ef )〉 6|=c L1 ⊗ . . . ⊗ Lk and
M, 〈(D1, E2),L1 (D2, E2),A2 . . . ,Af−1 (Df , Ef )〉
|=p L1 ⊗ . . .⊗ Lk

4. Assume that Oe(E0, E1) |= L1:
If M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 6|=c L2 ⊗
. . .⊗Lk andM, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|=p L2 ⊗ . . .⊗ Lk then
M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
6|=c L1⊗. . .⊗Lk andM, 〈(D1, E0),L1 (D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |=p L1 ⊗ . . .⊗ Lk

Proof. We prove each rule individually:

1. Not applicable
2. Assume Od(D1) |= L1

If M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 6|=c L2 ⊗
. . .⊗ Lk and
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=p L2 ⊗
. . .⊗ Lk then
M, 〈(D1, E1),A1 , . . . ,Af−1 (Df , Ef )〉 6|=c L1 ⊗
. . .⊗ Lk and
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=p L1 ⊗
. . .⊗ Lk:
We know that since Od(D1) |= L1 then for
all interpretations M , L1 ∈ M(〈(D1, E1)〉).
Thus by the serial conjunction case of the par-
tial satisfaction definition we can conclude that
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=p L1 ⊗
. . . ⊗ Lk. Moreover, by Lemma 18 we can con-
clude that M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
6|=c L1 ⊗ . . .⊗ Lk

3. Assume Ot(D0, D1) |= L1

If M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 6|=c L2 ⊗
. . .⊗ Lk and
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=p L2 ⊗
. . .⊗ Lk then
M, 〈(D0, E1),L1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉

6|=c L1⊗. . .⊗Lk andM, 〈(D0, E1),L1 (D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |=p L1 ⊗ . . .⊗ Lk:
Since Ot(D0, D1) |= L1 then for all interpreta-
tionsM , L1 ∈M(〈(D0, E1),L1 (D1, E1)〉). Thus
by the serial conjunction case of the partial satis-
faction definition we can conclude that
M, 〈(D0, E1),L1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|=p L1⊗ . . .⊗Lk. Finally, by Lemma 18 we con-
clude that:M, 〈(D0, E1),L1 (D1, E1),A1 . . . ,Af−1

(Df , Ef )〉 6|=c L1 ⊗ . . .⊗ Lk
4. Assume Oe(E0, E1) |= L1:

If M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 6|=c L2 ⊗
. . .⊗ Lk and
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=p L2 ⊗
. . .⊗ Lk then
M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
6|=c L1⊗. . .⊗Lk andM, 〈(D1, E0),L1 (D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |=p L1 ⊗ . . .⊗ Lk:
Since Oe(E0, E1) |= L1 then for all interpreta-
tionsM , L1 ∈M(〈(D1, E0),L1 (D1, E1)〉). Thus
by the serial conjunction case of the partial satis-
faction definition we can conclude that
M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|=p L1⊗ . . .⊗Lk. Finally, by Lemma 18 we con-
clude that:M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af−1

(Df , Ef )〉 6|=c L1 ⊗ . . .⊗ Lk

Lemma 10 (Weakening of | ). Let P be a serial-
Horn program, φ be a serial-Horn formula, and
S1,

A1 . . . ,Af−1 Sf a sequence.
If P, S1,

A1 . . . ,Af−1 Sf | φ and it is a complete
derivation, then for any serial-Horn formula ψ it holds
P, S1,

A1 . . . ,Af−1 Sf | φ⊗ ψ

Proof. Immediately by definition of the proof proce-
dure.

Lemma 11. Let M be an interpretation, π1,π2 a path
such that π1◦π2 and φ, ψ a complete unfolded formula.
If M |= P , M,π1 |=c φ and P, π2 | ψ then P, π1 ◦
π2 | φ⊗ ψ

Proof. Immediate by definition of |=c and definition of
the procedure.

Theorem 6 (Completeness of | ). Let P be a serial-
Horn program, π a path, andM an interpretation such
thatM |= P . Let φ1⊗. . .⊗φi be the complete unfolded
formula.
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If M,π |=p φ1 ⊗ . . .⊗ φk ∧M,π 6|=c φ1 ⊗ . . .⊗ φk
then P, π | φ1 ⊗ . . .⊗ φk

Proof. We prove by induction on the length of the se-
rial φ1 ⊗ . . . ⊗ φk. Note that k must be greater than 0
as it is impossible for the empty transaction to find a π
s.t. M,π |=p () but M,π 6|=c ()
Base Case k = 1:
M,π |=p φ1 and M,π 6|=c φ1. Then since φ1 is an
atomic action defined in the oracles, then φ1 is com-
pletely fixed in the interpretations. Thus, this statement
is only true where π is a 1-path 〈(D,E)〉 such that
M, 〈(D,E)〉 6|= φ1 and since M, 〈(D,E)〉 |=p φ1
then either φ1 is an internal action and thus ¬∃Di

such that Ot(D,Di) |= φ1 or Od(D) 6|= φ1. If φ1
is an external action then it must be the case that
¬∃Eis.t.Oe(E,Ei) |= φ1.
Finally by definition 22 we have that P, 〈(D,E)〉 | 
φ1
Inductive Case k = j + 1:
Let’s assume that this is true for φ1⊗ . . .⊗φj . We will
prove that this remains true for φ1 ⊗ . . .⊗ φj ⊗ φj+1.

So, M,π |=p φ1 ⊗ . . . ⊗ φj ⊗ φj+1 ∧ M,π 6|=c

φ1⊗ . . .⊗φj⊗φj+1. Then one of the two cases occur:

1. ∃π1, π2 s.t. π = π1 ◦ π2 and:
M,π1 |=c φ1 ⊗ . . . ⊗ φj , M,π2 |=p φj+1 and
M,π2 6|=c φj+1. Then since φj+1 has size 1, then
we can use the proof of the base case and infer
P, π2 | φj+1. Moreover by Lemma 11 we have
that P, π1 ◦ π2 | φ1 ⊗ . . .⊗ φj ⊗ φj+1

2. M,π 6|=c φ1⊗ . . .⊗φj∧M,π |=p φ1⊗ . . .⊗φj .
Since this implies that P, π | φ1⊗ . . .⊗φj then
by Lemma 10 we have that P, π | φ1 ⊗ . . . ⊗
φj ⊗ φj+1

Lemma 12. Let P be a serial-Horn program, M be a
model of P , π be a path, φ a serial goal. Then:

If P, π `c φ then M,π |=c φ

Proof. Soundness of Axiom:
If φ = () then for any 1-path π, P, π `c (). More-
over, since () represents the empty transaction which
is tautologically true in any path of length 1.
Soundness of Rules:
We prove each rule in turn:

1. Assume it exists a rule L1 ← B1⊗ . . .⊗Bj in P .
Then we want to prove that ifM,π |=c B1⊗ . . .⊗
Bj⊗L2⊗. . .⊗Lk thenM,π |=c L1⊗L2⊗. . .⊗Lk

Since we have M,π |=c B1 ⊗ . . . ⊗ Bj ⊗ L2 ⊗
. . .⊗Lk then we know that it exists a split π1 ◦π2
of π s.t. M,π1 |=c B1 ⊗ . . . ⊗ Bj and M,π2 |=c

L2⊗ . . .⊗Lk. Then, since M is a model of P and
L1 ← B1 ⊗ . . . ⊗ Bj is a serial-horn rule, then
by Lemma 3 we have that M,π1 |=c L1 and thus
M,π |=c L1 ⊗ L2 ⊗ . . .⊗ Lk

2. Assume that Od(D1) |= L1. Then we want to
prove that ifM, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗. . .⊗Lk then it holdsM, 〈(D1, E1),A1 . . . ,Af

(Df , Ef )〉 |=c L1 ⊗ L2 ⊗ . . .⊗ Lk.
Since Od(D1) |= L1, then we know that for ev-
ery interpretation, M, 〈(D1, E1)〉 |=c L1. Thus,
by definition of the serial conjunction case of |=c

we can conclude that
M, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗
. . .⊗ Lk

3. Assume that Ot(D0, D1) |= L1. Then we want to
prove that ifM, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗. . .⊗Lk then it also holds thatM, 〈(D0, E1),L1

(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗. . .⊗
Lk.
Since Ot(D0, D1) |= L1, we know that for ev-
ery interpretation:M, 〈(D0, E1),L1 (D1, E1)〉 |=c

L1. Thus, by definition of the serial conjunction
case of |=c we can conclude that
M, 〈(D0, E1),L1 (D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L1 ⊗ L2 ⊗ . . .⊗ Lk
4. Assume that Oe(E0, E1) |= L1. Then we want to

prove that ifM, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗ . . .⊗Lk then it also holds M, 〈(D1, E0),L1

(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗. . .⊗
Lk.
Since Oe(E0, E1) |= L1, we know that for ev-
ery interpretation:M, 〈(D1, E0),L1 (D1, E1)〉 |=c

L1. Thus, by definition of the serial conjunction
case of |=c we can conclude that
M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L1 ⊗ L2 ⊗ . . .⊗ Lk

Lemma 13. Let P be a serial-Horn program, M be
a model of P , π be a path, φ a completely unfolded
serial-goal. Then the following is true:

If M,π |=c φ then P, π `c φ

Proof. Proof by induction on the length of φ = φ1 ⊗
. . .⊗ φk.
Base Case k = 0
If k = 0 then φ = (). Thus M,π |=c () for any 1-
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path π. By definition, P, π |=c () also holds and it is
complete.
Inductive Case k = j+1
We assume that the statement is true for all values up
to j and prove that it still holds for values j + 1. We
start by assuming that M,π |=c φ1 ⊗ . . .⊗ φj ⊗ φj+1

is true. Then we know by the serial conjunction case of
|=c that it exists a split π1◦π2 s.t.M,π1 |=c φ1⊗. . .⊗
φj and M,π2 |= φj+1. Now since φ is a completely
unfolded formula are three possible cases for φj+1:

1. π2 = 〈(D,E)〉 ∧ Od(D) |= φj+1 then for any
state E, by rule 2. of Definition 21 we have that
P, 〈(D,E)〉 `c φj+1

2. π2 = 〈(D,E),φj+1 (D1, E)〉 ∧ Ot(D,D1) |=
φj+1 then for any state E, by rule 2. of Defini-
tion 21 we have thatP, 〈(D,E),φj+1 (D1, E)〉 `c
φj+1

3. π2 = 〈(D,E),φj+1 (D,E1)〉 ∧ Oe(E,E1) |=
φj+1 then for any state E, by rule 2. of Defini-
tion 21 we have thatP, 〈(D,E),φj+1 (D,E1)〉 `c
φj+1

Moreover, since P, π1 `c φ1 ⊗ . . . ⊗ φj and P, π2 `c
φj+1 then since φ2 starts in the last state of π1 and
P, π2 `c φj+1 is complete, then P, π1 ◦ π2 `c φ1 ⊗
. . .⊗ φj ⊗ φj+1

Lemma 14 (Soundness & Completeness rule-5. w.r.t.
 ). Let P be a serial-Horn program, L1 ⊗ . . . ⊗ Lk
be a completely unfolded serial-Horn goal. Let the fol-
lowing three conditions be true:

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln

- S1,
A1 . . . ,Ap−1 Sp is the rollback path of the path

S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗ . . . ⊗

A−11 (cf. Definition 16)
- P, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . .⊗A

−1
1

Then, for every model M of P it holds that:
M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq〉  L1 ⊗

. . .⊗ Lk

Proof. Immediate since P, 〈S1,
A1 . . . ,Aj−1 Sj〉  

L1 ⊗ . . . ⊗ Ln and P, 〈Sp,A
−1
k . . . ,A

−1
1 Sq〉, Sq `c

A−1k ⊗ . . . ⊗ A−11 are proven to be sound and com-
plete w.r.t. (M, 〈S1,

A1 . . . ,Aj−1 Sj〉 |=p L1⊗ . . .⊗Ln
and M, 〈S1,

A1 . . . ,Aj−1 Sj〉 6|=c L1 ⊗ . . . ⊗ Ln) and
M, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . . ⊗ A

−1
1 re-

spectively.

Lemma 15 (Soundness of ` Axiom). Let P be a
serial-Horn program, φ a serial-Horn goal, and π be
a path.

If P, π ` () then P, π |= ()

Proof. P, π ` () holds for every 1-path π. Since the
empty transaction () belongs to any interpretation of a
1-path, then for everyM ′,M ′, π |= (). Thus, in partic-
ular for every model M of P , it holds that M ′, π |= ()
and consequently by definition 20 it is true that P, π |=
()

Lemma 16 (Soundness of ` Rules). Let P be a serial-
Horn program, φ1⊗ . . .⊗φk be a completely unfolded
serial-Horn goal and π be a path. Then the following
conditions are true:

1. Assume that φ1 ← ψ is a rule in P .
If P, π |= ψ⊗ . . .⊗φk then P, π |= φ1⊗ . . .⊗φk

2. Assume that Od(D1) |= φ1
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . .⊗ φk

3. Assume that Ot(D0, D1) |= φ1
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk

4. Assume that Oe(E0, E1) |= φ1
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈((D1, E0),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk

5. Assume that

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln

- S1,
A1 . . . ,Ap−1 Sp is the rollback path of the

path S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗

. . .⊗A−11 (cf. Definition 16)
- P, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . . ⊗

A−11

If P, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk then
P, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq,

Aq . . .
,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk

Proof. We prove each item in turn.

1. Not applicable since we are talking only about
unfolded formulas
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2. Assume that Od(D1) |= φ1 and that the fol-
lowing P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=
φ2⊗ . . .⊗φk holds. Then we need to prove that
P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . .⊗ φk
By definition we know that for every M (and
in particular, for every M that models P ),
M, 〈(D1, E1)〉 |= φ1. Since we know that
P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . .⊗φk then we also know thatM, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗ . . .⊗ φk. Then by
the serial conjunction case we can conclude that
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . . ⊗ φk for every M that models P . Conse-
quently as expected, it holds thatP, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗ . . .⊗ φk
3. Assume thatOt(D0, D1) |= φ1 and that the fol-

lowing P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=
φ2⊗ . . .⊗φk holds. Then we need to prove that
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk
By definition we know that for every M (and
in particular, for every M that models P ),
M, 〈(D0, E1),φ1 (D1, E1)〉 |= φ1. Since we
know that P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1⊗. . .⊗φk then we knowM, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗ . . .⊗ φk. Then by
the serial conjunction case we can conclude that
M, 〈(D0, E1),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . . ⊗ φk for every M that mod-
els P . Consequently, as intended, it holds that
P, 〈(D0, E1),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . .⊗ φk

4. Assume thatOe(E0, E1) |= φ1 and that the fol-
lowing P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=
φ2⊗ . . .⊗φk holds. Then we need to prove that
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk
By definition we know that for every M (and
in particular, for every M that models P ),
M, 〈(D1, E0),φ1 (D1, E0)〉 |= φ1. Since we
know P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=
φ1⊗. . .⊗φk then we know thatM, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗ . . .⊗ φk. Then by
the serial conjunction case we can conclude that
M, 〈(D1, E0),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . . ⊗ φk for every M that mod-
els P . Consequently as intended it holds that
P, 〈(D1, E0),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . .⊗ φk

5. Assume the following:

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln

- S1,
A1 . . . ,Ap−1 Sp is the rollback path of

S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗

. . .⊗A−11 (cf. Definition 16)
- P, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . . ⊗

A−11

We want to prove that if P, 〈Sq,Aq . . . ,Af−1 Sf 〉
|= φ1⊗. . .⊗φk thenP, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1

. . . ,A
−1
1 Sq,

Aq . . . ,Af−1 Sf 〉 |= φ1⊗φ2⊗ . . .⊗
φk
Since we have P, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗
. . .⊗ φk we know that for every model M of P
that M, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . . ⊗ φk.
Moreover, since all conditions of point 5 apply,
by Lemma 21 we have that for every model M
of P M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq〉

 φ1⊗ . . .⊗φk. Moreover, since we know that
M, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . . ⊗ φk, we
also have M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1

Sq,
Aq . . . ,Af−1 Sf 〉 |= φ1⊗. . .⊗φk and thus by

definition of the executional entailment it holds
P, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq,

Aq . . .
,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk.

Lemma 17 (Completeness of `). Let P be a serial-
Horn program, φ be a completely unfolded serial-
Horn goal, and π be a path.

If P, π |= φ then P, π ` φ

Proof. We prove by induction on the size of φ.
Base Case k = 0:
If P, π |= () then P, π ` ()
P, π |= () implies that for every model M of P ,
M,π |= (). Since () is the empty transaction satisfied
in paths of size 1, M,π |= () only if π is a 1-path. If
this is the case, then for any sequents of size 1 (that
correspond to 1-paths), the sequence is complete and
P, π ` ().

Inductive Case k = j+1:
Let’s assume that this sentence is true for values for
φ = φ1 ⊗ . . . ⊗ φj . We prove that it remains true for
φ1⊗. . .⊗φj⊗φj+1. So we have that P, π |= φ1⊗. . .⊗
φj⊗φj+1 and want to prove that P, π ` φ1⊗. . .⊗φj⊗
φj+1. Since P, π |= φ1⊗ . . .⊗φj⊗φj+1 we know that
for every modelM of P ,M,π |= φ1⊗. . .⊗φj⊗φj+1,
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and consequently, there are two possible cases for this
to be true:

1. Serial Conjunction Case.
Then, it exists a split π1◦π2 of π s.t.M,π1 |= φ1⊗
. . . ⊗ φj and M,π2 |= φj+1. Consequently, since
this is true for all models M we know that P, π1 `
φ1⊗. . .⊗φj . Since φ is completely unfolded, then
φj+1 is an atomic action defined in the oracles.
ThenM,π2 |= φj+1 iff one of the following cases
is true:

(a) π2 = 〈D,E〉 and Od(D) |= φj+1. If this is
the case then P, (D,E) ` φj+1

(b) π2 = 〈(D1, E),φj+1 (D2, E)〉 andOt(D1, D2)
|= φj+1. If this is the case then by definition
P, (D1, E),φj+1 (D2, E) ` φj+1.

(c) π2 = 〈(D,E1),φj+1 (D,E2)〉 andOe(E1, E2)
|= φj+1. If this is the case then by definition
P, (D,E1),φj+1 (D,E2) ` φj+1.

Since in all cases, P, π2 ` φj+1, then we can con-
clude that P, π ` φ1 ⊗ . . .⊗ φj ⊗ φj+1

2. Compensating Case.
Then it exists a split π1 ◦ π2 of π s.t. M,π1  
φ1 ⊗ . . . ⊗ φj ⊗ φj+1 and M,π2 |= φ1 ⊗ . . . ⊗
φj ⊗ φj+1. By Lemma 21 we know that M,π1  
φ1⊗ . . .⊗φj⊗φj+1 is complete w.r.t. to rule 5 of
the proof theory definition. Thus, we known that
if P, π2 ` φ1⊗ . . .⊗φj ⊗φj+1, then P, π ` φ1⊗
. . .⊗φj⊗φj+1. So it remains to show that P, π2 `
φ1 ⊗ . . . ⊗ φj ⊗ φj+1 However, it is easy to see
that it exists a π′2 ◦ π′′2 = π2 s.t. M,π′′2 |=c φj+1

and M,π′2 |= φ1 ⊗ . . . ⊗ φj Then by Lemma 20
we know that M,π′′2 |=c φj+1 implies P, π′′2 `c
φj+1 which implies P, π′′2 ` φj+1. From applying
the assumption of the inductive case we have that
P, π′ ` φ1⊗ . . .⊗φj and thus P, π2 ` φ1⊗ . . .⊗
φj ⊗ φj+1

Lemma 18. Let M be an interpretation, φ any trans-
action formula, ψ an atomic action defined in the ora-
cles and π a path s.t. π = π1 ◦ π2. If M,π1 |=c ψ and
M,π2 6|=c φ then M,π 6|= ψ ⊗ φ

Proof. Assume M,π |=c ψ ⊗ φ then ∃ a split π′, π′′

s.t.M,π′ |=c ψ andM,π′′ |=c φ. Since ψ is an atomic
action then such split must be π1 ◦ π2 and thus since
M,π2 6|=c φ then the assumption fails.

Lemma 19. Let P be a serial-Horn program, M be a
model of P , π be a path, φ a serial goal. Then:

If P, π `c φ then M,π |=c φ

Proof. Soundness of Axiom:
If φ = () then for any 1-path π, P, π `c (). More-
over, since () represents the empty transaction which
is tautologically true in any path of length 1.
Soundness of Rules:
We prove each rule in turn:

1. Assume it exists a rule L1 ← B1⊗ . . .⊗Bj in P .
Then we want to prove that ifM,π |=c B1⊗ . . .⊗
Bj⊗L2⊗. . .⊗Lk thenM,π |=c L1⊗L2⊗. . .⊗Lk
Since we have M,π |=c B1 ⊗ . . . ⊗ Bj ⊗ L2 ⊗
. . .⊗Lk then we know that it exists a split π1 ◦π2
of π s.t. M,π1 |=c B1 ⊗ . . . ⊗ Bj and M,π2 |=c

L2⊗ . . .⊗Lk. Then, since M is a model of P and
L1 ← B1 ⊗ . . . ⊗ Bj is a serial-horn rule, then
by Lemma 3 we have that M,π1 |=c L1 and thus
M,π |=c L1 ⊗ L2 ⊗ . . .⊗ Lk

2. Assume that Od(D1) |= L1. We want to prove
that if M, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗. . .⊗Lk then it also holds thatM, 〈(D1, E1),A1

. . . ,Af (Df , Ef )〉 |=c L1 ⊗ L2 ⊗ . . .⊗ Lk
Since Od(D1) |= L1, then we know that for ev-
ery interpretation, M, 〈(D1, E1)〉 |=c L1. Thus,
by definition of the serial conjunction case of |=c

we can conclude that
M, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗
. . .⊗ Lk

3. Assume thatOt(D0, D1) |= L1. We want to prove
that if M, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗. . .⊗Lk then it also holds thatM, 〈(D0, E1),L1

(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗. . .⊗
Lk
Since Ot(D0, D1) |= L1, then we know that for
every interpretation, M, 〈(D0, E1),L1 (D1, E1)〉
|=c L1. Thus, by definition of the serial conjunc-
tion case of |=c we can conclude that
M, 〈(D0, E1),L1 (D1, E1),A1 . . . ,Af (Df , Ef )〉
|=c L1 ⊗ L2 ⊗ . . .⊗ Lk

4. Assume thatOe(E0, E1) |= L1. We want to prove
that if M, 〈(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c

L2⊗. . .⊗Lk then it also holds thatM, 〈(D1, E0),L1

(D1, E1),A1 . . . ,Af (Df , Ef )〉 |=c L1⊗L2⊗. . .⊗
Lk
Since Oe(E0, E1) |= L1, then we know that for
every interpretation, M, 〈(D1, E0),L1 (D1, E1)〉
|=c L1. Thus, by definition of the serial conjunc-
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tion case of |=c we can conclude that
M, 〈(D1, E0),L1 (D1, E1),A1 . . . ,Af (Df , Ef )〉
|=c L1 ⊗ L2 ⊗ . . .⊗ Lk

Lemma 20. Let P be a serial-Horn program, M be
a model of P , π be a path, φ a completely unfolded
serial-goal. Then the following is true:

If M,π |=c φ then P, π `c φ

Proof. Proof by induction on the length of φ = φ1 ⊗
. . .⊗ φk.
Base Case k = 0
If k = 0 then φ = (). Thus M,π |=c () for any 1-
path π. By definition, P, π |=c () also holds and it is
complete.
Inductive Case k = j+1
We assume that the statement is true for all values up
to j and prove that it still holds for values j + 1. We
start by assuming that M,π |=c φ1 ⊗ . . .⊗ φj ⊗ φj+1

is true. Then we know by the serial conjunction case of
|=c that it exists a split π1◦π2 s.t.M,π1 |=c φ1⊗. . .⊗
φj and M,π2 |= φj+1. Now since φ is a completely
unfolded formula are three possible cases for φj+1:

1. π2 = 〈(D,E)〉 ∧ Od(D) |= φj+1 then for any
state E, by rule 2. of Definition 21 we have that
P, 〈(D,E)〉 `c φj+1

2. π2 = 〈(D,E),φj+1 (D1, E)〉 ∧ Ot(D,D1) |=
φj+1 then for any state E, by rule 2. of Defini-
tion 21 we have thatP, 〈(D,E),φj+1 (D1, E)〉 `c
φj+1

3. π2 = 〈(D,E),φj+1 (D,E1)〉 ∧ Oe(E,E1) |=
φj+1 then for any state E, by rule 2. of Defini-
tion 21 we have thatP, 〈(D,E),φj+1 (D,E1)〉 `c
φj+1

Moreover, since P, π1 `c φ1 ⊗ . . . ⊗ φj and P, π2 `c
φj+1 then since φ2 starts in the last state of π1 and
P, π2 `c φj+1 is complete, then P, π1 ◦ π2 `c φ1 ⊗
. . .⊗ φj ⊗ φj+1

Lemma 21 (Soundness & Completeness rule-5. w.r.t.
 ). Let P be a serial-Horn program, L1 ⊗ . . . ⊗ Lk
be a completely unfolded serial-Horn goal. Let the fol-
lowing three conditions be true:

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln

- S1,
A1 . . . ,Ap−1 Sp is the rollback path of the path

S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗ . . . ⊗

A−11 (cf. Definition 16)

- P, 〈Sp,A
−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . .⊗A

−1
1

Then, for every model M of P , it holds that:
M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq〉  L1 ⊗

. . .⊗ Lk

Proof. Immediate since P, 〈S1,
A1 . . . ,Aj−1 Sj〉  

L1 ⊗ . . . ⊗ Ln and P, 〈Sp,A
−1
k . . . ,A

−1
1 Sq〉, Sq `c

A−1k ⊗ . . . ⊗ A−11 are proven to be sound and com-
plete w.r.t. (M, 〈S1,

A1 . . . ,Aj−1 Sj〉 |=p L1⊗ . . .⊗Ln
and M, 〈S1,

A1 . . . ,Aj−1 Sj〉 6|=c L1 ⊗ . . . ⊗ Ln) and
M, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . . ⊗ A

−1
1 re-

spectively.

Lemma 22 (Soundness of ` Axiom). Let P be a
serial-Horn program, φ a serial-Horn goal, and π be
a path.

If P, π ` () then P, π |= ()

Proof. P, π ` () holds for every 1-path π. Since the
empty transaction () belongs to any interpretation of a
1-path, then for everyM ′,M ′, π |= (). Thus, in partic-
ular for every model M of P , it holds that M ′, π |= ()
and consequently by definition 20 it is true that P, π |=
()

Lemma 23 (Soundness of ` Rules). Let P be a serial-
Horn program, φ1⊗ . . .⊗φk be a completely unfolded
serial-Horn goal and π be a path. Then the following
conditions are true:

1. Assume that φ1 ← ψ is a rule in P . If P, π |=
ψ ⊗ . . .⊗ φk then P, π |= φ1 ⊗ . . .⊗ φk

2. Assume that Od(D1) |= φ1.
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1⊗. . .⊗
φk

3. Assume that Ot(D0, D1) |= φ1.
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk

4. Assume that Oe(E0, E1) |= φ1.
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗ φk then
P, 〈((D1, E0),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk

5. Assume that

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln
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- S1,
A1 . . . ,Ap−1 Sp is the rollback path of the

path S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗. . .⊗

A−11 (cf. Definition 16)
- P, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗. . .⊗A

−1
1

If P, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk then
P, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq,

Aq . . .
,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk

Proof. We prove each item in turn.

1. Not applicable since we are talking only about
unfolded formulas

2. Assume that Od(D1) |= φ1.
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2⊗
. . .⊗φk then we need to prove P, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗ . . .⊗ φk
By definition we know that for every M (and
in particular, for every M that models P ),
M, 〈(D1, E1)〉 |= φ1. Since we know that
P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . .⊗φk then we also know thatM, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗ . . .⊗ φk. Then by
the serial conjunction case we can conclude that
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗
. . . ⊗ φk for every M that models P . Conse-
quently, as intended, it holds thatP, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗ . . .⊗ φk
3. Assume that Ot(D0, D1) |= φ1.

If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2⊗
. . . ⊗ φk then we need to prove that it holds
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk
By definition we know that for every M (and
in particular, for every M that models P ),
M, 〈(D0, E1),φ1 (D1, E1)〉 |= φ1. Since we
know P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |=
φ1⊗. . .⊗φk then we know thatM, 〈(D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗ . . .⊗ φk. Then by
the serial conjunction case we can conclude that
M, 〈(D0, E1),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . . ⊗ φk for every M that mod-
els P . Consequently, as intended, it holds that
P, 〈(D0, E1),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . .⊗ φk

4. Assume that Oe(E0, E1) |= φ1.
If P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2⊗
. . . ⊗ φk then we need to prove that it holds
P, 〈((D0, E1),φ1 D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ φ2 ⊗ . . .⊗ φk
By definition we know that for every M (and

in particular, for every M that models P ),
M, 〈(D1, E0),φ1 (D1, E0)〉 |= φ1. Since we
know that P, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . . ⊗ φk then we also know that
M, 〈(D1, E1),A1 . . . ,Af−1 (Df , Ef )〉 |= φ2 ⊗
. . .⊗φk. Then by the serial conjunction case we
can conclude thatM, 〈(D1, E0),φ1 (D1, E1),A1

. . . ,Af−1 (Df , Ef )〉 |= φ1 ⊗ . . .⊗ φk for every
M that models P . Consequently it holds that
P, 〈(D1, E0),φ1 (D1, E1),A1 . . . ,Af−1 (Df , Ef )〉
|= φ1 ⊗ . . .⊗ φk

5. Assume that

- P, 〈S1,
A1 . . . ,Aj−1 Sj〉 L1 ⊗ . . .⊗ Ln

- S1,
A1 . . . ,Ap−1 Sp is the rollback path of

S1,
A1 . . . ,Aj−1 Sj (cf. Definition 15)

- Inv(Seq(〈S1,
A1 . . . ,Ap−1 Sp〉)) = A−1k ⊗

. . .⊗A−11 (cf. Definition 16)
- P, 〈Sp,A

−1
k . . . ,A

−1
1 Sq〉, Sq `c A−1k ⊗ . . . ⊗

A−11

If P, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1⊗ . . .⊗φk then
we need to prove thatP, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1

. . . ,A
−1
1 Sq,

Aq . . . ,Af−1 Sf 〉 |= φ1⊗φ2⊗ . . .⊗
φk
Since we have P, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗
. . .⊗ φk we know that for every model M of P
that M, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . . ⊗ φk.
Moreover, since all conditions of point 5 apply,
by Lemma 21 we know for every model M of
P : M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq〉 

φ1 ⊗ . . .⊗ φk. Additionally, since we have that
M, 〈Sq,Aq . . . ,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk, then
we know M, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1

Sq,
Aq . . . ,Af−1 Sf 〉 |= φ1⊗. . .⊗φk and thus by

definition of the executional entailment it holds
P, 〈S1,

A1 . . . ,Ap−1 Sp,
A−1

p−1 . . . ,A
−1
1 Sq,

Aq . . .
,Af−1 Sf 〉 |= φ1 ⊗ . . .⊗ φk.

Lemma 24 (Completeness of `). Let P be a serial-
Horn program, φ be a completely unfolded serial-
Horn goal, and π be a path.

If P, π |= φ then P, π ` φ

Proof. We prove by induction on the size of φ.
Base Case k = 0:
If P, π |= () then P, π ` ()
P, π |= () implies that for every model M of P ,
M,π |= (). Since () is the empty transaction satisfied
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in paths of size 1, M,π |= () only if π is a 1-path. If
this is the case, then for any sequents of size 1 (that
correspond to 1-paths), the sequence is complete and
P, π ` ().

Inductive Case k = j+1:
Let’s assume that this sentence is true for values for
φ = φ1 ⊗ . . . ⊗ φj . We prove that it remains true for
φ1⊗. . .⊗φj⊗φj+1. So we have that P, π |= φ1⊗. . .⊗
φj⊗φj+1 and want to prove that P, π ` φ1⊗. . .⊗φj⊗
φj+1. Since P, π |= φ1⊗ . . .⊗φj⊗φj+1 we know that
for every modelM of P ,M,π |= φ1⊗. . .⊗φj⊗φj+1,
and consequently, there are two possible cases for this
to be true:

1. Serial Conjunction Case.
Then, it exists a split π1◦π2 of π s.t.M,π1 |= φ1⊗
. . . ⊗ φj and M,π2 |= φj+1. Consequently, since
this is true for all models M we know that P, π1 `
φ1⊗. . .⊗φj . Since φ is completely unfolded, then
φj+1 is an atomic action defined in the oracles.
ThenM,π2 |= φj+1 iff one of the following cases
is true:

(a) π2 = 〈D,E〉 and Od(D) |= φj+1. If this is
the case then P, (D,E) ` φj+1

(b) π2 = 〈(D1, E),φj+1 (D2, E)〉 andOt(D1, D2)
|= φj+1. If this is the case then by definition
P, (D1, E),φj+1 (D2, E) ` φj+1.

(c) π2 = 〈(D,E1),φj+1 (D,E2)〉 andOe(E1, E2)
|= φj+1. If this is the case then by definition
P, (D,E1),φj+1 (D,E2) ` φj+1.

Since in all cases, P, π2 ` φj+1, then we can con-
clude that P, π ` φ1 ⊗ . . .⊗ φj ⊗ φj+1

2. Compensating Case.
Then it exists a split π1 ◦ π2 of π s.t. M,π1  
φ1 ⊗ . . . ⊗ φj ⊗ φj+1 and M,π2 |= φ1 ⊗ . . . ⊗
φj ⊗ φj+1. By Lemma 21 we know that M,π1  
φ1⊗ . . .⊗φj⊗φj+1 is complete w.r.t. to rule 5 of
the proof theory definition. Thus, we known that
if P, π2 ` φ1⊗ . . .⊗φj ⊗φj+1, then P, π ` φ1⊗
. . .⊗φj⊗φj+1. So it remains to show that P, π2 `
φ1 ⊗ . . . ⊗ φj ⊗ φj+1 However, it is easy to see
that it exists a π′2 ◦ π′′2 = π2 s.t. M,π′′2 |=c φj+1

and M,π′2 |= φ1 ⊗ . . . ⊗ φj Then by Lemma 20
we know that M,π′′2 |=c φj+1 implies P, π′′2 `c
φj+1 which implies P, π′′2 ` φj+1. From applying
the assumption of the inductive case we have that
P, π′ ` φ1⊗ . . .⊗φj and thus P, π2 ` φ1⊗ . . .⊗
φj ⊗ φj+1

Proofs of the enunciated results

Proof of Proposition 1. We prove each item in turn.

1. If M,π |=p φ and M,π 6|=c φ then ∃a s.t.
M,πend |=p a and M,πend 6|=c a

We prove by induction on the structure of φ:
Base Case: If φ is an atom, then this statement
holds by Case 1. of the Definitions 14 and 13.
Induction Step:
Negation: Let’s assume that the result holds for
φ. We need to prove that if M,π |=p ¬φ and
M,π 6|=c ¬φ then ∃a s.t. M,πend |=p a and
M,πend 6|=c a. Then we know that M,π 6|=p φ
and M,π |=c ¬φ which is always false. Since
the antecedent of the implication is false, the
statement is trivially satisfied.
Conjunction: Let’s assume that the result holds
for φ and ψ. We need to prove that if M,π |=p

φ∧ψ andM,π 6|=c φ∧ψ then ∃a s.t.M,πend |=p

a and M,πend 6|=c a.
Simplifying, we have to prove that ifM,π |=p φ
andM,π |=p ψ and (M,π 6|=c φ orM,π 6|=c ψ)
then ∃a s.t. M,πend |=p a and M,πend 6|=c a.
Then we have two cases:
1) Suppose that M,π |=p φ and M,π |=p ψ
and M,π 6|=c φ hold, then we can apply ap-
ply the hypothesis and thus conclude that ∃a s.t.
M,πend |=p a and M,πend 6|=c a; 2) Suppose
thatM,π |=p φ andM,π |=p ψ andM,π 6|=c ψ
hold, similarly to the latter case we can then ap-
ply apply the hypothesis and thus conclude that
∃a s.t. M,πend |=p a and M,πend 6|=c a;
Disjunction: Let’s assume that the result holds
for φ and ψ. We need to prove that if M,π |=p

φ∨ψ andM,π 6|=c φ∨ψ then ∃a s.t.M,πend |=p

a and M,πend 6|=c a. Simplifying, we have to
prove that if (M,π |=p φ or M,π |=p ψ)
and M,π 6|=c φ and M,π 6|=c ψ then ∃a s.t.
M,πend |=p a and M,πend 6|=c a. Then we have
two cases:
1) Suppose that M,π |=p φ and M,π 6|=p ψ
and M,π 6|=c φ hold, then we can apply ap-
ply the hypothesis and thus conclude that ∃a s.t.
M,πend |=p a and M,πend 6|=c a; 2) Suppose
thatM,π |=p ψ andM,π 6|=p ψ andM,π 6|=c φ
hold, then we can apply apply the hypothesis and
thus conclude that ∃a s.t. M,πend |=p a and
M,πend 6|=c a;
Serial Conjunction: Let’s assume that the result
holds for φ and ψ. We need to prove that if
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M,π |=p φ ∨ ψ and M,π 6|=c φ ∨ ψ then ∃a s.t.
M,πend |=p a and M,πend 6|=c a.
This is equivalent to If ( [ (1) ∃π1, π2 : π1 ◦π2 =
π and M,π1 |=c φ and M,π2 |=p ψ] or [ (2)
M,π |=p φ and M,π 6|=c φ] and ∀π3, π4 : π3 ◦
π4 = π → M,π3 6|=c φ or M,π4 6|=c ψ) then
∃a s.t. M,πend |=p a and M,πend 6|=c a.
Suppose (2) is the case. Then since by hypothe-
sis the result holds for φ, (2) is enough to con-
clude that ∃a s.t. M,πend |=p a and M,πend 6|=c

a. Suppose (1) is the case and ∀π3, π4 : π3◦π4 =
π either M,π3 6|=c φ or M,π4 6|=c ψ (since
M,π 6|=c φ ⊗ ψ). Since this latter statement
holds for every split of π, then it also holds for
π = π1 ◦ π2. However, by (1) we know that
M,π1 |=c φ and thus M,π2 6|=c ψ must hold.
Since M,π2 |=p ψ and M,π2 6|=c ψ hold, by
hypothesis we have that ∃a s.t. M,πend |=p a
and M,πend 6|=c a for path π2. Since π is com-
posed by π1 ◦π2 then this result holds for φ⊗ψ.
�

2. If M,π |=p φ and M,π 6|=c φ then M,π |=p

φ⊗ ψ
This comes immediately by the point a) of the
serial conjunction of Definition 14

3. If M,π |=c φ then M,π |=p φ
We prove by induction on the structure of φ:
Base Case: If φ is an atom, then this state-
ment holds immediately by Case 1. of the Defi-
nitions 14 and 13.
Induction Step:
Negation: Let’s assume that the result holds for
φ. We want to prove that if M,π |=c ¬φ then
M,π |=p ¬φ. Assume that M,π |=c ¬φ then
φ 6∈M(π)
Conjunction: Let’s assume that the result holds
for φ and ψ. We want to prove that if M,π |=c

φ∧ψ thenM,π |=p φ∧ψ. Assume thatM,π |=c

φ ∧ ψ. Then M,π |=c φ and M,π |=c ψ. Ap-
plying the induction hypothesis, then we know
that M,π |=p φ and M,π |=p ψ and thus by
the classical conjunction case of definition 14 we
have that M,π |=p φ ∧ ψ
Disjunction: Let’s assume that the result holds
for φ and ψ. We want to prove that if M,π |=c

φ ∨ ψ then M,π |=p φ ∨ ψ. If M,π |=c φ ∨ ψ
then either M,π |=c φ or M,π |=c ψ. So we
have two cases:
1) M,π |=c φ and since the result holds for φ
then we know that M,π |=p φ and thus by defi-
nition of the disjunction caseM,π |=p φ∨ψ for

any transaction ψ. 2) M,π |=c ψ and since the
result holds for ψ then we know thatM,π |=p ψ
and thus by definition of the disjunction case
M,π |=p φ ∨ ψ for any transaction φ.
Serial Conjunction: Let’s assume that the result
holds for φ and ψ. We want to prove that if
M,π |=c φ ⊗ ψ then M,π |=p φ ⊗ ψ. Since
we know that M,π |=c φ ⊗ ψ then it must ex-
ist a split π1 ◦ π2 of π s.t. M,π1 |=c φ and
M,π2 |=c ψ. If this is the case, then by hypothe-
sis we know that M,π1 |=p φ and M,π2 |=p ψ.
Then we are in conditions of applying point b)
of the serial conjunction case of the partial satis-
faction, and thus M,π |=p φ1 ⊗ φ2.

4. M,π |=c φP iff M,π |=p φP
This statement holds immediately by Case 1. of
the Definitions 14 and 13.

Proof of Theorem 2. We prove each item in turn,

1. If M,π |=c φ then M,π |= φ
We prove by induction on the structure of φ:
Base Case: If φ is an atom, then this statement
holds by Case 1. of the Definitions 18 and 13.
Induction Step:
Negation: Let’s assume that this result holds for
φ. Then we want to prove that M,π |=c ¬φ
implies M,π |= ¬φ, i.e. if φ 6∈ M(π) then it
is also not the case that M,π |= φ. Let’s as-
sume that M,π |= φ is true and prove it leads
to a contradiction. Since φ 6∈ M(π) then the
only case where φ can succeed in |= is if it ex-
ists a split π1 ◦ π2ofπ s.t. M,π1  φ and
M,π2 |= φ. We will prove that M,π1  φ
is impossible. Since φ is an atom, then for any
path π′ M,π′ |=p φ and M,π′ 6|=c φ only if π′

is a 1-path. Then the rollback path of π′ = π′

and then Seq(π′) = ∅. Consequently, for any
π1 the conditions to apply M,π1  φ do not
hold and thus this last statement must be false.
As a result, it is not the case that M,π |= φ
and thus M,π |= ¬φ as desired. Disjunction:
Let’s assume that this result holds for φ and ψ.
We want to prove that if M,π |=c φ ∨ ψ then
M,π |= φ ∨ ψ. Since M,π |=c φ ∨ ψ then
one of the following holds M,π |=c φ (1) or
M,π |=c φ∨ψ (2). Let’s assume that (1) is true.
Then by hypothesis we know that M,π |= φ
and thus by definition M,π |= φ ∨ ψ. Further-
more, let’s assume that (2) is true. Then by hy-
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pothesis we know that M,π |= ψ and thus by
definition M,π |= φ ∨ ψ.
Conjunction: Let’s assume that this result holds
for φ and ψ. We want to prove that if M,π |=c

φ∧ψ thenM,π |= φ∧ψ. SinceM,π |=c φ∧ψ
then one of the following holds M,π |=c φ and
M,π |=c ψ. Then by induction hypothesis we
can conclude that M,π |= φ and M,π |= ψ
hold and thus by definition, M,π |= φ ∧ ψ.
Serial Conjunction: Let’s assume that this re-
sult holds for φ and ψ. We want to prove that
if M,π |=c φ ⊗ ψ then M,π |= φ ⊗ ψ. Since
M,π |=c φ⊗ ψ holds, then it must exist a split
π1 ◦ π2 of π s.t. M,π1 |=c φ and M,π2 |=c

ψ. Then by induction hypothesis we know that
M,π1 |= φ and M,π2 |= ψ. Since π1 ◦ π2 are
splits of π, then by the serial conjunction case
of definition 18 we know that M,π |= φ⊗ ψ.

2. M,π |=c φ iff M,π |= φ where π is a path
without external actions in the annotated transi-
tions.
If π does not contain annotations for external
actions, then φ can never be an external ac-
tion or contain positive formulas of external ac-
tions by definition of interpretations of formu-
las. Moreover, by Lemma 2 we know that if π
does not contain annotations of external actions
then it is impossible to construct a consistency
preserving path, i.e. since π does not contain an-
notations of external actions, then for any sub-
path π′ of π M, π′  φ does not hold. Thus
M,π |= φ iff M,π′ |= φ.

Proof of Theorem 3. ⇒:
We want to prove that if P, π′ |=TR φ then P, π |=ETR

φ. Since P, π′ |=TR φ we know that for every model
M of P (in T R) then M,π′ |=TR φ. Furthermore we
know by Lemma5 that every model M of P in T R is
also a modelM of P in ET R. Moreover since |=c and

|=TR coincide M,π′ |=TR φ iff M,π |=c φ (for π
obtained from π′ adding an external state E constant).
Finally, since π′ does not contain external actions in
the transitions, then M,π |=c φ iff M,π |=ETR φ.
Thus by definition of executional entailment we have
that P, π |=ETR φ.
⇐:
We want to prove that if P, π |=ETR φ then P, π′ |=TR

φ. Since P, π |=ETR φ we know that for every model
M of P (in ET R) then M,π |=ETR φ. Moreover
since π does not contain external actions in the transi-
tions, then M,π |=c φ iff M,π |=ETR φ. Then since
|=c and |=TR coincide M,π |=c φ iff M,π′ |=TR φ.
Furthermore we know by Lemma5 that every model
M of P in ET R is also a model M of P in T R for
every interpretation M that is valid in ET R. Then it
remains to show that M ′, π′ |=TR φ for every model
M ′ of T R such that M ′ is not a valid interpretation
in ET R. However it is easy to see by definition of the
interpretations of each logic, that this M ′ can only be
non valid interpretation in ET R and valid in T R if it
more formulas can be true in those paths (e.g. if a is
an action in the oracle and M’ makes a true in a path
that the oracle does not define it so). Then, ∀M ′ of this
form it exists a M ′′ s.t. M ′′ ⊂ M ′ and M ′′ is a valid
interpretation in ET R and a model of P . Let’s assume
M ′′ as the interpretation as M ′ that is only different
from M ′ by assuming that actions defined in the ora-
cles are only true whenever they are defined by the or-
acles as such. Then M ′′ is not a model of P if it ex-
ists a path π1 s.t. M ′′, π1 |= body but M ′′, π1 6|= head
for some rule head ← body in P . However by defi-
nition of P , head must be an atom defined in LP and
thus if M ′ is a model, either M ′′ M ′′, π1 |= head or
M ′′, π1 6|= body. By this we can conclude that for ev-
ery model M in T R it is true that M,π′ |=TR φ and
thus by definition of the executional entailment we can
conclude that P, π′ |=TR φ.

Proof of Theorem 4. By Lemmas 23,22 and 24


