Undefined 0 (2013) 1-0 1
I0S Press

Trace-Based Analysis of Large Rule-Based
Computations

Terrance Swift

CENTRIA, Departamento de Informética, Faculdade de Ceenclecnologia, Universidade Nova de Lisboa,
Portugal. E-mail: terranceswift@gmail.com.

Abstract. Knowledge representation systems based on the ily [2]. For rule-based systems, examples are Flora-
well-founded semantics can offer the degree of scalability 2 [17]and its commercial extensions: the Silk and Fidji
required for semantic web applications and make use of ex- gystems, all of which are based on logic program-
pressive semantic features such as Hilog, frame-based réa-ming under the well-founded semantics. The Fidji sys-
soning, and defeasibility theories. Such features can tve co tem, for instance, is currently used as a KRR tool to
piled into Prolog tabling engines that have good support for use web-based textual information to reason about fi-
indexing and memory management. However, due both to

g y g nancial regulations and medical informatics. Silk and

the power of the semantic features and to the declarative "7
style typical of knowledge representation rules, the reses Fidji support features that are not common for rule-

needed for query evaluation can be unpredictable. In such based systems, including the object-oriented syntax of
a situation, users need to understand the overall structure F-logic [9], higher-order syntax based on Hilog [3],
of a computation and examine problematic portions of it. rule descriptors, the intermixture of defeasibility theo-
T_his prob_lem_. pbrpfilingacomputation, differ_s fromdebug- ries [16], and the use of bounded rationality through a
ging and justification which address why a given answer was technique calledestraint[6], along with various types
or wasn't derived, and so profiling requires different tech- ¢ guantitative reasoning.
niques. In this paper we present a trace-based analysis tech ¢ ;56 of these features can lead to concise repre-
nique caIquIforest Ioggmgwhlch has been used to pr_oﬁl_e sentation of knowledge, but also to unpredictability in
large, heavily tabled computations. In forest loggingti-cri

the time and space a computation requires. This unpre-

cal aspects of a tabled computation are logged; afterwards " o)
the log is loaded and analyzed. As implemented in XSB, for- dictability especially emerges when a knowledge base

est logging slows down execution of practical programs by a 1S produced by a team of knowledge engineers work-
constant factor that is often small; and logs containingten ing in a loosely coordinated manner to create rules
or hundreds of millions of facts can be loaded and analyzed that may depend on one another. In such situations, the
in minutes. guestion arises whether the size of a resource intensive
computation is due to the sophistication of the reason-
ing it requires; to redundant or unoptimized rules; or to
rules that are simply incorrect. The following example
illustrates a case that arose during a KRR effort for the
Sllk project.

Keywords: Scalable Reasoning, Tabled Resolution, Trace-
Based Analysis

1. Introduction
Example 1.1 Over the course of several months, por-

Much of the literature on knowledge representation tions of the Cyc reasonérand knowledge base were
and reasoning (KRR) has concerned the use of expres-translated and compiled first into Flora-2 and then
sive reasoning components such as ASP ainiC- into XSB [15]. In addition, several hundred AP biol-
based description logics. However, there has also beenogy questions were then formulated and queried. The
interest in basing KRR systems on weaker deductive translated system was able to answer some of these
methods that more easily offer the type of scalability

nee_ded by semantic web applications. For description 1hp//silk.semwebcentral.org, http://coherentknaiglesystems.com
logics an example of such an approach is&lfefam- Zhttp:/ww.cyc.com.

0000-0000/13/$00.0@®) 2013 — IOS Press and the authors. All rights reserved

2 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

questions quickly, often in less than 1 second of CPU
time. Other questions took half a minute or more; while
still others could not be answered because of timeouts
or because of aborts due to lack of memory. In gen-
eral, a medium-sized query might take several minutes
to execute.

analysis which can load and A analyze logs of
hundreds of millions of facts.

' Section 2 informally reviews SLG and presents the for-

mat of forest logs. Some basic properties are shown in
Section 3, while Section 4 discusses the analysis rou-
tines and describes the implementation of forest log-
ging along with performance results. Related work is

covered in Section 6.

All forest logging features discussed in this paper
are available in the latest release of XSB (version 3.4).
In addition, these features form the basis of the forest
logging library in the publically available version of
Flora-2 (version 0.99.3), as well as in the commercial
Silk and Fidji systems.

Silk and Fidji are implemented using XSB [15], so
that their operational semantics ultimately is based on
tabled logic programming. In fact, because of the use
of frames, defeasibility and Hilog, user predicates in
Flora-2 and its extensions are tabled unless they are ex-
plicitly declared otherwise — a default that is the exact
opposite of tabling in Prolog. To investigate the time
and space required for queries like those of Example 1,
a knowledge engineer who understood the operational
semantics of Silk would use information about the ta-
bles to help determine why a computation was costly.
For instance, she might want to examine which tabled | 5| & yesolution [4] as formulated in [14], an eval-
subgoqls were queried most often; how the answers ation is a sequence of forests of SLG trees. Before
were distributed among the tables; how the queries de- discussing the logs themselves, we review those as-

p;nde% Ot? one arlllother; E\ndhhow those_ dep_er:jdenmespects of the forest of trees model for SLG that are
affected the overall search. These questions indicate anecessary to understand forest logging and its applica-

need to model a tabled evaluation as a structure that tions. As SLG and its extensions have been presented

2. Representing an SLG Forest via a Log

can be examined in itself. Accordingly, we denote the
problem of exploring large tabled computations as the
Profiling Problem Because profiling addresses the na-
ture of a computation as a whole, rather than why given
solutions are returned or omitted, it differs from pre-

viously reported approaches based on procedural or

declarative debugging or on justification (e.g., [7,12]).
This paper present®rest logging an approach to

in the literature our review is largely informal; for for-
mal definitions see the references contained in [15].
All code examples are in Prolog syntax.

2.1. A Review of SLG by Examples

We begin our review with an example of SLG eval-
uation of a query to a definite program. For simplicity,

the profiling problem based on a trace-based analysis jn, this paper we restrict our attention to finitely termi-

of SLG forests, an operational semantics for tabling.
As its name implies, operational aspects of a compu-
tation are written to a log that is later loaded and ana-
lyzed. Specifically,

— We present the design of the logs, and formalize
their properties; in particular we show how logs
preserve dependency information, and specify the
conditions under which the logs can construct a
homomorphic image of an SLG forest.

We present analysis predicates to display opera-
tional information about a tabled computation in
an efficient manner, and describe how these rou-
tines can be customized in order to represent de-
pendency and other information at different levels
of abstraction.

We show that the overhead of logging is a con-
stant factor. We demonstrate the scalability of log

nating evaluations (which correspond to finite forests),
and always assume a left-to-right literal selection strat-

egy’.

Example 2.1 Figure 1 shows a simple program along
with an SLG forest for the quemeach(1,Y)to the
right-recursive tabled predicateeach/2 An SLG for-

est consists of an SLG tree associated with each tabled
subgoalS (where variant subgoals are considered to
be identical); each such tree has ro$t|S. Each SLG
operation transforms a given foregi, to a new for-
estF,+1 by adding a new tree, adding a new node, or
by annotating a tree: so that an SLG tree represents

SFor presentation purposes we consider only tabling with cal
variance, and under the local scheduling strategy. Howtbediorest
logging features described here are also implemented fbsuia-
sumption and other scheduling strategies.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 3

1. reach(1,Y) :— |reach(1,Y)

2. reach(1,Y) :- |edge(1,2), reach(Z,Y) 21. reW)

3. reach(1,Y):- [reach(2,Y) 11.reach(l,Y):- [reach(3,Y) 22.reach(1,2):—| 23.reach(1,3) :- |
10. reach(1,2) - 16. reach(1,2) :-| 19.reach(1,1):-| 25. reach(1,3) :— |
4. reach(2,Y) :- |reach(2,Y) complete (9a)
5. reach(2,Y) :- |edge(2,Z),reach(Z,Y) 7. reach(2,Y):- |edge(2,Y)
6. reach(2,Y) :— [reach(2,Y) 8. reach(2,2) :— |

9. reach(2,2) :— |

12. reach(3,Y) ;— [reach(3,Y)

13. reach(3,Y) :- |edge(3,2),reach(Z,Y) 17. reach(3,Y):- |edge(3,Y)
14. reach(3,Y) :- |reach(1,Y) 18. reach(3,1) :— |
15. reach(3,2) :— | 20. reach(3,1) :— | 24. reach(3.3) :— |

:— table reach/2.
reach(X,Y):- edge(X,Z),reach(Z,Y).
reach(X,Y):— edge(X,Y).

edge(1,2) edge(1,3). edge(2,2). edge(3,1).

Fig. 1. A Definite Program and SLG Forest for Evaluation ofGheeryreach(1,Y)

the resolution steps that have been executed to derive through the SLGANSWER RESOLUTION operation if

answers forS. the left most selected literal is tabled (e.g. children of
Given an SLG tred with rootS :- |S 7 is some- the nodeaeach(1,Y):4 reach(2,Y)* or via PROGRAM

times referred to athe tree for Sin general, nodes of ~ CLAUSE RESOLUTION if the leftmost selected literal

an SLG tree folS have the forn(S :- Delays|Goalg) is not tabled (e.g. children of the nodeach(1,Y):-

whereGoalsis the sequence of literals remaining to | edge(1,Z),reach(Z,Y)Nodes with emptoalsare
prove S0; Delaysare used for negation and are ex- termedanswers

plained below, as are the numbers associated with
each node. Children of a root node are obtained
through resolution against program clauses, modeled “We slightly abuse terminology since it is the predicate syimb

. . of the atom within the literal that is tabled. We further abtsrmi-
in SLG by the operatiolPROGRAM CLAUSE RES- nology by sometimes using selected literal to refer to thiedying

OLUTION. Children of non-root nodes are obtained atom on which the literal is based, when it is clear to do so.

4 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

The evaluation keeps track of each tabled subgoal
S that it encounters by creating a tree f& via the
NEW SUBGOAL operation. Later ifSis selected again,
resolution will use answers from the tree firather
than program clauses; if no answers are available, the
computation willsuspendnd try to derive answers us-
ing some other computation path. Once additional an-
swers have been derived, the evaluation veume
the suspended computation. Similarly, after a compu-
tation has resolved all answers available f8rin a
given state, the computation path will suspend, and re-
sume after further answers are found. When it is deter-
mined that a (perhaps singleton) sebf subgoals can
produce no more answers, the tree for every subgoal in
S is marked asomplete(cf. the tree foreach(2,Y)n
Figure 1). In an implementation, stack space and other
resources for a completed subgé&tan be reclaimed
— apart from the table fo6 consisting ofS and its
answers.

As seen from Example 2.1, a tabled evaluation eval-

uates mutually dependent sets of subgoals, marking queryp(c)to

them as complete when it is no longer possible to de-
rive answers for these subgoals. In this way, a tabled
evaluation can be viewed as a series of fixed point com-
putations for sets of interdependent subgoals.

Much of the operational state of a SLG for&stan
be captured by Subgoal Dependency Graph

Definition 2.1 (Subgoal Dependency Graph).et F
be a forest, and letS;:-|S; be the root of a non-
completed tree iF. The subgoab; directly depends
ona subgoalS, iff S is not completed itF, and there
is some nodeV in the tree forS; such thatS, is the
underlying subgoal of the selected literal 5t

The Subgoal Dependency Graph &f SDG(F) =
(V,E) of F is a directed graph in whicliS;, S;) € E
iff subgoalS; directly depends on subgo4l;, and V'
is the underlying set of. S; “depends on’S; in F is
there is a path fronb; to Sy in SDG(F).

Since SDG(F) is a directed graph, sets of sub-
goals that are mutually recursive iR can be cap-
tured asStrongly Connected Components (SCGE)
SDG(F). In Figure 1, there is a single SCC consist-
ing ofreach(1,Yandreach(3,Y)asreach(2,Y)s com-
plete. While SCCs are critical for determining when
subgoals can be completed, if an answer for a tabled
subgoalS is derived that has the empty substitution,
every ground atomic fact that unifies wiis true in
the model of the program. Accordinglycan be com-
pleted before the other subgoals in its SCC through

early completionOtherwise, a subgo&can be com-
pleted when all possible resolution steps have been
performed forSand the other subgoals in its SCC.

Understanding the changing dependencies of an
evaluation is critical to a number of operational as-
pects. For instance, local scheduling restricts opera-
tions so that there is always a unique maximal inde-
pendent SCC — that is, an S@Cwhose subgoals de-
pend on no other (non-completed) subgoals that are
not in § itself. Local evaluation is efficient for many
applications since it can be shown that it performs a
“depth-first” search through SCCs. The number asso-
ciated with each node in Figure 1 correspond to the
node’s creation under local evaluation.

2.1.1. Normal Programs

Arguably, the main difference between SLG resolu-
tion and other tabling methods is the use &iRYING
and SMPLIFICATION to handle default negation.

Example 2.2 Figure 2 shows a program with nega-
tion, P,om and illustrates SLG resolution for the
P,orm. The nodes in Figure 2 have been
annotated with the order in which they were created
under local scheduling; and as mentioned in Exam-
ple 1, the symbdlin a node separates the unresolved
goals to its right from the delayed goals to its left. In
the evaluation state where nodes 1 through 10 have
been createdp(b) has been completed, apda) and
p(c) are in the same SCC. There are no more clauses
or answers to resolve, byt(a) is involved in a loop
through negation with itself in node 5, and nodes 2 and
10 involvep(a)andp(c)in a negative loop.

In situations such as this, where all resolution has
been performed for nodes in an SCC, an evaluation
may have to apply ®ELAYING operation to a neg-
ative literal such asnot(p(a)) in order to explore
whether other literals to its right might fail. When mul-
tiple literals can be delayed (e.g., in nodes 2 and 10),
an arbitrary literal is chosen to be delayed first. So
the evaluation delays the selected literal of node 2
to generate node 12 producinganditional answer
— an answer with a non-empelaysset. Next,not
p(a)in node 5 is delayed, so that the new selected lit-
eral for its child, node 13, isot p(b) Since node 8 is
an answer fomp(b) with emptyDelays(termed arun-
conditionalanswer), aNEGATIVE RETURN operation
causes that computation path to fail (represented by

SFor expository purposes, we ignore the effects of early demp
tion which would complet@(b)immediately upon creation of node
8, obviating the need to create node 9.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 5

node 14, termed failure nodg. Afterwardsnot p(c)in
node 10 is delayed to produce node 15, anN&G-
ATIVE RETURN operation fails the final computation
path for p(a) At this stage the SC&p(a),p(c)} is
completely evaluatetheaning that there are no more
operations applicable for goal literals (as opposed to
delay literals). Since(a)is completely evaluated with
no answers, conditional or otherwise, the evaluation
determines it to b&ailedand aSIMPLIFICATION oper-
ation can be applied to the conditional answer of node
12, removingnot p(a)from its Delays leading to the
unconditionalanswer in node 17 anduccesof the
literal p(c).

2.2. The Forest Log
Forest logging allows one to run a tabled query and

produce a log from which a number of properties of
the SLG forest can be inferred. The design of the log

attempts to balance several goals: the log should be as

Note that ifstate = new, tc/4 andnc/4 correspond to
the NEw SUBGOAL operation; otherwise they do not
directly correspond to an SLG operation, but instead
they directly log dependency information.9f,;;cq is

the first tabled subgoal called in an evaluation, then
Scalleq IS Set tonull.

— ANSWERREsoOLUTIONWhen an answe$.qjcqf
is returned to a selected positive litefl,eq In
atree forS.q.-, a fact

ar(6’7 Scalled7 Scaller7 Cntr)
is logged ifA is unconditional and a fact

dar(@, Scalleda Scaller7 Cntr)

is logged if A is conditional. A log entry is made
onlyif S.uieq is incomplete.

Although ANSWERRESOLUTIONOperations are logged,

informative as possible, but also easy to use and should PROGRAM CLAUSE RESOLUTION are not; attempts

not overly slow down computations. The log consists

of Prolog-readable facts that may be loaded and ana-

lyzed, leading to the need to support quick load times
and scalable analysis routines. The log facts describe
below correspond directly to SLG operations, except
as noted. Each log fact has a countéttr, indicat-

ing the ordinal number of the fact within the log. Since

logs can be very large, an effort is made to keep only

the most critical information in the logs so that their
memory footprint is kept to a minimum.

— A call to a tabled subgoalWhen a literalL is
selected in a nodé&/, whereN is in the tree for
Scalier @Nd L is positive . = S.qi0q) then a fact

tC(Scalleda Scalle'r‘a Statea C?’Lt?")

is logged Stateis

x nNewif S.qeq IS @ Nnew subgoal

x cmpif Scqeq 1S NOt @ new subgoal and has
been completed

x incmpif Scqieq IS NOt @ Nnew subgoal but has
notbeen completed

If L = nOt(Scalled); afact
nC(Scalleda Scalle'r‘a Statea C?’Lt?")

is logged instead.

to log these operations usually slowed down computa-
tions so much that logging became unusable for all but
small computations. In XSB, resolving answers from

d completed tables is nearly identical to resolving pro-

gram clauses, so for efficiency reasons these answers
are not logged either. BGATIVE RETURN operations
are logged in a similar manner.

— NEGATIVE REGURN When a negative literal
with underlying subgoals.,;;.q is resolved via
NEGATIVE RETURN in a tree forS.q.,, a fact

nr(Scalledv Scallerv C’ntr)

is logged. A log entry is madenly if S.qcq IS
incomplete.

The logging of new answers does not correspond to an
SLG operation but is useful for analysis.

— New AnswerWhen a new answe¥ = (S:-D|)6
is derived for subgoa$ (i.e. N is not already an
answer forS) a fact

na(0, S, Cntr)
is logged if N is unconditional D = §) and
na(0, S, D, Cnir)

is logged if N is conditional.

6 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

1p(e) =1 pc)
2p(c):- | not p(a)
12 p(c):- not p(a) |
17p() - |

3p@) :-‘ | p(a)

4 p(a):- |t(a,Y,Z),not p(Y), not p(Z2).

5 p(a):- |not pﬁa),not p(b) 6 p(a):- | not p(b), not p(a) 10 p(a):— | ‘not p(c), not p(b).
13 p(@):= not p(@) | not p(b) 11 fail 15 p(a):- no‘t p(c) | not p(b).
14 fall 16 fail
7 p(b) :— | p(b) 9a complete
8 p(b) :- | 9 p(b):- |t(b,Y,Z),not p(Y), not p(Z).
:— table p/1. t(a,b,a)
p(b) t(a.a.b)

p(c):— nor p(a).
p(X):= t(X,Y,Z),not p(X),not(p(Y).

Fig. 2. A Normal Prograni,, o, and SLG Forest for Evaluation of the Querfc)

Note thatna/3 can be seen as a specializatiomaf4 — DELAYING When the selected literalot A is
that reduces the memory footprint of the loaded log. A delayed in a node in a tree f6¥, a fact
similar specialization is described below for simplifi-
cation. dly(A, S, Cntr)
— COMPLETION When an SCCS is completed, a is logged.
fact — SIMPLIFICATION operations are logged as fol-

emp(S, SCCina, Cntr) SIMPLIFICATION is applied.

lows. Let S.quer0:-D| be the answer to which

is logged for eacly € S HereSCCmd is aindex_ « If a literal L € D becomes failed, and =
that groups subgoals into their mutually recursive Scaliean IS positive, WhereS.,j.q is a tabled
components at the time they were completed. If subgoal, a fact

was early completed, a fact

smpl_fail(Scauer, 97 Scall&dv m, C’ntr)

emp(S, ec, Cntr)
_ . . is logged; ifL = not Scaiied,
is logged at the time of early completion. When

the original SCC forS is completed, another smpl_fail(Scatier, 0, Scatied, Cntr)

completion fact forS will be logged indicating its
index as just described. is logged instead.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 7

x Ifaliteral L € D succeedsand if = Scqjieqn
is positive, wheres.,;;.q IS a tabled subgoal, a
fact

smpl_succ(Scatier, 0, Scaited, 1, Cntr)
is logged; if L = not Scaied,
Smpl_succ(scalleh 97 SCalled7 C’ntr)

is logged instead.

— ANSWER COMPLETION If answer completion
fails an answef0 in a tree forS, a fact

ansc(0, S, Cntr)
is logged.
Example 2.3 The forest foreach(1,Y)in the forego-
ing example has the log file as shown in Table 3. The

actual log file facts are shown, along with the associ-
ated node they produced (if any) and an explanation

3. Properties of the Forest Log

Since the log dependency graph is parameterized by
a log’s counter, the log can be used to construct the
SDG at various stages in the evaluation. This is for-
malized by Theorem 3.1 which states that the SDG for
anyforest of an evaluation can be reconstructed from
the log dependency graph. This theorem directly un-
derlies the analysis routines of Section 4; and because
it holds for any forest, the theorem also underlies anal-
ysis of partial computations — e.g. computations that
were interrupted because they were suspected to be
non-terminating (cf. the discussion of the Terminyzer
tool [11,10] in Section 6).

To be able to reconstruct the SDG of a given forest,
there needs to be a guarantee of correspondence be-
tween when facts are logged and the state (i.e., forest)
of an evaluation. A property termedger subgoal log-
gingis sufficient for this. Eager subgoal logging states
that whenever a tabled literdl is selected in a tree
Scaller, ate/4 or nc/4 fact is logged, regardless of
whether aNEW SUBGOAL operation is applicable. For
instance, if the underlying atom of the positive literal
Lis S.q1eq, then

tC(Scalleda Scallera (state>, ¢ + 1)
is logged, with the value oftate asnew cmpor in-

cmp There is thus a difference in the behavior of the
logging mechanism from the formalism of SLG, as a

Forest logs capture several important aspects of New suscoAL operation is performed only $.q/cq

tabled computations. We begin by showing how they

is new to the evaluation. Eager subgoal logging is sup-

capture the subgoal dependency graph of a given forest ported by XSB, and should be easy to guarantee for

(Definition 2.1), and then discuss the conditions under
which a homomorphic image of an SLG forest can be
constructed from a log.

3.1. Capturing Dependency Information

Definition 3.1 Let £ be a forest log witm facts, and
let 0 < ¢ < n. Then thelog dependency graph
induced byc has an edge(S;, S;) for every fact
te(Ss, S, state, c') or ne(Ss, Sy, state, c’) in £ such
thatc’ < ¢, Sy # null and

_‘Elsscm C//-((Cmp(Sh Ssc07 CN) Vv Cmp(SQ, Sscca C”))
INAED

6As implemented in XSB, forest logging also records everds$ th
are not modeled by SLG or its extensions, including exceptio
thrown during an evaluation, and table abolishes. Howekercur-
rent version of forest logging does not legsc/3facts, which are
rarely needed.

any tabling engine that implements forest logding

Theorem 3.1Let& = Fy, ..., F,, be an SLG evalua-
tion andL a log created using eager subgoal logging.
Then for anySDG(F;), 0 < i < n, there is ac such
that SDG(F;) is isomorphic to the log dependency
graph induced by. 8.

3.2. Constructing a Homomorphism of an SLG Forest

While dependency information among subgoals is
critical to understanding an evaluation, other aspects
are important as well. For example, applications in
knowledge representation and business rule develop-
ment may require analysis of dependencies or of an-
swers that arise from application of a particutate
r for a predicatep/n, against a subgoa. Such in-

TWithin XSB this is done within théabletry instruction (cf. [13]).
8Proofs are provided in the appendix of this paper.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations

Log File Assoc. Node in Fig. 1 Explanation
tc(reach(1,_vO0),null,new,0) node 1 EM/ SUBGOAL
tc(reach(2,_v0),reach(1,_v0),new,1) node 4 EVINSUBGOAL
tc(reach(2,_v0),reach(2,_v0),incmp,2) node 6 repeatbdaal registered
na([2],reach(2,_v0),3) node 8 registered as answer
ar([2],reach(2,_v0),reach(2,_v0),4) node 9 N$WERRESOLUTION
cmp(reach(2,_v0),2,5) reach(2,_v0) ©MPLETION
na([2],reach(1,_v0),6) node 10 registered as an answer
tc(reach(3,_v0),reach(1,_v0),new,7) node 12 EVWNSUBGOAL
tc(reach(1,_vO0),reach(3,_v0),incmp,8) node 14 repesibdoal registered
ar([2],reach(1,_v0),reach(3,_v0),9) node 15 ANSWER RESOLUTION
na([2],reach(3,_v0),10) node 15 registered as an answer
na([1],reach(3,_v0),11) node 17 registered as an answer
na([3],reach(1,_v0),12) node 20 registered as an answer
ar([3],reach(1,_v0),reach(3,_v0),13) node 21 NSAVERRESOLUTION
na([3],reach(3,_v0),14) node 21 registered as an answer
ar([2],reach(3,_v0),reach(1,_v0),15) node 22 NSAVERRESOLUTION
ar([1],reach(3,_v0),reach(1,_v0),16) node 23 NSAVERRESOLUTION
na([1],reach(1,_v0),17) node 23 registered as an answer
ar([3],reach(3,_v0),reach(1,_v0),18) node 24 NSAVERRESOLUTION
ar([1],reach(1,_v0),reach(3,_v0),19) node 25 NSAVERRESOLUTION

cmp(reach(1,_v0),1,20)
cmp(reach(3,_v0),1,21)

reach(1,_v0) ©MPLETION
reach(3,_v0) ©MPLETION

Fig. 3. A Log File Corresponding to the SLG Forest in Figure 1

formation can be easily obtained from the SLG tfee
for S. The children of the root of can be examined,
the subtree correspondingf®@OGRAM CLAUSE RES
OLUTION by r determined, and dependency and an-
swer information directly obtained. Further informa-
tion about the behavior of can be obtained by aggre-
gating similar information from all subgoals pfn in

an evaluation.

A similar, but more precise problem is to identify a
particularpositionof a literal in a given rule that has
high computational cost. Such positions can be identi-
fied from an SLG forest via nodes with a large num-
ber of children, or nodes that have an underlying se-
lected subgoal whose proof requires a large subforest
not otherwise used in the evaluation (as determined by
dependency information).

Both of these types of analysis problems require
identifying the parent-childrelations within an SLG
tree. However, such relations are not always easy
to construct from a forest log becaus®OGRAM
CLAUSE RESOLUTIONOperations are not logged, due
to the expense that their logging incurs. Of course,
parent-child relations can be explicitly represented by
rewriting a program. For instance, to obtain general in-
formation about the cost of rules, each rtle- Body
of interest, may be transformed by foldipdyinto

a new tabled predicate, producing: :- tabledBody
andtabledBody :- BodyBy logging an evaluation with
such a transformed program, rule-based dependency
information can be obtained, via Theorem 3.1. How-
ever, such rewriting leads to inefficiencies when there
is a large overlap among the answers produced by dif-
ferent rules, so rewriting is most effective when poten-
tial rules or rule positions can be pre-identified.

In order to support rule-level or positional analy-
sis without rewriting, sufficient conditions need to be
determined under which the parent-child relations for
a given tree can be constructed from the log. Since
the log does not contain information abolREGRAM
CLAUSE RESOLUTION or about ANSWER RESOLU-
TION from completed tables, we begin by characteriz-
ing a morphism that removes such information.

Definition 3.2 Let F be an SLG forest. The graph
morphismt{ (F) is defined as follows.

— For any noden € F, H(n) is defined as:

x If the selected literal ofn is tabled, then
H(n) =mn;

* otherwise H(n) is closest parent-child ances-
tor of n whose selected literal is tabled.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 9

— Ifthere is an edge between nodesandn, in 7
there is an edge betweéfi(n,) andH (nz).

with root Subgoal:-|Subgoal in a forest of€, and as-
sume all rules inP whose head unifies withiubgoal
are distinguishable. Theneconstruct_tree(S) pro-

Note that since the root of any SLG tree has a selected gy ces a graphEdgeSet, that is isomorphic ta7".

tabled literal, any node whose selected literal is non-

Assuming a fixed maximal size for termsjinand

tabled has an ancestor that is tabled; because the an-p then the cost afeconstruct_tree(S) is

cestor relation is a tree, the closest such node is unique,

so thatH is well-defined. Given these considerations,
it is evident thatX{ defines a homomorphism of an
SLG forestF whereF is taken as a graph with labeled
nodes.

In order to reconstruct an SLG treeffrom +(F),
the parent of each logged fag¢t needs to be deter-

O(size(T)log(size(T)) + size(P)).

As more predicates are tabled, the number of rules that
are distinguishable increases. Thus, Proposition 3.2
implies that forest logging can often support rule level

analysis for heavily tabled computations, such as those

mined and the edges themselves constructed. Whenthat occur in Flora-2.

ANSWER RESOLUTION and other tabling operations

are performed, their representation of the calling sub-

goal can be used for this purpose. However in the case 4 Analyzing the Log; Seeing the Forest through

of, e.g., program clauses, the program clauses must be

sufficiently distinct so that the parent of each fact can

the Trees

be uniquely identified. These conditions are specified 4.1. Using the Log to Analyze Dependencies

by Definition 3.3.

Definition 3.3 Let Body and Body' be two sequences
of literals. ThenBody and Body' are distinguishable
if
— Body and Body' are empty; or
— Both Body and Body' contain at least one
tabled literal, Body = L, ..., L, and Body' =
L, ..., L), and

1. The leftmost literald; and L} are tabled and
the sequenceés,...,L,, and L}, ..., L/ are
distinguishable.

2. The leftmost tabled literal.; of Body does
not unify with any literal inBody', the left-
most tabled literalL’; of Body’ does not unify
with any literal in Body, and the sequences
Liy1, .., Ly andL’ 4, ..., L, are distinguish-
able.

Note that if all predicates in a program are tabled, all
rules will be distinguishable. When all rules for a pred-
icatep/n are pairwise distinguishable, an SLG tree for
a goal top/n can be constructed by starting at the root
node, and iteratively constructing the children of each
node, using the information from the log and the rules
themselves. This is formalized in the algorithecon-
struct_tree(), which can be found in the appendix of
this paper.

Theorem 3.2Let P be a program¢ a finitely termi-
nating evaluation its log and7 a completed tree

Continuing Example 1.1, we consider execution of
a particular biology query that took more space and
time than expected. This query took about 30 seconds
of CPU time and created about 600,000 tables with
about 300,000 answers total. Overall about 8.7 million
tabled subgoals were called. The query required about
300 megabytes of table space, while XSB’s combined
trail and choice point stack region had allocated over 1
gigabyte of space The computation was rerun with
forest logging. Forest logging has no impact on mem-
ory usage, although for this example the elapsed exe-
cution time increased form 30 to 52 seconds. The log
file had a size of 3.6 gigabytes and contained 14.1 mil-
lion facts.

After loading the log, the top-level analysis query,
forest_log_overview/Ogave the results in Figure 4.
The forest log overview first shows the total number
of completed and non-completed subgoals and SCCs,
along with a count of how many of the completed sub-
goals were early-completed (Section 2.1). Information
about non-completed subgoals is useful for analyzing
computations that do not terminate. The overview also
distinguishes between positive and negative calls to
tabled subgoals, and for each such class further distin-
guishes subgoals that were new, completed, or incom-

9All times reported in this paper were from a 64-bit machinthwi
3 Intel dual-core 3.47 GHz CPUs and 188 megabytes of RAM run-
ning under Fedora Linux. The default 64-bit, single-thesh&VN
repository version of XSB was used for all tests.

10 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

There were 613448 subgoal s in 463446 (conpl eted) SCCs.
93909 subgoal s were early-conpl et ed.
0 subgoal s were not conpleted in the |og.
There were a total of 8638299 positive tabled subgoal calls:
582754 were calls to new subgoal s
4460609 were calls to inconpl ete subgoal s
3594936 were calls to conpl ete subgoal s
There were a total of 30694 negative tabled subgoal calls:
30694 were calls to new subgoal s
0 were calls to inconplete subgoal s
0 were calls to conpl ete subgoal s
There were a total of 5 negative del ays
There were a total of 6 sinplifications
There were a total of 304447 unconditional answers derived:
There were a total of 6 conditional answers derived:

Nurmber of SCCs with 1 subgoals is 463437
Nunber of SCCs with 4 subgoals is 1
Nurmber of SCCs with 7 subgoals is 1
Nunber of SCCs with 52 subgoals is 1
Nurmber of SCCs with 110 subgoals is 5
Nunber of SCCs with 149398 subgoals is 1

Fig. 4. Output of Forest Log Overview for the Program and @ueExample 1.1

plete. Recall that calls to completed tabled subgoals in the first line of this report that the vast majority of
essentially treat the answers in the table as facts, so the calls to incomplete tables during this computation
that such calls are efficient. Making a call to anincom- occurred in the SCC under investigation. Since infor-
plete subgoals on the other hand means that the call- mation on incomplete tables is kept in XSB's choice
ing and called subgoals are mutually recursi?egnd point stack (cf. [13]), the evaluation of SCC 39 is the
execution of recursive sets of subgoals can be expen- likely culprit behind the large amount of stack space
sive, especially in terms of space. Aggregate counts of required. The subgoals in the SCC are first broken out
DELAYING and SMPLIFICATION are also givenalong DY their predicate name and arity, then the edges within
with counts of both conditional and unconditional an- the SCC are broken out by the predicates of their caller
swers. Negation does not appear to play a major role and called s.ubgoals. With this information, a program-
in this computation, and it appears likely that the pro- Mer can review the various rules fookupSentence/3
gram has a 2-valued well-founded model, although fur- forwardSentence/and other predicates to determine

ther exploration would be needed to determine this (cf. whether Fhe recursion 1 intended and if so, Whgthgr I
Section 4.3). can be simplified. In the actual example, examination

of these rules showed that the use of Hilog resulted in
calling a number of unexpected predicates. Additional
guards were placed on the Hilog call, greatly reducing
the time and space needed for the computation.

The overview also provides the distributions of
tabled subgoals across SCCs. While most of the SCCs
were small, one was very large with nearly 150,000
mutually dependent subgoals. Clearly the large SCC
should be examined. The first step is to obtainithe
dexof its SCC, which is simply a way to denote it.

The queryget_scc_size(Index,Size), Size1000.in- Within the SCC analysis, information about a given

dicated that the index of the large SCC was 39. The tabled subgoal is abstracted: only the functor and

queryanalyze_an_scc(3%en provided the informa- arity of S is presented. For SCC 39 in the running

tion in Figure 5. It is evident from the countof edges example, abstraction is necessary, as directly report-

ing 150,000 subgoals or 4,000,000+ edges would not
T , , _ provide a human with useful information. However, it
This statement is true in the local scheduling strategy btitm .

batched scheduling. could be the case that seeing the tabled subgoals them-
L1For purposes of space the lists of predicates and edges in the S€lves would be useful for a smaller SCC. Even for

SCC have been abbreviated. a large SCC, different levels of abstraction to provide

4.2. Using abstraction in the analysis

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 11

There are 149671 subgoal s and 4461290 edges (average of 30.8073

edges/ subgoal) within the SCC

There
There

are 2 subgoals in the SCC for backchai nForbi dden / 0
are 2 subgoals in the SCC for
www. cyc. contf transformati onPredicate / 0

There
There

are 18770 subgoals in the SCC for forwardSentence / 3
are 18771 subgoals in the SCC for |ookupSentence / 3

Calls
Calls

from assertedSentence/ 3 to | ookupSent ence/ 3: 32

from backchai nFor bi dden/ 0 to www. cyc. coni transformati onPredi cate/0: 2
Calls
Calls

fromtransfornmati onSentence/2 to sbhl Sent ence/ 3: 5479
fromtvaSentence/ 3 to renopval Sentence/ 3: 7695

Fig. 5. Output of SCC Analysis for the Program and Query inrfpie 1.1

There are 149671 subgoal s and 4461290 edges (average of 30.8073

edges per subgoal) within the SCC

There
There

are 3 subgoals in the SCC for backchai nRequired(g, g)
are 2 subgoals in the SCC for backchai nForbi dden(g, g)

There
There

are 29254 subgoal s in the SCC for gpLookupSentence(g, g)
are 29254 subgoals in the SCC for renpval Sentence(g, g)

Calls
Calls

from assertedSentence(g, g) to | ookupSentence(g,g): 10
from assertedSentence(mg) to | ookupSentence(mg): 22
Calls
Calls

fromtransfornati onSentence(mg) to sbhl Sentence(m g): 741
fromtvaSentence(g,g) to renoval Sentence(g, g): 7695

Fig. 6. Output of SCC Analysis for the Program and Query inripie 1.1

mode or type information can be useful. For this rea- such predicate may be passed into the last argument of
son, forest log analysis predicates support calls such analyze_an_scc/3.

asanalyze an_scc(39,abstract_modes(which ap-
plies the predicateabstract_ modes/a2n the break-
downs of subgoals and edgedstract_modes(In,Out)
simply goes through each argument of the ténrand
unifies the corresponding argument of the te@ut

4.3. Analyzing Negation

Many programs that use negation are stratified in
such a way that they do not require the use @&-D
LAYING and SMPLIFICATION operations. However if
a program does not have a two-valued well-founded
model, a user would often like to understand why, in
addition to having the sort of dependency analysis de-

with a v if the argument is a variable, @ if the ar-
gument is ground, anth (for mixed) otherwise. The

resulting output is shown in Figure 6. Examination of
this output indicates that the SCC conists of a large
number of fully ground calls to several predicates:
rewriting code to make fewer but less instantiated calls
to these predicates will often optimize a computation.
Of courseabstract_modes/B simply an example:

scribed in the previous section. Even in a program that
is two-valued, the heavy use ofeDAYING and SM-
PLIFICATION can indicate that some rules may need to
be optimized by having their literals reordered.

12Because Flora-2 terms are represented in a particular way to
support Hilog, abstraction was used to produce the outp&ecf
tion 4.1, while a special version abst r act _nodes/ 2 was used

term abstraction predicates are easy to write, and any here.

12 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

As indicated previously, the forest log overview in- Regardless of the level that is enabled, logging is
cludes a total count of BLAYING and SMPLIFICA- performed by conditional code in large virtual ma-
TION operations, as well as a count of conditional an- chine instructions such aabletry (NEw SUBGOAL),
swers. In addition, SCC analysis counts negative as answer_return new_answerand check _completion
well as positive edges within the SCC. Forest logging (ComPLETION) (cf. [13]). Subgoals and bindings are
also provides an analysis routine to examine why an- then written using registers, tables, answer templates,
swers have an undefined truth value. Recall from Ex- and lists of delayed literals. Calling subgoals (e.g.,
ample 2.2 that there are two types of causes of an un- the second arguments @f/4 and nc/4) are obtained
defined truth value: either 1) a negative literal explic- by the SLG-WAM'sroot subgoal registerwhich was
itly undergoes a BLAYING operation; or 2) a condi- originally introduced for tabled negation [13]. For ef-
tional answer may be used to resolve a literal. It can be ficiency, logging minimizes interaction with the op-
shown that in local scheduling, a conditional answer erating system: information is written into a internal
will never be returned out of an SCC f is success- buffers; once the buffers contain all information for a
ful or failed in the well-founded model of a program. log fact, they are written to the output stream using
This means that if an answer f8ris undefined, then it a singlepri nt f () statement. The subgoals and an-
would be caused operationally by &DaYING opera- swers that are logged may be quite large, particularly
tion within the SCC of5 or within some other SCC on when non-termination may be an issue: thus all buffers
which S depends. So to understand why an atom is un- used are fully expandable.
defined it can be useful understand the “root causes” of Al facts are written canonically so that loading a
the delay: to examine SCCs in whictEDAYING op- log exploits XSB's efficient reading and asserting of
erations were executed and conditional answers were canonical dynamic code. Themp/3(COMPLETION)
derived, but where the answers could not be simplified. facts are trie-indexed (cf. [15]), while most other facts

Example 4.1 As a use case, logging was made of ex- index on multiple arguments. F_or instanee/4 (AN'
ecution of a Flora-2 program that tested out a new SWER RESOLUTION) facts are indexed on their sec-
defeasibility theory. The forest log overview indicated ©nd and third arguments (calling and called subgoals),
that the top-level query was undefined: so that indexing is used if either argument is bound. A
type of indexing in XSB called star-indexing is used,

-There were a total of 55 negative del ays which can index on up to the first four positions of a

There were a total of O sinplifications given argument [15].
There were a total of 695 unconditional Analysis routines are written in standard Prolog
answers derived with one exception. Counting the number of (ab-
There were a total of 66 conditional stracted) edges in an SCC makes use of the code frag-
answers derived ment
The analysis predicatehree_valued_scc(Listpro- tc(T1,T2,incmp,_Ctr),
duces a list of all SCC indices in whidDELAYING check_variant(cmp(T1,S,_),1),
caused the derivation of conditional answers. These check_variant(cmp(T2,S,),1)
SCCs were then analyzed as discussed in the previous)) _
sections. The predicatecheck_variant(Goal,DontCareNunig
implemented only for trie-asserted code (ecgnp/3.
If Goalis an atom for predicatp/n, check variant/2
5. Implementation and Performance of Logging determines whether a variant of the fifdt- Dont-
and Analysis Routines CareNumarguments ofGoal is in the trie forp/n.

check_variant/ds implemented at a low level, mak-

A user of XSB may invoke forest logging so that the ing direct use of the data structures used by XSB to
log is created as described in Section 2. Alternately, represent triescheck variant/2begins matching the
a user may invok@artial logging which omits facts leftmost element of a termwith the root of the trie,
produced by the ASWER RETURN and New AN- and proceeds to match each subsequent symbol with
SWER operations. Partial logging can save time and
space and S_uPport_S‘ analysis of mutually recursive COM- 131 Prolog, canonical syntax does not allow operator detitara
ponents as in Sections 4.1 and 4.2. However it does Not s, that all function symbols are prefixed and their argumésilg
support the negation analysis of Section 4.3. parenthesized; and restricts numbers to base 10.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations 13

a child node of the current trie position; if no match imately 100,000 facts per second for t@gc series,

is foundcheck_variant/Zails. As a result, only a sin- over 150,000 facts per second for tReef-kb series,

gle path from the root need be examined in order to and nearly 200,000 facts per second forrkach Nse-
determine whether a variant ois in the trie. On the ries. After being loaded, th@yc examples took about
other hand, for large SCCs in which there are numer- 500 bytes per fact, th@ref-kb examples about 300
ous subgoals that may unify with one another (but pytes per fact, and theeach Nfacts about 200 bytes
aren't variants), a Prolog search for variance may sub- per fact. Much of this space is due to the heavy index-
ject to a great deal of backtracking, and the time re- ing of |og facts. The reason that tiyclogs take the
quired may be proportional to the size of the trie, rather |ongest to load and the most space to represent is be-
than to the size of as withcheck variant/2Not sur- cause the subgoals and answers generated by Flora-2
prisingly, the use ottheck variant/2is critical to a = ompilation are larger for theycseries. For instance,

good analysis time. For example, in the analysis of the Hilog transformation used by Flora-2 transforms
SCC 39 for the Cyc example presented above, the use ary predicates and function symbolsrte1 ary pred-

of check_variant/Zeduced the time for the forest log icates and function symbols. As a slightly simplified

overview over 100-fold. instance, a term such g¥a,f(b),1)is converted to
flora_apply(p,a,flora_apply(f,b),1)n addition, Flora-
2 represents module information as an argument of

Figure 1 shows performance results for logging and each atom, requiring further space.

5.1. Performance

analysis of various sets of examples:

— Cyc Series. Cyc ik the working biology example
used throughout this papéZyc 3is a similar, but
larger, biology example, Both systems are based
on the translation of the Cyc inference engine into
Flora-2 and then into XSB.

— Pref-kb Series. Pref-klzcontains a small set of

5.1.2. Analysis Time

Once the log has been loaded, the indexing makes
analysis fast enough to be interactive: for thgc bi-
ology example the top level analysis took around 10
seconds, and analyzing SCC 39 took about 20 seconds
when the built-in predicate-arity abstraction was used,
and about 60 seconds for the parameterizable version

tabled Prolog rules about personal preferences that usedabstract_modes/2Although computing the
that demonstrate reasoning about existential in- forest log overview requires several table scans in ad-
formation in a manner similar to description log- dition to indexed retrievals, timings for the both the

ics, and make use of default and explicit negation. Pref-kband thereach Nseries show a sublinear growth
Queries to these rules were run over sets of 3.7 of analysis time with respect to log size.

million and 14.8 million base facté

— reach N SeriesThis series tests logging of an
open query to the right-recursiveach/2predi-
cate in Figure 1 over fully connected graphs with

5.1.3. Logging Overhead
The overhead of query evaluation was also mea-
sured, i.e., the time it took to execute a query when for-

2000-12000 nodes. Since these queries measureest logging was turned on compared to no logging. For

reachability from all nodes in the graphs the cost
of an open query scales quadratically with respect
to the number of nodes in the graph. Although
the tabling behavior of a simple transitive closure
query such ageach/2is well understood, this se-
ries is included to test the scalability of logging
and of its analysis.

5.1.1. Load Time

In part because of XSB’s library predicates for load-
ing canonical dynamic facts, XSB’s load time is ef-
ficient for the various types of logs, loading approx-

14Details of this series, including the code used to genetwe t
datasets, are available sites.unife.it/ai/termination.

the Cyc series, the overhead of logging increased the
time for Cyc 1by 72% and foiCyc 3by 132% which
was considered acceptable by KEs. Similarly,Pnef-

kb series, which uses a heavily tabled Prolog program,
has an average logging overhead of about 225%. On
the other hand, for theeach Nseries the overhead of
forest logging on query execution was naturally high
(about 2 orders of magnitude), emach Nperformed
very little program clause resolution. This overhead
may be considered as a worst-case for forest lodging

15Thereach Nseries was included to benchmark scalability, but
partial logging as described in the next section can graatiyice
the logging overhead and log space of teach Nseries, if needed.

14 Terrance Swift / Trace-Based Analysis of Large Tabled Caations
Program Number of facts| Load time (secs)| Load Space (bytes)] Forest Log Overview (secs
Cyc1l 14,009,602 140.1 7,857,572,736 22.1
Cyc 3 66,256,186 612.2 36,950,074,144 92.2
Pref-kb 3,7 2,500,193 16.5 725,972,288 2.3
Pref-kb 14,8 8,000,140 52.5 2,336,039,512 7.3
reach 2000 12,006,002 78.4 2,496,927,880 8.4
reach 4000 48,012,002 280.1 9,985,835,352 13.2
reach 8000 192,024,003 1227.7 39,940,961,128 59.7
reach 12000 432,036,000 2332.9 89,864,542,056 132.8
Table 1

Timings for Loading and Analyzing Logs

5.1.4. Partial Logging duce the logging time and log size for queries with a

For some large examples, partial logging (men- large number of answers. Table 2 shows that partial
tioned at the beginning of this section) can reduce the logging reduces the size of the log for left-recursive
the logging overhead, the time required to load a log, Pref-kb by many orders of magnitude. On the other

and the space the loaded log requires. An example of
this is as follows.

Example 5.1 In analysing the log for a query tBref-
kb, it became apparent that much of the resources the
query required were due to large SCCs composed al-
most entirely of goals tequals/2 the predicate used
for equality of non-identical terms. By examining the
program, a rule forequals/2was translated from a
right-recursive form to a left-recursive form. Simpli-
fying somewhat, this meant translating a rule of the
form:

equals(X,Z):- basePredicate(X,Y),equals(Y,Z)
to

equals(X,2):- equals(Y,Z),basePredicate(X,Y)
The left-recursive form is usually faster for tabled Pro-
log, as Prolog’s left-to-right literal selection strategy
means that the right-recursive form will generate sep-
arate tabled queries for different instantiations 6f
while the left-recursive form will not.

After performing the above translation, the query
time for the transformed serieBref-kb-Irwas reduced
by 300-400%, and the maximum memory required for
query evaluation was reduced by about 700-800%.
However, while the translation optimized the query it-
self, when logging was turned on the left-recursive
query slowed down substantially, even compared to the
time required by the right-recursive form when using

logging.

Inspection of the log for the query to left-recursive
Pref-kb showed that a large number of answers were
produced for the top-level query and its tabled sub-
queries. Since partial logging removes most informa-
tion about answer derivations it can substantially re-

hand, evaluation of the query to right-recurgiref-kb
produces a large number of subgoals and relatively few
answers, so that partial logging is not more efficient
than full logging in this casé.

6. Related Work

Trace-based analysis has been widely used to ana-
lyze the behavior of concurrent systems, security vul-
nerabilities, suitability for optimization strategiesdan
other program properties. Within logic programming,
it has been used to analyze how constraint evaluation
affects program flow [5]; although perhaps the best
known use of trace-based analysis is the Ciao pre-
processor, which infers call and success conditions for
a variety of domains based on execution of queries
(see [8] for further details).

Based on XSB'’s forest logging, a system for ana-
lyzing non-termination of Flora-2, Silk and Fidji pro-
grams, calledlerminyzeihas been developed [11,10].
In addition to the logging mechanisms described so
far, Terminyzer relies on special routines that trans-
late compiled Flora-2 code back from a Prolog syntax
to a more readable Flora-2 syntax. Displays for Ter-
minyzer are shown in the IDEs of both Silk and Fidji
and have been used for debugging by knowledge en-

16Although the left-recursive and the right-recursive forofs
Pref-kb are semantically equivalent, the left-recursive form nsake
fewer queries than the right-recursive form but its queniesas in-
stantiated. The left-recursive form thus has a larger kespace than
the right-recursive form, but it creates far fewer quer@sts search
and for that reason is more efficient under XSB's tabling enpén-
tation.

Terrance Swift / Trace-Based Analysis of Large Tabled Caations

15

equals/2form EDB Size | Log Level | Log Overhead| Nbr of facts | Load time Load Space| Forest Log Overview

Right-recursive | 3.7 million full 236% 2,500,254 16.5 725,972,288 2.3

Right-recursive | 3.7 million partial 236% 2,500,126 16.5 724,037,016 2.3

Left-recursive 3.7 million full 2685% | 11,983,203 89.3 | 3,904,201,328 1.1

Left-recursive | 3.7 million partial < 1% 115 <0.1 80,202 <0.1
Table 2

Comparing Full and Partial Logs fétref-ki Times are in Seconds and Space is in Bytes

gineers [1]. The analysis presented in Section 4 pre-
dates the termination analysis of [11,10], and is com-
plementary to it. For instance, the analyses in Sec-
tion 4.1 considered a program and query that termi-

nated, but was inefficient due to unexpected dependen-

cies among subgoals; while the negation analysis of
Section 4.3 helped indicate why a 2-valued model was
not obtained’.

7. Discussion

The design of a forest log attempts to balance the
amount of information logged against the time it takes
to load and analyze a log. The propositions of Sec-
tion 3 show that a forest log suffices to analyze depen-
dency information and under certain conditions has the
information available to construct a homomorphic im-
age of an SLG forest. The analysis predicates of Sec-
tion 4 show how the representation is used to provide
meaningful information to users for tabled programs
with and without negation. The benchmarks of Sec-
tion 5 further demonstrate practicality of this approach
and its scalability to logs with hundreds of millions of
facts. As a result forest logging is now fully integrated
into XSB and Flora-2, and underlies tools in the com-
mercial Silk and Fidji IDEs.

More generally, trace-based analysis provides an al-
ternative to static analysis for a number of program
or query properties. Unlike static analysis, trace-based
analysis requires realistic data along with a representa-
tive set of queries. On the other hand, for programs that
include Hilog, defeasibility, equational reasoning and
other features of Flora-2, Fidji and Silk, static analy-
sis techniques may not exist, may not be implemented,
or may not be powerful enough for practical use. As a
result, trace-based analysis is a viable technique to de-
termine properties of large tabled computations. Cur-
rent work involves using forest logging to help suggest

7publication of the material in this paper was delayed whilé V
can Inc. which partially funded this work, considered wieetto ex-
ercise its patent rights to forest logging and its analysis.

changes to tabling declarations and properties in order
to optimize programs.

AcknowledgementsThis work was partially sup-
ported by Project Halo. The author thanks Fabrizio
Riguzzi for making available the server on which the
timings were run.

References

[1] C. Andersen, B. Benyo, M. Calejo, M. Dean, P. Fodor,
B. Grosof, M. Kifer, S. Liang, and T. Swift. Understanding
Rulelog computations in Silk. IWorkshop in Logic-based
Methods in Programming Environmen£013.

F. Baader, S. Brandt, and C. Lutz. Pushing&i&envelope. In

International Joint Conference on Artificial Intelligengeages

364-369, 2005.

[3] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundationrfo
higher-order logic programmingJournal of Logic Program-
ming 15(3):187-230, 1993.

[4] W. Chen and D. S. Warren. Tabled Evaluation with Delaying

for General Logic Programgournal of the ACM43(1):20-74,

1996.

M. Ducasse and L. Langevine. Automated analysis of dip(f

program execution traces. limternational Conference on

Logic Programmingpages 470-471, 2002.

B. Grosof and T. Swift. Radial restraint: A semanticathgan

approach to bounded rationality for logic programsAmeri-

can Association for Atrtificial Intelligence Conferen@913.

H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Specu

lative beats conservative justification. Iternational Confer-

ence on Logic Programmingages 150-165, 2001.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez-Garcia,

E. Mera, F. Morales, and G. Puebla. An overview of Ciao and

its design philosophyTheory and Practice of Logic Program-

ming 12(1-2):219-252, 2012.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of et}

oriented and frame-based language3ournal of the ACM

42:741-843, July 1995.

[10] S. Liang and M. Kifer. A practical analysis of non-termation
in large logic programs.Theory and Practice of Logic Pro-
gramming 13(4-5):705-719, 2013.

[11] S. Liang and M. Kifer. Terminyzer: An automatic non-
termination analyzer for large logic programs Rractical Ap-
plications of Declarative Language2013.

[12] E. Pontelli, T.C. Son, and O. Elkatib. Justificatinos fagic
programs under the answer set semanfiteory and Practice
of Logic Programming9:1-56, 2009.

[13] K. Sagonas and T. Swift. An abstract machine for tabbed e
ecution of fixed-order stratified logic program8CM Trans-

[2

—

(5]

G

(8]

El

16 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

actions on Programming Languages and Syste&2063):586 —
635, May 1998.

[14] T. Swift. A new formulation of tabled resolution with idg. In
Progress in Art. Inte|.pages 163-177, 1999.

[15] T.Swiftand D.S. Warren. XSB: Extending the power of[Bgp
using tabling. Theory and Practice of Logic Programming
12(1-2):157-187, 2012.

[16] H.Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logio-
gramming with defaults and argumentation theoriesintar-
national Conference on Logic Programmingages 432448,
2009.

[17] G. Yang, M. Kifer, and C. Zhao. FLORA-2: A rule-based
knowledge representation and inference infrastructurehi®
Semantic Web. I©ODBASE-2003pages 671-688, 2003.

Appendix
A. Proofs of Theorems in Section 3

Theorem 1Let& = Fy, ..., F, be an SLG evalua-
tion andL a log created using eager subgoal logging.
Then for anySDG(F;), 0 < i < n, there is ac such
that SDG(F;) is isomorphic to the log dependency
graph induced by.

Proof: The proof is by induction onsuch thatF; is a
forestiné.

For the base cas&DG(F) is empty, which cor-
responds to the log dependency graph induced by 0.
To see this, note that the first/4 or nc/4fact sets the
calling subgoal towll and so by Definition 3.1 is not
included in the log dependency graph induced by 0.

For the inductive case, assume the statement holds
for F; with log counterc; and we consider the cases
whereF; ., was produced byF;.

— NEW SUBGOAL Suppose a tree with root

Scalled:'|Scalled

was created due t§ being selected in a node
Scalier9:-Delays|Body. In this case, by the eager
subgoal logging property,@/4 or nc/4fact with
statenewand counter; + 1 will be logged. E.g.,

if the dependency is positive, the log fact would
be:

tc(Scalleda Scaller7 new, c; + 1)

By Definition 3.1, setting to ¢; + 1 preserves the
induction statement foi; 1, since neither sub-
goal will be completed.

— PROGRAM CLAUSE RESOLUTION. Note that this
operation will affect the SDG only if the opera-
tion produces a child node with selected litefal
whose underlying atomtl is tabled, but has not
been completed. In such a case, by the eager sub-
goal logging property, &c/4 or nc/4 fact will be
logged as the:; + 1st fact. Settinge to ¢; + 1
preserves the property faf; ;.

— ANSWER RESOLUTION As with PROGRAM CLAUSE
RESOLUTION, this operation will affect the SDG
only if the operation produces a child node
with selected literal. whose underlying atom
tabled, but has not been completed. By the eager
subgoal logging property, after ar/3 or dar/4
fact is logged as the + 1st fact, atc/4 or nc/4

Terrance Swift / Trace-Based Analysis of Large Tabled Caations

fact will be logged as the; + 2nd log fact. As

in the previous case, the second argument of this
facts will beS..;.q. By Definition 3.1, setting:

to ¢; + 2 preserves the property fof; ;1.

DELAYING, andNEGATION SUCCESsare argued

in the same manner anNSWER RESOLUTIONS,
SIMPLIFICATION and ANSWER COMPLETION
both affect only conditional answers. Since an-
swers do not have a selected goal literal, they do
not contribute to the SDG, so that the induction
step holds trivially in these cases.

NEGATION FAILURE adds a failure node, which
does not affect the SDG, so that the induction step
holds trivially in this case.

COMPLETION. Completion of a subgod alters
the SDG by removing all edges incident Snin

this case, the log containscenp/3fact for every
early completion and every SCC completion. As
aresultsS will not be contained in the log depen-
dency graph, and the induction statement holds if
cis set to the counter of the lastnp/3fact for the
SCC.

A.1. Proof of Theorem 2

Theorem 2, which states conditions for the exis-
tence of a homomorphism between a forest log and
an SLG tree, is proved by showing the correctness of
the algorithmgeconstruct_tree (Figure 7) anccre-
ate_children() (Figure 8). Both the proof and the al-
gorithm create_children() use the definition of an
SLG resolvent (originally from [4]), which differs
from resolution in Horn rules in order to take into ac-
count delay literals in conditional answers.

Definition A.1 Let N be a nodeA:-D|L;,..., Ly,
wheren > 0. LetAns = A’:-D’| be an answer whose
variables are disjoint fromV. N is SLG resolvable
with Ans if 3i, 1 < ¢ < n, such thatL; and A’ are
unifiable with a most general unifier (mgf)The SLG
resolvent ofV and Ans on L; has the form:
(A:-D|L1, ..

oLic1, Liy1, ..y Ln)0

17
if D’ is empty; otherwise the resolvent has the form:

(A:'D, Li|L1, ceey Lifl, Li+1, ey Ln)9
Note that SLG resolution delays; rather than prop-
agating the answerBelaysD’. This is necessary, as
shown in [4], to ensure polynomial data complexiy.
Theorem 2 Let P be a program¢ a finitely termi-
nating evaluation £ its log and7 a completed tree
with root Subgoal:-|Subgoal in a forest of€, and as-
sume all rules inP whose head unifies withiubgoal
are distinguishable. Theneconstruct_tree(S) pro-
duces a graphFEdgeSet, that is isomorphic t&(T).
Assuming a fixed maximal size for termsjinand
P, then the cost afeconstruct_tree(S) is

O(size(T)log(size(T)) + size(P)).

Proof: We first show thatFdgeSet is isomorphic to
T, and then consider its cost.

reconstruct_tree(Subgoal) (Figure 7) reconstructs
the tree forSubgoal in an iterative manner, starting
with the rootSubgoal:-|Subgoal, adding nodes to be
expanded intaVodeSet, and representing the result-
ing graph edges ivdgeSet. For the purposes of this
proof, anearest tabled descendesfta non-root node
N is nodeN,_;;4 such thatV.,;4 is a descendent of
N such and any other descendentdothat are ances-
tors of Nopaq (i-€., nodes betweelN andN.p;4) were
formed by ROGRAM CLAUSE RESOLUTION. Note
that these intermediate nodes have selected literals that
are not tabled.

The proof of isomorphism is by induction on the
number of iterations in the while loop imecon-
struct_tree().

In the base casegconstruct_tree() expands a root
node. The children of a root node are created by res-
olution of program clauses whose heads unify with
Subgoal: the rules themselves need not be distin-
guishable, as the children can be constructed imme-
diately from P and Subgoal. Furthermore, it is im-
mediate from Figure 7 that as all possibled&RAM
CLAUSE RESOLUTION operations are performed, all
edges are added fodge Set and all children are added
to NodeSet.

In the inductive case, assume thgdge Set as cre-
ated in then-1 iterations of the while loop imecon-

18The NEGATION SUCCESSoperation is shorthand for REGA-
TION RETURN operation where the selected literal succeeds and is
resolved away.

191f the Delayssequence were propagated directly, thenee
lays could effectively contain all derivations which could bepex
nentially many in the worst case.

18 Terrance Swift / Trace-Based Analysis of Large Tabled Caations

reconstruct_tree(Subgoal)
/* Assumes a prograr® and forestrF */
NodeSet := {Subgoal:-|Subgoal} ; EdgeSet := 0;

* Subgoal:-|Subgoal is a root node: */

For every clause H:-Body whose head resolves with Subgoal with mgu 7

NodeSet = NodeSet U (Subgoal:-|Body)n
EdgeSet = EdgeSet U (Node, (Subgoal:-| Body)n)
While (NodeSet #)

choose Node from NodeSet; NodeSet := NodeSet — Node;

create_children(Node, N odeSet,Subgoal);

Fig. 7. Top-level Algorithm to Perforri{ (F)

struct_tree() is isomorphic toH (7") and thatN ode =
Subgoalf:-Delay|Body is chosen fromNodeSet in
then'” iteration.

We consider the cases fdfode, and show how they
are captured bygreate_children() (Figure 8).

— Body is not empty. In this case, note that since
Node is not an answer, we do not have to con-
sider either the effects &fiMPLIFICATION oOr AN-
SWER COMPLETIONOperations in producing the
children of Node.

x The leftmost tabled literal iBody, L, exists
and is positive (lines 4-13 afeate_children()
in Figure 8). Note that if there does not exist
a leftmost tabled literal inBody, by Defini-
tion 3.3 of distinguishable rulefody must be
empty, which falls under the case whévede
is an answer (lines 33-45).

x Consider first the case whereis the left-
most literal in Body (lines 6-9 of Figure 8)
—i.e., the leftmost literal is in fact tabled. In
this case the fact that the rules 8ubgoal
are distinguishable means that theweR
RESOLUTION operations that create chil-
dren for Node are identifiable by calling all
facts of the form

ar(n, Subgoal caied, Subgoal,, Ctr)
or

dar(n, Subgoal .ajied, Subgoal,, Ctr)
such thatSubgoal, is a variant ofSubgoal

andSubgoal.qieq IS @ variant ofL. In these
casescreate_children() properly creates

children of the form
(Subgoall:-Delay|Body')n

or

(Subgoalb:-Delay U L|Body')n
respectively.
Next, consider the case whefeis not the
leftmost literal inBody (lines 10-13 of Fig-
ure 8), so thatreate_children() creates the
nearest tabled descendent@bde. In this
case the fact that the rules fSubgoal are
distinguishable means that the nearest tabled

descendent can be identified by calling all
facts of the form

ar(n, Subgoal cqjied, Subgoal,, Ctr)
or

dar(n, Subgoal cqiied, Subgoal,,, Ctr)
such thatSubgoal, is a variant ofSubgoal
and Subgoal .q11.q UNIfies with L with mgu
&. Inthese casexeate_children() properly
creates children of the form

(Subgoalb:-Delay|Body')én

or

(Subgoalb:-Delay U L|Body')&n

x The leftmost tabled literal iBody, L = not A
exists and is negative (lines 14-32 of Figure 8).

Terrance Swift / Trace-Based Analysis of Large Tabled Caations

create_children()(Node, N odeSet,S);
If Node = H:-Delay|Body is a non-root node where Body is non-empty and H = S6
If there is a leftmost tabled literal, L, in Body
Let Body = Bodyrest, L, Bodyright
5 If L is positive
If Bodyreyt is empty /* L is the leftmost literal inBody, tabled or not */
For each fact ar(n, L, S, C) or dar(n, L, S, C)
Let Child be the SLG Resolvent of Node and Ln on L
NodeSet := NodeSet U Child; EdgeSet := EdgeSet U (Node, Child);
10 If L is not the leftmost literal in Body
For each fact ar(n, L', S, C) or dar(n, L', S, C) such that L’ unifies with L with mgu ¢
Let Child = Res&, where Res is the SLG Resolvent of Node and Ln on L
NodeSet := NodeSet U Child; EdgeSet :== EdgeSet U (Node, Child);
If L is negative, let L = notA
15 If L is the leftmost literal in Body /* tabled or not */
For each fact nr(L, S, C)
Let Child = (H:-Delay|Body")
NodeSet := NodeSet U Child; EdgeSet :== EdgeSet U (Node, Child);
For each fact dly(L, S, C)
20 Let Child = (H:-Delay U L|Body’)
NodeSet := NodeSet U Child; EdgeSet := EdgeSet U (Node, Child);
If there are no facts of the form nr(L,S,C) or dly(L,S,C)
EdgeSet := EdgeSet U (Node, fail);
If L is not the leftmost literal in Body
25 For each fact nr(L', S, C) such that L’ unifies with L with mgu ¢
Let Child = (H:-Delay|Body")¢
NodeSet := NodeSet U Child; EdgeSet := EdgeSet U (Node, Child);
For each fact dly(L’, S, C)) such that L’ unifies with L with mgu &
Let Child = (H:-Delay U L|Body’)¢
30 NodeSet := NodeSet U Child; EdgeSet := EdgeSet U (Node, Child);
If there are no facts of the form nr(L,S,C) or dly(L,S,C) such that L’ unifies with A
EdgeSet := EdgeSet U (Node, fail);
If N = S0:-Delays| I* N is an answer */
Let S be the set of facts smpl_fail(Scaited, 1, S, 0, Cntr) or smpl_succ(Scaited, N, S, 0, Cntr)
35 such that S.qycan € Delays
S := S Usmpl_fail(Secatied, S, 0, Cntr) or smpl_succ(Scaiied, S, 0, Cnir)
such that not Scqyeqn € Delays
S := S Uansc(0, S, Cnir)
while (S # 0)
40 Let f € S be such that the counter of f is the minimal counter for all facts in S
If f = P(Scalicd,n, S, 0,Cntr) where P = smpl_succ_p or smpl_succ_n
Child = H:-Delay — Lit|
Else Child = fail
NodeSet := NodeSet U Child; EdgeSet := EdgeSet U (Node, Child);
45 S=8-Ff

Fig. 8. Algorithm to create children of non-root nodes via forest log

19

Terrance Swift / Trace-Based Analysis of Large Tabled Caations

In this case, the non-failure children dfode
in 7 are produced by EGATIVE RETURN or
DELAYING.

x In the case wheré is the leftmost literal in
Body (lines 15-23 of Figure 8), the fact that
the rules forSubgoal are distinguishable
means that the KGATION Success(i.e.,
NEGATION RETURN where the selected lit-
eral succeeds) and HDAYING operations
that create children faW ode are identifiable
by calling all facts of the form

nr(Subgoal caiied, Subgoal,, Ctr)
or
dly(Subgoal caited, Subgoal,, Ctr)

such thatSubgoal, is a variant ofSubgoal
andSubgoal.qcq IS @ variant ofd. For each
operationcreate_children() properly cre-
ates children of the form

(Subgoalb:-Delay|Body')
or
(Subgoall:-Delay U L|Body').

So far this case parallels the case wheiis
positive and leftmost. However, in the case
that there are not suchr/3 or dly/3 facts
in the log,create_children() adds a a child
fail corresponding to a BIGATION FAIL -
URE operation onVode in T (lines 22-23).

x The next case (lines 24-32 of Figure B)
is not the leftmost literal inBody, so that
create_children() creates the nearest tabled
descendent ofVode. In this case the fact
that the rules forSubgoal are distinguish-

such thatSubgoal,, is a variant ofSubgoal
and Subgoal .q11q UNIfies with A with mgu

&. For each operatiorcreate_children()
(lines 25-30) properly creates children of the
form

(Subgoald:-Delay|Body')¢
or
(Subgoalb:-Delay U L|Body')E.

In the case that there are no sueh/3 or
dly/3 facts in the log,create_children()
(lines 31-32) adds a a chilfhil correspond-
ing to a NEGATION FAILURE operation on
NodeinT.

— Node = S6:-Delay|. In other words,Body is
empty so thatVode is an answer (lines 33-45 of
Figure 8). If Delay is empty,Node is an uncon-
ditional answer and will have no children. Oth-
erwise if Delay is non-empty its children will
be produced by ®PLIFICATION and ANSWER
CoMmPLETION. Note that all of these operations
are logged, and none of these operations changes
the bindings ofSé. Since all of the simplifica-
tion log facts andnsc/3facts containS, andsSé,
and the simplified literals as their arguments, the
applicable operations can be identified (regard-
less of whether the rules are distinguishable). The
only remaining issue in producing/(7) is to
properly order the operations, which is done in
a straightforward manner bgreate_children()
(lines 39-45).

In each of the above cases, each log fact Toiis
accessed in constant time as the term§irare as-
sumed to have a fixed maximal size, while accessing
all program clauses that unify witkican be performed
with cost linear in the size oP as terms inP are

able means that any nearest tabled descen- also assumed to have a fixed maximal size. This set

dent can be identified by calling all facts of
the form

nr(Subgoal caiied, Subgoal,, Ctr)
or

dly(Subgoal catied, Subgoal,,, Ctr)

of facts are sorted, further accessed and compared to
program clauses, and the sorting adds a log factor to
the complexity of the operation. When edges are pro-
duced, they need to be compared to other edges with
is constant time as a maximal term size is assumed..
As a result, the total cost of constructing the tree is
O(size(T)log(size(T)) + size(P)). I

