
Undefined 0 (2013) 1–0 1
IOS Press

Trace-Based Analysis of Large Rule-Based
Computations
Terrance Swift
CENTRIA, Departamento de Informática, Faculdade de Ciencia e Tecnologia, Universidade Nova de Lisboa,
Portugal. E-mail: terranceswift@gmail.com.

Abstract. Knowledge representation systems based on the
well-founded semantics can offer the degree of scalability
required for semantic web applications and make use of ex-
pressive semantic features such as Hilog, frame-based rea-
soning, and defeasibility theories. Such features can be com-
piled into Prolog tabling engines that have good support for
indexing and memory management. However, due both to
the power of the semantic features and to the declarative
style typical of knowledge representation rules, the resources
needed for query evaluation can be unpredictable. In such
a situation, users need to understand the overall structure
of a computation and examine problematic portions of it.
This problem, ofprofiling a computation, differs from debug-
ging and justification which address why a given answer was
or wasn’t derived, and so profiling requires different tech-
niques. In this paper we present a trace-based analysis tech-
nique calledforest loggingwhich has been used to profile
large, heavily tabled computations. In forest logging, criti-
cal aspects of a tabled computation are logged; afterwards
the log is loaded and analyzed. As implemented in XSB, for-
est logging slows down execution of practical programs by a
constant factor that is often small; and logs containing tens
or hundreds of millions of facts can be loaded and analyzed
in minutes.

Keywords: Scalable Reasoning, Tabled Resolution, Trace-
Based Analysis

1. Introduction

Much of the literature on knowledge representation
and reasoning (KRR) has concerned the use of expres-
sive reasoning components such as ASP andALC-
based description logics. However, there has also been
interest in basing KRR systems on weaker deductive
methods that more easily offer the type of scalability
needed by semantic web applications. For description
logics an example of such an approach is theEL fam-

ily [2]. For rule-based systems, examples are Flora-
2 [17] and its commercial extensions: the Silk and Fidji
systems1, all of which are based on logic program-
ming under the well-founded semantics. The Fidji sys-
tem, for instance, is currently used as a KRR tool to
use web-based textual information to reason about fi-
nancial regulations and medical informatics. Silk and
Fidji support features that are not common for rule-
based systems, including the object-oriented syntax of
F-logic [9], higher-order syntax based on Hilog [3],
rule descriptors, the intermixture of defeasibility theo-
ries [16], and the use of bounded rationality through a
technique calledrestraint[6], along with various types
of quantitative reasoning.

The use of these features can lead to concise repre-
sentation of knowledge, but also to unpredictability in
the time and space a computation requires. This unpre-
dictability especially emerges when a knowledge base
is produced by a team of knowledge engineers work-
ing in a loosely coordinated manner to create rules
that may depend on one another. In such situations, the
question arises whether the size of a resource intensive
computation is due to the sophistication of the reason-
ing it requires; to redundant or unoptimized rules; or to
rules that are simply incorrect. The following example
illustrates a case that arose during a KRR effort for the
SIlk project.

Example 1.1Over the course of several months, por-
tions of the Cyc reasoner2 and knowledge base were
translated and compiled first into Flora-2 and then
into XSB [15]. In addition, several hundred AP biol-
ogy questions were then formulated and queried. The
translated system was able to answer some of these

1http://silk.semwebcentral.org, http://coherentknowledgesystems.com
2http://www.cyc.com.

0000-0000/13/$00.00c© 2013 – IOS Press and the authors. All rights reserved

2 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

questions quickly, often in less than 1 second of CPU
time. Other questions took half a minute or more; while
still others could not be answered because of timeouts,
or because of aborts due to lack of memory. In gen-
eral, a medium-sized query might take several minutes
to execute.

Silk and Fidji are implemented using XSB [15], so
that their operational semantics ultimately is based on
tabled logic programming. In fact, because of the use
of frames, defeasibility and Hilog, user predicates in
Flora-2 and its extensions are tabled unless they are ex-
plicitly declared otherwise – a default that is the exact
opposite of tabling in Prolog. To investigate the time
and space required for queries like those of Example 1,
a knowledge engineer who understood the operational
semantics of Silk would use information about the ta-
bles to help determine why a computation was costly.
For instance, she might want to examine which tabled
subgoals were queried most often; how the answers
were distributed among the tables; how the queries de-
pended on one another; and how those dependencies
affected the overall search. These questions indicate a
need to model a tabled evaluation as a structure that
can be examined in itself. Accordingly, we denote the
problem of exploring large tabled computations as the
Profiling Problem. Because profiling addresses the na-
ture of a computation as a whole, rather than why given
solutions are returned or omitted, it differs from pre-
viously reported approaches based on procedural or
declarative debugging or on justification (e.g., [7,12]).

This paper presentsforest logging, an approach to
the profiling problem based on a trace-based analysis
of SLG forests, an operational semantics for tabling.
As its name implies, operational aspects of a compu-
tation are written to a log that is later loaded and ana-
lyzed. Specifically,

– We present the design of the logs, and formalize
their properties; in particular we show how logs
preserve dependency information, and specify the
conditions under which the logs can construct a
homomorphic image of an SLG forest.

– We present analysis predicates to display opera-
tional information about a tabled computation in
an efficient manner, and describe how these rou-
tines can be customized in order to represent de-
pendency and other information at different levels
of abstraction.

– We show that the overhead of logging is a con-
stant factor. We demonstrate the scalability of log

analysis which can load and A analyze logs of
hundreds of millions of facts.

Section 2 informally reviews SLG and presents the for-
mat of forest logs. Some basic properties are shown in
Section 3, while Section 4 discusses the analysis rou-
tines and describes the implementation of forest log-
ging along with performance results. Related work is
covered in Section 6.

All forest logging features discussed in this paper
are available in the latest release of XSB (version 3.4).
In addition, these features form the basis of the forest
logging library in the publically available version of
Flora-2 (version 0.99.3), as well as in the commercial
Silk and Fidji systems.

2. Representing an SLG Forest via a Log

In SLG resolution [4] as formulated in [14], an eval-
uation is a sequence of forests of SLG trees. Before
discussing the logs themselves, we review those as-
pects of the forest of trees model for SLG that are
necessary to understand forest logging and its applica-
tions. As SLG and its extensions have been presented
in the literature our review is largely informal; for for-
mal definitions see the references contained in [15].
All code examples are in Prolog syntax.

2.1. A Review of SLG by Examples

We begin our review with an example of SLG eval-
uation of a query to a definite program. For simplicity,
in this paper we restrict our attention to finitely termi-
nating evaluations (which correspond to finite forests),
and always assume a left-to-right literal selection strat-
egy3.

Example 2.1Figure 1 shows a simple program along
with an SLG forest for the queryreach(1,Y)to the
right-recursive tabled predicatereach/2. An SLG for-
est consists of an SLG tree associated with each tabled
subgoalS (where variant subgoals are considered to
be identical); each such tree has rootS:-|S. Each SLG
operation transforms a given forestFn to a new for-
estFn+1 by adding a new tree, adding a new node, or
by annotating a tree: so that an SLG tree represents

3For presentation purposes we consider only tabling with call
variance, and under the local scheduling strategy. Howeverthe forest
logging features described here are also implemented for call sub-
sumption and other scheduling strategies.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 3

17. reach(3,Y):− |edge(3,Y)

7. reach(2,Y):− |edge(2,Y)

complete (9a)

19. reach(1,1) :− |16. reach(1,2) :−|

23. reach(1,3) :− |22. reach(1,2) :− |11. reach(1,Y):− |reach(3,Y)3. reach(1,Y):− |reach(2,Y)

21. reach(1,Y) :− |edge(1,Y)2. reach(1,Y) :− |edge(1,Z), reach(Z,Y)

1. reach(1,Y) :− |reach(1,Y)

10. reach(1,2) :−

edge(3,1).edge(2,2).edge(1,3).edge(1,2)

reach(X,Y):− edge(X,Y).

:− table reach/2.
reach(X,Y):− edge(X,Z),reach(Z,Y).

9. reach(2,2) :− |

12. reach(3,Y) ;− |reach(3,Y)

24. reach(3.3) :− |20. reach(3,1) :− |15. reach(3,2) :− |

14. reach(3,Y) :− |reach(1,Y) 18. reach(3,1) :− |

13. reach(3,Y) :− |edge(3,Z),reach(Z,Y)

8. reach(2,2) :− |6. reach(2,Y) :− |reach(2,Y)

5. reach(2,Y) :− |edge(2,Z),reach(Z,Y)

4. reach(2,Y) :− |reach(2,Y)

25. reach(1,3) :− |

Fig. 1. A Definite Program and SLG Forest for Evaluation of theQueryreach(1,Y)

the resolution steps that have been executed to derive
answers forS.

Given an SLG treeT with root S :- |S, T is some-
times referred to asthe tree for S. In general, nodes of
an SLG tree forS have the form(S :- Delays|Goals)θ;
whereGoals is the sequence of literals remaining to
proveSθ; Delaysare used for negation and are ex-
plained below, as are the numbers associated with
each node. Children of a root node are obtained
through resolution against program clauses, modeled
in SLG by the operationPROGRAM CLAUSE RES-
OLUTION. Children of non-root nodes are obtained

through the SLGANSWER RESOLUTION operation if
the left most selected literal is tabled (e.g. children of
the nodereach(1,Y):-| reach(2,Y))4; or via PROGRAM

CLAUSE RESOLUTION if the leftmost selected literal
is not tabled (e.g. children of the nodereach(1,Y):-
| edge(1,Z),reach(Z,Y)). Nodes with emptyGoalsare
termedanswers.

4We slightly abuse terminology since it is the predicate symbol
of the atom within the literal that is tabled. We further abuse termi-
nology by sometimes using selected literal to refer to the underlying
atom on which the literal is based, when it is clear to do so.

4 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

The evaluation keeps track of each tabled subgoal
S that it encounters by creating a tree forS via the
NEW SUBGOAL operation. Later ifS is selected again,
resolution will use answers from the tree forS rather
than program clauses; if no answers are available, the
computation willsuspendand try to derive answers us-
ing some other computation path. Once additional an-
swers have been derived, the evaluation willresume
the suspended computation. Similarly, after a compu-
tation has resolved all answers available forS in a
given state, the computation path will suspend, and re-
sume after further answers are found. When it is deter-
mined that a (perhaps singleton) setS of subgoals can
produce no more answers, the tree for every subgoal in
S is marked ascomplete(cf. the tree forreach(2,Y)in
Figure 1). In an implementation, stack space and other
resources for a completed subgoalS can be reclaimed
— apart from the table forS consisting ofS and its
answers.

As seen from Example 2.1, a tabled evaluation eval-
uates mutually dependent sets of subgoals, marking
them as complete when it is no longer possible to de-
rive answers for these subgoals. In this way, a tabled
evaluation can be viewed as a series of fixed point com-
putations for sets of interdependent subgoals.

Much of the operational state of a SLG forestF can
be captured by aSubgoal Dependency Graph.

Definition 2.1 (Subgoal Dependency Graph)Let F
be a forest, and letS1:-|S1 be the root of a non-
completed tree inF . The subgoalS1 directly depends
ona subgoalS2 iff S2 is not completed inF , and there
is some nodeN in the tree forS1 such thatS2 is the
underlying subgoal of the selected literal ofN .

The Subgoal Dependency Graph ofF SDG(F) =
(V,E) of F is a directed graph in which(Si, Sj) ∈ E
iff subgoalSi directly depends on subgoalSj , andV
is the underlying set ofE. S1 “depends on”S2 in F is
there is a path fromS1 to S2 in SDG(F).

SinceSDG(F) is a directed graph, sets of sub-
goals that are mutually recursive inF can be cap-
tured asStrongly Connected Components (SCCs)of
SDG(F). In Figure 1, there is a single SCC consist-
ing of reach(1,Y)andreach(3,Y), asreach(2,Y)is com-
plete. While SCCs are critical for determining when
subgoals can be completed, if an answer for a tabled
subgoalS is derived that has the empty substitution,
every ground atomic fact that unifies withS is true in
the model of the program. Accordingly,Scan be com-
pleted before the other subgoals in its SCC through

early completion. Otherwise, a subgoalScan be com-
pleted when all possible resolution steps have been
performed forSand the other subgoals in its SCC.

Understanding the changing dependencies of an
evaluation is critical to a number of operational as-
pects. For instance, local scheduling restricts opera-
tions so that there is always a unique maximal inde-
pendent SCC – that is, an SCCS whose subgoals de-
pend on no other (non-completed) subgoals that are
not in S itself. Local evaluation is efficient for many
applications since it can be shown that it performs a
“depth-first” search through SCCs. The number asso-
ciated with each node in Figure 1 correspond to the
node’s creation under local evaluation.

2.1.1. Normal Programs
Arguably, the main difference between SLG resolu-

tion and other tabling methods is the use of DELAYING

and SIMPLIFICATION to handle default negation.

Example 2.2Figure 2 shows a program with nega-
tion, Pnorm and illustrates SLG resolution for the
queryp(c) to Pnorm. The nodes in Figure 2 have been
annotated with the order in which they were created
under local scheduling; and as mentioned in Exam-
ple 1, the symbol| in a node separates the unresolved
goals to its right from the delayed goals to its left. In
the evaluation state where nodes 1 through 10 have
been created,p(b) has been completed, andp(a) and
p(c) are in the same SCC. There are no more clauses
or answers to resolve, butp(a) is involved in a loop
through negation with itself in node 5, and nodes 2 and
10 involvep(a)andp(c) in a negative loop5.

In situations such as this, where all resolution has
been performed for nodes in an SCC, an evaluation
may have to apply aDELAYING operation to a neg-
ative literal such asnot(p(a)), in order to explore
whether other literals to its right might fail. When mul-
tiple literals can be delayed (e.g., in nodes 2 and 10),
an arbitrary literal is chosen to be delayed first. So
the evaluation delays the selected literal of node 2
to generate node 12 producing aconditional answer
– an answer with a non-emptyDelaysset. Next,not
p(a) in node 5 is delayed, so that the new selected lit-
eral for its child, node 13, isnot p(b). Since node 8 is
an answer forp(b) with emptyDelays(termed anun-
conditionalanswer), aNEGATIVE RETURN operation
causes that computation path to fail (represented by

5For expository purposes, we ignore the effects of early comple-
tion which would completep(b) immediately upon creation of node
8, obviating the need to create node 9.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 5

node 14, termed afailure node). Afterwardsnot p(c)in
node 10 is delayed to produce node 15, and aNEG-
ATIVE RETURN operation fails the final computation
path for p(a). At this stage the SCC{p(a), p(c)} is
completely evaluatedmeaning that there are no more
operations applicable for goal literals (as opposed to
delay literals). Sincep(a)is completely evaluated with
no answers, conditional or otherwise, the evaluation
determines it to befailedand aSIMPLIFICATION oper-
ation can be applied to the conditional answer of node
12, removingnot p(a)from its Delays. leading to the
unconditionalanswer in node 17 andsuccessof the
literal p(c).

2.2. The Forest Log

Forest logging allows one to run a tabled query and
produce a log from which a number of properties of
the SLG forest can be inferred. The design of the log
attempts to balance several goals: the log should be as
informative as possible, but also easy to use and should
not overly slow down computations. The log consists
of Prolog-readable facts that may be loaded and ana-
lyzed, leading to the need to support quick load times
and scalable analysis routines. The log facts described
below correspond directly to SLG operations, except
as noted. Each log fact has a counterCntr, indicat-
ing the ordinal number of the fact within the log. Since
logs can be very large, an effort is made to keep only
the most critical information in the logs so that their
memory footprint is kept to a minimum.

– A call to a tabled subgoalWhen a literalL is
selected in a nodeN , whereN is in the tree for
Scaller andL is positive (L = Scalled) then a fact

tc(Scalled, Scaller, State, Cntr)

is logged.Stateis

∗ newif Scalled is a new subgoal
∗ cmp if Scalled is not a new subgoal and has

been completed
∗ incmp if Scalled is not a new subgoal but has

notbeen completed

If L = not(Scalled), a fact

nc(Scalled, Scaller, State, Cntr)

is logged instead.

Note that ifstate = new, tc/4 andnc/4correspond to
the NEW SUBGOAL operation; otherwise they do not
directly correspond to an SLG operation, but instead
they directly log dependency information. IfScalled is
the first tabled subgoal called in an evaluation, then
Scalled is set tonull.

– ANSWERRESOLUTIONWhen an answerScalledθ
is returned to a selected positive literalScalled in
a tree forScaller, a fact

ar(θ, Scalled, Scaller, Cntr)

is logged ifA is unconditional and a fact

dar(θ, Scalled, Scaller , Cntr)

is logged ifA is conditional. A log entry is made
only if Scalled is incomplete.

Although ANSWERRESOLUTIONoperations are logged,
PROGRAM CLAUSE RESOLUTION are not; attempts
to log these operations usually slowed down computa-
tions so much that logging became unusable for all but
small computations. In XSB, resolving answers from
completed tables is nearly identical to resolving pro-
gram clauses, so for efficiency reasons these answers
are not logged either. NEGATIVE RETURN operations
are logged in a similar manner.

– NEGATIVE REGURN When a negative literalL
with underlying subgoalScalled is resolved via
NEGATIVE RETURN in a tree forScaller , a fact

nr(Scalled, Scaller, Cntr)

is logged. A log entry is madeonly if Scalled is
incomplete.

The logging of new answers does not correspond to an
SLG operation but is useful for analysis.

– New AnswerWhen a new answerN = (S:-D|)θ
is derived for subgoalS (i.e.N is not already an
answer forS) a fact

na(θ, S, Cntr)

is logged ifN is unconditional (D = ∅) and

na(θ, S,D,Cntr)

is logged ifN is conditional.

6 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

p(c):− nor p(a).
p(X):− t(X,Y,Z),not p(X),not(p(Y).

:− table p/1. t(a,b,a)
t(a,a,b)p(b)

5 p(a):− |not p(a),not p(b) 6 p(a):− | not p(b), not p(a) 10 p(a):− | not p(c), not p(b).

15 p(a):− not p(c) | not p(b).13 p(a):− not p(a) | not p(b)

9 p(b):− |t(b,Y,Z),not p(Y), not p(Z).

9a complete

8 p(b) :− |

7 p(b) :− | p(b)

16 fail

11 fail

14 fail

3 p(a) :− | p(a)

17 p(c) :− |

1 p(c) :− | p(c)

12 p(c):− not p(a) |

2 p(c):− | not p(a)

4 p(a):− |t(a,Y,Z),not p(Y), not p(Z).

Fig. 2. A Normal ProgramPnorm and SLG Forest for Evaluation of the Queryp(c)

Note thatna/3can be seen as a specialization ofna/4
that reduces the memory footprint of the loaded log. A
similar specialization is described below for simplifi-
cation.

– COMPLETION When an SCCS is completed, a
fact

cmp(S, SCCind, Cntr)

is logged for eachS ∈ S. HereSCCind is a index
that groups subgoals into their mutually recursive
components at the time they were completed. IfS
was early completed, a fact

cmp(S, ec, Cntr)

is logged at the time of early completion. When
the original SCC forS is completed, another
completion fact forS will be logged indicating its
index as just described.

– DELAYING When the selected literalnot A is
delayed in a node in a tree forS, a fact

dly(A,S,Cntr)

is logged.
– SIMPLIFICATION operations are logged as fol-

lows. Let Scallerθ:-D| be the answer to which
SIMPLIFICATION is applied.

∗ If a literal L ∈ D becomes failed, andL =
Scalledη is positive, whereScalled is a tabled
subgoal, a fact

smpl_fail(Scaller, θ, Scalled, η, Cntr)

is logged; ifL = not Scalled,

smpl_fail(Scaller, θ, Scalled, Cntr)

is logged instead.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 7

∗ If a literalL ∈ D succeeds and ifL = Scalledη
is positive, whereScalled is a tabled subgoal, a
fact

smpl_succ(Scaller, θ, Scalled, η, Cntr)

is logged; ifL = not Scalled,

smpl_succ(Scaller, θ, Scalled, Cntr)

is logged instead.

– ANSWER COMPLETION If answer completion
fails an answerSθ in a tree forS, a fact

ansc(θ, S, Cntr)

is logged.

Example 2.3The forest forreach(1,Y)in the forego-
ing example has the log file as shown in Table 3. The
actual log file facts are shown, along with the associ-
ated node they produced (if any) and an explanation6.

3. Properties of the Forest Log

Forest logs capture several important aspects of
tabled computations. We begin by showing how they
capture the subgoal dependency graph of a given forest
(Definition 2.1), and then discuss the conditions under
which a homomorphic image of an SLG forest can be
constructed from a log.

3.1. Capturing Dependency Information

Definition 3.1 LetL be a forest log withn facts, and
let 0 ≤ c ≤ n. Then thelog dependency graph
induced byc has an edge(S1, S2) for every fact
tc(S2, S1, state, c

′) or nc(S2, S1, state, c
′) in L such

thatc′ ≤ c, S1 6= null and

¬∃Sscc, c
′′.((cmp(S1,Sscc, c

′′) ∨ cmp(S2,Sscc, c
′′))

∧c′′ ≤ c).

6As implemented in XSB, forest logging also records events that
are not modeled by SLG or its extensions, including exceptions
thrown during an evaluation, and table abolishes. However,the cur-
rent version of forest logging does not logansc/3facts, which are
rarely needed.

Since the log dependency graph is parameterized by
a log’s counter, the log can be used to construct the
SDG at various stages in the evaluation. This is for-
malized by Theorem 3.1 which states that the SDG for
any forest of an evaluation can be reconstructed from
the log dependency graph. This theorem directly un-
derlies the analysis routines of Section 4; and because
it holds for any forest, the theorem also underlies anal-
ysis of partial computations – e.g. computations that
were interrupted because they were suspected to be
non-terminating (cf. the discussion of the Terminyzer
tool [11,10] in Section 6).

To be able to reconstruct the SDG of a given forest,
there needs to be a guarantee of correspondence be-
tween when facts are logged and the state (i.e., forest)
of an evaluation. A property termedeager subgoal log-
ging is sufficient for this. Eager subgoal logging states
that whenever a tabled literalL is selected in a tree
Scaller , a tc/4 or nc/4 fact is logged, regardless of
whether aNEW SUBGOAL operation is applicable. For
instance, if the underlying atom of the positive literal
L is Scalled, then

tc(Scalled, Scaller, 〈state〉, ci + 1).

is logged, with the value ofstate asnew, cmpor in-
cmp. There is thus a difference in the behavior of the
logging mechanism from the formalism of SLG, as a
NEW SUBGOAL operation is performed only ifScalled

is new to the evaluation. Eager subgoal logging is sup-
ported by XSB, and should be easy to guarantee for
any tabling engine that implements forest logging7.

Theorem 3.1Let E = F0, ...,Fn be an SLG evalua-
tion andL a log created using eager subgoal logging.
Then for anySDG(Fi), 0 ≤ i ≤ n, there is ac such
that SDG(Fi) is isomorphic to the log dependency
graph induced byc. 8.

3.2. Constructing a Homomorphism of an SLG Forest

While dependency information among subgoals is
critical to understanding an evaluation, other aspects
are important as well. For example, applications in
knowledge representation and business rule develop-
ment may require analysis of dependencies or of an-
swers that arise from application of a particularrule
r for a predicatep/n, against a subgoalS. Such in-

7Within XSB this is done within thetabletry instruction (cf. [13]).
8Proofs are provided in the appendix of this paper.

8 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

Log File Assoc. Node in Fig. 1 Explanation
tc(reach(1,_v0),null,new,0) node 1 NEW SUBGOAL

tc(reach(2,_v0),reach(1,_v0),new,1) node 4 NEW SUBGOAL

tc(reach(2,_v0),reach(2,_v0),incmp,2) node 6 repeated subgoal registered
na([2],reach(2,_v0),3) node 8 registered as answer
ar([2],reach(2,_v0),reach(2,_v0),4) node 9 ANSWERRESOLUTION

cmp(reach(2,_v0),2,5) reach(2,_v0) COMPLETION

na([2],reach(1,_v0),6) node 10 registered as an answer
tc(reach(3,_v0),reach(1,_v0),new,7) node 12 NEW SUBGOAL

tc(reach(1,_v0),reach(3,_v0),incmp,8) node 14 repeatedsubgoal registered
ar([2],reach(1,_v0),reach(3,_v0),9) node 15 ANSWER RESOLUTION

na([2],reach(3,_v0),10) node 15 registered as an answer
na([1],reach(3,_v0),11) node 17 registered as an answer
na([3],reach(1,_v0),12) node 20 registered as an answer
ar([3],reach(1,_v0),reach(3,_v0),13) node 21 ANSWERRESOLUTION

na([3],reach(3,_v0),14) node 21 registered as an answer
ar([2],reach(3,_v0),reach(1,_v0),15) node 22 ANSWERRESOLUTION

ar([1],reach(3,_v0),reach(1,_v0),16) node 23 ANSWERRESOLUTION

na([1],reach(1,_v0),17) node 23 registered as an answer
ar([3],reach(3,_v0),reach(1,_v0),18) node 24 ANSWERRESOLUTION

ar([1],reach(1,_v0),reach(3,_v0),19) node 25 ANSWERRESOLUTION

cmp(reach(1,_v0),1,20) reach(1,_v0) COMPLETION

cmp(reach(3,_v0),1,21) reach(3,_v0) COMPLETION

Fig. 3. A Log File Corresponding to the SLG Forest in Figure 1

formation can be easily obtained from the SLG treeT
for S. The children of the root ofT can be examined,
the subtree corresponding toPROGRAM CLAUSE RES-
OLUTION by r determined, and dependency and an-
swer information directly obtained. Further informa-
tion about the behavior ofr can be obtained by aggre-
gating similar information from all subgoals ofp/n in
an evaluation.

A similar, but more precise problem is to identify a
particularpositionof a literal in a given rule that has
high computational cost. Such positions can be identi-
fied from an SLG forest via nodes with a large num-
ber of children, or nodes that have an underlying se-
lected subgoal whose proof requires a large subforest
not otherwise used in the evaluation (as determined by
dependency information).

Both of these types of analysis problems require
identifying theparent-childrelations within an SLG
tree. However, such relations are not always easy
to construct from a forest log becausePROGRAM

CLAUSE RESOLUTIONoperations are not logged, due
to the expense that their logging incurs. Of course,
parent-child relations can be explicitly represented by
rewriting a program. For instance, to obtain general in-
formation about the cost of rules, each ruleH :- Body
of interest, may be transformed by foldingBody into

a new tabled predicate, producing:H :- tabledBody
andtabledBody :- Body. By logging an evaluation with
such a transformed program, rule-based dependency
information can be obtained, via Theorem 3.1. How-
ever, such rewriting leads to inefficiencies when there
is a large overlap among the answers produced by dif-
ferent rules, so rewriting is most effective when poten-
tial rules or rule positions can be pre-identified.

In order to support rule-level or positional analy-
sis without rewriting, sufficient conditions need to be
determined under which the parent-child relations for
a given tree can be constructed from the log. Since
the log does not contain information about PROGRAM

CLAUSE RESOLUTION or about ANSWER RESOLU-
TION from completed tables, we begin by characteriz-
ing a morphism that removes such information.

Definition 3.2 Let F be an SLG forest. The graph
morphismH(F) is defined as follows.

– For any noden ∈ F , H(n) is defined as:

∗ If the selected literal ofn is tabled, then
H(n) = n;

∗ otherwise,H(n) is closest parent-child ances-
tor of n whose selected literal is tabled.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 9

– If there is an edge between nodesn1 andn2 in F
there is an edge betweenH(n1) andH(n2).

Note that since the root of any SLG tree has a selected
tabled literal, any node whose selected literal is non-
tabled has an ancestor that is tabled; because the an-
cestor relation is a tree, the closest such node is unique,
so thatH is well-defined. Given these considerations,
it is evident thatH defines a homomorphism of an
SLG forestF whereF is taken as a graph with labeled
nodes.

In order to reconstruct an SLG tree inF fromH(F),
the parent of each logged factf needs to be deter-
mined and the edges themselves constructed. When
ANSWER RESOLUTION and other tabling operations
are performed, their representation of the calling sub-
goal can be used for this purpose. However in the case
of, e.g., program clauses, the program clauses must be
sufficiently distinct so that the parent of each fact can
be uniquely identified. These conditions are specified
by Definition 3.3.

Definition 3.3 LetBody andBody′ be two sequences
of literals. ThenBody andBody′ are distinguishable
if

– Body andBody′ are empty; or
– Both Body and Body′ contain at least one

tabled literal,Body = L1, ..., Ln andBody′ =
L′

1, ..., L
′

n and

1. The leftmost literalsL1 andL′

1 are tabled and
the sequencesL2, ..., Ln and L′

2, ..., L
′

n are
distinguishable.

2. The leftmost tabled literalLi of Body does
not unify with any literal inBody′, the left-
most tabled literalL′

j of Body′ does not unify
with any literal in Body, and the sequences
Li+1, ..., Ln andL′

j+1, ..., L
′

n are distinguish-
able.

Note that if all predicates in a program are tabled, all
rules will be distinguishable. When all rules for a pred-
icatep/n are pairwise distinguishable, an SLG tree for
a goal top/n can be constructed by starting at the root
node, and iteratively constructing the children of each
node, using the information from the log and the rules
themselves. This is formalized in the algorithmrecon-
struct_tree(), which can be found in the appendix of
this paper.

Theorem 3.2Let P be a program,E a finitely termi-
nating evaluation,L its log andT a completed tree

with rootSubgoal:-|Subgoal in a forest ofE , and as-
sume all rules inP whose head unifies withSubgoal
are distinguishable. Thenreconstruct_tree(S) pro-
duces a graph,EdgeSet, that is isomorphic toT .

Assuming a fixed maximal size for terms inT and
P , then the cost ofreconstruct_tree(S) is

O(size(T)log(size(T)) + size(P)).

As more predicates are tabled, the number of rules that
are distinguishable increases. Thus, Proposition 3.2
implies that forest logging can often support rule level
analysis for heavily tabled computations, such as those
that occur in Flora-2.

4. Analyzing the Log; Seeing the Forest through
the Trees

4.1. Using the Log to Analyze Dependencies

Continuing Example 1.1, we consider execution of
a particular biology query that took more space and
time than expected. This query took about 30 seconds
of CPU time and created about 600,000 tables with
about 300,000 answers total. Overall about 8.7 million
tabled subgoals were called. The query required about
300 megabytes of table space, while XSB’s combined
trail and choice point stack region had allocated over 1
gigabyte of space9. The computation was rerun with
forest logging. Forest logging has no impact on mem-
ory usage, although for this example the elapsed exe-
cution time increased form 30 to 52 seconds. The log
file had a size of 3.6 gigabytes and contained 14.1 mil-
lion facts.

After loading the log, the top-level analysis query,
forest_log_overview/0, gave the results in Figure 4.
The forest log overview first shows the total number
of completed and non-completed subgoals and SCCs,
along with a count of how many of the completed sub-
goals were early-completed (Section 2.1). Information
about non-completed subgoals is useful for analyzing
computations that do not terminate. The overview also
distinguishes between positive and negative calls to
tabled subgoals, and for each such class further distin-
guishes subgoals that were new, completed, or incom-

9All times reported in this paper were from a 64-bit machine with
3 Intel dual-core 3.47 GHz CPUs and 188 megabytes of RAM run-
ning under Fedora Linux. The default 64-bit, single-threaded SVN
repository version of XSB was used for all tests.

10 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

There were 613448 subgoals in 463446 (completed) SCCs.
93909 subgoals were early-completed.
0 subgoals were not completed in the log.
There were a total of 8638299 positive tabled subgoal calls:

582754 were calls to new subgoals
4460609 were calls to incomplete subgoals
3594936 were calls to complete subgoals

There were a total of 30694 negative tabled subgoal calls:
30694 were calls to new subgoals
0 were calls to incomplete subgoals
0 were calls to complete subgoals

There were a total of 5 negative delays
There were a total of 6 simplifications
There were a total of 304447 unconditional answers derived:
There were a total of 6 conditional answers derived:

Number of SCCs with 1 subgoals is 463437
Number of SCCs with 4 subgoals is 1
Number of SCCs with 7 subgoals is 1
Number of SCCs with 52 subgoals is 1
Number of SCCs with 110 subgoals is 5
Number of SCCs with 149398 subgoals is 1

Fig. 4. Output of Forest Log Overview for the Program and Query in Example 1.1

plete. Recall that calls to completed tabled subgoals
essentially treat the answers in the table as facts, so
that such calls are efficient. Making a call to an incom-
plete subgoals on the other hand means that the call-
ing and called subgoals are mutually recursive;10 and
execution of recursive sets of subgoals can be expen-
sive, especially in terms of space. Aggregate counts of
DELAYING and SIMPLIFICATION are also given along
with counts of both conditional and unconditional an-
swers. Negation does not appear to play a major role
in this computation, and it appears likely that the pro-
gram has a 2-valued well-founded model, although fur-
ther exploration would be needed to determine this (cf.
Section 4.3).

The overview also provides the distributions of
tabled subgoals across SCCs. While most of the SCCs
were small, one was very large with nearly 150,000
mutually dependent subgoals. Clearly the large SCC
should be examined. The first step is to obtain thein-
dex of its SCC, which is simply a way to denote it.
The queryget_scc_size(Index,Size), Size> 1000. in-
dicated that the index of the large SCC was 39. The
queryanalyze_an_scc(39)then provided the informa-
tion in Figure 511. It is evident from the count of edges

10This statement is true in the local scheduling strategy but not in
batched scheduling.

11For purposes of space the lists of predicates and edges in the
SCC have been abbreviated.

in the first line of this report that the vast majority of
the calls to incomplete tables during this computation
occurred in the SCC under investigation. Since infor-
mation on incomplete tables is kept in XSB’s choice
point stack (cf. [13]), the evaluation of SCC 39 is the
likely culprit behind the large amount of stack space
required. The subgoals in the SCC are first broken out
by their predicate name and arity, then the edges within
the SCC are broken out by the predicates of their caller
and called subgoals. With this information, a program-
mer can review the various rules forlookupSentence/3,
forwardSentence/3and other predicates to determine
whether the recursion is intended and if so, whether it
can be simplified. In the actual example, examination
of these rules showed that the use of Hilog resulted in
calling a number of unexpected predicates. Additional
guards were placed on the Hilog call, greatly reducing
the time and space needed for the computation.

4.2. Using abstraction in the analysis

Within the SCC analysis, information about a given
tabled subgoalS is abstracted: only the functor and
arity of S is presented. For SCC 39 in the running
example, abstraction is necessary, as directly report-
ing 150,000 subgoals or 4,000,000+ edges would not
provide a human with useful information. However, it
could be the case that seeing the tabled subgoals them-
selves would be useful for a smaller SCC. Even for
a large SCC, different levels of abstraction to provide

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 11

There are 149671 subgoals and 4461290 edges (average of 30.8073
edges/subgoal) within the SCC

There are 2 subgoals in the SCC for backchainForbidden / 0
There are 2 subgoals in the SCC for

www.cyc.com/transformationPredicate / 0
:
There are 18770 subgoals in the SCC for forwardSentence / 3
There are 18771 subgoals in the SCC for lookupSentence / 3

Calls from assertedSentence/3 to lookupSentence/3:32
Calls from backchainForbidden/0 to www.cyc.com/transformationPredicate/0:2
:
Calls from transformationSentence/2 to sbhlSentence/3:5479
Calls from tvaSentence/3 to removalSentence/3:7695

Fig. 5. Output of SCC Analysis for the Program and Query in Example 1.1

There are 149671 subgoals and 4461290 edges (average of 30.8073
edges per subgoal) within the SCC

There are 3 subgoals in the SCC for backchainRequired(g,g)
There are 2 subgoals in the SCC for backchainForbidden(g,g)
:
There are 29254 subgoals in the SCC for gpLookupSentence(g,g)
There are 29254 subgoals in the SCC for removalSentence(g,g)

Calls from assertedSentence(g,g) to lookupSentence(g,g):10
Calls from assertedSentence(m,g) to lookupSentence(m,g):22
:
Calls from transformationSentence(m,g) to sbhlSentence(m,g):741
Calls from tvaSentence(g,g) to removalSentence(g,g):7695

Fig. 6. Output of SCC Analysis for the Program and Query in Example 1.1

mode or type information can be useful. For this rea-

son, forest log analysis predicates support calls such

asanalyze_an_scc(39,abstract_modes(_,_))which ap-

plies the predicateabstract_modes/2in the break-

downs of subgoals and edges.abstract_modes(In,Out)

simply goes through each argument of the termIn and

unifies the corresponding argument of the termOut

with a v if the argument is a variable, ag if the ar-

gument is ground, andm (for mixed) otherwise. The

resulting output is shown in Figure 6. Examination of

this output indicates that the SCC conists of a large

number of fully ground calls to several predicates:

rewriting code to make fewer but less instantiated calls

to these predicates will often optimize a computation.

Of course,abstract_modes/2is simply an example:

term abstraction predicates are easy to write, and any

such predicate may be passed into the last argument of
analyze_an_scc/312.

4.3. Analyzing Negation

Many programs that use negation are stratified in
such a way that they do not require the use of DE-
LAYING and SIMPLIFICATION operations. However if
a program does not have a two-valued well-founded
model, a user would often like to understand why, in
addition to having the sort of dependency analysis de-
scribed in the previous section. Even in a program that
is two-valued, the heavy use of DELAYING and SIM -
PLIFICATION can indicate that some rules may need to
be optimized by having their literals reordered.

12Because Flora-2 terms are represented in a particular way to
support Hilog, abstraction was used to produce the output ofSec-
tion 4.1, while a special version ofabstract_modes/2was used
here.

12 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

As indicated previously, the forest log overview in-
cludes a total count of DELAYING and SIMPLIFICA -
TION operations, as well as a count of conditional an-
swers. In addition, SCC analysis counts negative as
well as positive edges within the SCC. Forest logging
also provides an analysis routine to examine why an-
swers have an undefined truth value. Recall from Ex-
ample 2.2 that there are two types of causes of an un-
defined truth value: either 1) a negative literal explic-
itly undergoes a DELAYING operation; or 2) a condi-
tional answer may be used to resolve a literal. It can be
shown that in local scheduling, a conditional answerA
will never be returned out of an SCC ifA is success-
ful or failed in the well-founded model of a program.
This means that if an answer forS is undefined, then it
would be caused operationally by a DELAYING opera-
tion within the SCC ofS or within some other SCC on
whichS depends. So to understand why an atom is un-
defined it can be useful understand the “root causes” of
the delay: to examine SCCs in which DELAYING op-
erations were executed and conditional answers were
derived, but where the answers could not be simplified.

Example 4.1As a use case, logging was made of ex-
ecution of a Flora-2 program that tested out a new
defeasibility theory. The forest log overview indicated
that the top-level query was undefined:

:
There were a total of 55 negative delays
There were a total of 0 simplifications
There were a total of 695 unconditional

answers derived
There were a total of 66 conditional

answers derived

The analysis predicatethree_valued_scc(List)pro-
duces a list of all SCC indices in whichDELAYING

caused the derivation of conditional answers. These
SCCs were then analyzed as discussed in the previous
sections.

5. Implementation and Performance of Logging
and Analysis Routines

A user of XSB may invoke forest logging so that the
log is created as described in Section 2. Alternately,
a user may invokepartial logging, which omits facts
produced by the ANSWER RETURN and NEW AN-
SWER operations. Partial logging can save time and
space and supports analysis of mutually recursive com-
ponents as in Sections 4.1 and 4.2. However it does not
support the negation analysis of Section 4.3.

Regardless of the level that is enabled, logging is
performed by conditional code in large virtual ma-
chine instructions such astabletry (NEW SUBGOAL),
answer_return, new_answerand check_completion
(COMPLETION) (cf. [13]). Subgoals and bindings are
then written using registers, tables, answer templates,
and lists of delayed literals. Calling subgoals (e.g.,
the second arguments oftc/4 and nc/4) are obtained
by the SLG-WAM’sroot subgoal register, which was
originally introduced for tabled negation [13]. For ef-
ficiency, logging minimizes interaction with the op-
erating system: information is written into a internal
buffers; once the buffers contain all information for a
log fact, they are written to the output stream using
a singleprintf() statement. The subgoals and an-
swers that are logged may be quite large, particularly
when non-termination may be an issue: thus all buffers
used are fully expandable.

All facts are written canonically13 so that loading a
log exploits XSB’s efficient reading and asserting of
canonical dynamic code. Thecmp/3(COMPLETION)
facts are trie-indexed (cf. [15]), while most other facts
index on multiple arguments. For instance,ar/4 (AN-
SWER RESOLUTION) facts are indexed on their sec-
ond and third arguments (calling and called subgoals),
so that indexing is used if either argument is bound. A
type of indexing in XSB called star-indexing is used,
which can index on up to the first four positions of a
given argument [15].

Analysis routines are written in standard Prolog
with one exception. Counting the number of (ab-
stracted) edges in an SCC makes use of the code frag-
ment

tc(T1,T2,incmp,_Ctr),
check_variant(cmp(T1,S,_),1),
check_variant(cmp(T2,S,_),1)

The predicatecheck_variant(Goal,DontCareNum)is
implemented only for trie-asserted code (e.g.,cmp/3).
If Goal is an atom for predicatep/n, check_variant/2
determines whether a variant of the firstN - Dont-
CareNumarguments ofGoal is in the trie for p/n.
check_variant/2is implemented at a low level, mak-
ing direct use of the data structures used by XSB to
represent tries.check_variant/2begins matching the
leftmost element of a termt with the root of the trie,
and proceeds to match each subsequent symbol with

13In Prolog, canonical syntax does not allow operator declarations
so that all function symbols are prefixed and their argumentsfully
parenthesized; and restricts numbers to base 10.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 13

a child node of the current trie position; if no match
is foundcheck_variant/2fails. As a result, only a sin-
gle path from the root need be examined in order to
determine whether a variant oft is in the trie. On the
other hand, for large SCCs in which there are numer-
ous subgoals that may unify with one another (but
aren’t variants), a Prolog search for variance may sub-
ject to a great deal of backtracking, and the time re-
quired may be proportional to the size of the trie, rather
than to the size oft as withcheck variant/2. Not sur-
prisingly, the use ofcheck variant/2is critical to a
good analysis time. For example, in the analysis of
SCC 39 for the Cyc example presented above, the use
of check_variant/2reduced the time for the forest log
overview over 100-fold.

5.1. Performance

Figure 1 shows performance results for logging and
analysis of various sets of examples:

– Cyc Series. Cyc 1is the working biology example
used throughout this paper;Cyc 3is a similar, but
larger, biology example, Both systems are based
on the translation of the Cyc inference engine into
Flora-2 and then into XSB.

– Pref-kb Series. Pref-kbcontains a small set of
tabled Prolog rules about personal preferences
that demonstrate reasoning about existential in-
formation in a manner similar to description log-
ics, and make use of default and explicit negation.
Queries to these rules were run over sets of 3.7
million and 14.8 million base facts14.

– reach N Series.This series tests logging of an
open query to the right-recursivereach/2predi-
cate in Figure 1 over fully connected graphs with
2000-12000 nodes. Since these queries measure
reachability from all nodes in the graphs the cost
of an open query scales quadratically with respect
to the number of nodes in the graph. Although
the tabling behavior of a simple transitive closure
query such asreach/2is well understood, this se-
ries is included to test the scalability of logging
and of its analysis.

5.1.1. Load Time
In part because of XSB’s library predicates for load-

ing canonical dynamic facts, XSB’s load time is ef-
ficient for the various types of logs, loading approx-

14Details of this series, including the code used to generate the
datasets, are available atsites.unife.it/ai/termination.

imately 100,000 facts per second for theCyc series,
over 150,000 facts per second for thePref-kbseries,
and nearly 200,000 facts per second for thereach Nse-
ries. After being loaded, theCycexamples took about
500 bytes per fact, thePref-kb examples about 300
bytes per fact, and thereach Nfacts about 200 bytes
per fact. Much of this space is due to the heavy index-
ing of log facts. The reason that theCyc logs take the
longest to load and the most space to represent is be-
cause the subgoals and answers generated by Flora-2
compilation are larger for theCycseries. For instance,
the Hilog transformation used by Flora-2 transformsn-
ary predicates and function symbols ton+1 ary pred-
icates and function symbols. As a slightly simplified
instance, a term such asp(a,f(b),1) is converted to
flora_apply(p,a,flora_apply(f,b),1). In addition, Flora-
2 represents module information as an argument of
each atom, requiring further space.

5.1.2. Analysis Time
Once the log has been loaded, the indexing makes

analysis fast enough to be interactive: for theCyc bi-
ology example the top level analysis took around 10
seconds, and analyzing SCC 39 took about 20 seconds
when the built-in predicate-arity abstraction was used,
and about 60 seconds for the parameterizable version
that usedabstract_modes/2. Although computing the
forest log overview requires several table scans in ad-
dition to indexed retrievals, timings for the both the
Pref-kband thereach Nseries show a sublinear growth
of analysis time with respect to log size.

5.1.3. Logging Overhead
The overhead of query evaluation was also mea-

sured, i.e., the time it took to execute a query when for-
est logging was turned on compared to no logging. For
the Cyc series, the overhead of logging increased the
time for Cyc 1by 72% and forCyc 3by 132% which
was considered acceptable by KEs. Similarly, thePref-
kbseries, which uses a heavily tabled Prolog program,
has an average logging overhead of about 225%. On
the other hand, for thereach Nseries the overhead of
forest logging on query execution was naturally high
(about 2 orders of magnitude), asreach Nperformed
very little program clause resolution. This overhead
may be considered as a worst-case for forest logging15.

15The reach Nseries was included to benchmark scalability, but
partial logging as described in the next section can greatlyreduce
the logging overhead and log space of thereach Nseries, if needed.

14 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

Program Number of facts Load time (secs) Load Space (bytes) Forest Log Overview (secs)

Cyc 1 14,009,602 140.1 7,857,572,736 22.1

Cyc 3 66,256,186 612.2 36,950,074,144 92.2

Pref-kb 3,7 2,500,193 16.5 725,972,288 2.3

Pref-kb 14,8 8,000,140 52.5 2,336,039,512 7.3

reach 2000 12,006,002 78.4 2,496,927,880 8.4

reach 4000 48,012,002 280.1 9,985,835,352 13.2

reach 8000 192,024,003 1227.7 39,940,961,128 59.7

reach 12000 432,036,000 2332.9 89,864,542,056 132.8
Table 1

Timings for Loading and Analyzing Logs

5.1.4. Partial Logging
For some large examples, partial logging (men-

tioned at the beginning of this section) can reduce the
the logging overhead, the time required to load a log,
and the space the loaded log requires. An example of
this is as follows.

Example 5.1 In analysing the log for a query toPref-
kb, it became apparent that much of the resources the
query required were due to large SCCs composed al-
most entirely of goals toequals/2, the predicate used
for equality of non-identical terms. By examining the
program, a rule forequals/2was translated from a
right-recursive form to a left-recursive form. Simpli-
fying somewhat, this meant translating a rule of the
form:

equals(X,Z):- basePredicate(X,Y),equals(Y,Z)
to

equals(X,Z):- equals(Y,Z),basePredicate(X,Y)
The left-recursive form is usually faster for tabled Pro-
log, as Prolog’s left-to-right literal selection strategy
means that the right-recursive form will generate sep-
arate tabled queries for different instantiations ofY
while the left-recursive form will not.

After performing the above translation, the query
time for the transformed series,Pref-kb-lrwas reduced
by 300-400%, and the maximum memory required for
query evaluation was reduced by about 700-800%.
However, while the translation optimized the query it-
self, when logging was turned on the left-recursive
query slowed down substantially, even compared to the
time required by the right-recursive form when using
logging.

Inspection of the log for the query to left-recursive
Pref-kbshowed that a large number of answers were
produced for the top-level query and its tabled sub-
queries. Since partial logging removes most informa-
tion about answer derivations it can substantially re-

duce the logging time and log size for queries with a
large number of answers. Table 2 shows that partial
logging reduces the size of the log for left-recursive
Pref-kb by many orders of magnitude. On the other
hand, evaluation of the query to right-recursivePref-kb
produces a large number of subgoals and relatively few
answers, so that partial logging is not more efficient
than full logging in this case16.

6. Related Work

Trace-based analysis has been widely used to ana-
lyze the behavior of concurrent systems, security vul-
nerabilities, suitability for optimization strategies and
other program properties. Within logic programming,
it has been used to analyze how constraint evaluation
affects program flow [5]; although perhaps the best
known use of trace-based analysis is the Ciao pre-
processor, which infers call and success conditions for
a variety of domains based on execution of queries
(see [8] for further details).

Based on XSB’s forest logging, a system for ana-
lyzing non-termination of Flora-2, Silk and Fidji pro-
grams, calledTerminyzerhas been developed [11,10].
In addition to the logging mechanisms described so
far, Terminyzer relies on special routines that trans-
late compiled Flora-2 code back from a Prolog syntax
to a more readable Flora-2 syntax. Displays for Ter-
minyzer are shown in the IDEs of both Silk and Fidji
and have been used for debugging by knowledge en-

16Although the left-recursive and the right-recursive formsof
Pref-kb are semantically equivalent, the left-recursive form makes
fewer queries than the right-recursive form but its queriesnot as in-
stantiated. The left-recursive form thus has a larger search space than
the right-recursive form, but it creates far fewer queries for its search
and for that reason is more efficient under XSB’s tabling implemen-
tation.

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 15

equals/2form EDB Size Log Level Log Overhead Nbr of facts Load time Load Space Forest Log Overview

Right-recursive 3.7 million full 236% 2,500,254 16.5 725,972,288 2.3

Right-recursive 3.7 million partial 236% 2,500,126 16.5 724,037,016 2.3

Left-recursive 3.7 million full 2685% 11,983,203 89.3 3,904,201,328 1.1

Left-recursive 3.7 million partial < 1% 115 < 0.1 80,202 < 0.1
Table 2

Comparing Full and Partial Logs forPref-kb: Times are in Seconds and Space is in Bytes

gineers [1]. The analysis presented in Section 4 pre-
dates the termination analysis of [11,10], and is com-
plementary to it. For instance, the analyses in Sec-
tion 4.1 considered a program and query that termi-
nated, but was inefficient due to unexpected dependen-
cies among subgoals; while the negation analysis of
Section 4.3 helped indicate why a 2-valued model was
not obtained17.

7. Discussion

The design of a forest log attempts to balance the
amount of information logged against the time it takes
to load and analyze a log. The propositions of Sec-
tion 3 show that a forest log suffices to analyze depen-
dency information and under certain conditions has the
information available to construct a homomorphic im-
age of an SLG forest. The analysis predicates of Sec-
tion 4 show how the representation is used to provide
meaningful information to users for tabled programs
with and without negation. The benchmarks of Sec-
tion 5 further demonstrate practicality of this approach
and its scalability to logs with hundreds of millions of
facts. As a result forest logging is now fully integrated
into XSB and Flora-2, and underlies tools in the com-
mercial Silk and Fidji IDEs.

More generally, trace-based analysis provides an al-
ternative to static analysis for a number of program
or query properties. Unlike static analysis, trace-based
analysis requires realistic data along with a representa-
tive set of queries. On the other hand, for programs that
include Hilog, defeasibility, equational reasoning and
other features of Flora-2, Fidji and Silk, static analy-
sis techniques may not exist, may not be implemented,
or may not be powerful enough for practical use. As a
result, trace-based analysis is a viable technique to de-
termine properties of large tabled computations. Cur-
rent work involves using forest logging to help suggest

17Publication of the material in this paper was delayed while Vul-
can Inc. which partially funded this work, considered whether to ex-
ercise its patent rights to forest logging and its analysis.

changes to tabling declarations and properties in order
to optimize programs.

AcknowledgementsThis work was partially sup-
ported by Project Halo. The author thanks Fabrizio
Riguzzi for making available the server on which the
timings were run.

References

[1] C. Andersen, B. Benyo, M. Calejo, M. Dean, P. Fodor,
B. Grosof, M. Kifer, S. Liang, and T. Swift. Understanding
Rulelog computations in Silk. InWorkshop in Logic-based
Methods in Programming Environments, 2013.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. In
International Joint Conference on Artificial Intelligence, pages
364–369, 2005.

[3] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for
higher-order logic programming.Journal of Logic Program-
ming, 15(3):187–230, 1993.

[4] W. Chen and D. S. Warren. Tabled Evaluation with Delaying
for General Logic Programs.Journal of the ACM, 43(1):20–74,
1996.

[5] M. Ducasse and L. Langevine. Automated analysis of clp(fd)
program execution traces. InInternational Conference on
Logic Programming, pages 470–471, 2002.

[6] B. Grosof and T. Swift. Radial restraint: A semanticallyclean
approach to bounded rationality for logic programs. InAmeri-
can Association for Artificial Intelligence Conference, 2013.

[7] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Specu-
lative beats conservative justification. InInternational Confer-
ence on Logic Programming, pages 150–165, 2001.

[8] M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garciá,
E. Mera, F. Morales, and G. Puebla. An overview of Ciao and
its design philosophy.Theory and Practice of Logic Program-
ming, 12(1-2):219–252, 2012.

[9] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages.Journal of the ACM,
42:741–843, July 1995.

[10] S. Liang and M. Kifer. A practical analysis of non-termination
in large logic programs.Theory and Practice of Logic Pro-
gramming, 13(4-5):705–719, 2013.

[11] S. Liang and M. Kifer. Terminyzer: An automatic non-
termination analyzer for large logic programs. InPractical Ap-
plications of Declarative Languages, 2013.

[12] E. Pontelli, T.C. Son, and O. Elkatib. Justificatinos for logic
programs under the answer set semantics.Theory and Practice
of Logic Programming, 9:1–56, 2009.

[13] K. Sagonas and T. Swift. An abstract machine for tabled ex-
ecution of fixed-order stratified logic programs.ACM Trans-

16 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

actions on Programming Languages and Systems, 20(3):586 –
635, May 1998.

[14] T. Swift. A new formulation of tabled resolution with delay. In
Progress in Art. Intel., pages 163–177, 1999.

[15] T. Swift and D.S. Warren. XSB: Extending the power of Prolog
using tabling. Theory and Practice of Logic Programming,
12(1-2):157–187, 2012.

[16] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logicpro-
gramming with defaults and argumentation theories. InInter-
national Conference on Logic Programming, pages 432–448,
2009.

[17] G. Yang, M. Kifer, and C. Zhao. FLORA-2: A rule-based
knowledge representation and inference infrastructure for the
Semantic Web. InODBASE-2003, pages 671–688, 2003.

Appendix

A. Proofs of Theorems in Section 3

Theorem 1Let E = F0, ...,Fn be an SLG evalua-
tion andL a log created using eager subgoal logging.
Then for anySDG(Fi), 0 ≤ i ≤ n, there is ac such
that SDG(Fi) is isomorphic to the log dependency
graph induced byc.
Proof: The proof is by induction oni such thatFi is a
forest inE .

For the base case,SDG(F0) is empty, which cor-
responds to the log dependency graph induced by 0.
To see this, note that the firsttc/4 or nc/4 fact sets the
calling subgoal tonull and so by Definition 3.1 is not
included in the log dependency graph induced by 0.

For the inductive case, assume the statement holds
for Fi with log counterci and we consider the cases
whereFi+1 was produced byFi.

– NEW SUBGOAL. Suppose a tree with root

Scalled:-|Scalled

was created due toS being selected in a node
Scallerθ:-Delays|Body. In this case, by the eager
subgoal logging property, atc/4 or nc/4 fact with
statenewand counterci + 1 will be logged. E.g.,
if the dependency is positive, the log fact would
be:

tc(Scalled, Scaller, new, ci + 1).

By Definition 3.1, settingc to ci+1 preserves the
induction statement forFi+1, since neither sub-
goal will be completed.

– PROGRAM CLAUSE RESOLUTION. Note that this
operation will affect the SDG only if the opera-
tion produces a child node with selected literalL
whose underlying atomA is tabled, but has not
been completed. In such a case, by the eager sub-
goal logging property, atc/4 or nc/4 fact will be
logged as theci + 1st fact. Settingc to ci + 1
preserves the property forFi+1.

– ANSWER RESOLUTION. As with PROGRAM CLAUSE

RESOLUTION, this operation will affect the SDG
only if the operation produces a child node
with selected literalL whose underlying atomA
tabled, but has not been completed. By the eager
subgoal logging property, after anar/3 or dar/4
fact is logged as thec + 1st fact, atc/4 or nc/4

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 17

fact will be logged as theci + 2nd log fact. As
in the previous case, the second argument of this
facts will beScalled. By Definition 3.1, settingc
to ci + 2 preserves the property forFi+1.

– DELAYING , andNEGATION SUCCESSare argued
in the same manner asANSWER RESOLUTION18.

– SIMPLIFICATION and ANSWER COMPLETION

both affect only conditional answers. Since an-
swers do not have a selected goal literal, they do
not contribute to the SDG, so that the induction
step holds trivially in these cases.

– NEGATION FAILURE adds a failure node, which
does not affect the SDG, so that the induction step
holds trivially in this case.

– COMPLETION. Completion of a subgoalS alters
the SDG by removing all edges incident onS. In
this case, the log contains acmp/3fact for every
early completion and every SCC completion. As
a results,S will not be contained in the log depen-
dency graph, and the induction statement holds if
c is set to the counter of the lastcmp/3fact for the
SCC.

A.1. Proof of Theorem 2

Theorem 2, which states conditions for the exis-
tence of a homomorphism between a forest log and
an SLG tree, is proved by showing the correctness of
the algorithmsreconstruct_tree (Figure 7) andcre-
ate_children() (Figure 8). Both the proof and the al-
gorithm create_children() use the definition of an
SLG resolvent (originally from [4]), which differs
from resolution in Horn rules in order to take into ac-
count delay literals in conditional answers.

Definition A.1 Let N be a nodeA:-D|L1, ..., Ln,
wheren > 0. LetAns = A′:-D′| be an answer whose
variables are disjoint fromN . N is SLG resolvable
with Ans if ∃i, 1 ≤ i ≤ n, such thatLi andA′ are
unifiable with a most general unifier (mgu)θ. The SLG
resolvent ofN andAns onLi has the form:

(A:-D|L1, ..., Li−1, Li+1, ..., Ln)θ

18The NEGATION SUCCESSoperation is shorthand for aNEGA-
TION RETURN operation where the selected literal succeeds and is
resolved away.

if D′ is empty; otherwise the resolvent has the form:

(A:-D,Li|L1, ..., Li−1, Li+1, ..., Ln)θ

Note that SLG resolution delaysLi rather than prop-
agating the answer’sDelaysD′. This is necessary, as
shown in [4], to ensure polynomial data complexity.19

Theorem 2LetP be a program,E a finitely termi-
nating evaluation,L its log andT a completed tree
with rootSubgoal:-|Subgoal in a forest ofE , and as-
sume all rules inP whose head unifies withSubgoal
are distinguishable. Thenreconstruct_tree(S) pro-
duces a graph,EdgeSet, that is isomorphic toH(T).

Assuming a fixed maximal size for terms inT and
P , then the cost ofreconstruct_tree(S) is

O(size(T)log(size(T)) + size(P)).

Proof: We first show thatEdgeSet is isomorphic to
T , and then consider its cost.

reconstruct_tree(Subgoal) (Figure 7) reconstructs
the tree forSubgoal in an iterative manner, starting
with the rootSubgoal:-|Subgoal, adding nodes to be
expanded intoNodeSet, and representing the result-
ing graph edges inEdgeSet. For the purposes of this
proof, anearest tabled descendentof a non-root node
N is nodeNchild such thatNchild is a descendent of
N such and any other descendents ofN that are ances-
tors ofNchild (i.e., nodes betweenN andNchild) were
formed by PROGRAM CLAUSE RESOLUTION. Note
that these intermediate nodes have selected literals that
are not tabled.

The proof of isomorphism is by induction on the
number of iterations in the while loop inrecon-
struct_tree().

In the base case,reconstruct_tree() expands a root
node. The children of a root node are created by res-
olution of program clauses whose heads unify with
Subgoal: the rules themselves need not be distin-
guishable, as the children can be constructed imme-
diately fromP andSubgoal. Furthermore, it is im-
mediate from Figure 7 that as all possible PROGRAM

CLAUSE RESOLUTION operations are performed, all
edges are added toEdgeSet and all children are added
to NodeSet.

In the inductive case, assume thatEdgeSet as cre-
ated in then-1 iterations of the while loop inrecon-

19If the Delayssequence were propagated directly, then theDe-
lays could effectively contain all derivations which could be expo-
nentially many in the worst case.

18 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

reconstruct_tree(Subgoal)
/* Assumes a programP and forestF */
NodeSet := {Subgoal:-|Subgoal} ; EdgeSet := ∅; /* Subgoal:-|Subgoal is a root node: */
For every clause H :-Body whose head resolves with Subgoal with mgu η

NodeSet = NodeSet ∪ (Subgoal:-|Body)η
EdgeSet = EdgeSet ∪ (Node, (Subgoal:-|Body)η)

While (NodeSet 6= ∅)
choose Node from NodeSet; NodeSet := NodeSet−Node;
create_children(Node,NodeSet,Subgoal);

Fig. 7. Top-level Algorithm to PerformH(F)

struct_tree() is isomorphic toH(T) and thatNode =
Subgoalθ:-Delay|Body is chosen fromNodeSet in
thenth iteration.

We consider the cases forNode, and show how they
are captured bycreate_children() (Figure 8).

– Body is not empty. In this case, note that since
Node is not an answer, we do not have to con-
sider either the effects ofSIMPLIFICATION or AN-
SWER COMPLETIONoperations in producing the
children ofNode.

∗ The leftmost tabled literal inBody, L, exists
and is positive (lines 4-13 ofcreate_children()
in Figure 8). Note that if there does not exist
a leftmost tabled literal inBody, by Defini-
tion 3.3 of distinguishable rules,Body must be
empty, which falls under the case whereNode
is an answer (lines 33-45).

∗ Consider first the case whereL is the left-
most literal inBody (lines 6-9 of Figure 8)
– i.e., the leftmost literal is in fact tabled. In
this case the fact that the rules forSubgoal
are distinguishable means that the ANSWER

RESOLUTION operations that create chil-
dren forNode are identifiable by calling all
facts of the form

ar(η, Subgoalcalled, Subgoalv, Ctr)

or

dar(η, Subgoalcalled, Subgoalv, Ctr)

such thatSubgoalv is a variant ofSubgoal
andSubgoalcalled is a variant ofL. In these
casescreate_children() properly creates

children of the form

(Subgoalθ:-Delay|Body′)η

or

(Subgoalθ:-Delay ∪ L|Body′)η

respectively.
∗ Next, consider the case whereL is not the

leftmost literal inBody (lines 10-13 of Fig-
ure 8), so thatcreate_children() creates the
nearest tabled descendent ofNode. In this
case the fact that the rules forSubgoal are
distinguishable means that the nearest tabled
descendent can be identified by calling all
facts of the form

ar(η, Subgoalcalled, Subgoalv, Ctr)

or

dar(η, Subgoalcalled, Subgoalv, Ctr)

such thatSubgoalv is a variant ofSubgoal
andSubgoalcalled unifies withL with mgu
ξ. In these casescreate_children() properly
creates children of the form

(Subgoalθ:-Delay|Body′)ξη

or

(Subgoalθ:-Delay ∪ L|Body′)ξη

∗ The leftmost tabled literal inBody,L = not A
exists and is negative (lines 14-32 of Figure 8).

Terrance Swift / Trace-Based Analysis of Large Tabled Computations 19

create_children()(Node,NodeSet,S);
If Node = H :-Delay|Body is a non-root node where Body is non-empty and H = Sθ

If there is a leftmost tabled literal, L, in Body
Let Body = BodyLeft, L,BodyRight

5 If L is positive
If BodyLeft is empty /* L is the leftmost literal inBody, tabled or not */

For each fact ar(η, L, S, C) or dar(η, L, S, C)
Let Child be the SLG Resolvent of Node and Lη on L
NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);

10 If L is not the leftmost literal in Body
For each fact ar(η, L′, S, C) or dar(η, L′, S, C) such that L′ unifies with L with mgu ξ

Let Child = Resξ, where Res is the SLG Resolvent of Node and Lη on L
NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);

If L is negative, let L = notA
15 If L is the leftmost literal in Body /* tabled or not */

For each fact nr(L, S,C)
Let Child = (H :-Delay|Body′)
NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);

For each fact dly(L, S,C)
20 Let Child = (H :-Delay ∪ L|Body′)

NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);
If there are no facts of the form nr(L,S,C) or dly(L,S,C)

EdgeSet := EdgeSet ∪ (Node, fail);
If L is not the leftmost literal in Body

25 For each fact nr(L′, S, C) such that L′ unifies with L with mgu ξ
Let Child = (H :-Delay|Body′)ξ
NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);

For each fact dly(L′, S, C) such that L′ unifies with L with mgu ξ
Let Child = (H :-Delay ∪ L|Body′)ξ

30 NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);
If there are no facts of the form nr(L’,S,C) or dly(L’,S,C) such that L′ unifies with A

EdgeSet := EdgeSet ∪ (Node, fail);
If N = Sθ:-Delays| /* N is an answer */

Let S be the set of facts smpl_fail(Scalled, η, S, θ, Cntr) or smpl_succ(Scalled, η, S, θ, Cntr)
35 such that Scalledη ∈ Delays

S := S ∪ smpl_fail(Scalled, S, θ, Cntr) or smpl_succ(Scalled, S, θ, Cntr)
such that not Scalledη ∈ Delays

S := S ∪ ansc(θ, S, Cntr)
while (S 6= ∅)

40 Let f ∈ S be such that the counter of f is the minimal counter for all facts in S
If f = P (Scalled, η, S, θ, Cntr) where P = smpl_succ_p or smpl_succ_n

Child = H :-Delay − Lit|
Else Child = fail
NodeSet := NodeSet ∪ Child; EdgeSet := EdgeSet ∪ (Node, Child);

45 S := S − f

Fig. 8. Algorithm to create children of non-root nodes via the forest log

20 Terrance Swift / Trace-Based Analysis of Large Tabled Computations

In this case, the non-failure children ofNode
in T are produced by NEGATIVE RETURN or
DELAYING .

∗ In the case whereL is the leftmost literal in
Body (lines 15-23 of Figure 8), the fact that
the rules forSubgoal are distinguishable
means that the NEGATION SUCCESS (i.e.,
NEGATION RETURN where the selected lit-
eral succeeds) and DELAYING operations
that create children forNode are identifiable
by calling all facts of the form

nr(Subgoalcalled, Subgoalv, Ctr)

or

dly(Subgoalcalled, Subgoalv, Ctr)

such thatSubgoalv is a variant ofSubgoal
andSubgoalcalled is a variant ofA. For each
operationcreate_children() properly cre-
ates children of the form

(Subgoalθ:-Delay|Body′)

or

(Subgoalθ:-Delay ∪ L|Body′).

So far this case parallels the case whereL is
positive and leftmost. However, in the case
that there are not suchnr/3 or dly/3 facts
in the log,create_children() adds a a child
fail corresponding to a NEGATION FAIL -
URE operation onNode in T (lines 22-23).

∗ The next case (lines 24-32 of Figure 8)L
is not the leftmost literal inBody, so that
create_children() creates the nearest tabled
descendent ofNode. In this case the fact
that the rules forSubgoal are distinguish-
able means that any nearest tabled descen-
dent can be identified by calling all facts of
the form

nr(Subgoalcalled, Subgoalv, Ctr)

or

dly(Subgoalcalled, Subgoalv, Ctr)

such thatSubgoalv is a variant ofSubgoal
andSubgoalcalled unifies withA with mgu
ξ. For each operationcreate_children()
(lines 25-30) properly creates children of the
form

(Subgoalθ:-Delay|Body′)ξ

or

(Subgoalθ:-Delay ∪ L|Body′)ξ.

In the case that there are no suchnr/3 or
dly/3 facts in the log,create_children()
(lines 31-32) adds a a childfail correspond-
ing to a NEGATION FAILURE operation on
Node in T .

– Node = Sθ:-Delay|. In other words,Body is
empty so thatNode is an answer (lines 33-45 of
Figure 8). IfDelay is empty,Node is an uncon-
ditional answer and will have no children. Oth-
erwise if Delay is non-empty its children will
be produced by SIMPLIFICATION and ANSWER

COMPLETION. Note that all of these operations
are logged, and none of these operations changes
the bindings ofSθ. Since all of the simplifica-
tion log facts andansc/3facts containS, andSθ,
and the simplified literals as their arguments, the
applicable operations can be identified (regard-
less of whether the rules are distinguishable). The
only remaining issue in producingH(T) is to
properly order the operations, which is done in
a straightforward manner bycreate_children()
(lines 39-45).

In each of the above cases, each log fact forT is
accessed in constant time as the terms inT are as-
sumed to have a fixed maximal size, while accessing
all program clauses that unify withS can be performed
with cost linear in the size ofP as terms inP are
also assumed to have a fixed maximal size. This set
of facts are sorted, further accessed and compared to
program clauses, and the sorting adds a log factor to
the complexity of the operation. When edges are pro-
duced, they need to be compared to other edges with
is constant time as a maximal term size is assumed..
As a result, the total cost of constructing the tree is
O(size(T)log(size(T)) + size(P)).

