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Abstract. Dealing with heterogeneity is one of the key challenges of Big Data analytics. The emergence of Linked Data pro-
vides better interoperability and thus further enhances potential of Big Data analytics. The use of Linked Data for analytics
raises performance challenges when considering the distribution of data sources and the performance of Linked Data stores in
comparison to other storage technologies. This paper investigates the performance of distributed SPARQL approaches to gain
an understanding of how well the distribution challenge can be addressed in such an environment. We describe the distributed
SPARQL query infrastructure that has been deployed in the Southampton University Web Observatory (SUWO), to support
analytics that requires prompt access to a large number of Linked Data datasets. This distributed SPARQL approach adopts
dynamic optimisation techniques to take advantage of runtime statistics, and exploits parallelism. The infrastructure is evaluated
on Twitter data hosted in the SUWO and popular queries on these data. It demonstrates that the infrastructure described in this
paper has a performance advantage over other existing distributed SPARQL engines.
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1. Introduction

In this era data are produced at an astonishing rate
[16]. They grow beyond the ability of typical databases
in terms of storage and analytics, and are usually re-
ferred to as the Big Data. Big Data analytics are re-
ported to have brought significant amount of profits
for many well known companies [18], among which
are Amazon1, Google2, Twitter3 etc. Meanwhile, Big
Data analytics has also drawn much attention from
academic [1].

Big Data have been characterised by a number of
V’s, including volume, velocity and variety [11]. In
the meantime, effective Big Data analytics requires
machine-understandable, interoperable data and co-
ordinated datasets [13], which are contradictory to

1www.amazon.com
2www.google.com
3twitter.com

the properties of Big Data. The contradiction makes
Linked Data [3], which was created to provide interop-
erable and machine-understandable semantics, a natu-
ral choice for improving Big Data analytics.

The representation of Linked Data is based on the
Resource Description Framework (RDF) [9], which
can be queried using the SPARQL Protocol and RDF
Query Language (SPARQL) [21]. Both RDF and
SPARQL are W3C standards and have been used to
establish a Web-scale interoperable data space [10].
Many LD can be accessed via SPARQL endpoints,
which are services conforming to SPARQL protocol
and accept SPARQL queries over HTTP connections.

Querying LD, or distributed SPARQL query pro-
cessing, confronts many challenges that exist in dis-
tributed database management systems (DBMSs). For
example, a key challenge of distributed DBMS query
processing is the latency of data transfer [19], and it
becomes more challenging in the case of distributed
SPARQL queries. In addition, advantages of dis-
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tributed DBMS, such as detailed statistics of datasets,
are likely missing in many LD datasets. Such statistics
are critical for query optimisation, and lacking them
makes efficient distributed SPARQL queries more
challenging.

The research regarding efficient LD queries has a
good number of efforts [22,4,23,26,27,17], and will at-
tract an increasing attention to provide effective sup-
port for analytics on LD in the Big Data context. In
this paper we describe a distributed SPARQL query
engine that adopts novel techniques to further im-
prove LD query efficiency, and has been deployed
in the Southampton University Web Science Obser-
vatory (SUWO) [5] at the University of Southamp-
ton. This engines exploits parallelism using a novel
algorithm named Ψ and takes advantage of runtime
statistics to optimise queries dynamically. It has been
used in some initial analytical research over Twitter
data within the SUWO. The Twitter data and relevant
queries are used to evaluate the engine described in this
paper. Its advantage in terms of efficiency is demon-
strated by comparing to representatives of existing dis-
tributed SPARQL engines.

The remaining part of this paper is organised as fol-
lows. In section 2 existing approaches of distributed
SPARQL are reviewed. After that in section 3 we pro-
vide details of the query infrastructure of the SUWO,
including the Ψ algorithm and its integration with
dynamic optimisation. To evaluate this approach we
firstly describe the Twitter data and related queries in
section 4. The evaluation settings and result are dis-
cussed in section 5. Future plans are given in section
6.

2. Related Work

Approaches for querying LD can be roughly di-
vided into two categories. One is called link-traversal-
based query execution [8], the other resembles query
processing in distribute DBMSs. Link-traversal ap-
proaches assume that URIs are resolvable and RDF
data can be retrieved by traversing URIs. A link-
traversal approach resolves URIs in given queries to
gather initial sets of RDF data. Queries are evalu-
ated against these data and intermediate results are
returned, which contain new URIs. The final results
are achieved by applying the two steps iteratively.
One representative link-traversal-based approach is
[7], whose performance is improved in [6] by applying
heuristics for query optimisation. Similar work have

been described in [14,15], which propose a non-block
iterator to improve query performance. Link-traversal
approaches do not require extra knowledge about po-
tentially relevant datasets. However the link-traverse-
query loop can be time consuming.

The other category contains approaches having a
similar behaviour of distribute DBMSs. These ap-
proaches require certain knowledge of target datasets,
such as the addresses and statistical information. With
such knowledge these DBMS-alike approaches have a
better chance to optimise queries and thus gain better
performance. In the context of SUWO, all datasets as
well as certain statistics can be known in advance, and
in this paper we focus on the DBMS-alike approaches
and refer to them as distributed SPARQL engines.

In distributed DBMSs, effective query optimisation
is closely related to the accuracy of dataset statistics.
This also applies to distributed SPARQL optimisation.
Accurate statistics allow thorough search for the opti-
mal query execution plans (QEPs). Many distributed
SPARQL engines follow this approach. For example,
DARQ [22] maintains statistics containing the fre-
quency of each predicate in an RDF dataset. The pred-
icate frequency along with some selectivity4 heuristics
[25] are used in DARQ’s cost model, which estimates
the result size of a triple pattern as the product of the
frequency of predicate and the selectivity of subject
and object. Based the estimations DARQ adopts an (it-
erative) dynamic programming (IDP) [12] algorithm
that exhaustively search for the optimal QEP.

SPLENDID [4] follows a similar strategy, however,
exploits statistics provided by the Vocabulary of In-
terlinked Datasets (VoID) [2]. Beside predicate fre-
quency, VoID further provides the number of distinct
subjects and objects associated with each predicate.
The extra statistics replace selectivity heuristics used
in DARQ, and further improve the effectiveness of
query optimisation, which is also an IDP algorithm, of
SPLENDID.

Exhaustive search algorithms, such as IDP5, usu-
ally have a high time complexity. To this end, LHD
[27] takes advantage of certain patterns of SPARQL
queries, and assists IDP with heuristics to improve
optimisation efficiency without loosing the quality of
QEP.

Despite of all the virtues of the combination of ac-
curate statistics and exhaustive search algorithms, they

4The proportion of triples that meet a certain condition [24,20]
5Strictly speaking IDP approximates exhaustive search algo-

rithms and allows trade-off between efficiency and effectiveness.
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are costly in terms of maintenance and processing
time. Furthermore, statistics that are accurate enough
to guarantee the effectiveness of exhaustive search are
unlikely to be available on a large scale. Alternative ap-
proaches, that require less statistics, or adopt less com-
plex optimisation algorithms, have been investigated
as well. FedX [23], for instance, completely utilises
heuristics (and thus requires few statistics) for query
optimisation and shows quite promising performance.
DSP [26] adopts a minimum spanning tree (MST) al-
gorithm and also has an advantage over DARQ in
terms of efficiency.

Beside query optimisation, execution of QEPs are
also crucial for efficient LD queries. It has been
demonstrated that parallelisation significantly improves
query efficiency [23]. There can be further perfor-
mance gain if the concurrency of query execution is
tuned with respect to the capacity of target endpoints
[27].

3. Linked Data Query Infrastructure of the
SUWO

In this section we describe an approach that further
exploits parallelisation, and optimises queries during
execution time using runtime statistics.

3.1. Ψ: Parallel Sub-Query Identification

SPARQL queries are composed by Basic Graph Pat-
terns (BGPs), which are a set of conjunctive triple pat-
terns. A BGP can be regarded as a connected graph
whose nodes (or vertices) are subjects and objects and
whose triple patterns are edges. During query execu-
tion, the number of bindings, or cardinality, of a con-
crete node is not changed by edges connecting to it.
Given two edges (triple patterns) sharing a concrete
node (e.g. {s p1 ?x. s p2 ?y}), they can be processed in
parallel without introducing extra network traffic com-
paring to being executed sequentially. This observation
also holds for shared variables whose cardinality does
not change during execution.

For convenience we introduce the notion of fixed
cardinality node and generalise the above observa-
tion as follows. A fixed cardinality node has the prop-
erty that its number of bindings does not change more
than a certain percentage, during the execution of all
connected edges. If disconnected sub-graphs can be

obtained by “removing” all fixed-cardinality nodes6,
these sub-graphs can be processed in parallel. For ex-
ample, in the graph shown in Fig. 1, if both node B and
C are fixed-cardinality nodes, then we have three inde-
pendent sub-graphs {AC,AB}, {BC}, {CD,BD}.
If only B has fixed cardinality, then the given graph
cannot be further broken down. A more subtle case
is that cardinality of both B and C are only changed
by AB and AC respectively, while BC and BD
have comparable cardinality at B, and BC and CD
have comparable cardinality at C. That is, B and
C are not fixed-cardinality nodes w.r.t all connect-
ing edges, but they are w.r.t some edges. In this case
{CB}, {CD,BD} can still be executed in parallel,
and we say this two components form a partial parallel
group. However, identifying all partial parallel group
can be costly and not worthy in practice.

Fig. 1. If B and C are fixed-cardinality nodes, there are three inde-
pendent components shown by three different types of dash lines.

Exploiting this idea, we propose the algorithm Ψ7

(shown in algorithm 1) that efficiently identifies inde-
pendent components. The algorithm firstly creates a
sub-graph for each edge (the loop at line 1). Then it
scans through all nodes and merges sub-graphs that
share a none-fixed-cardinality node (the loop at line 4).
Finally, all remaining sub-graphs can be processed in
parallel using the dynamic optimisation described in
the following section (section 3.2). The time complex-
ity of the first loop is linear to the number of edges |E|.
The merge operation in the second loop can be done in
constant time by maintaining a hash table that maps a
node to the set of its connected edges. Therefore, the
complexity of the second loop is linear to the number

6Since removing a node produces broken edges that have only
one node, a more precise description here would be “regarding all
edges that connect to a fixed-cardinality node as disconnected at this
node”.

7Ψ=PSI=Parallel Sub-query Identification
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of vertices |V |. The complexity of Ψ (upper bound) is
O(max(|E|, |V |)).

Algorithm 1: Ψ(V,E)
input : A connected graph (V,E)
output: Independent sub-graphs

1 foreach e ∈ E do
2 sub(e)← e;
3 end
4 foreach v ∈ V ∧ ¬ fixCard(v) do
5 merge sub-graphs containing v;
6 end

Not only concrete nodes have fixed-cardinality.
With certain knowledge of datasets, we can deter-
mine in advance whether the cardinality of a vari-
able node will remain the same. In general, we need
to know property schemas and relevant statistics. For
example, in {?person foaf:firstName ?frstN. ?person
foaf:familyName ?fmName}, since a dataset usually
contains both the first name and family name of a
person, the cardinality of ?person probably keeps un-
changed during execution. This conclusion is made
based on knowing that that both properties have the
same domain, have close numbers of distinct subjects,
and are closely relevant. Heuristics can also be used to
identify fixed-cardinality nodes. For example, a vari-
able ?v is considered as a fixed-cardinality node if it
satisfies:

∀ Ti, Tj ∈ conn(?v) :
card(Ti, ?v)

card(Tj , ?v)
< 110% (1)

or

|?v| < min
T∈conn(?v)

(card(T, ?v))/10 (2)

where conn(?v) gives all triple patterns that are con-
nected to ?v and |?v| is the number of existing bind-
ings of v. The above two equations states that if the es-
timations of the cardinality of a variable ?v w.r.t all its
connected triple patterns are close (i.e. for each triple
pattern Ti having v, card(Ti, ?v) is close to the same
number) the number of bindings of ?v probably will
not change. Also, if the number of existing bindings
of ?v is very small, it probably will not change. The
effectiveness of the above two heuristics depends on

the accuracy of cardinality estimation. We enable these
heuristics in the SUWO engine since runtime statistics
are used (described as below).

3.2. Dynamic Optimisation Using Runtime Statistics

The effectiveness of query optimisation is closely
related to the accuracy of cost estimation [19]. Many
RDF datasets provide schemas and statistics using
VoID. However, VoID can only provide limited statis-
tics. Furthermore, since data publishers are indepen-
dent, the accuracy of VoID statistics varies. To this
end, the SUWO engine exploits statistics that be-
come available during query execution, and interleaves
query optimisation and execution. Once a triple pat-
tern is executed, its number of bindings is used in the
cost estimation of remaining triple patterns. This dy-
namic optimisation approach requires QEPs to be built
in an incremental fashion. The estimated costs keep
changing during query execution, which makes ex-
haustive search algorithms, such as IDP, less appropri-
ate. Therefore, we choose a concise cost model and a
MST-based algorithm (which is a greedy algorithm) in
our approach.

Cost estimation
Since cost estimation is required at each time a triple

pattern being executed, we use a concise cost model to
save computing costs. We denote by sel(t, n) the se-
lectivity of a node (either a subject or an object) w.r.t a
triple pattern t, and by |p| the number of triples having
p as predicate in relevant datasets. sel(t, n) and |p| are
obtained from available statistics such as VoID files,
or empirical values. For more details of these values
please refer to SPLENDID [4] and LHD [27]. The car-
dinality card(t) of a triple pattern t : {s p o} is esti-
mated as:

card(t) = |s| · sel(t, s) · |p| · |o| · sel(t, o) (3)

where |s| = 1/sel(t, s) if s is a variable having no
bindings (i.e. an unbound variable does affect the car-
dinality), otherwise |s| is the number of values of s. |o|
is determined in the same manner. During query exe-
cution, |s| and |o| are updated as new bindings becom-
ing available.

The cost of a triple pattern depends on the execution
method. If it is evaluated over relevant datasets with-
out attaching existing bindings, the cost is estimated as
card(t) · c, where c is a constant. If existing bindings,



X. Wang et al. / 5

presumably from s, are attached, the cost is estimated
as |s| · c + 1 · sel(t, s) · |p| · |o| · sel(t, o) · c.

Query optimisation
The MST-based optimisation algorithm is shown in

algorithm 2. It picks the triple pattern having the lowest
cost based on existing statistics, and builds QEPs in-
crementally. Each time the algorithm is called, it main-
tains a list of remaining edges ordered by their costs
from low to high. If an edge has two possible costs,
the smaller one is chosen. Then the algorithm returns
and removes the minimum edge (i.e. an edge belongs
to the MST), which is going to be executed. It also re-
turns edges whose subjects and objects are all bound
(i.e. edges that do not belong to the MST), which are
used to prune existing bindings.

Algorithm 2: NextEdges(V,E)
input : A connected (sub-)graph (V,E)
output: next a set of edges to be executed

1 edges← sort(E);
2 next← edges[0];
3 next← next ∪ findBoundEdges(edges);
4 E ← edges− next;

The overview of query execution of the SUWO en-
gine is shown as algorithm 3. Firstly a given query
is broken into sub-graphs. For each sub-graph a
new thread is created. At each step, minimum-cost
triple patterns are selected (lines 6) and executed
(line 7 to 8). Then cost of remaining edges (exe-
cuted edges are removed at the end of algorithm
NextEdges(V,E)) are updated using runtime statis-
tics and Execute(V,E), which is described in the fol-
lowing section, is called recursively. It should be no-
ticed that a sub-graph can be further divided in future
call of Execute(V,E) w.r.t updated edge cost. Details
of how

3.3. Parallel Query Plan Execution

The SUWO engine uses a parallel QEP execution
manager that is similar to the one used by LHD. For
integrity of this paper we briefly describe this parallel
execution manager again.

For each dataset the QEP execution manager main-
tains a first-in-first-out task queue and a worker thread
pool. The size of the thread pool is determined with
respect to the capacity of an individual dataset. A QEP
produced by query optimisation contains operations to

Algorithm 3: Execute(V,E)
input : A connected (sub-)graph (V,E)

1 if E is empty then
2 return;
3 end
4 components← Ψ(V,E);
5 foreach sub-graph (V ′, E′) ∈ components

create a new thread do
6 next← NextEdges(V ′, E′);
7 evaluate next[0];
8 use remaining edges of next to prune

bindings;
9 update costs of edges in E′;

10 Execute(V ′, E′);
11 end

execute triple patterns against relevant datasets. Once
an operation is executed, it does not directly contact
remote datasets, but raises a task to each task queue of
relevant datasets. The task is executed immediately if
there is an idle worker thread, waits in the queue oth-
erwise. Once a worker thread finishes a task, it checks
the task queue. If the task queue is not empty, the
worker thread picks the task comes first. Otherwise the
thread halt to save system resource.

4. Twitter Datasets and Analytic Queries

In this section we describe the datasets and queries
that were used to evaluate the distributed SPARQL
engine described in this paper. The datasets contain
Twitter posts and are hosted in the SUWO. They
have been used by a joint analytical research program
among Tsinghua University8, KAIST9 and the Univer-
sity of Southampton10. Queries used in the analysis are
recorded, and we select those that are used the most
and have representative structures (e.g. chain or sparse
queries) for query optimisation.

4.1. Schema and Statistics of Twitter Datasets

The Twitter data are composed of 48 million triples
having 8 properties (9 including rdf:type), 44 million
distinct subjects and 21 million distinct objects. These

8www.tsinghua.edu.cn
9www.kaist.edu
10http://www.southampton.ac.uk

www.tsinghua.edu.cn
www.kaist.edu
http://www.southampton.ac.uk
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 Topic 

 Date 

 Post_content 

 Name 

sioc:contentsioc:post

dc:language

sioc:topic dc:created

sioc:has_creator

foaf:name

foaf:knows

Fig. 2. Ellipses represent resources (i.e. URIs) and rectangles repre-
sent literals. Arrows represent predicates pointing from subjects to
objects. Name spaces are omitted for simplicity.

triples are evenly distributed in 20 SPARQL endpoints
(2.4 million triples each) hosted in the SUWO.

The schema of the Twitter is shown in Fig. 2. Three
prefixes are used in the Twitter data:

PREFIX sioc:<http://rdfs.org/sioc/ns#>
PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX foaf:<http://xmlns.com/foaf/0.1/>

There are two classes in the Twitter data: Posts and
Persons. Each Post instance has 6 properties:

– An id which is the address of this post, repre-
sented by sioc:post.

– A language tag which is “en” at this moment, rep-
resented by dc:language.

– A topic tag, represented by sioc:topic.
– A date on which the post is created, represented

by dc:created.
– A creator which is an instance of Person, repre-

sented by sioc:had_creator.
– Content of this post, represent by sioc:content.

For each instance of Person there are 2 properties
(excluding sioc:creator):

– The name of this person, represented by foaf:name.
– The acquaintance of this person, represented by

foaf:knows.

4.2. Analytical Queries

Queries used in evaluation are selected based on two
criteria. One is popularity, that represents the num-
ber of usage in real analytics, and is obtained from
logs of SUWO. Many popular queries are very sim-

ple (e.g. contain only one or two triple patterns) and
can reveal little of the performance of query optimisa-
tion approaches. Therefore we have the second crite-
rion which is query structure. Typical structures such
as queries having long chains or star-shapes are consid-
ered. Furthermore we select queries having large inter-
mediate results which are most challenging for query
optimisation.

Although many different queries have been used to
query the Twitter data, most of them share similar pat-
terns. Based on the aforementioned criteria we select 4
queries in total, as shown in table 1.

Table 1
Queries for Twitter analysis

Query 1 Retrieve details of a post by id

SELECT DISTINCT *
WHERE { ?p sioc:post ?pid;

sioc:content ?content;
sioc:topic ?topic;
dc:language ?lang;
dc:created ?date;
sioc:has_creator ?person;
sioc:post "postId". }

Query 2 Retrieve posts of extended circle (i.e. friends of friends)

SELECT DISTINCT ?name ?postId
WHERE
{ <Person> foaf:knows ?personB;

foaf:name ?name.
?personB foaf:knows ?personC.

?post sioc:has_creator ?personC;
sioc:post ?postId. }

Query 3 Find the 6-degree separation of a person

SELECT DISTINCT ?personB ?personC
?personD ?personE

WHERE
{ <PersonA> foaf:knows ?personB.

?personB foaf:knows ?personC.
?personC foaf:knows ?personD.
?personD foaf:knows ?personE.
?personE foaf:knows <PersonF>. }

Query 4 Find the extended circle linked following posts

SELECT DISTINCT ?personB ?personC
WHERE
{ ?post1 sioc:has_creator <Person>.
?post1 sioc:has_creator ?personB.
?post2 sioc:has_creator ?personB.
?post2 sioc:has_creator ?personC. }
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5. Evaluation and Discussion

This sections give details of the evaluation of the
distributed SPARQL query engine used in SUWO. We
give details of the experiment environment and evalu-
ation result. We demonstrate that our approach outper-
form existing ones in terms of query response time and
network overhead.

5.1. Experiment Settings

As described in section 4.2, there are 20 SPARQL
endpoints hosted in a cluster of SUWO, each of which
has 2.4 million Twitter data. All endpoints are served
by Sesame 2.4.0 on Apache Tomcat 6 with default set-
tings.

The query engine used in SUWO is compared to
FedX and LHD which are reviewed in section 2.
As suggested by previous evaluation result [23,4,27],
these two represent the latest achievement in dis-
tributed SPARQL queries. All engines under testing
are run at a machine having Intel Xeon W3520 2.67
GHz processor and 12 GB memory.

The following metrics are examined in the evalua-
tion.

– Query per second (QPS), that measures the over-
all performance of query engines.

– Incoming network traffic (INT), that measures
the amount of data received from SPARQL end-
points. This metric is the primary indication of the
amount of intermediate results.

– Outgoing network traffic (ONT), that measures
the amount of queries sent to SPARQL endpoints.
Depending on execution techniques, this metrics
can be effected by the amount of intermediate re-
sults.

– Average transmission rate (ATR), that measures
the average bandwidth during query execution,
calculated as (ONT+INT)*QPS. This metric is ef-
fected by query execution techniques (e.g. paral-
lel execution), but also related to the amount of
intermediate results. Usually high ATR does not
show with low INT and ONT.

5.2. Evaluation Result and Analysis

The QPS, INT, ONT and ATR of all three engines
under testing are shown in Fig. 3, 4, 5 and 6 respec-
tively.

On Q1 both the SUWO engine and LHD have a QPS
that is significantly higher (roughly twice faster) than

Q1 Q2 Q3 Q4

SUWO 13.70 4.96 4.55 4.32

LHD 13.63 5.39 0.16 4.79

FedX 5.03 2.91 0.64 2.37

13.632

5.387

0.159

4.786

13.699

4.959
4.549 4.322

5.032

2.906

0.639

2.366

0

2

4

6

8

10

12

14

16

Q
P
S

SUWO-QPS

Fig. 3. QPS of SUWO query engine

Q1 Q2 Q3 Q4

SUWO 0.08 0.21 0.49 0.35

LHD 0.08 0.21 3.35 0.35

FedX 0.10 0.31 0.54 0.19
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Fig. 4. INT of SUWO query engine

FedX. In the meantime, all three engines have roughly
the same amount of INT and ONT, and the advantage
of the SUWO engine and LHD is due to higher data
transmission rate. This result is because Q1 is a start-
shaped query, and both the SUWO engine and LHD
execute it in a high parallel fashion. In this case, af-
ter executing the triple pattern ?p sioc:post “postId”,
all remain triple patterns are executed simultaneously
by the two engines. Although they have the same be-
haviour on Q1, but is due to different decisions. LHD
chooses this execution strategy because this strategy
has the shortest response time according to its cost
model. On the other hand the SUWO engine choose
this strategy by the Ψ algorithm in a way that increases
parallelisation without generating extra network traf-
fic. Currently there’s no query in SUWO’s log that can
clearly demonstrate the difference. In future this differ-
ence will be shown when more complex queries occur.
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Q1 Q2 Q3 Q4

SUWO 0.07 0.45 0.31 0.88

LHD 0.07 0.45 4.56 0.88

FedX 0.15 0.71 2.30 0.55
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Fig. 5. ONT of SUWO query engine

Q1 Q2 Q3 Q4

SUWO 2.06 3.25 3.66 5.30

LHD 2.04 3.54 1.26 5.87

FedX 1.27 2.96 1.82 1.75
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Fig. 6. ATR of SUWO query engine

Q2 mixes a short chain with a few branches. Since
each triple pattern has either a different predicate or a
different subject or object, selectivity-based cost mod-
els such as the one used in LHD are able to make
fair estimations. However, since FedX adopts heuris-
tics that counts the number and position of variables
in triple patterns, it cannot clearly distinguish every
triple pattern. The SUWO engine uses runtime statis-
tics that is able to make the most accurate estimation of
triple patterns. However, these statistics are only avail-
able after query execution starts and therefore limits
the chance of finding an optimal QEP. The QPS on
Q2 confirms the analysis above, that LHD is slightly
higher than the SUWO engine and both are much faster
than FedX.

Q3 is challenging for both LHD and FedX, since
none of their cost models can distinguish the triple pat-
terns. Meanwhile, as a result of using runtime statis-

tics, the SUWO engine can still produce a good QEP,
and gives a high QPS while the other two are slow. It is
worth noticing that LHD shows largest INT and ONT
yet a lowest NTR. This is probably due to bad QEP
which makes LHD the slowest engine on Q3.

Q4 is also a chain and all three engine have the
same order to execute the triple patterns. Therefore this
query demonstrate the efficiency of QEP execution of
each engine. The SUWO engine and LHD have the
same amount of INT and ONT, which confirms that
they use the same QEP. However, LHD does not opti-
mise queries at runtime and is slightly more efficient
than the SUWO engine. FedX produces least amount
of INT and ONT, while having the lowest NTR. This
is because FedX executes triple patterns sequentially,
and parallelisation is only applied to executed each
triple pattern. In the SUWO engine and LHD, however,
parallelisation is not only used to executed individual
triple pattern, triple patterns are executed in parallel as
well.

Overall the SUWO engine shows a fair perfor-
mance. Using dynamic optimisation can slightly limit
the chance of finding the optimal QEP, in the mean-
time, it helps avoid bad QEP when pre-computed
statistics are not sufficient. Due to the limit of evalu-
ation queries only initial evidence of the effectiveness
of the Ψ algorithm is shown. A more thorough eval-
uation will be performed when more queries become
available.

6. Conclusions and Future Plans

In this paper we explore techniques for improving
query efficiency on LD, and describe the distributed
SPARQL engine deployed in the SUWO. This engine
adopts an algorithm named Ψ to increase parallelisa-
tion without introduce extra network traffic, and opti-
mises queries at query execution time based on run-
time statistics. Optimised queries are executed by a ef-
ficient concurrent query execution that controls the de-
gree of parallelism with respect to the capacity of each
individual dataset.

The aforementioned is evaluated using real Twitter
data and queries that have been used in SUWO. By
comparing to existing distributed engines we demon-
strate the advantage of our approach in terms of query
efficiency.

The future plan focuses on three parts. The first is
to perform a further evaluation when more queries are
logged in the SUWO. With more complex queries it
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will be possible to further examine the advantages of
the Ψ algorithm.

The second is to further exploit query logs of
SUWO. SUWO logs not only frequency of each query,
but also the number of results of each triple pattern.
As more queries being logged, it is possible to ex-
tract statistics more accurate than VoID. To some point
these statistics will be accurate enough to support ex-
haustive algorithms to produce better QEPs. Therefore
either the approach described in this paper and LHD
will be used depending on the accuracy of available
statistics.

The third part is about semantic consolidation, or
vocabulary mapping. Currently to query multiple RDF
datasets users have to take care of the probability that
different vocabularies are used by different datasets. It
would require users to have an insight of every dataset
and could be a serious issue. In the future we aim to
integrate automate mapping in SUWO for popular vo-
cabularies to enable users to query datasets using less
vocabularies.
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