
Semantic Web 0 (0) 1 1
IOS Press

Sound, Complete and Minimal
UCQ-Rewriting for Existential Rules
Editor(s): Wolfgang Faber, University of Huddersfield, UK; Domenico Lembo, Sapienza University of Rome, Italy
Solicited review(s): Giorgio Orsi, University of Oxford, UK; Stijn Heymans, SRI International, Menlo Park, USA; one anonymous reviewer

Mélanie König a, Michel Leclère a,∗, Marie-Laure Mugnier a, Michaël Thomazo b,∗∗

a LIRMM, University Montpellier 2, CC 477, 161 rue Ada, 34095 Montpellier Cedex 5,
France
E-mail: {mkonig,leclere,mugnier}@lirmm.fr
b TU Dresden, Nöthnitzer Strasse 46, 01187 Dresden,
Germany
E-mail: michael.thomazo@tu-dresden.de

Abstract. We address the issue of Ontology-Based Data Access, with ontologies represented in the framework of existential
rules, also known as Datalog±. A well-known approach involves rewriting the query using ontological knowledge. We focus
here on the basic rewriting technique which consists of rewriting the initial query into a union of conjunctive queries. First, we
study a generic breadth-first rewriting algorithm, which takes any rewriting operator as a parameter, and define properties of
rewriting operators that ensure the correctness of the algorithm. Then, we focus on piece-unifiers, which provide a rewriting
operator with the desired properties. Finally, we propose an implementation of this framework and report some experiments.

Keywords: Ontology-Based Data Access, Existential Rules, Conjunctive Query Answering, Finite Unification Sets, Query
Rewriting

1. Introduction

We address the issue of Ontology-Based Data Ac-
cess, which aims at exploiting knowledge expressed
in ontologies while querying data. In this paper, on-
tologies are represented in the framework of existen-
tial rules [2,22], also known as Datalog± [4,5]. Exis-
tential rules allow one to assert the existence of new
unknown individuals, which is a key feature in an
open-world perspective, as for instance in incomplete
databases [8]. These rules are of the form body →
head, where the body and the head are conjunctions of
atoms (without functions) and variables that occur only
in the head are existentially quantified. They general-

*Corresponding author. E-mail: Michel.Leclere@lirmm.fr.
**This work was done when M. Thomazo was a PhD student at

University Montpellier 2.

ize lightweight description logics (DLs), which form
the core of the tractable profiles of OWL2 [27].

The general query answering problem can be ex-
pressed as follows: given a knowledge base (KB) K
composed of a set of facts —or data— and an ontology
(a set of existential rules here), and a query Q, com-
pute the set of answers to Q in K. In this paper, we
consider Boolean conjunctive queries (Boolean CQs
or BCQs). Note however that all our results are easily
extended to non-Boolean conjunctive queries as well
as to unions of conjunctive queries. The fundamental
problem, called BCQ entailment hereafter, can be re-
cast as follows: given a KB K, composed of facts and
existential rules, and a Boolean conjunctive query Q,
is Q entailed by K?

BCQ entailment is undecidable for general existen-
tial rules (e.g., [3,10], on the implication problem for
tuple-generating dependencies, which have the same

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

form as existential rules). There has been an intense
research effort aimed at finding decidable subsets of
rules that provide good tradeoffs between expressiv-
ity and complexity of query answering (see e.g., [25]
for a survey on decidable classes of rules). These de-
cidable rule fragments overcome some of the limita-
tions of DLs. In particular, they have unrestricted pred-
icate arity, while DLs consider unary and binary pred-
icates only, which allows one for a natural coupling
with database schemas, in which relations may have
any arity; moreover, adding information, such as data
provenance, is made easier by the unrestricted predi-
cate arity, since this information can be added as a new
predicate argument.

There are two main approaches to solve BCQ entail-
ment, which are linked to the classical paradigms for
processing rules, namely forward and backward chain-
ing, as illustrated by the next example.

Example 1 Let us consider data on movies, with
unary relations movie and actor, and a binary rela-
tion play (intuitively, play(x, y) means that “x plays
a role in y”). Let Q be a query asking if a given per-
son, whose identifier isB, plays a role somewhere, i.e.,
Q = ∃y play(B, y). Let R be an existential rule ex-
pressing that “every actor plays a role in some movie”,
i.e., ∀x(actor(x)→ ∃y(play(x, y)∧movie(y))). As-
sume that the data contain actor(B). If Q is asked on
these data, the answer is no. However, the rule allows
to infer that actor B plays in a movie, thus the answer
to Q should be yes. Rule R can be used in a forward
manner, i.e., it can be applied to the data: then, the
knowledge ∃y0(play(B, y0) ∧ movie(y0)) is added,
where y0 is a new variable. QueryQ can be mapped to
the enriched data, which allows to answer positively.
Now,R can also be used in a backward manner, i.e., to
rewrite Q, which yields the new query Q′ = actor(B).
This query can be mapped to the (initial) data, which
provides the positive answer.

Both approaches can be seen as ways of reducing the
problem to a classical database query answering prob-
lem by eliminating the rules, see Figure 1. The first ap-
proach consists in applying the rules to the data, thus
materializing entailed facts into the data. Then, Q is
entailed by K if and only if it can be mapped to this
materialized database. This approach is applicable ei-
ther when the forward chaining procedure stops “nat-
urally” (see [16] for a survey on these cases), or when
it stops by taking some parameters into consideration,
typically the size of the query [4,23]. The second ap-

Fig. 1. Forward / Backward Chaining.

proach consists in using the rules to rewrite the query
into a first-order query (typically a union of conjunc-
tive queries [9,28,14,34,29]) or a non-recursive Data-
log program [30,26,15]. Then, Q is entailed by K if
and only if the rewritten query is entailed by the initial
database.

Materialization has the advantage of enabling effi-
cient query answering but may be not appropriate for
data size, data access rights or data maintenance rea-
sons. Query rewriting has the advantage of avoiding
changes in the data, however its drawback is that the
rewritten query may be large, even exponential in the
size of initial query, hence less efficiently processed,
at least with current database techniques. Finally, tech-
niques combining both approaches have been devel-
oped, in particular so-called combined approach [24,
21] for lightweight description logics, as well as a sim-
ilar algorithm for a large class of existential rules [33].

In this paper, we focus on rewriting techniques, and
more specifically on rewriting the initial conjunctive
query Q into a union of conjunctive queries, that we
will see as a set of conjunctive queries. This set is
called a rewriting set of Q and each element of a
rewriting set is called a rewriting. While most previ-
ously cited work focuses on specific rule sublanguages
(mostly DL-Lite, linear and sticky existential rules),
we consider general existential rules. This means that
our algorithm does not make any syntactic assump-
tion on the input set of rules, but will terminate only
in some cases (so-called finite unification sets of rules,
see hereafter).

The goal is to compute a rewriting set both sound (if
one of its elements maps to the initial database, then
K entails Q) and complete (if K entails Q then there
is an element that maps to the initial database). Mini-
mality may also be a desirable property. In particular,
let us consider the generalization relation (a preorder)
induced on Boolean conjunctive queries by homomor-
phism: we say that Q1 is more general than Q2 if there
is a homomorphism from Q1 to Q2; it is well-known
that the existence of such a homomorphism is equiva-

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 3

lent to the following property: for any set of facts F ,
if the answer to Q2 in F is positive, then so is the an-
swer to Q1. We point out that any sound and complete
rewriting set of a queryQ remains sound and complete
when it is restricted to its most general elements. Since
BCQ entailment is undecidable, there is no guarantee
that such a finite set exists for a given query and gen-
eral existential rules. A set of existential rules ensur-
ing that a finite sound and complete set of most gen-
eral rewritings exists for any query is called a finite
unification set (fus) [2]. The fus property is not recog-
nizable [2], but several easily recognizable fus classes
have been exhibited in the literature: atomic-body rules
[1], also known as linear TGDs [5], multi-linear TGDs
[6], sticky(-join) rules [7,14], weakly-recursive rules
[13] and sets of rules with an acyclic graph of rule
dependencies [1]. By definition, the fus property is a
specific case of first-order rewritability, which means
that the set of rules allows to rewrite any CQ into a
(sound and complete) first-order query; it is suspected
that both properties are actually equivalent, however,
to the best of our knowledge, no proof of this result has
been published.

Paper contributions. We start from a generic algo-
rithm which, given a BCQ and a set of existential
rules, computes a rewriting set. This task can be re-
cast in terms of exploring a potentially infinite space
of queries, composed of the initial conjunctive query
and its (sound) rewritings, structured by the general-
ization preorder. The algorithm explores this space in
a breadth-first way, with the aim of computing a com-
plete rewriting set. It maintains a rewriting set Q and
iteratively performs the following tasks: (1) generate
all the one-step rewritings from unexplored queries in
Q; (2) add these rewritings to Q and update Q in or-
der to keep only incomparable most general elements.
A rewriting operator is a function that, given a query
and a set of rules, returns the one-step rewritings of
this query. Note that it may be the case that the set of
sound rewritings of the query is infinite while the set
of its most general sound rewritings is finite. It follows
that a simple breadth-first exploration of the rewriting
space is not sufficient to ensure finiteness of the pro-
cess, even for fus rules; one also has to maintain a set of
the most general rewritings. This algorithm is generic
in the sense that it is not restricted to a particular kind
of existential rules nor to a specific rewriting operator
(without guarantee of termination though).

This algorithmic scheme established, we then asked
ourselves the following questions:

1. Assuming that the algorithm outputs a finite
sound and complete set rewritings, composed of
pairwise incomparable queries, is this set of min-
imal cardinality, in the sense that no sound and
complete rewriting set produced by any other al-
gorithm can be strictly smaller?

2. At each step of the algorithm, some queries are
discarded, because they are more specific than
other rewritings, even if they have not been ex-
plored yet. The question is whether this dynamic
pruning of the search space keeps the complete-
ness of the output. More generally, which proper-
ties have to be fulfilled by the operator to ensure
the correctness of the algorithm and its termina-
tion for fus rules?

3. Finally, design a rewriting operator that fulfills
the desired properties and leads to the effective
computation of a sound and complete rewriting
set.

With respect to the first question, we show that all
sound and complete sets of rewritings, restricted to
their most general elements, have the same cardinal-
ity, which is minimal with respect to the complete-
ness property. Moreover, if we delete redundant atoms
from the obtained CQs (which can be performed by a
polynomial number of homomorphism tests for each
query)1, then we obtain a unique minimal sound and
complete set of CQs of minimal size; uniqueness is of
course up to a bijective variable renaming.

To answer the second question, we define several
properties that a rewriting operator has to satisfy and
show that these properties actually ensure the correct-
ness of the algorithm and its termination for fus rules.
In particular, we point out that the fact that a query
may be removed from the rewriting set before being
explored may prevent the completeness of the out-
put, even if the rewriting operator is theoretically able
to generate a complete output. The prunability of the
rewriting operator ensures that this dynamic pruning
can be safely performed. Briefly, this property holds if,
for all queries Q1 and Q2, when Q1 is more general
than Q2 then any one-step rewriting of Q2 is less gen-
eral than Q1 itself or one of the one-step rewritings of
Q1; intuitively, this allows to discard the rewriting Q2

even when its one-step rewritings have not been gen-
erated yet. Note that this kind of properties ties in with

1See e.g. [11], Section 2.6, on basic conceptual graphs. The al-
gorithm can even by made linear, noticing that an atom needs to be
considered only once.

4 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

an issue raised in [18] about the gap between theoret-
ical completeness of some methods and the effective
completeness of their implementation, this gap being
mainly due to algorithmic optimizations (here the dy-
namic pruning).

Concerning the third question, we proceed in sev-
eral steps. First, we rely on a specific unifier, called a
piece-unifier, that was designed for backward chain-
ing with conceptual graph rules (whose logical trans-
lation is exactly existential rules [31]). As in classical
backward chaining, the rewriting process is based on a
unification operation between the current query and a
rule head. However, existential variables in rule heads
induce a structure that has to be considered to keep
soundness. Thus, instead of unifying a single atom of
the query at once, our unifier processes a subset of
atoms from the query. A piece is a minimal subset of
atoms from the query that have to be erased together,
hence the name piece-unifier. We present below a very
simple example of piece unification (in particular, the
head of the existential rule is restricted to a single
atom).

Example 2 Let R = ∀x (q(x) → ∃y p(x, y)) and the
BCQ Q = ∃u∃v∃w(p(u, v) ∧ p(w, v) ∧ r(u,w)). As-
sume we want to unify the atom p(u, v) from Q with
p(x, y), for instance by a substitution {(u, x), (v, y)}.2
Since v is unified with the existential variable y,
all other atoms from Q containing v must also be
considered: indeed, simply rewriting Q into Q1 =
∃w∃x∃y(q(x)∧p(w, y)∧r(x,w)) would be unsound:
intuitively, the fact that the atoms p(u, v) and p(w, v)
in Q share a variable would be lost in atoms q(x)
and p(w, y); for instance F = q(a) ∧ p(b, c) ∧ r(a, b)
would answer Q1 despite Q being not entailed by F
and R. Thus, p(u, v) and p(w, v) have to be both uni-
fied with the head of R, for instance by means of the
following substitution: µ = {(u, x), (v, y), (w, x)}.
{p(u, v), p(w, v)} is called a piece. The corresponding
rewriting of Q is ∃x(q(x) ∧ r(x, x)).

Piece-unifiers lead to a logically sound and com-
plete rewriting method. As far as we know, it is the
only method accepting any kind of existential rules,
while staying in this fragment, i.e., without Skolemiza-
tion of rule heads to replace existential variables with
Skolem functions.

2A substitution is given as a set of pairs, where a pair (x, e) means
that x is substituted by e.

We show that the piece-based rewriting operator ful-
fills the desired properties ensuring the correctness of
the generic algorithm, and its termination in the case
of fus rules.

The next question was how to optimize the rewriting
step. Indeed, the problem of deciding whether there is
a piece-unifier between a query and a rule head is NP-
complete and the number of piece-unifiers can be ex-
ponential in the size of the query. To cope with these
sources of complexity, we consider so-called single-
piece unifiers, which unify a single-piece of the query
at once (like µ in Example 2). When, additionally, the
head of a ruleR is restricted to an atom, which is a fre-
quent case, each atom in a query Q belongs to at most
one piece with respect to R; then, the number of (most
general) single-piece unifiers of Q with the head of R
is bounded by the size of Q.

We show that the single-piece based rewriting oper-
ator is able to generate a sound and complete rewrit-
ing set. However, as pointed out in several examples,
it is not prunable. Hence, single-piece unifiers have
to be combined to recover prunability. We thus define
the aggregation of single-piece unifiers and show that
the corresponding rewriting operator fulfills all desired
properties and generates fewer queries than the piece-
based rewriting operator. Detailed algorithms are given
and first experiments are reported.

Paper organization. Section 2 recalls some basic no-
tions about the existential rule framework. Section 3
defines sound, complete and minimal sets of rewrit-
ings. In Section 4, the generic breadth-first algorithm
is introduced and general properties of rewriting op-
erators are studied. Section 5 presents the piece-based
rewriting operator. In Section 6, we focus on exploiting
single-piece unifiers and introduce the rewriting opera-
tor based on their aggregation. Finally, Section 7 is de-
voted to detailed algorithms and experiments, as well
as to further work.

This is an extended version of papers by the same
authors published at RR 2012 and RR 2013 (Interna-
tional Conference on Web Reasoning and Rule Sys-
tems).

2. Preliminaries

An atom is of the form p(t1, . . . , tk) where p is a
predicate with arity k, and the ti are terms, i.e., vari-
ables or constants. Given an atom or a set of atoms
A, vars(A), consts(A) and terms(A) denote its sets of

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 5

variables, constants and terms, respectively. In all the
examples in this paper, the terms are variables (denoted
by x, y, z, etc.). |= denotes the classical logical conse-
quence. Two formulas f1 and f2 are said to be equiva-
lent if f1 |= f2 and f2 |= f1.

A fact is an existentially closed conjunction of
atoms.3 A conjunctive query (CQ) is an existentially
quantified conjunction of atoms. When it is a closed
formula, it is called a Boolean CQ (BCQ). Hence, facts
and BCQs have the same logical form. In the follow-
ing, we will see them as sets of atoms. A union of con-
junctive queries (UCQ) is a disjunction of CQs, which
will see as a set of CQs.

Given sets of atoms A and B, a homomorphism h
from A to B is a substitution of vars(A) by terms(B)
such that h(A) ⊆ B. We say that A is mapped to B
by h. If there is a homomorphism from A to B, we
say that A is more general than B, which is denoted
A ≥ B.

Given a fact F and a BCQQ, the answer toQ in F is
positive if F |= Q. It is well-known that F |= Q if and
only if there is a homomorphism fromQ to F . IfQ is a
non-Boolean CQ, let x1 . . . xq be the free variables in
Q. Then, a tuple of constants (a1 . . . aq) is an answer
toQ in F if there is a homomorphism fromQ to F that
maps xi to ai for each i. In other words, (a1 . . . aq) is
an answer to Q in F if and only if the answer to the
BCQ obtained from Q by substituting each xi with ai
is positive.

In this paper, we consider only Boolean queries for
simplicity reasons. This is not a restriction, since our
mechanisms can actually process a CQ with free vari-
ables x1 . . . xq by translating it into a BCQ with an
added atom ans(x1 . . . xq), where ans is a special
predicate not occurring in the knowledge base. Since
ans can never be erased by a rewriting step, the xi can
only be substituted and will not “disappear”. We can
thus compute the rewriting set of a CQ as a Boolean
CQ with a special ans atom, then transform the rewrit-
ings into non-Boolean CQs by removing the ans atom
and consider its arguments as free variables. Note that
our the generic algorithm can accept as input a union
of conjunctive queries as well, since it works exactly
in the same way if it takes as input a set of CQs instead
of a single CQ.

Definition 1 (Existential rule) An existential rule (or
simply a rule) is a formula R = ∀~x∀~y(B[~x, ~y] →

3We generalize the classical notion of a fact in order to take exis-
tential variables into account.

∃~zH[~y, ~z]), where ~x, ~y and ~z are tuple of variables,
B = body(R) and H = head(R) are conjunc-
tions of atoms, resp. called the body and the head
of R. The frontier of R, denoted by fr(R), is the set
vars(B)∩vars(H) = ~y. The set of existential variables
in R is the set vars(H) \ fr(R) = ~z.

In the following, we omit quantifiers in rules and
queries, as there is no ambiguity. For instance, the rule
R = ∀x (q(x)→ ∃y p(x, y)) from Example 2 will be
written q(x)→ p(x, y).

A knowledge base (KB)K = (F,R) is composed of
a fact F and a finite set of existential rulesR. The BCQ
entailment problem takes as input a KB K = (F,R)
and a BCQ Q, and asks if F,R |= Q holds.

3. Desirable Properties of Rewriting Sets

Given a query Q and a set of existential rules R,
rewriting techniques compute a set of queriesQ, which
we call a rewriting set hereafter. It is generally desired
that such a set satisfies at least three properties: sound-
ness, completeness and minimality.

Definition 2 (Sound and Complete set) Let R be a
set of existential rules and Q be a BCQ. LetQ be a set
of BCQs. Q is said to be sound w.r.t. Q and R if for
all facts F , for all Q′ ∈ Q, if Q′ can be mapped to F
then F,R |= Q. Reciprocally,Q is said to be complete
w.r.t.Q andR if for all facts F , if F,R |= Q then there
is Q′ ∈ Q such that Q′ can be mapped to F .

We mentioned in the introduction that only the most
general elements of a rewriting set need to be con-
sidered. Indeed, let Q1 and Q2 be two elements of a
rewriting set such that Q1 ≥ Q2. Then, for any fact
F , the set of answers to Q2 in F is included in the set
of answers to Q1 in F . Hence, removing Q2 will not
undermine completeness (and it will not undermine
soundness either). The output of a rewriting algorithm
should thus be a minimal set of incomparable queries
that “covers” the set of all the sound rewritings of the
initial query.

Definition 3 (Covering relation) Let Q1 and Q2 be
two sets of BCQs. Q1 covers Q2, which is denoted
Q1 ≥ Q2, if for all Q2 ∈ Q2 there is Q1 ∈ Q1 with
Q1 ≥ Q2.

Note that covering can also be defined in terms of
classical database query containment, i.e., Q1 covers
Q2 if and only if the UCQ Q2 is included in the UCQ
Q1.

6 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Fig. 2. Cover (Example 3).

Definition 4 (Minimal set of BCQs, Cover) LetQ be
a set of BCQs. Q is said to be minimal if there is no
Q ∈ Q such that (Q \ {Q}) ≥ Q. A cover of Q is a
minimal set Qc ⊆ Q such that Qc ≥ Q.

Since a cover is a minimal set, its elements are pair-
wise incomparable.

Example 3 Let Q = {Q1, . . . , Q6} and consider the
following preorder over Q: Q1 ≥ Q2, Q4, Q5, Q6 ;
Q2 ≥ Q1, Q4, Q5, Q6 ; Q3 ≥ Q4 ; Q5 ≥ Q6 (note
that Q1 and Q2 are equivalent). There are two covers
of Q, namely {Q1, Q3} and {Q2, Q3}. See Figure 2.

A set of (sound) rewritings may have a finite cover
even when it is infinite, as illustrated by Example 4.

Example 4 Let Q = t(u), R1 = t(x) ∧ p(x, y) →
r(y), R2 = r(x) ∧ p(x, y) → t(y). R1 and R2 have
a head restricted to a single atom and no existential
variable, hence the classical most general unifier can
be used, which unifies the first atom in the query with
the atom of a rule head. The rewriting set of Q with
{R1, R2} is infinite. The first generated queries are the
following (note that rule variables are renamed when
needed):
Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1

with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from
Q2 and R2 with {(x0, y1)}
Q4 = t(x2)∧p(x2, y2)∧p(y2, y1)∧p(y1, y0)∧p(y0, y)

// from Q3 and R1

and so on . . .
However, the set of the most general rewritings is
{Q0, Q1} since any other query that can be obtained
is more specific than Q0 or Q1.

It can be easily checked that all covers of a given
set have the same cardinality. We now prove that this
property can be extended to the covers of all sound and
complete finite rewriting sets of Q, irrespective of the
rewriting technique used to compute these sets.

Theorem 1 Let R be a set of rules and Q be a BCQ.
Any finite cover of a sound and complete rewriting set
ofQwithR is of minimal cardinality (among all sound
and complete rewriting sets of Q).

Proof: LetQ1 andQ2 be two arbitrary sound and com-
plete rewriting sets of Q withR. Let Qc

1 (resp. Qc
2) be

one of the finite covers ofQ1 (resp.Q2).Qc
1 (resp.Qc

2)
is also sound and complete, as well as smaller than or
equal to Q1 (resp. Q2). We show that they have the
same cardinality. Let Q1 ∈ Qc

1. There exists Q2 ∈ Qc
2

such that Q2 ≥ Q1. If not, Q would be entailed by
F = Q1 and R since Qc

1 is a sound rewriting set
of Q (and Q1 maps to itself), but no elements of Qc

2

would map toF : thus,Qc
2 would not be complete. Sim-

ilarly, there exists Q′1 ∈ Qc
1 such that Q′1 ≥ Q2. Then

Q′1 ≥ Q1, which implies that Q′1 = Q1 by assumption
on Qc

1. For all Q1 ∈ Qc
1, there exists Q2 ∈ Qc

2 such
that Q2 ≥ Q1 and Q1 ≥ Q2. Such a Q2 is unique: in-
deed, two such elements would be comparable for ≥,
which is not possible by construction ofQc

2. The func-
tion associating Q2 with Q1 is thus a bijection from
Qc

1 to Qc
2, which shows that these two sets have the

same cardinality. �
Furthermore, the proof of the preceding theorem

shows that, given any two sound and complete rewrit-
ing sets of Q, there is a bijection from any cover of
the first set to any cover of the second set such that
two elements in relation by the bijection are equiva-
lent. However, these elements are not necessarily iso-
morphic (i.e., equal up to a variable renaming) because
they may contain redundancies. Consider the preorder
induced by homomorphism on the set of all BCQs de-
finable on some vocabulary. It is well-known that this
preorder is such that any of its equivalence classes pos-
sesses a unique element of minimal size (up to isomor-
phism), called its core (notion introduced for graphs4,
but easily transferable to queries).

4See for instance [17], where the notion of a core is traced back
to the late sixties.

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 7

Every query can be transformed into its equivalent
core by removing redundant atoms. We recall that a
set of existential rules ensuring that a finite sound and
complete set of most general rewritings exists for any
query is called a finite unification set (fus).5

By the remark above and Theorem 1, we obtain:

Corollary 2 LetR be a fus and Q be a BCQ. There is
a unique finite sound and complete rewriting set of Q
withR that has both minimal cardinality and elements
of minimal size.

4. A Generic Rewriting Algorithm

We will now present a generic rewriting algorithm
that takes as input a set of existential rules and a query,
and as parameter a rewriting operator. The studied
question is the following: which properties should this
operator satisfy in order that the algorithm outputs a
sound, complete, finite and minimal set?

4.1. Rewriting Algorithm

Definition 5 (Rewriting operator) A rewriting oper-
ator rew is a function which takes as input a BCQ Q
and a set of rulesR and outputs a set of BCQs denoted
by rew(Q,R).

Since the elements of rew(Q,R) are BCQs, it is
possible to apply further steps of rewriting to them.
This naturally leads to the notions of k-rewriting and
k-saturation.

Definition 6 (k-rewriting) Let Q be a conjunctive
query, R be a set of rules and rew be a rewriting op-
erator. A 1-rewriting of Q (w.r.t. rew and R) is an el-
ement of rew(Q,R). A k-rewriting of Q, for k > 1,
(w.r.t. rew and R) is a 1-rewriting of a (k − 1)-
rewriting of Q.

The term k-saturation is convenient to name the set
of queries that can be obtained in at most k rewriting
steps.

5The notion of a finite unification set was first introduced in [1]
and defined with respect to piece-unifiers. However, since piece-
unifiers provide a sound and complete rewriting operator (see Sec-
tion 5) and all the covers of a given set have the same cardinality, the
two definitions are equivalent.

Algorithm 1: A GENERIC REWRITING ALGO-
RITHM
Data: A set of rulesR, a BCQ Q
Access: A rewriting operator rew , a covering

function cover
Result: A cover of the set of all Q’s rewritings
QF ← {Q} ; // resulting set
QE ← {Q} ; // queries to explore
while QE 6= ∅ do

// update cover
QC ← cover(QF ∪ rew(QE ,R)) ;
// select unexplored queries
QE ← QC \ QF ;
// update resulting set
QF ← QC ;

return QF

Definition 7 (k-saturation) Let Q be a BCQ, R be a
set of rules and rew be a rewriting operator. We denote
the set of k-rewritings of Q by rewk(Q,R). We call
k-saturation, and denote by Wk(Q,R), the set of i-
rewritings of Q for all i ≤ k. We denote W∞(Q,R) =⋃

k∈NWk(Q,R).

In the following, we extend the notations rew,
rewk and Wk to a set of BCQs Q instead of a
single BCQ Q: rew(Q,R) =

⋃
Q∈Q rew(Q,R),

rewk(Q,R) =
⋃

Q∈Q rewk(Q,R) andWk(Q,R) =⋃
i≤k rewi(Q,R).
Algorithm 1 performs a breadth-first exploration of

the rewriting space of a given query.6 At each step,
only the most general elements are kept thanks to a
covering function, denoted by cover , that computes
a cover of a given set.

For termination reasons (see the proof of Prop-
erty 6), already explored queries are preferred to non-
explored queries in the computation of the cover. More
precisely, if both Qc ∪ {q} and Qc ∪ {q′} are covers
ofQF ∪rew(QE ,R), with q and q′ homomorphically
equivalent and {q} belongs to QF , then cover does
not output Qc ∪ {q′}. If rew fulfills some good prop-
erties (specified below), then, after the ith iteration of
the while loop, the i-saturation of Q (with respect to
R and rew) is covered by QF , while QE contains the
queries that remain to be explored.

In the remainder of this section, we study the condi-
tions that a rewriting operator must meet in order that:

6Note that a depth-first exploration would not ensure termination
for fus rules.

8 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

(i) the algorithm halts and outputs a cover of all the
rewritings that can be obtained with this rewriting op-
erator, provided that such a finite cover exists; (ii) the
output cover is sound and complete.

4.2. Correctness and Termination of the Algorithm

We now define a property on the rewriting operator,
called prunability. This property is sufficient to ensure
that Algorithm 1 outputs a cover of W∞(Q,R). Intu-
itively, if an operator is prunable then, for every Q1

more general than Q2, the one-step rewritings of Q2

are covered by the one-step rewritings of Q1 or by Q1

itself. It follows that all the rewritings of Q2 are cov-
ered by Q1 and its rewritings. Hence, Q2 can be safely
removed from the current rewriting set.

Definition 8 (Prunable) A rewriting operator rew
is said to be prunable if for any set of rules R
and for all BCQs Q1, Q2, Q

′
2 such that Q1 ≥ Q2,

Q′2 ∈ rew(Q2,R) and Q1 6≥ Q′2, there is Q′1 ∈
rew(Q1,R) such that Q′1 ≥ Q′2.

The following lemma states that this can be gener-
alized to k-rewritings for any k.

Lemma 3 Let rew be a prunable rewriting operator,
and let Q1 and Q2 be two sets of BCQs. If Q1 ≥ Q2,
then W∞(Q1,R) ≥W∞(Q2,R).

Proof: We prove by induction on i that Wi(Q1,R) ≥
rewi(Q2,R).
For i = 0, W0(Q1,R) = Q1 ≥ Q2 = rew0(Q2,R).
For i > 0, for any Q2 ∈ rewi(Q2,R), there is
Q′2 ∈ rewi−1(Q2,R) such that Q2 ∈ rew(Q′2,R).
By induction hypothesis, there is Q′1 ∈ Wi−1(Q1,R)
such that Q′1 ≥ Q′2. rew is prunable, thus either
Q′1 ≥ Q2 or there is Q1 ∈ rew(Q′1,R) such that
Q1 ≥ Q2. Since Wi−1(Q1,R) and rew(Q′1,R) are
both included in Wi(Q1,R), we can conclude. �

This lemma would not be sufficient to prove the cor-
rectness of Algorithm 1, as will be discussed in Sec-
tion 6.1. We need a stronger version, which checks that
a query whose 1-rewritings are covered needs not to be
explored.

Lemma 4 Let rew be a prunable rewriting operator,
and letQ1 andQ2 be two sets of BCQs. If (Q1∪Q2) ≥
rew(Q1,R), then (Q1 ∪W∞(Q2,R)) ≥ W∞(Q1 ∪
Q2,R).

Proof: We prove by induction on i thatQ1∪Wi(Q2,R) ≥
rewi(Q1 ∪Q2,R).
For i = 0, rew0(Q1 ∪ Q2,R) = Q1 ∪ Q2 =
Q1 ∪W0(Q2,R).
For i > 0, for any Qi ∈ rewi(Q1 ∪ Q2,R),
there is Qi−1 ∈ rewi−1(Q1 ∪ Q2,R) such that
Qi ∈ rew(Qi−1,R). By induction hypothesis, there
isQ′i−1 ∈ Q1∪Wi−1(Q2,R) such thatQ′i−1 ≥ Qi−1.
Since rew is prunable, either Q′i−1 ≥ Qi or there is
Q′i ∈ rew(Q′i−1,R) such that Q′i ≥ Qi. Then, there
are two possibilities:

– eitherQ′i−1 ∈ Q1: sinceQ1∪Q2 ≥ rew(Q1,R),
we have Q1 ∪ Q2 ≥ {Q′i} and so Q1 ∪
Wi(Q2,R) ≥ {Q′i}.

– orQ′i−1 ∈Wi−1(Q2,R): thenQ′i ∈Wi(Q2,R).

�
Finally, the correctness of Algorithm 1 is based on

the following loop invariants.

Property 5 (Invariants of Algorithm 1) Let rew be
a rewriting operator. After each iteration of the while
loop of Algorithm 1, the following properties hold:

1. QE ⊆ QF ⊆W∞(Q,R);
2. QF ≥ rew(QF \ QE ,R);
3. if rew is prunable then (QF ∪W∞(QE ,R)) ≥
W∞(Q,R);

4. for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥
Q.

Proof: Invariants are proved by induction on the num-
ber of iterations of the while loop. Below Qi

F and Qi
E

denote the value of QF and QE after i iterations.

Invariant 1: QE ⊆ QF ⊆W∞(Q,R).
basis: Q0

E = Q0
F = {Q} = W0(Q,R) ⊆

W∞(Q,R).
induction step: by construction, Qi

E ⊆ Qi
F and

Qi
F ⊆ Q

i−1
F ∪rew(Qi−1

E ,R). For anyQ′ ∈
Qi

F we have: either Q′ ∈ Qi−1
F and then by

induction hypothesis Q′ ∈ W∞(Q,R); or
Q′ ∈ rew(Qi−1

E ,R) and then by induction
hypothesis we have Qi−1

E ⊆ W∞(Q,R),
which implies Q′ ∈W∞(Q,R).

Invariant 2: QF ≥ rew(QF \ QE ,R).
basis: rew(Q0

F \Q0
E ,R) = rew(∅,R) = ∅ and

any set covers it.
induction step: by construction, Qi

F ≥ Q
i−1
F ∪

rew(Qi−1
E ,R); since by induction hypoth-

esis Qi−1
F ≥ rew(Qi−1

F \ Qi−1
E ,R), we

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 9

have Qi
F ≥ rew(Qi−1

F \ Qi−1
E ,R) ∪

rew(Qi−1
E ,R) = rew(Qi−1

F ,R). Further-
more, by construction, Qi

E = Qi
F \ Q

i−1
F ;

thus Qi
F \ Qi

E ⊆ Q
i−1
F and so rew(Qi

F \
Qi

E ,R) ⊆ rew(Qi−1
F ,R). Thus Qi

F ≥
rew(Qi

F \ Qi
E ,R).

Invariant 3: if rew is prunable then (QF ∪
W∞(QE ,R)) ≥W∞(Q,R).
basis: (Q0

F ∪ W∞(Q0
E ,R)) = ({Q} ∪

W∞({Q},R)) =W∞(Q,R).
induction step: we first show that (i): (Qi

F ∪
W∞(Qi

E ,R)) ≥ W∞(Qi
F ,R), then we

prove by induction that (ii):W∞(Qi
F ,R) ≥

W∞(Q,R):

(i) by construction Qi
E ⊆ Qi

F , thus (Qi
F \

Qi
E) ∪ Qi

E = Qi
F , and by Invari-

ant 2, we have (Qi
F \ Qi

E) ∪ Qi
E ≥

rew(Qi
F \ Qi

E ,R). Lemma 4 then en-
tails that ((Qi

F \Qi
E)∪W∞(Qi

E ,R)) ≥
W∞((Qi

F \ Qi
E) ∪ Qi

E ,R) and we can
conclude since Qi

F = (Qi
F \ Qi

E) ∪Qi
E .

(ii) by construction, we have Qi
F ≥

Qi−1
F ∪ rew(Qi−1

E ,R); so, by Lemma 3,
we have W∞(Qi

F ,R) ≥ W∞(Qi−1
F ∪

rew(Qi−1
E ,R),R) = W∞(Qi−1

F ,R) ∪
W∞(rew(Qi−1

E ,R),R). Moreover,
Qi−1

E ⊆ Qi−1
F ⊆ W∞(Qi−1

F ,R),
thus W∞(Qi

F ,R) ≥ Qi−1
F ∪

Qi−1
E ∪ W∞(rew(Qi−1

E ,R),R) =
Qi−1

F ∪ W∞(Qi−1
E ,R). Using (i), we

have W∞(Qi
F ,R) ≥W∞(Qi−1

F ,R) and
conclude by induction hypothesis.

Invariant 4: for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and
Q′ 6≥ Q. Trivially satisfied thanks to the proper-
ties of cover .

�
The next property states that if rew is prunable then

Algorithm 1 halts for each case where W∞(Q,R) has
a finite cover.

Property 6 Let rew be a rewriting operator, R be a
set of rules andQ be a BCQ. IfW∞(Q,R) has a finite
cover and rew is prunable then Algorithm 1 halts.

Proof: LetQ be a finite cover of W∞(Q,R) and let m
be the largest k for a k-rewriting in Q.

We thus have Wm(Q,R) ≥ Q ≥ W∞(Q,R).
Since the operator is prunable, we have Qi

F ≥
Wi(Q,R) for all i ≥ 0 (proved with a straightfor-

ward induction on i). Thus Qm
F ≥ W∞(Q,R). Thus,

rew(Qm
E ,R) is covered by Qm

F , and since already ex-
plored queries are taken first for the computation of a
cover, we have that Qm+1

E = ∅. Hence Algorithm 1
halts. �

Theorem 7 Let rew be a rewriting operator, R be a
set of rules andQ be a BCQ. IfW∞(Q,R) has a finite
cover and rew is prunable then Algorithm 1 outputs
this cover (up to query equivalence).

Proof: By Property 6, Algorithm 1 halts. By Invariant 3
from Property 5, (Qf

F ∪W∞(Qf
E ,R)) ≥ W∞(Q,R)

where Qf
F and Qf

E denote the final values of QF and
QE in Algorithm 1. Since Qf

E = ∅ when Algorithm 1
halts, we haveQf

F ≥W∞(Q,R). Thanks to Invariants
1 and 4 from Property 5 we conclude thatQf

F is a cover
of W∞(Q,R). �

4.3. Preserving Soundness and Completeness

We consider two further properties of a rewriting op-
erator, namely soundness and completeness, with the
aim of ensuring the soundness and completeness of the
obtained rewriting set within the meaning of Definition
2.

Definition 9 (Soundness/completeness) Let rew be
a rewriting operator. rew is sound if for any set of
rules R, for any BCQ Q, for any Q′ ∈ rew(Q,R),
for any fact F , F |= Q′ implies that F,R |= Q. rew
is complete if for any set of rules R, for any BCQ
Q, for any fact F such that F,R |= Q, there exists
Q′ ∈W∞(Q,R) such that F |= Q′.

Property 8 If rew is sound, then the output of Algo-
rithm 1 is a sound rewriting set of Q andR.

Proof: Direct consequence of Invariant 1 from Prop-
erty 5. �

Perhaps surprisingly, the completeness of the rewrit-
ing operator is not sufficient to ensure the complete-
ness of the output rewriting set. Examples are provided
in Section 6.1. This is due to the dynamic pruning
performed at each step of Algorithm 1. Therefore the
prunability of the operator is also required.

Property 9 If rew is prunable and complete, then the
output of Algorithm 1 is a complete rewriting set of Q
andR.

10 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Proof: Algorithm 1 returns QF when QE is empty.
By Invariant 3 of Property 5, we know that (QF ∪
W∞(∅,R)) ≥ W∞(Q,R). Since W∞(∅,R)) = ∅,
we obtain that QF ≥W∞(Q,R). �

Finally, as stated by the next theorem, when the
rewriting operator is sound, complete and prunable,
Algorithm 1 is correct and terminates for any finite uni-
fication set of rules. We remind that expressive classes
of fus rules are known (see the introduction). In partic-
ular, the main members of DL-Lite family are general-
ized by the simple class of linear existential rules. See
also Section 7 for examples of such ontologies.

Theorem 10 If rew is a sound, complete and prun-
able operator, andR is a finite unification set of rules,
then for any BCQ Q, Algorithm 1 outputs a minimal
(finite) sound and complete rewriting set of Q withR.

Proof: If R is a fus and rew is a sound and complete
operator then W∞(Q,R) has a finite cover. The claim
then follows from Properties 8 and 9 and Theorem 7.
�

5. Piece-Based Rewriting

As mentioned in the introduction (and illustrated in
Example 2), existential variables in rule heads induce a
structure that has to be taken into account in the rewrit-
ing mechanism. Hence the classical notion of a uni-
fier is replaced by that of a piece-unifier [2]. A piece-
unifier “unifies” a subset Q′ of Q with a subset H ′ of
head(R), in the sense that the associated substitution
u is such that u(Q′) = u(H ′). Given a piece-unifier,
Q is partitioned into “pieces”, which are minimal sub-
sets of atoms that must be processed together. More
specifically, the cutpoints are the variables fromQ′ that
are not unified with existential variables from H ′ (i.e.,
they are unified with frontier variables or constants);
then a piece in Q is a minimal non-empty subset of
atoms “glued” by variables other than cutpoints, i.e.,
connected by a path of variables that are not cutpoints.
We recall below the definition of pieces given in [2]
(where T corresponds to the set of cutpoints).

Definition 10 (Piece) [2] Let A be a set of atoms and
T ⊆ vars(A). A piece ofA according to T is a minimal
non-empty subset P of A such that, for all a and a′

in A, if a ∈ P and (vars(a) ∩ vars(a′)) 6⊆ T , then
a′ ∈ P .

In this paper, we give a definition of a piece-unifier
based on partitions rather than substitutions, which
simplifies subsequent proofs. For any substitution u
from a set of variables E1 to a set of terms E2 asso-
ciated with a piece-unifier, it holds that E1 ∩ E2 =
∅. Thus, u can be associated with a partition Pu of
E1 ∪ E2 such that two terms are in the same class of
Pu if and only if they are merged by u; more specifi-
cally, we consider the equivalence classes of the sym-
metric, reflexive and transitive closure of the following
relation ∼: t ∼ t′ if u(t) = t′. Conversely, given a
partition on a set of terms E, such that no class con-
tains two constants, we can consider a substitution u
obtained by selecting an element of each class with
priority given to constants: if {e1 . . . ek} is a class in
the partition and ei is a selected element, then for all
ej with 1 ≤ j 6= i ≤ k, we set u(ej) = ei. If we
consider a total order on terms, such that constants are
smaller than variables, then a unique substitution is ob-
tained by taking the smallest element in each class. We
call admissible partition a partition such that no class
contains two constants.

The set of all partitions over a given set is struc-
tured in a lattice by the “finer than" relation (given
two partitions P1 and P2, P1 is finer than P2, denoted
by P1 ≥ P2, if every class of P1 is included in a
class of P2).7 The join of several partitions is the parti-
tion obtained by making the union of their non-disjoint
classes. The join of two admissible partitions may be a
non-admissible partition. We say that several admissi-
ble partitions are compatible if their join is an admissi-
ble partition. Note that if the concerned partitions are
relative to the same set E, then their join is their great-
est lower bound in the partition lattice of E.

The following property makes a link between com-
parable partitions and comparable substitutions.

Property 11 Let P1 and P2 be two admissible parti-
tions over the same set such that P1 ≥ P2, with associ-
ated substitutions u1 and u2 respectively. Then there is
a substitution s such that u2 = s◦u1 (i.e., u1 is “more
general” than u2).

Proof: The substitution s is built as follows: for any
class Ci ∈ P1, let Cj ∈ P2 be the class such that
Ci ⊆ Cj . Let ei (resp. ej) be the selected element in
Ci (resp. Cj); if ei 6= ej (in this case, ei is necessarily

7Usually, the notation≤ is used to denote the relation “finer than”.
We adopt the converse convention, which is more in line with sub-
stitutions and the ≥ preorder on CQs.

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 11

Fig. 3. Piece-unifier.

a variable), then s(ei) = ej . It can be immediately
checked that u2 = s ◦ u1. �

In the following definition of a piece-unifier, we as-
sume that Q and R have disjoint sets of variables.
Given Q′ ⊆ Q, we call separating variables from Q′,
and denote by , Q′, the variables occurring in both Q′

and (Q \Q′): , Q′ = vars(Q′) ∩ vars(Q \Q′).

Definition 11 (Piece-Unifier, Cutpoint) A piece-unifier
of Q with R is a triple µ = (Q′, H ′, Pu), where
Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ head(R) and Pu is a parti-
tion on terms(Q′)∪ terms(H ′) satisfying the following
three conditions:

1. Pu is admissible;
2. if a class in Pu contains an existential variable

(from H ′) then the other terms in the class are
non-separating variables from Q′;

3. u(H ′) = u(Q′), where u is a substitution asso-
ciated with Pu.

The cutpoints of µ, denoted by cutp(µ), are the
variables from Q′ that are not unified with existen-
tial variables from H ′ (i.e., they are unified with
frontier variables or constants): cutp(µ) = {x ∈
vars(Q′) | u(x) ∈ fr(R) ∪ consts(Q′) ∪ consts(H ′)}.

Condition 2 in the piece-unifier definition ensures
that a separating variable in Q′ is necessarily a cut-
point. It follows thatQ′ is composed of pieces: indeed,
an existential variable from H ′ is necessarily unified
with a non-separating variable from Q′, say x, which
ensures that all atoms from Q′ in which x occurs are
also part of Q′. Figure 3 illustrates these notions.

We provide below some examples of piece-unifiers.

Example 5 Let R = q(x) → p(x, y) and Q =
p(u, v) ∧ p(w, v) ∧ p(w, t) ∧ r(u,w). Let H ′ =
{p(x, y)}. They are three piece-unifiers of Q with R:
µ1 = (Q′1, H

′, P 1
u) with Q′1 = {p(u, v), p(w, v)} and

P 1
u = {{x, u, w}, {y, v}}
µ2 = (Q′2, H

′, P 2
u) with Q′2 = {p(w, t)} and P 2

u =
{{x,w}, {y, t}}

µ3 = (Q′3, H
′, P 3

u) withQ′3 = {p(u, v), p(w, v), p(w, t)}
and P 3

u = {{x, u, w}, {y, v, t}}
Note that Q′1 and Q′2 are each composed of a single
piece; Q′3 = Q′1 ∪ Q′2 and P 3

u is the join of P 1
u and

P 2
u .

In the previous example, R has an atomic head, thus
a piece-unifier of Q′ with R actually unifies the atoms
from Q′ and the head of R into a single atom. In the
general case, a piece-unifier unifiesQ′ and a subsetH ′

of head(R) into a set of atoms, as illustrated by the
next example.

Example 6 Let R = q(x) → p(x, y) ∧ p(y, z) ∧
p(z, t) ∧ r(y) and Q = p(u, v) ∧ p(v, w) ∧
r(u). A piece-unifier of Q with R is µ1 =
(Q′1, H

′
1, P

1
u) with Q′1 = {p(u, v), p(v, w)}, H ′1 =

{p(x, y), p(y, z)} and P 1
u = {{x, u}, {v, y}, {w, z}}.

Another piece-unifier is µ2 = (Q′2, H
′
2, P

2
u) with

Q′2 = Q, H ′2 = {p(y, z), p(z, t), r(y)} and P 2
u =

{{u, y}, {v, z}, {w, t}}.
Note that µ3 = (Q′3, H

′
3, P

3
u) with Q′3 = {p(u, v)},

H ′3 = {p(x, y)} and P 3
u = {{x, u}, {v, y}} is not a

piece-unifier because the second condition in the defi-
nition of piece-unifier is not fulfilled: v is a separating
variable and is matched with the existential variable y.

Then, the notions of a one-step rewriting according
to a piece-unifier, and of a rewriting obtained by a se-
quence of one-step rewritings, are defined in the natu-
ral way.

Definition 12 (One-step Piece-Rewriting) Given
a piece-unifier µ = (Q′, H ′, Pu) of Q with R, the
one-step piece-rewriting of Q according to µ, denoted
by β(Q,R, µ), is the BCQ u(body(R)) ∪ u(Q \ Q′),
where u is a substitution associated with Pu.

We thus define inductively a k-step piece-rewriting
as a (k − 1)-step piece rewriting of a one-step piece-
rewriting. For any k, a k-step piece-rewriting of Q is a
piece-rewriting of Q.

The next theorem states that piece-based rewriting
is logically sound and complete.

Theorem 12 ([31,2]) Let K = (F,R) be a KB and
Q be a BCQ. Then F,R |= Q iff there is a piece-
rewriting Q′ of Q such that Q′ ≥ F .

It follows from Theorem 12 that a sound and com-
plete rewriting operator can be based on piece-unifiers:
we call piece-based rewriting operator, the rewriting
operator that, given Q and R, outputs all the one-step

12 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

piece-rewritings ofQ according to a piece-unifier ofQ
with R ∈ R. We denote it by β(Q,R).

Actually, as detailed hereafter, only most general
piece-unifiers are to be considered, since the other
piece-unifiers produce more specific queries.

Definition 13 (Most General Piece-Unifier) Given
two piece-unifiers defined on the same subsets of
a query and a rule head, µ1 = (Q′, H ′, P 1

u) and
µ2 = (Q′, H ′, P 2

u), we say that µ1 is more general
than µ2 (notation µ1 ≥ µ2) if P 1

u is finer than P 2
u (i.e.,

P 1
u ≥ P 2

u). A piece-unifier µ = (Q′, H ′, Pu) is called
a most general piece-unifier if it is more general than
all the piece-unifiers on Q′ and H ′.

Property 13 Let µ1 and µ2 be two piece-unifiers with
µ1 ≥ µ2. Then µ1 and µ2 have the same pieces.

Proof: µ1 and µ2 have the same pieces iff they have
the same cutpoints. It holds that cutp(µ1) ⊆ cutp(µ2)
since every class from P 1

u is included in a class from
P 2
u : hence a variable from Q′ that is in the same class

as a frontier variable or a constant in P 1
u also is in P 2

u .
It remains to prove that cutp(µ2) ⊆ cutp(µ1). Let x
be a cutpoint of µ2 and P 2

u(x) be the class of x in P 2
u .

Since x is a cutpoint of µ2, there is a term t in P 2
u(x)

that is a constant or a frontier variable. Since P 1
u ≥

P 2
u , we know that P 1

u(x) ⊆ P 2
u(x). Let t′ be a term

of H ′ from P 1
u(x) (there is at least one term of H ′

and one term of Q′ in each class since the partition
is part of a unifier of H ′ and Q′). We are sure that t′

is not an existential variable because t′ ∈ P 2
u(x) and

an existential variable cannot be in the same class as t
(Condition 2 in the definition of a piece-unifier), so t′

is a frontier variable or a constant, hence x is a cutpoint
of µ1. �

Property 14 Let µ1 = (Q′, H ′, P 1
u) and µ2 =

(Q′, H ′, P 2
u) be two piece-unifiers such that µ1 ≥ µ2.

Then β(Q,R, µ1) ≥ β(Q,R, µ2).

Proof: Let u1 (resp. u2) be a substitution associated
with P 1

u (resp. P 2
u). Since P 1

u ≥ P 2
u , there is a substi-

tution s such that u2 = s ◦ u1 . Then β(Q,R, µ2) =
u2(body(R)) ∪ u2(Q \ Q′) = (s ◦ u1)(body(R)) ∪
(s ◦ u1)(Q \ Q′) = (s ◦ u1)(body(R) ∪ (Q \ Q′)) =
s(u1(body(R)∪(Q\Q′))) = s(β(Q,R, µ1)). s is thus
a homomorphism from β(Q,R, µ1) to β(Q,R, µ2),
hence β(Q,R, µ1) ≥ β(Q,R, µ2). �

The following lemma expresses that piece-based
rewriting operator is prunable.

Lemma 15 If Q1 ≥ Q2 then for any piece-unifier
µ2 of Q2 with R: either (i) Q1 ≥ β(Q2, R, µ2) or
(ii) there is a piece-unifier µ1 of Q1 with R such that
β(Q1, R, µ1) ≥ β(Q2, R, µ2).

Proof: Let h be a homomorphism from Q1 to Q2. Let
µ2 = (Q′2, H

′
2, P

2
u) be a piece-unifier of Q2 with R,

and let u2 be a substitution associated with P 2
u . We

consider two cases:

(i) If h(Q1) ⊆ (Q2\Q′2), then u2◦h is a homomor-
phism from Q1 to u2(Q2 \Q′2) ⊆ β(Q2, R, µ2).
Thus Q1 ≥ β(Q2, R, µ2).

(ii) Otherwise, let Q′1 be the non-empty subset of
Q1 mapped by h to Q′2, i.e., h(Q′1) ⊆ Q′2, and
H ′1 be the subset of H ′2 matched by u2 with
u2(h(Q

′
1)), i.e., u2(H ′1) = u2(h(Q

′1)). Let P 1
u

be the partition on terms(H ′1) ∪ terms(Q′1) such
that two terms are in the same class of P 1

u if
these terms or their images by h are in the same
class of P 2

u (i.e., for a term t, we consider t if
t is in Q′1, and h(t) otherwise). By construction,
(Q′1, H

′
1, P

1
u) is a piece-unifier of Q1 with R. In-

deed, P 1
u fulfills all the conditions of the piece-

unifier definition since P 2
u fulfills these condi-

tions.
Let u1 be a substitution associated with P 1

u . For
each class P of P 1

u (resp. P 2
u), we call selected

element the unique element t of P such that
u1(t) = t (resp. u2(t) = t). We build a substitu-
tion s, from the selected elements of the classes in
P 1
u which are variables, to the selected elements

of the classes in P 2
u , as follows: for any class P

of P 1
u , let t be the selected element of P : if t is

a variable of H ′1 then s(t) = u2(t), otherwise
s(t) = u2(h(t)) (t occurs in Q′1). Note that, for
any term t in P 1

u , we have s(u1(t)) = u2(h(t)).
We build now a substitution h′ from
vars(β(Q1, R, µ1)) to terms(β(Q2, R, µ2)), by
considering three cases according to the part of
β(Q1, R, µ1) in which the variable occurs, i.e., in
Q1 but not in Q′1, in body(R) but not in H ′1, or in
the remaining part corresponding to the images
of sep(Q′1) by u1:

1. if x ∈ vars(Q1) \ vars(Q′1), h
′(x) = h(x);

2. if x ∈ vars(body(R)) \ vars(H ′1), h
′(x) =

u2(x);
3. if x ∈ u1(, Q

′
1)(or alternatively x ∈

u1(fr(R) ∩ vars(H ′1))), h
′(x) = s(x) ;

We conclude by showing that h′ is a homo-
morphism from β(Q1, R, µ1) = u1(body(R)) ∪

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 13

u1(Q1 \ Q′1) to β(Q2, R, µ2) = u2(body(R)) ∪
u2(Q2 \Q′2) with two points:

1. h′(u1(body(R))) = u2(body(R)). Indeed, for
any variable x of body(R):

∗ either x ∈ vars(body(R))\vars(H ′1), hence
h′(u1(x)) = h′(x) = u2(x) (u1 is a substi-
tution from variables of Q′1 ∪H ′1),
∗ or x ∈ fr(R) ∩ vars(H ′1), hence
h′(u1(x)) = s(u1(x)) = u2(h(x)) =
u2(x) (h is a substitution from variables of
Q1).

2. h′(u1(Q1\Q′1)) ⊆ u2(Q2\Q′2). We show that
h′(u1(Q1\Q′1)) = u2(h(Q1\Q′1))), and since
h(Q1 \ Q′1) ⊆ Q2 \ Q′2, we have h′(u1(Q1 \
Q′1)) ⊆ u2(Q2\Q′2). To show that h′(u1(Q1\
Q′1)) = u2(h(Q1 \ Q′1))), we point out that,
for any variable x from Q1 \Q′1:

∗ either x ∈ vars(Q′1), then h′(u1(x)) =
s(u1(x)) = u2(h(x))
∗ or x ∈ vars(Q1) \ vars(Q′1), then
h′(u1(x)) = h′(x) = h(x) = u2(h(x)) (u1
is a substitution from variables of Q′1 ∪H ′1
and u2 is a substitution from variables of
Q′2 ∪H ′2 and h(x) 6∈ vars(Q′2 ∪H ′2)).

�
Given a query Q and a set of rules R, the piece-

based rewriting operator computes the set of one-step
piece-rewritings of Q according to all piece-unifiers of
Q with a rule R ∈ R. We are now able to show that
this operator fulfills the desired properties introduced
in Section 4.

Theorem 16 Piece-based rewriting operator is sound,
complete and prunable; this property is still true if only
most general piece-unifiers are considered.

Proof: Soundness and completeness follow from The-
orem 12. Prunability follows from Lemma 15. Thanks
to Property 14, the proof remains true if most general
piece-unifiers are considered. �

6. Exploiting Single-Piece Unifiers

We are now interested in the efficient computation
of piece-based rewritings. We identify several sources
of combinatorial explosion in the computation of the
piece-unifiers between a query and a rule:

1. The problem of deciding whether there is a
piece-unifier of a given query Q with a given
rule R is NP-complete in the general case. NP-
hardness is easily obtained by considering the
case of a rule with an empty frontier: then, there
is a piece-unifier between Q and R if and only
if there is a homomorphism from Q to H =
head(R), which is an NP-complete problem, Q
and H being any sets of atoms.

2. The number of most general piece-unifiers can
be exponential in |Q|, even if the rule head H is
restricted to a single atom. For instance, assume
that each atom of Q unifies with H and forms its
own piece; then there may be 2|Q| piece-unifiers
obtained by considering all subsets of Q.

3. The same atom in Q may belong to distinct
pieces according to distinct unifiers, as illustrated
by the next example.

Example 7 Let Q = r(u, v) ∧ q(v) and
R = p(x) → r(x, y) ∧ r(y, x) ∧ q(y). Atom
r(u, v) belongs to two single-piece unifiers:
({r(u, v), q(v)}, {r(x, y), q(y)}, {{u, x}, {v, y}})
and ({r(u, v)}, {r(y, x)}, {{u, y}, {v, x}}). For an
additional example, see Example 6, where p(u, v) and
p(v, w) both belong to µ1 and µ2.

To cope with this complexity, an idea is to rely on
single-piece unifiers, i.e., piece-unifiers of the form
(Q′,−,−) where Q′ is a single piece of Q. This sec-
tion is devoted to the properties of rewriting opera-
tors exploiting this notion. We show that the rewrit-
ing operator based on single-piece (most general) uni-
fiers is sound and complete. However, perhaps surpris-
ingly, it is not prunable, which prevents to use it in
the generic algorithm. To recover prunability, we will
define the aggregation of single-piece unifiers, which
provides us with a new rewriting operator, which has
all the desired properties and generates rewriting sets
with fewer components than the standard piece-unifier.
Note, however, that this will not completely remove
the second complexity source (i.e., the exponential
number of unifiers to consider) since the number of
aggregations of single-piece unifiers can still be expo-
nential in the size of Q, even with atomic-head rules.

6.1. Single-Piece Based Operator

As expressed by the following theorem, (most gen-
eral) single-piece unifiers provide a sound and com-
plete operator.

14 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Theorem 17 Given a BCQ Q and a set of rulesR, the
set of rewritings of Q obtained by considering exclu-
sively most general single-piece unifiers is sound and
complete.

Proof: See Appendix. �
The proof of this theorem is given in Appendix since

it is not reused hereafter. Indeed, the restriction to
single-piece unifiers is not compatible with selecting
most general rewritings at each step, as performed in
Algorithm 1. We present below some examples that il-
lustrate this incompatibility.

Example 8 (Basic example) Let Q = p(y, z) ∧
p(z, y) and R = r(x, x) → p(x, x). There
are two single-piece unifiers of Q with R,
µ1 = ({p(y, z)}, {p(x, x)}, {{x, y, z}}) and
µ2 = ({p(z, y)}, {p(x, x)}, {{x, y, z}}),
which yield the same rewriting, e.g. Q1 =
r(x, x) ∧ p(x, x). There is also a two-piece unifier
µ = (Q, {p(x, x)}, {{x, y, z}}), which yields e.g.
Q′ = r(x, x). A query equivalent to Q′ can be
obtained fromQ1 by a further single-piece unification.
Now, assume that we restrict unifiers to single-piece
unifiers and keep most general rewritings at each step.
Since Q ≥ Q1, Q1 is not kept, hence Q′ will never be
generated, whereas it is incomparable with Q.

Concerning the preceding example, given u1 and
u2 the substitutions respectively associated with µ1

and µ2, one may argue that u1(Q) is redundant and
the same holds for u2(Q); hence, the problem would
be solved by computing u1(Q) \ u1(Q′) instead of
u1(Q \ Q′) and making u1(Q) non-redundant (i.e.,
equal to p(x, x)) before computing u1(Q) \ u1(Q′),
which would then be empty. However, the problem
goes deeper, as illustrated by the next two examples.

Example 9 (Ternary predicates) Let Q =
r(u, v, w) ∧ r(w, t, u) and R = p(x, y) → r(x, y, x).
Again, there are two single-piece unifiers of Q with R:
µ1 = ({r(u, v, w)}, {r(x, y, x)}, {{u,w, x}, {v, y}})
and µ2 = ({r(w, t, u)}, {r(x, y, x)}, {{u,w, x},
{t, y}}). One obtains two rewritings more spe-
cific than Q, e.g., Q1 = p(x, y) ∧ r(x, v, x),
and Q2 = p(x, y) ∧ r(x, t, x), which are iso-
morphic. There is also a two-piece unifier
(Q, {r(x, y, x)}, {{u,w, x}, {v, t, y}}), which yields
p(x, y). If we remove Q1 and Q2, no query equivalent
to p(x, y) can be generated.

Fig. 4. The queries in Example 10.

Example 10 (Very simple rule) This example
has two interesting characteristics: (1) it uses
unary/binary predicates only (2) it uses a very
simple rule expressible with any lightweight de-
scription logic, i.e., a linear existential rule where
no variable appears twice in the head or the body.
Let Q = r(u, v) ∧ r(v, w) ∧ p(u, z) ∧ p(v, z) ∧
p(v, t) ∧ p(w, t) ∧ p1(u) ∧ p2(w) (see Figure 4) and
R = b(x) → p(x, y). Note that Q is not redundant.
There are two single-piece unifiers of Q with R, say
µ1 and µ2, with pieces Q′1 = {p(u, z), p(v, z)} and
Q′2 = {p(v, t), p(w, t)} respectively. The obtained
queries are pictured in Figure 4. These queries
are both more specific than Q. The removal would
prevent the generation of a query equivalent to
r(x, x) ∧ p1(x) ∧ p2(x) ∧ b(x), which could be
generated from Q with a two-piece unifier.

Property 18 The single-piece-based operator is not
prunable.

Proof: Follows from the above examples. �
By Theorem 5 and Property 24, one can show that

the conclusion of Lemma 3 (Section 4.2) is valid for
single-piece unifiers, even though they are not prun-
able. This justifies that Lemma 3 is not enough to prove
the correctness of Algorithm 1.

Nevertheless, single-piece unifiers can still be used
as an algorithmic brick to compute more complex
piece-unifiers, as shown in the next subsection.

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 15

6.2. Aggregated-Piece Based Operator

We first explain the ideas that underline aggregated
single-piece unifiers. Let us consider the set of single-
piece unifiers naturally associated with a piece-unifier
µ. If we successively apply each of these underlying
single-piece unifiers, we may obtain a CQ strictly more
general than β(Q,R, µ), as illustrated by the next ex-
ample.

Example 11 Let R = p(x, y) → q(x, y) and Q =
q(u, v) ∧ r(v, w) ∧ q(t, w). Let µ = (Q′, H ′, Pu) be a
piece-unifier ofQwithR withQ′ = {q(u, v), q(t, w)},
H ′ = {q(x, y)} and Pu = {{u, t, x}, {v, w, y}}.
β(Q,R, µ) = p(x, y)∧r(y, y).Q′ has two pieces w.r.t.
µ: P1 = {q(u, v)} and P2 = {q(t, w)}. If we suc-
cessively compute the rewritings with the underlying
single-piece unifiers µP1 and µP2 , we obtain Qs =
β(β(Q,R, µP1), R, µP2) = β(p(x, y) ∧ r(y, w) ∧
q(t, w), R, µP2) = p(x, y)∧r(y, y′)∧p(x′, y′), which
is strictly more general than β(Q,R, µ).

Given a set U of “compatible” single-piece unifiers
of a query Q with a rule (the notion of “compatible”
will be formally defined below), we can thus distin-
guish between the usual piece-unifier performed on the
union of the pieces from the unifiers in U and an “ag-
gregated unifier” that would correspond to a sequence
of applications of the unifiers in U . This latter unifier
is more interesting than the piece-unifier because, as
illustrated by Example 11, it avoids generating some
rewritings which are too specific. We will thus rely
on the aggregation of single-piece unifiers to recover
prunability.

Note that, in this paper, we combine single-piece
unifiers of the same rule whereas in [20] we consider
the possibility of combining unifiers of distinct rules
(and thus compute rewritings from distinct rules in a
single step). We keep below the definitions introduced
in [20], while pointing out that, in the context of this
paper, the rules R1 . . . Rk in the definitions are neces-
sarily copies of the same rule R. Intuitively, an aggre-
gated unifier of R is a piece-unifier of a new rule built
by aggregating copies of R (as formally expressed by
next Property 19).

Definition 14 (Aggregation of a set of rules)
Let R = {R1 . . . Rk} be a set of rules, with
pairwise disjoint sets of variables. The ag-
gregation of R, denoted by R1 � . . . � Rk,
is the rule body(R1) ∧ . . . ∧ body(Rk) →
head(R1) ∧ . . . ∧ head(Rk).

Definition 15 (Compatible set of piece-unifiers)
Let U = {µ1 = (Q′1, H

′
1, P1) . . . µk = (Q′k, H

′
k, Pk)}

be a set of piece-unifiers of Q with rules R1 . . . Rk re-
spectively, where the rules have pairwise disjoint sets
of variables (in particular, for all 1 ≤ i, j ≤ k, i 6= j,
it holds that vars(H ′i) ∩ vars(H ′j) = ∅). Set U is said
to be compatible if (1) all Q′i and Q′j are pairwise dis-
joint; (2) the join of P1 . . . Pk is admissible.

Definition 16 (Aggregated unifier)
Let U = {µ1 = (Q′1, H

′
1, P1) . . . µk = (Q′k, H

′
k, Pk)}

be a compatible set of piece-unifiers of Q with rules
R1 . . . Rk. An aggregated unifier of Q with R1 . . . Rk

w.r.t. U is µ = (Q′, H ′, P) where: (1) Q′ = Q′1 ∪
. . .∪Q′k; (2) H ′ = H ′1 ∪ . . .∪H ′k; (3) P is the join of
P1 . . . Pk. It is said to be single-piece if all the piece-
unifiers in U are single-piece. It is said to be most gen-
eral if all the piece-unifiers in U are most general.

Property 19 Let Q be a BCQ and U = {µ1 =
(Q′1, H

′
1, P1) . . . µk = (Q′k, H

′
k, Pk)} be a compatible

set of piece-unifiers of Q with R1 . . . Rk. Then, the ag-
gregated unifier of U is a piece-unifier of Q with the
aggregation of {R1 . . . Rk}.

Proof: We show that the aggregated unifier µ =
(Q′, H ′, Pu) of U satisfies the conditions of the def-
inition of a piece-unifier (Definition 11). Condition 1
is fulfilled since, by definition of compatibility, the
join of P1 . . . Pk is admissible. Condition 2 is satis-
fied as well, because, since P1 . . . Pk satisfy it, so does
their join. Indeed, if a class contains an existential vari-
able, it cannot be merged with another by aggrega-
tion because its other terms are non-separating vari-
ables, hence do not appear in other classes. Concern-
ing the last condition, for all 1 ≤ i ≤ k, we have
ui(H

′
i) = ui(Q

′
i), where ui is a substitution associated

with Pi. Since Q′ =
⋃k

i=1Q
′
i and H ′ =

⋃k
i=1H

′
i we

know that, for any substitution u associated with Pu,
we have u(H ′) = u(Q′). �

According to this property, the rewriting associ-
ated with an aggregated unifier µ can be defined as
β(Q,R1 � . . . � Rk, µ). It corresponds to the rewrit-
ing obtained by applying the piece-unifiers associated
with the Ri one after the other, as illustrated by the
next example.

Example 12 Consider again Example 11. Let R′ =
p(x′, y′) → q(x′, y′) be a copy of R. The aggre-
gation R � R′ is the rule p(x, y) ∧ p(x′, y′) →
q(x, y) ∧ q(x′, y′). Let U = {µP1

, µP2
} where

16 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

µP1
= ({q(u, v)}, {q(x, y)}, {{u, x}, {v, y}}) and

µP2
= ({q(t, w)}, {q(x′, y′)}, {{t, x′}, {w, y′}}).

The aggregated unifier of Q with R,R′ w.r.t.
U is ({q(u, v), q(t, w)}, {q(x, y), q(x′, y′)}, {{u, x},
{v, y}, {t, x′}, {w, y′}}). The associated rewriting of
Q is p(x, y)∧ r(y, y′)∧p(x′, y′), which is equal to the
rewriting Qs in Example 11.

The difference between a piece-unifier and an ag-
gregated unifier of Q with R can also be explained as
follows: to build a piece-unifier of Q with R, we con-
sider partitions of terms(Q) ∪ terms(head(R)), while
in the aggregation operation we consider partitions
of terms(Q) ∪

⋃k
i=1 terms(head(Ri)), where k is the

number of considered single-piece unifiers, and each
Ri is safely renamed from R. In other words, if, in the
definition of an aggregated unifier, we assumed that
the R1 . . . Rk had been exactly R, instead of safely re-
named copies of R, then the aggregation of R1 . . . Rk

would have been exactly R after removal of duplicate
atoms, and the aggregated unifier would have been the
usual piece-unifier.

The next property shows that, from any piece-unifier
µ, one can build a most general single-piece aggre-
gated unifier, which produces a rewriting more general
than the one produced by µ.

Property 20 For any piece-unifier µ of Q with R,
there is a most general single-piece aggregated uni-
fier µ� of Q with R1 . . . Rk copies of R such that
β(Q,R1 � . . . �Rk, µ�) ≥ β(Q,R, µ).

Proof: LetQ′1, . . . , Q
′
k be the pieces ofQ′ according to

µ = (Q′, H ′, Pu) and let u be a substitution associated
with Pu. Let R1 . . . Rk be safely renamed copies of R.
Let hi denote the variable renaming used to produce
Ri from R. Let U = {µ1 = (Q′1, H

′
1, P

1
u), . . . , µk =

(Q′k, H
′
k, P

k
u)} be a set of piece-unifiers of Q with

R1, . . . , Rk built as follows for all i:

– H ′i is the image by hi of the subset of H ′ unified
by u with Q′i

– let hi(Pu) be the partition built from Pu by re-
placing each x ∈ vars(H ′) by hi(x); then, P i

u

is obtained from hi(Pu) by (1) restricting it to
the terms of Q′i and H ′i , and (2) refining it as
much as possible while keeping the property that
ui(H

′
i) = ui(Q

′
i), where ui is a substitution as-

sociated with the partition.

For any µi = (Q′i, H
′
i, P

i
u) we immediately check

that:

1. µi is a most general piece-unifier.
2. µi is a single-piece unifier.
3. for all µj ∈ U , with µi 6= µj , µj and µi are

compatible.

Let µ� = (Q′�, H
′
�, P

�
u) be the aggregated unifier of

Q with R1, . . . , Rk w.r.t. U . Note that Q′� = Q′. The
above properties fulfilled by any µi from U ensure that
µ� is a most general single-piece aggregated unifier.

We note R� = R1 � . . . � Rk. It remains to prove
that β(Q,R�, µ�) ≥ β(Q,R, µ). Let u� be a substitu-
tion associated with P �u . For each class P of Pu (resp.
P �u), we call selected element the unique element t of
P such that u(t) = t (resp. u�(t) = t).

We build a substitution s, from the selected elements
in P �u which are variables, to the selected elements in
Pu, as follows: for any class P of P �u , let t be the
selected element of P : if t is a variable of Q′, then
s(t) = u(t); else t is a variable of a H ′i: then s(t) =
u(h−1i (t)). Note that for any term t in P �u , there is a
variable renaming hi such that s(u�(t)) = u(h−1i (t))
(if t is a constant or a variable from vars(Q) then any
hi can be chosen).

We build now a substitution h from
vars(β(Q,R�, µ�)) to terms(β(Q,R, µ)), by consid-
ering three cases according to the part of β(Q,R�, µ�)
in which the variable occurs, i.e., in Q but not in Q′,
in body(Ri) but not in H ′i , or in the remaining part
corresponding to the images of sep(Q′) by u�:

1. if x ∈ vars(Q) \ vars(Q′), h(x) = x;
2. if x ∈ vars(body(Ri)) \ vars(H ′i), h(x) =
h−1i (x);

3. if x ∈ u�(, Q′)(or alternatively x ∈ u�(fr(R�) ∩
vars(H ′�))), h(x) = s(x) ;

We conclude by showing that h is a homomor-
phism from β(Q,R�, µ�) = u�(body(R1) ∪ · · · ∪
body(Rk))∪u�(Q\Q′) to β(Q,R, µ) = u(body(R))∪
u(Q \Q′), with two points:

1. for all i, h(u�(body(Ri))) = u(body(R)). In-
deed, for any variable x ∈ vars(body(Ri)):

– either x ∈ vars(body(Ri)) \ vars(H ′i), hence
h(u�(x)) = h(x) = h−1i (x) = u(h−1i (x))
(u does not substitute the variables from
vars(body(R)) \ vars(H ′)),

– or x ∈ fr(Ri) ∩ vars(H ′i), hence h(u�(x)) =
s(u�(x)) = u(h−1i (x));

2. h(u�(Q \ Q′)) = u(Q \ Q′). Indeed, for any
variable x ∈ vars(Q \Q′):

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 17

– either x ∈ vars(Q′), then h(u�(x)) =
s(u�(x)) = u(h−1i (x)) = u(x) (h−1i does not
substitute the variables from Q),

– or x ∈ vars(Q) \ vars(Q′), then h(u�(x)) =
h(x) = x = u(x) (u� and u do not substitute
the variables from vars(Q) \ vars(Q′)).

�
We call single-piece aggregator the rewriting oper-

ator that computes the set of one-step rewritings of a
query Q by considering all the most general single-
piece aggregated unifiers of Q.

Theorem 21 The single-piece aggregator is sound,
complete and prunable.

Proof: Soundness comes from Property 19 and from
the fact that, for any set of rules R, let R be the ag-
gregation of R, one has R |= R. Completeness and
prunability rely on the fact that the piece-based rewrit-
ing operator fulfills these properties, and the fact that
for any queries Q and Q′ and any rule R, if Q′ =
β(Q,R, µ), where µ is a piece-unifier, then the query
Q′′ obtained with the single-piece aggregator corre-
sponding to µ is more general thanQ′, as expressed by
Property 20. �

7. Detailed Algorithms and Experiments

In this section, we first detail on the computation of
all the most general single-piece unifiers of a query Q
with a ruleR, and explain how we use them to compute
all the single-piece aggregators. Then, we focus on the
specific case of unification with atomic-head rules, for
which the computation is simpler. Last, we report first
experiments.

7.1. Computing Single-Piece Unifiers and their
Aggregation

We first introduce the notion of a pre-unifier, which
is weaker than a piece-unifier. To become a piece-
unifier, a pre-unifier has to satisfy an additional con-
straint on the separating variables of the unified subset
of Q.

Definition 17 (Valid Partition) Let Q be a BCQ, R
be a rule, Q′ ⊆ Q, H ′ ⊆ head(R), and Pu be a parti-
tion on terms(Q′)∪terms(H ′). Pu is valid if no class of
Pu contains two constants, or two existential variables
of R, or a constant and an existential variable of R, or
an existential variable of R and a frontier variable of
R.

Definition 18 (Pre-unifier) Let Q be a BCQ, R be a
rule, Q′ ⊆ Q, H ′ ⊆ head(R), and Pu be a partition
on terms(Q′) ∪ terms(H ′). Then µ = (Q′, H ′, Pu) is
a pre-unifier of Q with R if (1) Pu is valid, and (2)
given a substitution u associated with Pu, it holds that
u(H ′) = u(Q′).

The next definition introduces the notion of sticky
variables, which are the variables ofQ′ that preventQ′

to be a piece.

Definition 19 (Sticky Variables) Let Q be a BCQ, R
be a rule, Q′ ⊆ Q, H ′ ⊆ head(R) and Pu be a parti-
tion on terms(Q′)∪ terms(H ′). The sticky variables of
Q′ in Pu w.r.t. Q and R, denoted by sticky(Q′, Pu),
are the separating variables ofQ′ that occur in a class
of Pu containing an existential variable of R.

The next property ensures that a pre-unifier without
sticky variables is a piece-unifier, and reciprocally. Its
proof follows from the definitions.

Property 22 Let Q be a BCQ, R be a rule, Q′ ⊆ Q,
H ′ ⊆ head(R), and Pu be a partition on terms(Q′) ∪
terms(H ′). Then µ = (Q′, H ′, Pu) is a piece-unifier of
Q withR iff µ is a pre-unifier and sticky(Q′, Pu) = ∅.

The fact that we can first build pre-unifiers, then
check the absence of sticky variables, suggests an in-
cremental method to compute all the most general sin-
gle piece-unifiers of Q with R.

The first step consists in computing all the most
general pre-unifiers of an atom a ∈ Q with an atom
b ∈ head(R) with the same predicate. The partition
on the terms of these atoms associated with their unifi-
cation has to be valid. The next definition defines for-
mally this notion of partition.

Definition 20 (Partition by Position) Let A be a set
of atoms with the same predicate p. The partition by
position associated with A, denoted by Pp(A), is the
partition on terms(A) such that two terms of A occur-
ring in the same position i (1 ≤ i ≤ arity(p)) are in
the same class of Pp(A).

Hence, the partition by position associated with
{a, b} has to be valid. We denote by APU the set of
all the most general atomic pre-unifiers, i.e., APU =
{µ = ({a}, {b}, P) | a ∈ Q, b ∈ head(R), and µ
is a pre-unifier of Q with R }. Algorithm 2 details the
computation of APU .

We then use APU to compute the set of all the
most general single-piece unifiers of Q with R, de-

18 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Algorithm 2: COMPUTATION OF APU , THE SET
OF MOST GENERAL ATOMIC PRE-UNIFIERS
Data: A BCQ Q and a rule R
Result: The set of most general pre-unifiers of an

atom of Q with an atom of head(R)
begin

APU ← ∅;
foreach a ∈ Q do

foreach b ∈ head(R) do
if predicate(a) = predicate(b) and
Pp({a, b}) is valid then

APU ← APU ∪
{({a}, {b}, Pp({a, b})}

return APU

noted by SPU . Each atomic pre-unifier of APU is in-
crementally extended in all possible ways with other
atomic pre-unifiers of APU , which contain “missing”
atoms of Q with respect to sticky variables. Extending
pre-unifier (Q1, H1, P1) with pre-unifier (Q2, H2, P2)
consists in merging both pre-unifiers to obtain a new
pre-unifier (Q1∪Q2, H1∪H2, join(P1, P2)); this ex-
tension can be performed if and only if the join of P1

and P2 is a valid partition; if the obtained pre-unifier
has no sticky variable, it is a single piece-unifier.

Next algorithms 3, 4 and 5 detail the computation of
SPU . Algorithm 3 is the main algorithm. It first uses
Algorithm 2 to compute APU , then, for each atomic
pre-unifier µ ∈ APU , it calls Algorithm 4, which
computes the single-piece unifiers extending µ. Algo-
rithm 4 first checks if µ contains sticky variables: if it
it is the case, this single-piece unifier is returned, oth-
erwise the algorithm is recursively called, after a call
to Algorithm 5 to obtain a set of candidate extensions
of µ.

Finally, the set of all the single-piece aggregators of
Q with R is obtained by aggregating the unifiers from
all non-empty compatible subsets of SPU . For opti-
misation reasons, this set is incrementally computed as
follows:

1. Let U1 = SPU = {µ1, . . . , µk}; the µi are
called 1-unifiers.

2. For i = 2 to the greatest possible rank (i.e., as
long as Ui is not empty): let Ui be the set of all i-
unifiers obtained by aggregating an (i−1)-unifier
from Ui−1 and a single-piece unifier from U1.

3. Return the union of all the Ui obtained.

Algorithm 3: COMPUTATION OF SPU , THE SET
OF MOST GENERAL SINGLE-PIECE UNIFIERS
Data: A BCQ Q and a rule R
Result: The set of most general single-piece

unifiers of Q with R
begin

SPU ← ∅;
APU ← computeAPU(Q,R) ;

// see Algorithm 2
while APU 6= ∅ do

remove an ({a}, {b}, P) from APU ;
SPU ← SPU ∪ SPUext({a},{b},P) ;

// see Algorithm 4

return SPU ;

Algorithm 4: COMPUTATION OF THE MOST GEN-
ERAL SINGLE-PIECE UNIFIERS EXTENDING A
GIVEN PRE-UNIFIER
Access: Q, R and APU declared in Algorithm 3
Data: (Q′, H ′, P ′) a pre-unifier of Q with R
Result: The set of most general single-piece

unifiers extending (Q′, H ′, P ′)
begin

if sticky(Q′, P ′) = ∅ then
return {(Q′, H ′, P ′)} ; // it is a

single-piece unifier
else

QP ← {a ∈ Q \Q′ |
vars(a) ∩ sticky(Q′, P ′) 6= ∅} ;

Ext←Extend((Q′, H ′, P ′),QP ,APU);
// see Algorithm 5

EPU ← ∅;
foreach (Qext, Hext, Pext) ∈ Ext do

EPU ← EPU ∪
SPUext(Qext, Hext, Pext) ;
// recursive call

return EPU ;

7.2. The Specific Case of Atomic-Head Rules

Rules with an atomic head are often considered in
the literature, specifically in logic programming or in
deductive databases. One may ask if piece-unification
become simpler in this specific case. In fact, consid-
ering atomic-head rules does not simplify the defini-
tion of a piece-unifier in itself, but its computation. In-

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 19

Algorithm 5: COMPUTATION OF THE PRE-
UNIFIERS EXTENDING A GIVEN PRE-UNIFIER
W.R.T. TO A GIVEN SET OF ATOMS

Data: (Q′, H ′, P ′) a pre-unifier of Q with R, QP

a subset of Q (disjoint from Q′), APU a set
of atomic pre-unifiers

Result: The set of pre-unifiers extending
(Q′, H ′, P ′) w.r.t. QP and APU

begin
if QP = ∅ then

return {(Q′, H ′, P ′)}
else

Ext← ∅ ;
choose an atom a ∈ QP ;
foreach (a, b, Pa) ∈ APU do

if join(P ′, Pa) is valid then
Ext← Ext ∪ Extend((Q′∪
{a}, H ′ ∪ {b}, join(P, Pa)),
QP \ {a}, APU) ;

// recursive call

return Ext;

deed, there is now a unique way of associating any
atom fromQ with the head of a rule. It follows that de-
ciding whether there is a piece-unifier of Q with a rule
can be done in linear time with respect to the size of
Q (whereas it is NP-complete in the general case) and
each atom belongs to a single piece, thus the set of all
single-piece unifiers of Q with a rule can be computed
in polynomial time.

More precisely, if a rule R has an atomic head, then
every atom in Q participates in at most one most gen-
eral single-piece unifier of Q with R (up to bijective
variable renaming). This is is a corollary of the next
property.

Property 23 Let R be an atomic-head rule and Q be
a BCQ. For any atom a ∈ Q, there is at most one
Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a
piece-unifier of Q with R.

Proof: We prove by contradiction that two single-piece
unifiers cannot share an atom of Q. Assume there
are Q′1 ⊆ Q and Q′2 ⊆ Q such that Q′1 6= Q′2
and Q′1 ∩ Q′2 6= ∅, and µ1 = (Q′1, H, P

1
u) and

µ2 = (Q′2, H, P
2
u) two single-piece-unifiers of Q with

R, with H = head(R). Since Q′1 6= Q′2, one has
Q′1 \Q′2 6= ∅ or Q′2 \Q′1 6= ∅. Assume Q′1 \Q′2 6= ∅.
Let A = Q′1 ∩ Q′2 and B = Q′1 \ A. There is at least

one variable x ∈ vars(A) ∩ vars(B) such that there is
an existential variable e of head(R) in the class of P 1

u

containing x (otherwise µ1 has more than one piece).
Since H is atomic, there is a unique way of associat-
ing any atom with H , thus the class of P 2

u containing
x contains e as well. It follows that Q′2 is not a piece
since an atom ofA and an atom of B share the variable
x unified with an existential variable in µ2, while A is
included in Q′2 and B is not. �

The fact that an atom from Q participates in at most
one most general single-piece unifier allows some al-
gorithmic improvements. Indeed, when a piece-unifier
of Q′ with head(R) is successfully built, all the atoms
of Q′ can be removed from the set of atoms to be con-
sidered in the computation of the next piece-unifiers.
Furthermore, there is a unique way of associating any
atom from Q with head(R), hence there is only one
pre-unifier of Q′ with head(R). Algorithm 6 exploits
these specific aspects to compute all the single-piece
unifiers of a query with an atomic-head rule.

Example 13 Let R = q(x) → p(x, y) and Q =
p(u, v) ∧ p(v, t). Let us start from p(u, v): this atom
is unifiable with head(R) and p(v, t) necessarily be-
longs to the same piece-unifier (if any) because v ∈
sticky({p(u, v)}, {{u, x}, {v, y}}); indeed, v is in the
same class as the existential variable y; however,
{p(u, v), p(v, t)} is not unifiable with head(R) be-
cause, since v occurs at the first and at the sec-
ond position of a p atom, x and y should be uni-
fied, which is not possible, since y is an existen-
tial variable; thus, p(u, v) does not belong to any
piece-unifier with R. However, p(v, t) still has to
be considered. Let us start from it: p(v, t) is unifi-
able with head(R) and forms its own piece because
sticky({p(v, t)}{{v, x}, {t, y}}) is empty; indeed, t is
in the same class as the existential variable y, but does
not occur in any other atom. Hence, there is a sin-
gle (most general) piece-unifier of Q with R, namely
({p(v, t)}, {p(x, y)}, {{v, x}, {t, y}}).

It should be noted that any existential rule can be
decomposed into an equivalent set of rules with atomic
head by introducing a new predicate, which gathers
the variables of the original head (e.g. [4,1]). Hence,
the restriction to atomic-head rules can be made with-
out loss of expressivity. Now, the question is whether
it is more efficient to directly process rules with com-
plex heads, or to decompose them into atomic-head
rules and benefit from a simpler computation of piece-
unifiers. The experiments reported below clearly show
that the former choice is better.

20 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Algorithm 6: COMPUTATION OF ALL THE MOST
GENERAL SINGLE-PIECE UNIFIERS IN THE CASE
OF ATOMIC-HEAD RULES
Data: A BCQ Q and an atomic-head rule R
Result: The set of most general single-piece

unifiers of Q with R
begin

U ← ∅ ; // resulting set
A← {a ∈ Q | predicate(a) =

predicate(head(R))} ;
while A 6= ∅ do

choose an atom a ∈ A ;
Q′ ← {a} ;
while Q′ ⊆ A and there is a pre-unifier
(Q′, head(R), P) and sticky(Q′, P) 6= ∅
do

Q′ ← Q′ ∪ {a′ ∈ Q | a′ contains a
variable from sticky(Q′, P)} ;

if Q′ ⊆ A and there is a pre-unifier
(Q′, head(R), P) then

U ← U ∪ {(Q′, head(R), P)} ;
A← A \Q′ ;

else
A← A \ {a} ;

return U

7.3. Experiments and Perspectives

The query rewriting algorithm, instantiated with the
rewriting operator described in the preceding section,
has been implemented in Java. Since benchmarks ded-
icated to existential rules are not available yet, first ex-
periments were carried out with sets of existential rules
obtained by translation from ontologies expressed in
the description logic DL-LiteR, namely ADOLENA
(A), STOCKEXCHANGE (S), UNIVERSITY (U) and
VICODI (V). This benchmark was introduced in [28]
and then used in several papers, e.g., [14,12,18,19].
Ontologies A and U contain some rules with multiple
heads; the ontologies obtained by decomposing rules
into atomic-head rules are respectively known as AX
and UX. Additionally, we considered the translation of
a larger ontology, the DL-Lite version of OpenGalen28

(G), which contains more than 50k rules. Each ontol-
ogy is provided with five handcrafted queries.

8http://www.opengalen.org/

Table 1
Impact of rule decomposition

Time (ms) Output (#) Generated (#)

A AX A AX A AX
Q1 170 330 27 41 459 720
Q2 90 4900 50 1431 171 4567
Q3 240 47290 104 4466 316 13838
Q4 440 28620 224 3159 826 14526
Q5 2100 1h36 624 32921 2416 215523

U UX U UX U UX
Q1 0 10 2 5 1 4
Q2 0 0 1 1 105 120
Q3 10 20 4 12 42 155
Q4 1370 4190 2 5 2142 4720
Q5 20 20 10 25 153 351

In [19], we compared with other systems concern-
ing the size of the output and pointed out that none of
the existing systems output a complete set of rewrit-
ings. However, beside the fact that these systems have
evolved since then, one can argue that the size of the
rewriting set should not be a decisive criterion (in-
deed, assuming that the systems are sound and com-
plete, a minimal rewriting set can be obtained by se-
lecting most general elements, see Theorem 1). There-
fore, other criteria have to be taken into account, such
as the runtime or the total number of CQs generated
during the rewriting process.

All tests reported here were performed on a DELL
machine with a processor at 3.60 GHz and 16 GB of
RAM, with 4 GB allocated to the Java Virtual Ma-
chine.

Table 1 reports the behavior of the rewriting algo-
rithm on A vs AX and U vs UX with respect to three
parameters: the runtime, the size of the output (num-
ber of CQs) and the number of generated CQs. The
size of the output for AX and UX is before elimination
of queries containing auxiliary predicates. The gener-
ated CQs are all the rewritings built during the rewrit-
ing process (excluding the initial query and possibly
including some multi-occurrences of the same rewrit-
ings). We can see that avoiding rule decomposition
makes a substantial difference. The gain is particularly
striking with Q5 on A / AX with respect to all three
parameters (the runtime is 21 seconds for A and 1 hour
and 36 minutes for AX, the size of the output is more
than 52 times larger for AX before elimination of use-
less queries, and the number of generated queries is 89
times larger for AX). Moreover, we point out that only
29 / 102 rules in A and 5 / 77 rules in U have multiple

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 21

Table 3
Types of rules in the ontologies

Ontology Rules (#) Hierarchical rules (#)

A 102 72
S 52 16
U 77 36
V 222 202
G 50764 26980

heads, with only 2 atoms; we can reasonably expect
that the gain increases with the proportion of multiple-
head rules and the size of rule heads.

Table 2 presents the size of the output, the number
of generated CQs and the number of explored CQs for
each ontology (as well as the runtime for information,
see also Table 4). Note that, since subsumed rewritings
are removed at each step of the breadth-first algorithm,
only some of the rewritings generated at a given step
are explored at the next step. We can see that the num-
ber of generated queries can be large with respect to
the cardinality of the output, which is less marked for
explored queries.

Our query rewriting tool is able to process any kind
of existential rules. There is of course a price to pay
for this expressivity, in terms of complexity of the in-
volved mechanisms and time efficiency. We consider
the algorithms presented in this paper as basic ver-
sions, which can be further improved in various ways,
for instance by processing some specific kinds of rules
in a specific way. Let us illustrate this with the example
of rules expressing taxonomies. Indeed, a large part of
currently available ontologies is actually composed of
concept and role hierarchies. See Table 3: 71%, 31%,
47%, 91% and 53 % of the rules in ontologies A, S, U,
V and G, respectively, express atomic concept or role
inclusions.

We can compile these sets of rules as preorders on
predicates. The detailed presentation of how to com-
pute and process these preorders is out of the scope
of this paper. Briefly said, the preorders are integrated
into the rewriting process, which allows to generate
a smaller rewriting set, this set being unfolded at the
end to produce the expected UCQ. Our purpose here
is just to illustrate the fact that some improvements
of the basic version can dramatically decrease the
runtime, while still relying on the same fundamental
mechanisms. Table 4 allows to compare these two ver-
sions: PURE9 denotes the basic version of our tool

9Piece Unification based REwriting

and PUREH is the version with compiled hierarchical
rules (note that compilation is performed offline, hence
the algorithm takes as input the preorder and the non-
hierarchical rules).

We also compared to two other query rewriting
tools, Nyaya and Rapid. Nyaya is a tool dedicated to
UCQ rewriting with linear and sticky existential rules,
which implements the techniques presented in [14], in
particular an optimization for linear rules (which in-
clude DL-Lite ontologies). Table 4 shows that our tool
is generally faster on the considered benchmark, even
in its basic version, specially on Ontology A. This dif-
ference could be due to the fact that Nyaya does not
directly process multiple-head rules, hence has to de-
compose them into atomic-head rules. For the large
ontology G, Nyaya seemed to be still in a preprocess-
ing step after several hours. Note that the very latest
version of Nyaya includes parallel rewriting, which we
did not consider here, since our tool does include this
kind of optimization.

As far as we know, Nyaya is the only other tool able
to process existential rules beyond lightweight DLs.
We think that comparing to DL rewriting tools is not
very relevant, since these systems make use of spe-
cific features, like predicate arity bounded by two, or
the tree-model property. Tools tailored for DL-Lite ex-
ploit even further the very specific form of DL-Lite
axioms. However, we compared to one of these tools,
namely Rapid, to obtain an order of magnitude. Rapid
is one of the fastest tools dedicated to DL-Lite ontolo-
gies [12]. In Table 4, we can see that Rapid is indeed
generally faster than our tool, the difference being less
pronounced on the version with rule compilation.

Current work includes processing specific kinds of
rules in a specific way, while keeping a system able
to process any set of existential rules. Other optimiza-
tions could be implemented, such as exploiting depen-
dencies between rules to select the rules to be consid-
ered at each step. Moreover, the form of the consid-
ered output itself, i.e., a union of conjunctive queries,
leads to combinatorial explosion. Considering semi-
conjunctive queries instead of conjunctive queries as
in [32] can save much with respect to both the run-
ning time and the size of the output, without com-
promising the efficiency of query evaluation; in [32]
the piece-based rewriting operator is combined with
query factorization techniques. We did not consider
generating Datalog queries yet. Finally, further exper-
iments should be performed on more complex ontolo-
gies. However, even if slightly more complex ontolo-
gies could be obtained by translation from description

22 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

Table 2
Generated queries with the single-piece aggregator

Rules Query Output (#) Generated (#) Explored (#) Time (ms)

A Q1 27 459 74 170
Q2 50 171 70 90
Q3 104 316 104 240
Q4 224 826 256 440
Q5 624 2416 624 2100

S Q1 6 9 6 0
Q2 2 137 23 10
Q3 4 275 20 40
Q4 4 450 58 90
Q5 8 688 44 110

U Q1 2 1 2 0
Q2 1 105 32 0
Q3 4 42 10 10
Q4 2 2142 556 1370
Q5 10 153 14 20

V Q1 15 14 15 0
Q2 10 9 10 0
Q3 72 117 72 30
Q4 185 328 185 110
Q5 30 59 30 10

G Q1 2 2 2 10
Q2 1152 1275 1152 1090
Q3 488 1514 488 1050
Q4 147 154 147 30
Q5 324 908 324 1000

logics, real-world ontologies that would take advan-
tage of the expressiveness of existential rules, as well
as associated queries, are currently lacking.

Acknowledgments. We thank Giorgio Orsi for pro-
viding us with rule versions of ontologies A, S, U and
V, as well as the version of Nyaya used for the experi-
ments (October 2013 version). This work was partially
funded by the ANR project PAGODA (ANR-12-JS02-
007-01).

References

[1] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extend-
ing Decidable Cases for Rules with Existential Variables. In
C. Boutilier, editor, IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, pages 677–682, 2009.

[2] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On
Rules with Existential Variables: Walking the Decidability
Line. Artificial Intelligence, 175(9-10):1620–1654, 2011.

[3] C. Beeri and M.Y. Vardi. The Implication Problem for Data
Dependencies. In Automata, Languages and Programming, 8th
Colloquium, Acre (Akko), Israel, July 13-17, 1981, Proceed-
ings, volume 115 of Lecture Notes in Computer Science, pages
73–85. Springer, 1981.

[4] A. Calì, G. Gottlob, and M. Kifer. Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints. In
Proceedings of the 21st International Workshop on Descrip-
tion Logics (DL2008), Dresden, Germany, May 13-16, 2008,
volume 353. CEUR-WS.org, 2008.

[5] A. Calì, G. Gottlob, and T. Lukasiewicz. A General Datalog-
Based Framework for Tractable Query Answering over On-
tologies. In J. Paredaens and J. Su, editors, Proceedings of the
Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2009, June 19 - July
1, 2009, Providence, Rhode Island, USA, pages 77–86. ACM,
2009.

[6] A. Calì, G. Gottlob, and T. Lukasiewicz. A General Datalog-
Based Framework for Tractable Query Answering over On-
tologies. J. Web Sem., 14:57–83, 2012.

[7] A. Calì, G. Gottlob, and A. Pieris. Query Answering
under Non-guarded Rules in Datalog+/-. In P. Hitzler
and T. Lukasiewicz, editors, Web Reasoning and Rule Sys-
tems - Fourth International Conference, RR 2010, Bres-
sanone/Brixen, Italy, September 22-24, 2010. Proceedings,

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 23

Table 4
Runtime (ms) with several query rewriting tools

Rules Query PURE PUREH Nyaya Rapid

A Q1 170 120 1122 18
Q2 90 40 862 23
Q3 240 30 2363 34
Q4 440 200 5557 48
Q5 2100 440 33206 93

S Q1 0 0 4 7
Q2 10 10 4 9
Q3 40 40 46 13
Q4 90 20 7 12
Q5 110 80 8 15

U Q1 0 0 8 6
Q2 0 10 4 9
Q3 10 0 12 7
Q4 1370 120 6 13
Q5 20 10 10 15

V Q1 0 0 13 9
Q2 0 0 51 5
Q3 30 0 21 25
Q4 110 30 28 32
Q5 10 0 22 26

G Q1 10 0 5
Q2 1090 620 74
Q3 1050 290 59
Q4 30 10 10
Q5 1000 110 40

volume 6333 of Lecture Notes in Computer Science, pages 1–
17. Springer, 2010.

[8] A. Calì, D. Lembo, and R. Rosati. On the Decidability and
Complexity of Query Answering over Inconsistent and Incom-
plete Databases. In F. Neven, C. Beeri, and T. Milo, editors,
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June
9-12, 2003, San Diego, CA, USA, pages 260–271. ACM, 2003.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family. J. Autom. Reason-
ing, 39(3):385–429, 2007.

[10] A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded
Implicational Dependencies and their Inference Problem. In
Proceedings of the 13th Annual ACM Symposium on Theory
of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA,
pages 342–354. ACM, 1981.

[11] M. Chein and M.-L. Mugnier. Graph-based Knowledge Repre-
sentation and Reasoning—Computational Foundations of Con-
ceptual Graphs. Advanced Information and Knowledge Pro-
cessing. Springer, 2008.

[12] A. Chortaras, D. Trivela, and G. B. Stamou. Optimized Query
Rewriting for OWL 2 QL. In N. Bjørner and V. Sofronie-
Stokkermans, editors, Automated Deduction - CADE-23 - 23rd
International Conference on Automated Deduction, Wroclaw,

Poland, July 31 - August 5, 2011. Proceedings, volume 6803,
pages 192–206. Springer, 2011.

[13] C. Civili and R. Rosati. A Broad Class of First-Order
Rewritable Tuple-Generating Dependencies. In P. Barceló and
R. Pichler, editors, Datalog in Academia and Industry - Second
International Workshop, Datalog 2.0, Vienna, Austria, Septem-
ber 11-13, 2012. Proceedings, volume 7494, pages 68–80.
Springer, 2012.

[14] G. Gottlob, G. Orsi, and A. Pieris. Ontological Queries:
Rewriting and Optimization. In S. Abiteboul, K. Böhm,
C. Koch, and K.-L. Tan, editors, Proceedings of the 27th Inter-
national Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany, pages 2–13. IEEE Computer
Society, 2011.

[15] G. Gottlob and T. Schwentick. Rewriting Ontological Queries
into Small Nonrecursive Datalog Programs. In G. Brewka,
T. Eiter, and S. A. McIlraith, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Thirteenth
International Conference, KR 2012, Rome, Italy, June 10-14,
2012. AAAI Press, 2012.

[16] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke,
D. Magka, B. Motik, and Z. Wang. Acyclicity Notions for Ex-
istential Rules and Their Application to Query Answering in
Ontologies. J. Artif. Intell. Res. (JAIR), 47:741–808, 2013.

[17] P. Hell and J. Nesetril. The core of a graph. Discrete Mathe-
matics, 109(1-3):117–126, 1992.

[18] M. Imprialou, G. Stoilos, and B. Cuenca Grau. Benchmark-
ing Ontology-Based Query Rewriting Systems. In J. Hoff-
mann and B. Selman, editors, Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press, 2012.

[19] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. A
Sound and Complete Backward Chaining Algorithm for Ex-
istential Rules. In M. Krötzsch and U. Straccia, editors, Web
Reasoning and Rule Systems - 6th International Conference,
RR 2012, Vienna, Austria, September 10-12, 2012. Proceed-
ings, volume 7497 of Lecture Notes in Computer Science,
pages 122–138. Springer, 2012.

[20] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. On
the Exploration of the Query Rewriting Space with Existen-
tial Rules. In W. Faber and D. Lembo, editors, Web Reason-
ing and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. Proceedings, volume
7994 of Lecture Notes in Computer Science, pages 123–137.
Springer, 2013.

[21] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Za-
kharyaschev. The Combined Approach to Ontology-Based
Data Access. In T. Walsh, editor, IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
2656–2661. IJCAI/AAAI, 2011.

[22] M. Krötzsch and S. Rudolph. Extending Decidable Existential
Rules by Joining Acyclicity and Guardedness. In T. Walsh, ed-
itor, IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, pages 963–968. IJCAI/AAAI, 2011.

[23] N. Leone, M. Manna, G. Terracina, and P. Veltri. Efficiently
Computable Datalog∃ Programs. In G. Brewka, T. Eiter, and
S. A. McIlraith, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Thirteenth Interna-
tional Conference, KR 2012, Rome, Italy, June 10-14, 2012.

24 M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules

AAAI Press, 2012.
[24] C. Lutz, D. Toman, and F. Wolter. Conjunctive Query Answer-

ing in the Description Logic EL Using a Relational Database
System. In C. Boutilier, editor, IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 2070–
2075, 2009.

[25] M.-L. Mugnier. Ontological Query Answering with Existen-
tial Rules. In S. Rudolph and C. Gutierrez, editors, Web Rea-
soning and Rule Systems - 5th International Conference, RR
2011, Galway, Ireland, August 29-30, 2011. Proceedings, vol-
ume 6902, pages 2–23. Springer, 2011.

[26] G. Orsi and A. Pieris. Optimizing Query Answering under
Ontological Constraints. PVLDB, 4(11):1004–1015, 2011.

[27] W3C OWL Working Group. OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation, 2009.

[28] H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient Query
Answering for OWL 2. In A. Bernstein, D. R. Karger, T. Heath,
L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan,
editors, The Semantic Web - ISWC 2009, 8th International Se-
mantic Web Conference, ISWC 2009, Chantilly, VA, USA, Oc-
tober 25-29, 2009. Proceedings, volume 5823 of Lecture Notes
in Computer Science, pages 489–504. Springer, 2009.

[29] M. Rodriguez-Muro and D. Calvanese. High Performance
Query Answering over DL-Lite Ontologies. In G. Brewka,
T. Eiter, and S. A. McIlraith, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Thirteenth
International Conference, KR 2012, Rome, Italy, June 10-14,
2012. AAAI Press, 2012.

[30] R. Rosati and A. Almatelli. Improving Query Answering over
DL-Lite Ontologies. In F. Lin, U. Sattler, and M. Truszczyn-
ski, editors, Principles of Knowledge Representation and Rea-
soning: Proceedings of the Twelfth International Conference,
KR 2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI
Press, 2010.

[31] E. Salvat and M.-L. Mugnier. Sound and Complete Forward
and backward Chainingd of Graph Rules. In P. W. Eklund,
G. Ellis, and G. Mann, editors, Conceptual Structures: Knowl-
edge Representation as Interlingua, 4th International Confer-
ence on Conceptual Structures, ICCS ’96, Sydney, Australia,
August 19-22, 1996, Proceedings, volume 1115 of Lecture
Notes in Computer Science, pages 248–262. Springer, 1996.

[32] M. Thomazo. Compact Rewriting for Existential Rules. In
F. Rossi, editor, IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013. IJCAI/AAAI, 2013.

[33] M. Thomazo, J.-F. Baget, M.-L. Mugnier, and S. Rudolph. A
Generic Querying Algorithm for Greedy Sets of Existential
Rules. In G. Brewka, T. Eiter, and S. A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Thirteenth International Conference, KR 2012,
Rome, Italy, June 10-14, 2012. AAAI Press, 2012.

[34] T. Venetis, G. Stoilos, and G. B. Stamou. Query Extensions
and Incremental Query Rewriting for OWL 2 QL Ontologies.
J. Data Semantics, 3(1):1–23, 2014.

Appendix: Proof of Theorem 17

To prove the completeness of the single-piece based
operator, we first prove the following property:

Property 24 For any piece-unifier µ of Q with R,
there is a sequence of rewritings of Q with R using ex-
clusively most general single-piece unifiers and lead-
ing to a BCQ Qs such that Qs ≥ β(Q,R, µ).

Proof: We first introduce some notations. Given a par-
tition P and x a term occurring in P , P (x) is the class
of P that contains x. Let P and P ′ be two partitions
such that the terms of P ′ are included in the terms of
P and any class of P ′ is included in a class of P : then
we say that P ′ is a subpart of P (note that if P ′ and
P are defined on the same set, it means that P ′ is finer
than P)

Let Pc1, . . . , P cn be the pieces of Q′ according to
µ = (Q′, H ′, Pu) and let u be a substitution associated
to Pu. Let Q0 = Q,Q1, . . . Qn = Qs be a sequence
of rewritings of Q built as follows: for 1 ≤ i ≤ n,
Qi = β(Qi−1, Ri, µi) where µi = (Q′i, H

′
i, P

i
u) and

ui is a substitution associated with P i
u with:

– Ri is a safely renamed copy of R by a variable
renaming hi.

– H ′i is the image by hi of the subset of H ′ unified
by u with Pci

– P i
u is obtained from partition hi(Pu) (built from
Pu by applying hi) by (1) restricting it to the
terms ofQ′i andH ′i (2) refining it as much as pos-
sible while keeping the property that it is associ-
ated with a unifier of H ′i and Q′i. Note that P i

u is
a subpart of hi(Pu).

– Let u◦i = ui ◦ui−1 ◦ · · ·◦u1. Let P i◦
u be the parti-

tion assigned to u◦i . We know that P i◦
u is the join

of P 1
u , . . . P

i
u, thus P i◦

u is a subpart of Ph
u , the join

of the hi(Pu) for 1 ≤ i ≤ n. Indeed, for each i,
P i
u is a subpart of hi(Pu) and the following prop-

erty is easily checked: let s1 and s2 be substitu-
tions with disjoint domains, and P 1

s , P 2
s be their

associated partitions; then, the partition assigned
to s1 ◦ s2 (and to s2 ◦ s1) is exactly the join of P 1

s

and P 2
s .

– Q′1 = Pc1 and for i > 1, Q′i = u◦i−1(Pci). We
ensure the property than ∀i, u◦i−1(Pci)∩u◦i−1(Q\
Q′) = ∅. If u◦i−1(Pci) ∩ u◦i−1(Q \ Q′) 6= ∅,
we remove µi from the sequence because it is
useless since u◦i−1(Pci) ⊆ u◦i−1(Q \ Q′). In-
deed, let a ∈ u◦i−1(Pci) ∩ u◦i−1(Q \ Q′), there
are b ∈ Pci and b′ ∈ Q \ Q′, b 6= b′ such

M. König et al. / Sound, Complete and Minimal UCQ-Rewriting for Existential Rules 25

that u◦i−1(b) = u◦i−1(b
′) = a, so terms(b) ⊆

sep(Pci), so {b} is a piece, so Pci = {b} and
then u◦i−1(Pci) = {a} ⊆ u◦i−1(Q \ Q′). For
similar reasons, we ensure the property that ∀i,
∀j > i, u◦i−1(Pci) ∩ u◦i−1(Pcj) = ∅.

We now show that:

1. µi is a piece-unifier
2. µi is a most general piece-unifier
3. µi is a single-piece unifier

For the first point:

– Q′i ⊆ Qi−1 since ∀i, u◦i−1(Pci)∩u◦i−1(Q\Q′) =
∅ and ∀i, ∀j > i u◦i−1(Pci) ∩ u◦i−1(Pcj) = ∅

– H ′i ⊆ head(Ri) by construction.
– P i

u satisfies the conditions of a piece-unifier be-
cause Pu satisfies them and P i

u is a subpart of
hi(Pu).

For the second point, since P i
u is the finest partition

associated with a piece-unifier of H ′i and Q′i, we are
sure that µi is a most general piece-unifier.

For the third point, note that each atom of Q′i cor-
responds to at least one atom of Pci. Thus if Pci is
composed of a unique atom, so isH ′i which thus forms
a single-piece. Otherwise, Pci is a single-piece from
more than one atom; each atom a of Pci contains a
variable x such that Pu(x) contains an existential vari-
able y which comes from the subset of H ′ unified by
u with Pci. Thus the corresponding atom u◦i−1(a) in
Q′i is such that P i

u(u
◦
i−1(x)) contains the existential

variable hi(y). So Q′i forms a single piece.
At the end of the sequence, Qn ⊆ u◦n(Q \ Q′) ∪⋃
j∈1..n(un(. . . uj(body(Rj)))) and the terms of Pn◦

u

are the same as the terms of Ph
u . Since Pn◦

u is a sub-
part of Ph

u , we can say that Pn◦
u is finer than Ph

u so,
there is a substitution s such that uh = s ◦ u◦n and

s(u◦n(Q \ Q′)) = uh(Q \ Q′). Let h be the substi-
tution obtained by making the union of the inverses
of the hi, then h(uh(Q \ Q′) = u(Q \ Q′), so h ◦ s
is a homomorphism from u◦n(Q \ Q′) to u(Q \ Q′).
Then we can prove that for all j, 1 ≤ j ≤ n,
h(s(un(. . . uj(body(Rj))))) = u(body(R)). Indeed,
un(. . . uj(body(Rj))) = un(. . . u1(body(Rj))) since
the terms of body(Rj) do not appear in ui (i < j).

To conclude the proof, we have h(s(Qn)) ⊆
u(body(R))∪ u(Q \Q′) = β(Q,µ,R), hence h ◦ s is
a homomorphism from Qn to β(Q,µ,R), thus Qn ≥
β(Q,µ,R). �
Theorem 17 Given a BCQ Q and a set of rules R,
the set of rewritings of Q obtained by considering ex-
clusively most general single-piece unifiers is sound
and complete.

Proof: Soundness holds trivially since a single-piece
unifier is a piece-unifier.
For completeness, thanks to Theorem 12, we just have
to show by induction on k, the length of the rewriting
sequence leading from Q to a k-piece-rewriting of Q,
that: for any k-piece-rewritingQr ofQ, there existsQs

a piece-rewriting of Q obtained by using exclusively
most general single-piece unifiers such that Qs ≥ Qr.
For k = 0 the property is trivially satisfied.
For k ≥ 1, one has Qr = β(Qr′ , R, µ), with Qr′

being a piece-rewriting of Q obtained by a piece-
rewriting sequence of length k − 1. By induction hy-
pothesis, there exists Qs′ a piece-rewriting of Q ob-
tained by using exclusively single-piece unifiers such
that Qs′ ≥ Qr′ . By Lemma 15, either Qs′ ≥ Qr,
or there is a piece-unifier µ′ of Qs′ with R such that
β(Qs′ , R, µ′) ≥ Qr. In this latter case, thanks to Prop-
erty 24, there is a sequence of rewritings of Qs′ with
R using only single-piece unifiers and leading to a CQ
Qs such that Qs ≥ β(Qs′ , R, µ′). �

