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Abstract. Without a doubt, similarity measurement is important for
numerous applications (e.g., information retrieval, clustering, ontology
matching). Several attempts have been already made to develop simi-
larity measures for ontologies. We noticed that some existing similarity
measures are ad-hoc and unprincipled. In addition, there is still a need
for similarity measures which are applicable to expressive Description
Logics (i.e., beyond EL) and which are terminological (i.e., do not re-
quire an ABox). To address these requirements, we have developed a
new family of similarity measures. To date, there has been no thorough
empirical investigation of similarity measures. This has motivated us to
carry out two separate empirical studies. First, we compare the new mea-
sures along with some existing measures against a gold-standard. Second,
we examine the practicality of using the new measures over an indepen-
dently motivated corpus of ontologies (BioPortal library). In addition,
we examine whether cheap measures can be an approximation of some
more computationally expensive measures.

1 Introduction

The process of assigning a numerical value reflecting the degree of resemblance
between two ontology concepts or the so called conceptual similarity measure-
ment is important for numerous applications. Be it classical information retrieval,
ontology matching [9], ontology learning [4] or various other applications. It is
also known that similarity measurement is difficult. This can be easily seen by
looking at the several attempts that have been made to develop similarity mea-
sures, see for example [6, 23, 33, 24, 15, 25, 32]. The problem is also well-founded
in psychology and a number of psychological models of similarity have been al-
ready developed, see for example [8, 31, 27, 21, 30, 10, 14]. Rather than adopting
a psychological model for similarity as a foundation, we noticed that some exist-
ing similarity measures for ontologies are ad-hoc and unprincipled. In addition,
there is still a need for similarity measures which are applicable to expressive
Description Logics (DLs) (i.e., beyond EL) and which are terminological (i.e., do
not require an ABox). To address these requirements, we have developed a new
family of similarity measures which are founded on the feature-based psycholog-
ical model [30]. The individual measures vary in their accuracy/computational
cost based on which features they consider.

To date, there has been no thorough empirical investigation of similarity
measures. This has motivated us to carry out two separate empirical studies.



First, we compare the new measures along with some existing measures against
a gold-standard. Second, we examine the practicality of using the new measures
over an independently motivated corpus of ontologies (BioPortal1 library) which
contains over 300 ontologies. In addition, we examine whether cheap measures
can be an approximation of some more computationally expensive measures.

To understand the major differences between similarity measures w.r.t. the
task in which they are involved in, consider, for example, the following three
tasks:

– Task1: Given a concept C, retrieve all concepts D s.t. Similarity(C,D) > 0.
– Task2: Given a concept C, retrieve the N most similar concepts.
– Task3: Given a concept C and some threshold ∆, retrieve all concepts D s.t.

Similarity(C,D) > ∆.

We expect most similarity measures to behave similarly in Task 1 because we
are not interested in the particular similarity values nor any particular ordering
among the similar concepts. However, the Task 2 gets harder as N gets smaller.
In this case, a similarity measure that underestimates the similarity of some
very similar concepts and overestimates the similarity of others can fail the task.
In Task 3, the actual similarity values matter. Hence, using the most accurate
similarity measure is essential.

2 Preliminaries

We assume the reader to be familiar with DL ontologies. In what follows, we
briefly introduce the relevant terminology. For a detailed overview, the reader
is referred to [1]. The set of terms, i.e., concept, individual and role names, in

an ontology O is referred to as its signature, denoted Õ. Throughout the paper,
we use NC , NR for the sets of concept and role names respectively and CL to
denote a set of possibly complex concepts of a concept language L(Σ) over a
signature Σ and we use the usual entailment operator |=.

3 Desired properties for similarity measures

Various psychological models for similarity have been developed (e.g., Geometric
[27, 21], Transformational [19, 10] and Features [30] models). Due to the richness
of ontologies, not all models can be adopted when considering conceptual simi-
larity in ontologies. This is because many things are associated with a concept in
an ontology (e.g., atomic subsumers/subsumees, complex subsumers/subsumees,
instances, referencing axioms). Looking at existing approaches for measuring
similarity in DL ontologies, one can notice that approaches which aim at pro-
viding a numerical value as a result of the similarity measurement process are
mainly founded on feature-based models [30], although they might disagree on
which features to consider.

1 http://bioportal.bioontology.org/



In what follows, we concentrate on feature-based notions of similarity where
the degree of similarity SCD between objects C,D depends on features common
to C and D, unique features of C and unique features of D. Considering both
common and distinguishing features is a vital property of the features model.

Looking at existing approaches for measuring similarity in ontologies, we find
that some of these approaches consider common xor unique features (rather than
both) and that some approaches consider features that some instances (rather
than all) of the compared concepts have. To account for all the features of a
concept, we need to look at all (possibly complex) entailed subsumers of that
concept. To understand this issue, we present the following example:

Example 1 Consider the ontology:
{Animal v Organism u ∃eats.>, P lant v Organism,

Carnivore v Animal u ∀eats.Animal, Herbivore v Animal u ∀eats.P lant,
Omnivore v Animal u ∃eats.Animal u ∃eats.P lant}

Please note that our “Carnivore” is also known as obligate carnivore. A
good similarity function Sim(·) is expected to derive that Sim(Carnivore, Om-
nivore) > Sim(Carnivore, Herbivore) because the first pair share more com-
mon subsumers and have fewer distinguishing subsumers. On the one hand
Carnivore, Herbivore and Omnivore are all subsumed by the following com-
mon subsumers (abbreviated for readability): {>, Org,A,∃e.>}. In addition,
Carnivore and Omnivore share the following common subsumer: {∃e.A}.
On the other hand, they have the following distinguishing subsumer: {∃e.P}
while Carnivore and Herbivore have the following distinguishing subsumers:
{∃e.P,∀e.P,∃e.A,∀e.A}. Here, we have made a choice to ignore (infinitely) many
subsumers and only consider a select few. Clearly, this choice has an impact on
Sim(·). Details on such design choices are discussed later.

We refer to the property of accounting for both common and distinguishing
features as rationality. In addition, the related literature refer to some other
properties for evaluating similarity measures (e.g., equivalence closure, symme-
try, triangle inequality, monotonicity, subsumption preservation, structural de-
pendence). For a detailed overview, the reader is referred to [6, 18].

4 Overview of existing approaches

We classify existing similarity measures according into two dimensions as follows.

Taxonomy vs. ontology based measures Taxonomy-based measures [23, 33,
24, 20, 16] only consider the taxonomic representation of the ontology (e.g., for
DLs, we could use the inferred class hierarchy); hence only atomic subsumptions
are considered (e.g., Carnivore v Animal). In fact, this can be considered
an approximated solution to the problem which might be sufficient in some
cases. However, the user must be aware of the limitations of such approaches.
For example, direct siblings are always considered equi-similar although some
siblings might share more features/subsumers than others.



Ontology-based measures [6, 15, 18] take into account more of the knowledge
in the underlying ontology (e.g., Carnivore v ∀eats.Animal). These measures
can be further classified into (a) structural measures, (b) interpretation-based
measures or (c) hybrid. Structural measures [15, 18] first transform the compared
concepts into a normal form (e.g., EL normal form or ALCN disjunctive nor-
mal form) and then compare the syntax of their descriptions. To avoid being
purely syntactic, they first unfold the concepts w.r.t. the TBox which limits the
applicability of such measures to cyclic terminologies. Some structural measures
[18] are applicable only to inexpressive DLs (e.g., EL) and it is unclear how they
can be extended to more expressive DLs. Interpretation-based measures mainly
depend on the notion of canonical models (e.g., in [6] the canonical model based
on the ABox is utilised) which do not always exist (e.g., consider disjunctions).

Intensional vs. extensional based measures Intensional-based measures
[23, 33, 15, 18] exploit the terminological part of the ontology while extensional-
based measures [24, 20, 16, 6] utilise the set of individual names in an ABox or
instances in an external corpus. Extensional-based measures are very sensitive
to the content under consideration; thus, adding/removing an individual name
would change similarity measurements. These measures might be suitable for
specific content-based applications but might lead to unintuitive results in other
applications because they do not take concept definitions into account. Moreover,
extensional-based measures cannot be used with pure terminological ontologies
and always require representative data.

5 Detailed inspection of some existing approaches

After presenting a general overview of existing measures, we examine in detail
some measures that can be considered “cheap” options and explore their possible
problems. In what follows, we use SAtomic(C) to denote the set of atomic sub-
sumers for concept C. We also use ComAtomic(C,D),DiffAtomic(C,D) to denote
the sets of common and distingushing atomic subsumers respectively.

5.1 Rada et al.

This measure utilises the length of the shortest path [23] between the compared
concepts in the inferred class hierarchy. The essential problem here is that the
measure takes only distinguishing features into account and ignores any possible
common features.

5.2 Wu and Palmer

To account for both common and distinguishing features, Wu & Palmer [33]
presented a different formula for measuring similarity, as follows:

SWu & Palmer(C,D) = 2·|ComAtomic(C,D)|
2·|ComAtomic(C,D)|+|DiffAtomic(C,D)|

Although this measure accounts for both common and distinguishing fea-
tures, it only considers atomic concepts and it is more sensitive to commonalties.



5.3 Resnik and other IC measures

In information theoretic notions of similarity, the information content ICC =
−logPC of a concept C is computed based on the probability (PC) of encoun-
tering an instance of that concept. For example, P> = 1 and IC> = 0 since >
is not informative. Accordingly, Resnik [24] defines similarity SResnik(C,D) as:

SResnik(C,D) = ICLCS

where LCS is the least common subsumer of C and D (i.e., the most specific
concept that subsumes both C and D). IC measures take into account features
that some instances of C and D have, which are not necessarily neither common
nor distinguishing features of all instances of C and D. In addition, Resnik’s
measure in particular does not take into account how far the compared concepts
are from their least common subsumer. To overcome this problem, two [20, 16]
other IC-measures have been proposed:

SLin(C,D) =
2 · ICLCS

ICC + ICD

SJiang&Conrath(C,D) = 1− ICC + ICD − 2 · ICLCS

6 A new family of similarity measures

Following our exploration of existing measures and their associated problems, we
present a new family of similarity measures that addresses these problems. The
new measures adopt the features model where the features under consideration
are the subsumers of the concepts being compared. The new measures are based
on Jaccard’s similarity coefficient [13] which has been proved to be a proper
metric (i.e., satisfies the properties: equivalence closure, symmetry and triangle
inequality). Jaccard’s coefficient, which maps similarity to a value in the range
[0,1], is defined as follows (for sets of “features” A′,B′ of A,B, i.e., subsumers of
A and B):

J(A,B) = |(A′∩B′)|
|(A′∪B′)|

We aim at similarity measures for general OWL ontologies and thus a naive
implementation of this approach would be trivialised because a concept has in-
finitely many subsumers. To overcome this issue, we present some refinements for
the similarity function in which we do not simply count all subsumers but con-
sider subsumers from a set of (possibly complex) concepts of a concept language
L. More precisely, for concepts C, D an ontology O and a concept language L,
we set:

S(C,O,L) = {D ∈ L(Õ) | O |= C v D}
Com(C,D,O,L) = S(C,O,L) ∩ S(D,O,L)

Union(C,D,O,L) = S(C,O,L) ∪ S(D,O,L)

Sim(C,D,O,L) =
|Com(C,D,O,L)|
|Union(C,D,O,L)|



To design a new measure, it remains to specify the set L. In what follows, we
present some examples:

AtomicSim(C,D) = Sim(C,D,O,LAtomic(Õ)), and LAtomic(Õ) = Õ ∩NC .

SubSim(C,D) = Sim(C,D,O,LSub(Õ)), and LSub(Õ) = Sub(O).

GrSim(C,D) = Sim(C,D,O,LG(Õ)), and LG(Õ) = {E | E ∈ Sub(O)

or E = ∃r.F, for some r ∈ Õ ∩NR and F ∈ Sub(O)}.

where Sub(O) is the set of concept expressions in O. AtomicSim(·) captures
taxonomy-based measures since it considers atomic concepts only. The rationale
of SubSim(·) is that it provides similarity measurements that are sensitive to
the modeller’s focus. It also provides a cheap (yet principled) way for measuring
similarity in expressive DLs since the number of candidates is linear in the size
of the ontology. To capture more possible subsumers, one can use GrSim(·).
We have chosen to include only grammar concepts which are subconcepts or
which take the form ∃r.F to make the following experiments more manageable.
However, the grammar can be extended easily.

7 Approximations of similarity measures

Some of the presented examples for similarity measures might be practically
inefficient due to the large number of candidate subsumers. For this reason, it
would be nice if we can explore and understand whether a “cheap” measure can
be a good approximation for a more expensive one. We start by characterising
the properties of an approximation in the following definition.

Definition 1 Given two similarity functions Sim(·),Sim′(·), and an ontology
O, we say that:

– Sim′(·) preserves the order of Sim(·) if ∀A1, B1, A2, B2 ∈ Õ: Sim(A1, B1) ≤
Sim(A2, B2) =⇒ Sim′(A1, B1) ≤ Sim′(A2, B2).

– Sim′(·) approximates Sim(·) from above if ∀A,B ∈ Õ: Sim(A,B) ≤
Sim′(A,B).

– Sim′(·) approximates Sim(·) from below if ∀A,B ∈ Õ: Sim(A,B) ≥
Sim′(A,B).

Consider AtomicSim(·) and SubSim(·). The first thing to notice is that the
set of candidate subsumers for the first measure is actually a subset of the set

of candidate subsumers for the second measure (Õ ∩ NC ⊆ Sub(O)). However,
we need to notice also that the number of entailed subsumers in the two cases
need not to be proportionally related. For example, if the number of atomic can-
didate subsumers is n and two compared concepts share n

2 common subsumers.
We cannot conclude that they will also share half of the subconcept subsumers.
They could actually share all or none of the complex subsumers. Therefore, the
order-preserving property need not be always satisfied. As a concrete example,



let the number of common and distinguishing atomic subsumers for C and D
to be 2 and 4 respectively (out of 8 atomic concepts) and let the number of
their common and distinguishing subsoncept subsumers to be 4 and 6 respec-
tively (out of 20 subconcepts). Let the number of common and distinguishing
atomic subsumers for C and E to be 4 and 4 respectively and let the number
of their common and distinguishing subsoncept subsumers to be 4 and 8 re-
spectively. In this case, AtomicSim(C,D) = 2

6 = 0.33, SubSim(C,D) = 4
10 =

0.4, AtomicSim(C,E) = 4
8 = 0.5, SubSim(C,E) = 4

12 = 0.33. Notice that
AtomicSim(C,D) < AtomicSim(C,E) while SubSim(C,D) > SubSim(C,E).
Here, AtomicSim(·) is not preserving the order of SubSim(·) andAtomicSim(·)
underestimates the similarity of C,D and overestimates the similarity of C,E
compared to SubSim(·).

A similar argument can be made to show that entailed subconcept subsumers
are not necessarily proportionally related to the number of entailed grammar-
based subsumers. We conclude that the above examples of similarity measures
are, theoretically, non-approximations of each other. In the next section, we are
interested in knowing the relation between these measures in practice.

8 Empirical evaluation

The empirical evaluation constitutes two parts. In Experiment 1, we carry out a
comparison between the three measuresGrSim(·), SubSim(·) andAtomicSim(·)
against human experts-based similarity judgments. In [22], IC-measures along
with Rada measure [23] has been compared against human judgements using
the same data set which is used in the current study. The previous study [22]
has found that IC-measures are worse than Rada measure so we only include
Rada measure in our comparison and exclude IC-measures. We also include
another path-based measure with is Wu & Palmer [33]. In Experiment 2, we
further study in detail the behaviour of our new family of measures in prac-
tice. GrSim(·) is considered as the expensive and most precise measure in this
study. We use AtomicSim(·) as the cheap measure as it only considers atomic
concepts as candidate subsumers. Studying this measure can allow us to un-
derstand the problems associated with taxonomy-based measures as they all
consider atomic subsumers only. Recall that taxonomy-based measures suffer
from other problems that were presented in the conceptual inspection section.
Hence, AtomicSim(·) can be considered the best candidate in its class since it
does not suffer from these problems. We also consider SubSim(·) as a cheaper
measure than GrSim(·) and more precise than AtomicSim(·) and we expect it
to be a better approximation for GrSim(·) compared to AtomicSim(·). We ex-
cluded from the study instance-based measures since they require representative
data which is not guaranteed to be present in our corpus of ontologies.

We have shown in the previous section that the above three measures are not
approximations of each other. However, this might not be the case in practice
as we will explore in the following experiment. We study the relation between
AtomicSim(·) and SubSim(·) and refer to this as AS, the relation between
AtomicSim(·) and GrSim(·) and refer to this as AG, the relation between



SubSim(·) and GrSim(·) and refer to this as SG. For each relation, we exam-
ine the following properties: (1) order-preservation, (2-3) approximation from
above/below, (4) correlation and (5) closeness. Properties 1-3 are defined in
Definition 1. For correlations, we calculate Pearson’s coefficient for the relation
between each pair of measures. Finally, two measures are considered close if the
following property holds: |Sim1(C,D)−Sim2(C,D)| ≤ ∆ where ∆ = 0.1 in the
following experiment.

8.1 Infrastructure

With respect to hardware, we used the following machine: Intel Quad-core i7
2.4GHz processor, 4 GB 1333 MHz DDR3 RAM, running Mac OS X 10.7.5. As
for the software, firstly, the OWL API v3.4.4 [11] is used. Secondly, to avoid
runtime errors caused by using some reasoners with some ontologies, a stack of
freely available reasoners were utilised: FaCT++ [29], HermiT [26], JFact 2, and
Pellet [28].

8.2 Test data

Experiment 1 In 1999, SNOMED-CT was jointly developed by the College
of American Pathologists (CAP) and the National Health Service (NHS) in
the UK. For the purposes of our comparison study, we use the 2010 version
of SNOMED-CT. This ontology has been described as the most complete ref-
erence terminology in existence for the clinical environment [3, 2]. It provides
comprehensive coverage of diseases, clinical findings, therapies, body structures
and procedures. As in February 2014, the ontology has 397,924 concepts. These
are organised into 13 hierarchies. The ontology has the highest views amongst
all BioPortal ontologies with over 13,600 views.

The reason for choosing this particular ontology is the availability of test data
that shows the degree of similarity between some concepts from that ontology as
rated by medical experts. Pedersen et al. [22] introduced a test set consisting of 30
pairs of clinical terms. The similarity between each pair is rated by two groups of
medical experts: physicians and coders. For details regarding the construction of
this dataset, the reader is referred to [22]. We consider the average of physicians
and coders similarity values in the comparison. We include in our study 19 pairs
out of the 30 pairs after excluding pairs that have at least one concept that has
been described as an ambiguous concept in the ontology (i.e., is assigned as a
subclass of the concept ambiguous concept) or not found in the ontology.

Experiment 2 The BioPortal library of biomedical ontologies has been used
for evaluating different ontology-related tools such as reasoners [17], module
extractors [7], justification extractors [12], to name a few. The corpus contains
365 user contributed ontologies (as in October 2013) with varying characteristics
such as axiom count, concept name count and expressivity.

2 http://jfact.sourceforge.net/



A snapshot of the BioPortal corpus from November 2012 was used. It contains
a total of 293 ontologies. We excluded 86 ontologies which have only atomic
subsumptions as for such ontologies the behaviour of the considered measures
will be identical, i.e., we already know that AtomicSim(·) is good and cheap.
We also excluded 38 more ontologies due to having no concept names or due to
run time errors. This has left us with a total of 169 ontologies.

Due to the large number of concept names (565,661) and difficulty of spotting
interesting patterns by eye, we calculated the pairwise similarity for a sample of
concept names from the corpus. The size of the sample is 1,843 concept names
with 99% confidence level. To ensure that the sample encompasses concepts with
different characteristics, we picked 14 concepts from each ontology. The selection
was not purely random. Instead, we picked 2 random concept names and for
each random concept name we picked some neighbour concept names (i.e., 3
random siblings, atomic subsumer, atomic subsumee, sibling of direct subsumer).
This choice was made to allow us to examine the behaviour of the considered
similarity measures even with special cases such as measuring similarity among
direct siblings.

8.3 Experiment workflow

Experiment 1 The similarity of 19 SNOMED-CT concept pairs was calculated
using the three methods along with Rada [23] and Wu & Palmer [33] measures.
We compare these similarities to human judgements taken from the Pedersen et
al.[22] test set.
Experiment 2
Module extraction: For optimisation, rather than working on the whole on-
tology, the next steps are performed on a ⊥-module [5] with the set of 14 con-
cept names as seed signature. One of the important properties of ⊥-modules
is that they preserve almost all the seed signature’s subsumers. There are 3
cases in which a ⊥-module would miss some subsumers. The first case occurs
when O |= C v ∀s.X and O |= C v ∀s.⊥ . The second case occurs when
O |= C v ∀s.X and O |= ∀s.X ≡ >. The third case occurs when O |= C v ∀s.X
and O 6|= C v ∃s.X. Since in all three cases ∀s.X is a vacuous subsumer of C,
we chose to ignore these, i.e., use ⊥-modules without taking special measures to
account for them.
Candidate subsumers extraction: In addition to extracting all atomic con-
cepts in the ⊥-module we recursively use the method getNestedClassExpres-
sions() to extract all subconcepts from all axioms in the ⊥-module. The ex-
tracted subconcepts are used to generate grammar-based concepts. For practical
reasons, we only generate concepts taking the form ∃r.D s.t. D ∈ Sub(O) and r a
role name in the signature of the extracted ⊥-module. Focusing on existential re-
strictions is justifiable by the fact that they are dominant in our corpus (77.89%
of subconcepts) compared to other complex expression types (e.g., universal re-
strictions: 2.57%, complements: 0.14%, intersections: 13.89, unions: 2.05%).
Testing for subsumption entailments: For each concept Ci in our sample
and each candidate subsumer Sj , we test whether the ontology entails that Ci v
Sj . If the entailment holds, subsumer Sj is added to the set of Ci’s subsumers.



Calculating pairwise similarities: The similarity of each distinct pair in our
sample is calculated using the three measures.

8.4 Results and discussion

Experiment 1 (How good are the new measures?) GrSim and SubSim
had the highest correlation values with experts’ similarity (Pearson’s correlation
coefficient r = 0.87, p < 0.001). Secondly comes AtomicSim with r = 0.86.
Finally comes Wu & Palmer then Rada with r = 0.81 and r = 0.64 respectively.
Clearly, the new expensive measures are more correlated with human judgements
which is expected as they consider more of the information in the ontology.The
differences in correlation values might seem to be small but this is expected
as SNOMED is an EL ontology and we expect the differences to grow as the
expressivity increases. Figure 1 shows the similarity curves for the 6 measures
used in this comparison. As we can see in the figure, the new measures along
with Wu & Palmer measure preserve the order of human similarity more often
than the Rada measure. And, they mostly underestimated the similarity whereas
the Rada measure was mostly overestimating the human similarity.

Fig. 1: 6 Curves of similarity for 19 SNOMED clinical terms

Experiment 2 Cost of the new measures One of the main issues we want
to explore in this study is the cost (in terms of time) for similarity measurement
in general and the cost of the most expensive similarity measure in particular.

The average time per ontology taken to calculate grammar-based pairwise
similarities was 2.3 minutes (standard deviation σ = 10.6 minutes, median
m = 0.9 seconds) and the maximum time was 93 minutes for the Neglected
Tropical Disease Ontology which is a SRIQ ontology with 1237 logical axioms,
252 concepts and 99 roles. For this ontology, the cost of AtomicSim(·) was only
15.545 sec and 15.549 sec for SubSim(·). 9 out of 196 ontologies took over 1 hour
to be processed. One thing to note about these ontologies is the high number of



logical axioms and roles. However, these are not necessary conditions for long
processing times. For example, the Family Health History Ontology has 431 roles
and 1103 logical axioms and was processed in less than 13 sec. Clearly, GrSim(·)
is far more costly than the other two measures. This is why we want to know
how good/bad a cheaper measure can be.

Approximations and correlations Regarding the relations (AS,AG, SG)
between the three measures, we want to find out how frequently can a cheap
measure be a good approximation for/have a strong correlation with a more
expensive measure. Recall that we have excluded all ontologies with only atomic
subsumptions from the study. However, in 21 ontologies (12%), the three mea-
sures were perfectly correlated (r = 1, p < 0.001) mostly due to having only
atomic subsumptions in the extracted module (except for three ontologies which
have more than atomic subsumptions). In addition to these perfect correlations
for all the three measures, in 11 more ontologies the relation SG was a per-
fect correlation (r = 1, p < 0.001) and AS and AG were very highly correlated
(r ≥ 0.99, p < 0.001). These perfect correlations indicate that, in some cases,
the benefit of using an expensive measure is totally neglectable.

In about a fifth of the ontologies (21%), the relation SG shows a very high
correlation (1 > r ≥ 0.99, p < 0.001). Among these, 5 ontologies were 100%
order-preserving and approximating from below. In this category, in 22 ontologies
the relation SG was 100% close. As for the relation AG, in only 14 ontologies
(8%) the correlation was very high.

In nearly half of the ontologies (49%), the correlation for SG was considered
medium (0.99 > r ≥ 0.90, p < 0.001). And in 19 ontologies (11%), the correlation
for SG was considered low (r < 0.90, p < 0.001) with (r = 0.63) as the lowest
correlation value. In comparison, the correlation for AG was considered medium
in 64 ontologies (38%) and low in 55 ontologies (32.5%).

As for the order-preservations, approximations from above/below and close-
ness for the relations AG and SG, we summarise our findings in the following
table. Not surprisingly, SubSim(·) is more frequently a better approximation
to GrSim(·) compared to AtomicSim(·). Although one would expect that the

Order-preservations Approx. from below Approx. from above Closeness
AG 32 32 37 28
SG 44 49 42 56

Table 1: Ontologies satisfying properties of approximation

properties of an ontology have an impact on the relation between the different
measures used to compute the ontology’s pairwise similarities, we found no indi-
cators. With regard to this, we categorised the ontologies according to the degree
of correlation (i.e., perfect, high, medium and low correlations) for the SG rela-
tion. For each category, we studied the following properties of the ontologies in
that category: expressivity, number of logical axioms, number of concepts, num-
ber of roles, length of the longest axiom, number of subconcepts. For ontologies



in the perfect correlation category, the important factor was having a low num-
ber of subconcepts. In this category, the length of the longest axiom was also
low (≤ 11, compared to 53 which is the maximum length of the longest axiom
in all the extracted modules from all ontologies). In addition, the expressivity of
most ontologies in this category was AL. Apart from this category, there were
no obvious factors related to the other categories.

How bad is a cheap measure? To explore how likely it is for a cheap measure
to encounter problems (e.g., fail one of the tasks presented in the introduction),
we examine the cases in which a cheap measure was not an approximation for
the expensive measure. AG and SG were not order-preserving in 80% and 73%
of the ontologies respectively. Also, they were not approximations from above
nor from below in 72% and 64% of the ontologies respectively and were not close
in 83% and 66% of the ontologies respectively.

If we take a closer look at the African Traditional Medicine ontology for
which the similarity curves are presented in Figure 2, we find that the SG is
100% order-preserving while AG is only 99% order-preserving. Note that for
presentation purposes, only part of the curve is shown. Both relations were 100%
approximations from below. As for closeness, SG was 100% close while AG was
only 12% close. In order to determine how bad are AtomicSim(·) and SubSim(·)
as cheap approximations for GrSim(·), we study the behaviour of these measures
w.r.t. the Tasks 1-3 presented in the introduction.

Both cheap measures would succeed in performing Task 1 while only SubSim(·)
can succeed in Task 2 (1% failure chance for AtomicSim(·)). For Task 3, there
is a higher failure chance for AtomicSim(·) since closeness is low (12%).

Fig. 2: African Traditional Medicine ontology

As another example, we examine the Platynereis Stage Ontology for which
the similarity curves are presented in Figure 3. In this ontology, both AG and
SG are 75% order-preserving. However, AG was 100% approximating from above
while SG was 85% approximating from below (note the highlighted red spots).
In this case, both AtomicSim(·) and SubSim(·) can succeed in Task 1 but not
always in Tasks 2 & 3 with SubSim(·) being worse as it can be overestimating
in some cases and underestimating in other cases.



Fig. 3: Platynereis Stage Ontology

In general, both measures are good cheap alternatives w.r.t. Task 1. However,
AtomicSim(·) would fail more often than SubSim(·) when performing Tasks 2-3.

9 Threats to validity

9.1 Threats to internal validity

For practical reasons and due to the high runtime of the similarity measurement
process, we had to restrict our analysis to a relatively small sample of concepts
per ontology. Although the sample is statistically significant in terms of size, it
could not be selected in a pure random mechanism. Rather than selecting 14
random concepts, we selected 2 random concepts and 6 neighbour concepts for
each random concept. This design option was necessary for understanding the
behaviour of similarity measures. Note that non-neighbour concepts tend to have
low similarity values. Including a lot of the non-neighbour concepts in our sample
could, for example, cause unwanted high percentages for order-preservation.

In addition, relying on only one ontology (i.e., SNOMED-CT) for comparing
the new measures and some existing measures against human judgements might
limit the generalizability of the results. Rather than dealing with these results
as confirmatory, they should be treated as preliminary indicators.

9.2 Threats to external validity

Although ontologies in the BioPortal corpus may not be representative for all
available ontologies, it does contain a wide range of ontologies with different
properties (e.g., size and expressivity). Moreover, it is built and maintained by a
community that has a noticeable interest in the similarity measurement problem.
Therefore, it is reasonable to adopt this corpus for testing services that would
be provided for its community.

10 Conclusion and future research directions

In conclusion, no obvious indicators were found to inform the decision of choosing
between a cheap or expensive measure based on the properties of an ontology.



However, the task under consideration and the error rate allowed in the intended
application can help. In general, SubSim(·) seems to be a good alternative to the
expensive GrSim(·). First, it is restricted in a principled way to the modeller’s
focus. Second, it has less failure chance in practise compared to AtomicSim(·).

As for our future research directions, we aim to extend the study by looking
deeply at the possible causes of failure (e.g., it can be due to a certain relation
between the pair of concepts at the point of failure). And in a broader sense, we
aim to extend our research into different notions of similarity and relatedness
(e.g., similarity between pairs of concepts usually referred to as relational simi-
larity). Finally, we would like to apply and evaluate the presented measures in
a real ontology-based application.
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