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Abstract. With the recent growth of Linked Data on the Web there is an in-
creased need for knowledge engineers to find ontologies to describe their data.
Only limited work exists that addresses the problem of searching and ranking
ontologies based on a given query term. In this paper we introduce DWRank, a
two-staged bi-directional graph walk ranking algorithm for concepts in ontolo-
gies. We applied this algorithm on the task of searching and ranking concepts
in ontologies and compare it with state-of-the-art ontology ranking models and
traditional information retrieval algorithms such as PageRank and tf-idf. Our
evaluation shows that DWRank significantly outperforms the best ranking mod-
els on a benchmark ontology collection for the majority of the sample queries.

1 Introduction

The growth in Linked Data coupled with the widespread use of ontologies in vertical
domains such as in the bioinformatics domain highlights an increasing need to discover
existing ontologies and the concepts and relations within. Prefix.cc3, a service to reg-
ister prefixes, for example, counts about 1250 ontologies (April 2014). Currently, the
potential to "reuse" ontologies is hampered by the fact that it is hard to find the right
ontology for a given use case. There has been previous work, for example [7,1, 14, 13],
to tackle the problem of finding and selecting ontologies. However, only with search
engines that employ sophisticated techniques to rank ontologies based on a keyword
query, will it be possible to use ontologies to their full potential. Recently, search en-
gines for ontologies have emerged [18], but the ranking algorithms they use are based
only on document-ranking algorithms. In this paper we propose a new ontology concept
retrieval framework that uses a number of techniques to rate and rank each concept in
an ontology based on how well it represents a given search term. The ranking in the
framework is conducted in two phases. First, our offline ranking algorithm, DWRank,
computes the centrality of a concept within an ontology based on its connectivity to
other concepts within the ontology itself. Then, the authority of a concept is computed
which depends on the number of relationships between ontologies and the weight of
these relationships based on the authority of the source ontology. The assumption be-
hind this is that ontologies that reuse and are reused by other ontologies are more
authoritative than others. In a second, online query processing phase a candidate set
for a top-k concept is selected from the offline ranked list of ontologies and then filtered
based on two strategies, the diverse results semantics and the intended type semantics.
The resulting list of top-k ranked concepts is then evaluated against a ground truth de-
rived through a human evaluation published previously [2]. Our evaluation shows that
DWRank significantly outperforms the state-of-the-art ranking models on the task of
ranking concepts in ontologies for all ten benchmark queries in the ontology collection.

3 http://prefix.cc



The remainder of the paper is structured as follows. In Section 2 we describe the overall
framework and briefly define some of the terms used throughout the paper. Section 3
describes the offline ranking phase of our framework, in particular the DWRank algo-
rithm. Section 4 then describes the online query processing and filtering phase that is
independent of the offline ranking model. We evaluate the DWRank algorithm with
and without the additional filters in Section 5. We position our work in relation to
state-of-the-art in Section 6 before we conclude in Section 7.

2 Relationship-based top-k Concept Retrieval

In the following we first define the terms used throughout the paper. We then give a
brief overview of the mechanics of the ranking framework.

2.1 Preliminaries

An ontology in this paper refers to a graph based formalisation O = (V, E, L) of a
domain knowledge. V is a finite set of nodes where v € V denotes a domain concept
in O, F is the edge set where (v, v') € E denotes an explicit or implicit relationship
between v and v’. L is a labelling function which assigns a label L(v) (resp. L(e) or
L(0)) to node v (resp. an edge ¢ € E or the ontology O). In practice the labelling
function L may specify (1) the node labels to relate the node to the referent concept,
e.g. person, place and role; and (2) the edge labels as explicit relationships between
concepts e.g., friendship, work and participation or implicit relationships e.g., sub-
concept and super-concept, and (3) the ontology label to relate the ontology to the
domain or some identity.

Intra-Ontology Relationships. An intra-ontology relationship I, = ((v,v’), O) is
a directed edge (v, v), where (v, v') € E(O) for v € V(0O) and v' € V(0).

Inter-Ontology Relationships. An inter-ontology relationship I, = ((v,0'), O, O')
is a directed edge (O, O’), where (v, v') € E(O), L(v) = L(0), L(v') = L(O') and L
(v,v') = owl:imports*.

Forward Link Concepts. Forward link concepts Crpinks(v, O) is a set of concepts
V' in an ontology O, where V! C V and V v; € V' | 3 (v,v;) € E.

Back Link Concepts. Back link concepts Cprinks(v,O) is a set of concepts V" in
an ontology O, where V" C V and Vv; € V” | 3 (v;,v) € E.

2.2 Overview of the framework

The framework is composed of two phases as shown in Fig. 1. The first phase is an
offline phase where two indices, i.e. ConHubldr and OntAuthldz, are constructed for
the whole ontology corpus. The second phase is an online query processing phase where
a query is evaluated and the top-k concepts are returned to the user.

Offline Ranking and Index construction: The framework first constructs a Con-
Hubldx on all concepts and OntAuthldz on all ontologies in the ontology corpus 0. The
ConHubldx maps each concept of an ontology to its corresponding hub score. Similarly,
the OntAuthldz maps each ontology to its precomputed authority score.

4 http://wuw.w3.org/2002/07/owl#imports
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Fig. 1. Relationship-based top-k concept retrieval framework

Online Query Evaluation: Upon receiving a query Q, the framework extracts the
candidate result set Cg = {(v1,01), ..., (v;, O;)} including all matches that are seman-
tically similar to Q, by querying the ontology repository. The hub score and authority
score for all (v,0) € Cg is extracted from the corresponding indices as H(Cg) and
A(Cq) lists. A ranked list R(Cg) of candidate result set is computed from H(Cq) and
A(Cq). R(Cq) is further filtered to satisfy two result set properties, i.e. the Diverse
Result Semantics and the Intended Type Semantics, as introduced in Sec. 4.3.

3 Offline Ranking and Index Construction

In this section the offline ranking phase of the relationship-based top-k concept re-
trieval framework is described (cf. Fig. 2). First, we introduce the ranking model in
Section 3.1 and then we introduce the index construction based on our ranking model
in Section 3.2.
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3.1 DWRank: A Dual Walk based Ranking Model

Our ranking model characterises two features of a concept to determine its rank in a
corpus:

1. A concept is more important, if it is a central concept to the ontology within which
it is defined.
2. A concept is more important, if it is defined in an authoritative ontology.

More precisely, first, the offline ranking module generates for each concept in the
corpus a (hub score), a measure of the centrality of a concept, i.e. the extent that the
concept is related to the domain for which the ontology is formalised. Second, the
authority score is generated as a measure of the authoritativeness of the ontology.
A link analysis algorithm, i.e. PageRank, is performed that leverages the ontological
structure and semantics to compute these scores. However, the difference between
our model and a traditional PageRank-like algorithms is two-fold. Firstly, we perform
the link analysis independently on each ontology to find a hub score and then only
on the whole ontology corpus considering an ontology as a node and inter-ontology
relationships as links. Secondly, we differentiate the type of relationship (i.e. inter-
ontology and intra-ontology) and the direction of the walk varies on the basis of the
type of the relationship. Our Model DualWalkRank is named after its characteristic of
a dual directional walk to compute the ranks of concepts.

HubScore: The centrality of a concept within an ontology. The hub score is
a measure of the centrality of a concept within an ontology. We define a hub function
h(v,0) that calculates the hub score. The hub function is characterised by two features:

— Connectivity: A concept is more central to an ontology, if there are more intra-
ontology relationships starting from the concept.

— Neighbourhood: A concept is more central to an ontology, if there is an intra-
ontology relationships starting from the concept to another central concept.

According to these features, a concept accepts the centrality of another concept based
on its forward link concepts (like a hub). The hub function is therefore a complete
reverse of the PageRank algorithm [15] where a node accepts scores from its referent
nodes i.e. back link concepts. We adopt a Reverse-PageRank [9] as the hub function to
find the centrality of a concept within the ontology. The hub function is an iterative
function and at any iteration k, the hub function is featured as Eq.1.

mwoy= Yy O (1)
v €CFLinks(v,0) | BLinkS(vi’ )|

Within the original PageRank framework there are two types of links in a graph,
strong and weak links. The links that actually exist in the graph are strong links.
Weak links are artificially created links by a dumping factor «, and they connect all
nodes to all other nodes. Since data-type relationships of a concept do not connect it
to other concepts in an ontology, most PageRank-like algorithms adopted for ontology
ranking consider only object type relationships of a concept while ignoring others. We
adopt the notion of weak links in our hub function to be able to also consider data-type
relationships along with objeC}f—type relationships for the ontology ranking. We generate
a set of artificial concepts V(O) in the ontology that act as a sink for every data-type
relationship and label these concepts with the data type relationship label. i.e. V v; €
V', L(vj) = L (v;,v}). After incorporating weak links and weak nodes notions, Eq. 2

J
reflects the complete feature of our hub function.
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In Eq. 2, Csprinks(v, O) is a set of strong forward link concepts and Cy prinks(v, O)
is a set of weak forward link concepts. Our hub function is similar to [19], but varies
from it as we consider weak nodes and we are not considering relationships weights. We
normalise the hub scores of each concept v within an ontology O through the z-score
of the concept’s hub score after the last iteration of the hub function as follows:

h(v,0) — pp(0)
hu(0.0) = 2220 3)

In Eq 3, hy(v,0) is a normalised hub score of v, uy(O) is an average of hub scores
of all concepts in the ontology and o,(O) is the standard deviation of hub scores of
the concepts in the ontology.

AuthorityScore: The authoritativeness of a concept. The authority score is
the measure of the authoritativeness of a concept within an ontology. As mentioned
earlier, the authoritativeness of a concept depends upon the authoritativeness of the
ontology within which it is defined. Therefore, we define the authority function a(0)
to measure the authority score of an ontology. Our authority function is characterised
by the following two features:
— Reuse: An ontology is more authoritative, if there are more inter-ontology rela-
tionships ending at the ontology.
— Neighbourhood: An ontology is more authoritative, if there is an inter-ontology
relationship starting from an authoritative ontology to the ontology.

Based on these two features, an inter-ontology relationship I.((v,v"),0,0’) is con-
sidered as a “positive vote” for the authoritativeness of ontology O~ from O. The
PageRank is adopted as the authority function, whereby each ontology is considered a
node and inter-ontology relationships are considered links among nodes. Eq. 4 formalise
the authority function which computes the authoritativeness of O at the kth iteration.

11—« ax—1(0;)
ax(0) = ——+« E _— (4)
0;€0BLinks(O) |OFLinks(Oi)‘

In Eq. 4, Oprinks(0O) is a set of back link ontologies and Oprinks(O) is a set of
forward link ontologies. The definition of Oppinks(O) (resp. OpLinks(O)) is similar to
CFLinks (v, O) (resp. Cprinks(v, 0)), however, the links are inter-ontology relationships.

Similar to the hub score, we also compute the z-score of each ontology after the
last iteration of authority function as follows:

" a(0) ~ 1a(0)
an(0) = Ua(o)

(5)

In Eq. 5, a,(O) is the normalised authority score of v, u,(0) is an average of the
authority scores of all ontologies in the corpus and o,(0) is the standard deviation of
the authority scores of ontologies in O.

DWRank Score. Finally, we define the DWRank R(, 0), as a function of the text
relevancy, the normalised hub score and the normalised authority score. The function
is described as a quantitative metric for the overall relevance between the query Q and
the concept v; and the concept hub and authority score as follows:



Rw,0) = Fv(v,Q) * [wih(v,0) + w2a(O)]
Fy(v,Q) =Y fuslg, d(av)) (6)

q€Q

In Eq. 6, wy and wy are the weights for the hub function and the authority function.
Fy(v,Q) aggregates the contribution of all matched words of a node v, in an ontology
O, to the query keywords ¢ € Q. fss returns a binary value : it returns 1 if ¢ has a
match ¢(g,) in v, and 0 otherwise. The metric favours the nodes v that are semantically
matched to more keywords of the query Q.

3.2 Index Construction: An execution of DWRank

In this section, we explain the execution of the DWRank model and the construction
of the indices.

ConHublIdx. A bi-level index where each entry in the index maps a concept of an
ontology to its normalised hub score h,, (v, O) as shown in Fig.2 (top left). To construct
the ConHubldzx for all ontologies in 0, (1) the hub function is executed in an iterative
way to get the hub score of all the concepts in ontology O, and (2) after the last
iteration, we compute the normalised hub scores and (3) insert the concepts along
with their normalised hub scores in an ontology to the index.

OntAuthIdx. An index where each entry in the index maps an ontology to its nor-
malised authority score a,(O) as shown in Fig.2 (buttom left). To construct the On-
tAuthldz on the corpus 0, (1) the authority function is executed to get an auth score of
all the ontologies in 0, (2) after the last iteration, the normalised authority scores are
computed, and (3) the ontology along with its normalised authority scores is inserted
as an entry to the index.

Inter-Ontology Relationships Extraction. As we mentioned earlier, the author-
ity function leverages the inter-ontology relationships that are directed links among
ontologies. If ontology OntA reuses the resources in ontology OntB, ontology OntA
declares the reuse of resources through an OWL import property i.e. owl:imports.
Since some ontology practitioners fail to explicitly declare the reuse of ontologies,
the owl:imports relationships in an ontology are often inaccurate representations of
the inter-ontology relationships. We therefore identify the implicit inter-ontology re-
lationships by considering the reused resources in the corpus. Finding the implicit
inter-ontology relationships involves the following steps:

1. Missing Relationships Detection: To find all missing inter-ontology relation-
ships we identify the resources that appear in multiple ontologies. If a resource
(referred to as “reused resource”) is used in multiple ontologies (referred to as
“hosting ontologies”) then there must be some inter-ontology relationships. If these
relationships are not explicitly defined then there are missing relationships among
the ontologies.

2. Relationship Direction Identification: Since inter-ontology relationships are
directed links between ontologies, another challenge is to find the direction of the
missing relationships. A part of the ontology corpus in Fig. 2 (top right), contains
a reused resource (i.e. filled node) that appears in three different ontologies O’, 0"
and O". In the absence of explicit relationships, some implicit relationships exit
and to create these relationships we need to identify the direction of the relation-
ships i.e. from O’ to O and from O” to O”. To identify the direction, we use the



namespace of the reused resource. If the namespace of the reused resource matches
to the namespace of a hosting ontology (e.g. O"), then the ontology is selected as
the “home ontology” of the reused resource and the inter-ontology relationships are
directed from the other hosting ontologies(i.e. O', O ) to the home ontology i.e.
o".

3. Explicit relationships Creation: Once the missing relationships and their direc-
tions are identified, we create explicit inter-ontology relationships using owl: imports
properties.

Algorithm 1: FINDREL: Inter-Ontology Relationships Extraction
Input: A finite set O = {o1,...,0,} of Ontologies

Output: An Index M,, that maps inLinks of all o;

for i € [1,n] do

nso; < 0;.topNS();

3 M,s.put(o;, nso, );

N o=

4 for r € o,cp1,n) N Mro.contains(r) = false do
while 3 0jc;1,n) - 7€ 05 A 0; # 0j do
L oList,.add(o;);
7 if oList,.size() > 0 then
8 oList,.add(o;);
9 M;o.put(oList,);

10 while 3 ricp1,n,.,.5ize()) dO

11 NSr,, < Tk.getNS();

12 for s € [ 1, oList,, .size()] do

13 NSo,  Mns.get(os);

14 if ns,, = ns,, then

15 Ok < 0

16 break;

17 if Moo.contains(oy) then

18 L oListy, .addAllDistinct(Moo.get (ox))

19 | Moo.put(oy, oList,,)

20 return M,,

The inter-ontology relationship extraction process is briefly described in Algorithm
1. Firstly the namespace of each ontology is identified (line 1-3). TopNS() returns the
namespace that is the namespace of most of the resources in the ontology. Secondly,
all reused resources are identified and each resource and a corresponding list of hosting
ontologies are recorded in M,., as a key value pair (line 4-9). Finally, for each resource
in the M,, the home ontology is identified and the resource URI is replaced with the
ontology URI and all missing inter-ontology relationships for an ontology are recorded
in M,, (line 10-19).

An important point to consider is that although an ontology OntA may reuse more
than one resource from another ontology OntB there will only be one inter-ontology
relationship from OntA to OntB according to the semantics of the owl:imports property.
Therefore, independently of the number of resources that are reused in OntA from
OntB, we create a single inter-ontology relationship from OntA to OntB.

Table 1 and Table 2 show the top five ontologies in the benchmark ontology collec-
tion and the corresponding number of inter-ontology relationships that are directed to



these ontologies (i.e. reuse count) counted through explicit and implicit relationships,
respectively.

Table 1. Top five reused ontologies based on explicit inter-ontology relationships

IURI [Count‘
http://def.seegrid.csiro.au/isotc211/is019150/-2 /2012 /basic 36
http://purl.org/dc/elements/1.1/ 25
http://www.ifomis.org/bfo/1.1 16
http://www.w3.0rg/2006/time 16
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl|15

Table 2. Top five reused ontologies based on implicit inter-ontology relationships

[URI [Count]
http://www.w3.org/2002/07 /owl# 881
http://www.w3.org/2000/01 /rdf-schema 361
http://www.w3.0rg/1999/02/22-rdf-syntax-ns| 298
http://xmlns.com/foaf/0.1/ 228
http://www.w3.org/2004/02/skos/core 140

4 Online Query Processing

In this section, we first describe the concept retrieval task and then we outline the
online query processing technique that finds the top-k ranked concepts for Q in 0 with
the highest semantic relevance.

4.1 Concept Retrieval Task.

Given a query string § = {q1, g2, . . . ,qx}, an Ontology corpus 0 = {O1, Oa, . . .
,Op, } and a word sense similarity threshold 6, the concept retrieval task is to find
the Co = {(v1,01), . . . ,(vs,0;)} from 0, such that there is a surjective function fs;

from Q to Cg where (a) v has a partial or an exact matched word ¢(q,) for q € Q (b)
for a partially matched word, SenSim(q , ¢(g,)) > 0. We refer to Cg as a candidate
set of ) introduced by the mapping f;.

SenSim(q , ¢(g,)) is a word similarity measure of a query keyword and a partially
matched word in L(v).

4.2 Query Evaluation

In the online query evaluation (c.f Fig. 3), first a candidate set for a top-k concept is
selected from the ontology data store i.e. OntDataStore, and then the relevance of each
concept is calculated based on the formulae defined in Eq. 6.

Candidate Result Set Selection. A user query evaluation starts with the selection
of a candidate set Cg for Q. A candidate result set Cg is characterised by two features:

1. To be part of the candidate set a candidate concept v must have at-least one exact
or partial match ¢(g,) for any query keyword ¢ € @ as part of the value of (a)
rdfs:label (b) rdfs:comment (c) rdfs:description property;or 3¢ € Q | ¢(¢y)
is part of L(v).
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Fig. 3. Online Query Processing

2. The word sense similarity of ¢ and ¢(g,) i.e. senSim(q,¢(g,)) should be greater
than the sense similarity threshold 6.

In our current implementation, we check the word sense similarity using WordNet and
set a word sense similarity threshold 8§ = 0.85. Each entry in a candidate list denotes a
candidate concept v’ and is a pair (v,0) (shown in Fig. 3) of L(v) and L(O) where v
€ V(0). Since for the reused resources there are multiple hosting ontologies, therefore
v’ may have multiple entries in a candidate set if it is a reused resource.

Concept Relevance. For each entry in the candidate list, two scores are retrieved
from the stored indices built during the offline ranking phase. The entry (v,0) is used
to retrieve the hub score of concept v in ontology O from the ConHubldz, and the
authority score of ontology O from the OntAuthldx. The two scores are combined
according to the formulae of Eq. 6, that provides the final concept relevance of each v
to the Query Q.

4.3 Filtering top-k results

In this section, we discuss the filtering strategies of our framework to enhance the
semantic similarity of the results to the keyword query. We introduce two properties
for the top-k results:

Diverse Results Semantic. Considering the semantics of a query allows us to re-
move repetitive results from the top-k results to increase the diversity in the result
set. As mentioned earlier, if a candidate concept v is reused/extended in 'n’ hosted
ontologies i.e. {O1,0a3,...,0,} then it may appear multiple times in a candidate
result set (i.e. Cg = {(v,01), (v,02),...,(v,0y,)}). In this case we remove the du-
plicates from the candidate result set.

Intended type Semantic. The semantic differentiates the intended type from the
context resource of a concept. The label of a concept v may have multiple keywords
as a description of the concept e.g., the label of a concept® in the GND ontology has

® http://d-nb.info/standards/elementset/gnd#Name0f ThePerson



the keywords “Name of the Person”. Here “Name” is the intended type, whereas
“Person” is the context resource. According to the intended type semantic property
a concept should appear in the top-k if and only if its intended type matches to
at-least one of the query keywords q € Q.

Algorithm 2: ToP-K FILTER
Input: Concept Relevance Map R(Cq) = {[(v1, O1),m1], .., [(Un, On),rn]}
Output: top-k results L(Cq) = {[(v1,01),r1], .., [(vk, Ok),rx]}
R:(Cq) /* A map to store intermediate results */
for i € [1,n] do
e < R(Cq).get(i);
if R(Cq).contains(e’) () v(e)= v(e’) N O(e) # O(e') then
Rs(Cq).put([(v, On), n]);
for ¢” where v(e") = v and O(e"") # Oy, do
| Ru(Ca)put[(v, 0", (" — ra)])’

8 R(Cgq).removeAll(e where concept is v);

N0 ks W

9 else
10 L R:(Cq).put(e);

11 R (Cq) <« sortByValue(Rs(Cq));

12 while (L(Cq).size() < k) () (i € [1,n]) do

13 e < R(Cq).get(i);

14 if ¢ (qv(e)) is a multi-keyword match then
15 if I, (¢ (qu(e))) = q then

16 L L(Cg).put(e);

17 else
18 L L(Cq).put(e);

19 return L(Cg)

Algorithm 2 explains the top-k results filtering process. It takes as input a Concept
Relevance Map R(Cg) and returns the top-k results. First, the diverse results semantics
are preserved (line 2-10) for R(Cg), and then the check for intended type semantics is
applied (line 11-18) until the top-k results are retrieved.

A map R,(Cg) is initialised to store the intermediate results that preserve the diverse
results semantics. All candidate concepts in R(Cg) that appear only once in R(Cq)
preserve the diverse results semantics, therefore they become part of Rs(Cg) (line 10).
For all reused concepts, first the home ontology Oy (v) of the concept v is identified. The
entry e= [(v,0),r] € R(Cq) for which ontology of the concept v is its home ontology
(i.e. O=0y(v)) becomes part of the Rs(Cg) (line 5). For all other entries ¢” for v a
new entry is created by subtracting the relevance score of e i.e. 7, from the r” and
add it to the Rs(Cgq) (line 6-7). The process decreases the relevance score of duplicate
entries by a factor of rj,. Then all such e’ from R(Cq) are removed since they have
already been dealt with through candidate concepts of v.

The next step is to check the intended type semantic. For brevity, a detailed discussion
of the intended type checking is exempted from Algorithm 2. The ontology structure
and the Information Retrieval method are used to identify the intended type. For a
concept v, its sub-classes, super-classes and inter-ontology relationships are extracted
as the context of v. WS4J5 API is used to calculate the similarity of different words in
the concept v with its context. The word that has a higher similarity score in regards

5 https://code.google.com/p/wsdj/



Table 3. DWRank Effectiveness

Person |Name|Event|Title |Loc. |Addr.|Music|Org. |Author|Time
AP@10 {|0.9 0.7 |1 0.7 (0.7 0.8 0.7 0.9 |0.8 0.8
MAP@10 |{0.98 [0.82 |1 0.88 [0.86 |0.94 |0.80 [0.85 |0.78 |0.74
DCG@10 ||37.58 |19.11 |35.12 |12.45|24.88|23.53 |14.82 |33.70(18.24 |22.53
NDCG@10(|0.55 [0.44 [0.51 |0.26 |0.60 [0.63 [0.46 |0.53 [0.57 |0.54

to the context is considered as the intended type of the concept. However, to reduce
the cost of ensuring the intended type semantic for top-k results, the filter is applied
until we retrieved the top-k results in the final results L. For this, first the Rs(Cg) is
sorted in a decreasing order based on its relevance score r, so the more relevant results
for query @ are at the top of the Rs(Cg) (line 11). Then the intended type of the
candidate concept is checked only until ’k’ concepts are selected from R,(Cg) or there
are no more results in R(Cg) (line 12). If the concept v has a single exact or partial
matched word ¢ g,(e) then by default it preserves the semantics and becomes part of
L(Cgq) (line 18), otherwise we check its intended type. If its intended type is equal to
the query keyword ¢ € @, the concept is included in L(Cgq) otherwise, it is ignored.

5 Experimental Evaluation

In the following we present an experimental evaluation of our relationship based top-
k concept retrieval framework on a benchmark suite [2]. We conducted two sets of
experiments to evaluate: (1) the effectiveness of the DWRank ranking model presented
in Sec. 3 and (2) the effectiveness of the additional filtering phase presented in Sec. 4.

5.1 Experimental Settings

To evaluate our approach we use a benchmark suite [2], that includes a collection
of ontologies, a set of benchmark queries and a ground truth established by human
experts. This collection is composed of 1011 ontologies and ten keyword queries. The
benchmark evaluates eight state-of-the-art ranking algorithms on the task of ranking
ontologies. We use the performance of these ranking models as the baseline to evaluate
our approach. For a fair analysis, we implemented two versions of our approach: (1)
the DWRank model (2) the DWRank model + Filters. The reasoning is that the filters
can be applied to any of the evaluated ranking models, thus, in the second step we only
evaluate the effectiveness of the filters. The effectiveness of the framework is measured
in terms of its Average Precision (AP), Mean Average Precision (MAP), Discounted
Cumulative Gain (DCG) and Normalised Discounted Cumulative Gain (NDCG).

5.2 Experimental Results

We next present our findings.

Effectiveness of DWRank. In the first set of experiments, we evaluated the effec-
tiveness of DWRank in comparison with the eight baseline ranking models. We ran the
ten sample queries on the ontology collection and retrieved the top-k results accord-
ing to the proposed ranking model. We recorded the AP@10, the MAP@10, the DCG@10
and the NDCG@10. The effectiveness measure results are shown in Table 3. Next, we
compared our results with the baseline for the same dataset with the sample queries.
The results are shown in Fig. 4. Each graph here presents an effectiveness measure of
a ranking model for all ten queries, where the x-axis is the unit of measure and the
y-axis is the ranking model. Each box on a graph presents the range of effectiveness
measure for 10 sample queries according to the gold standard.
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Fig. 4. Effectiveness of Ranking Model

Fig. 4 shows the maximum, minimum and average performance of DWRank in com-
parison to the best performance of the baseline ranking models for each of the ten
queries. The graph shows that DWRank performs better than the best performing
ranking algorithm for most queries. For the location and music query, the AP@10 and
MAP@10 for DWRank is lower than the other best performing ranking model. However,
the maximum average MAP@10 for DWRank on ten queries is 0.84 that is greater than
the average of Tf-Idf, the best baseline ranking models, (i.e., 0.63). The box plot also
shows that AP@10 and MAP@10 of DWRank ranges from 0.7 ~1.0 that means the per-
formance of DWRank is more stable on the ontology collection for the sample queries
than the baseline ranking models.

Similarly, the DCG@10 values in Fig. 4(c) and NDCG@10 values in Fig. 4(d) for the
ranking models show that DWRank is more effective than the baseline models. The
maximum and minimum measures are closer to the Betweenness Measure (BM) model,
however, the average performance of DWRank is much higher than the average per-
formance of BM.

Fig. 5 compares the MAP@10 (resp. NDCG@10) for DWRank on all ten queries with the
maximum MAP@10 (resp. NDCG@10) achieved with any of the baseline ranking model on
the sample queries. The result shows that DWRank outperforms the best other ranking
model for MAP@10 (resp. NDCG@10) for all but two queries. The experiment confirms our
claim about the stable performance of the DWRank algorithm.

Effectiveness of DWRank+Filter. For the evaluation of the filter performance,
we ran the ten sample queries of the benchmark collection with the DWRank model
extended with the two filters proposed earlier, i.e. diverse result semantics and intended
type semantics. Fig. 6 shows the effectiveness of DWRank compared to DWRank+filters.
The average AP@10 increased from 0.8 to 0.9, i.e. a 12 % increase in the effectiveness
of results.

From the evaluation it is obvious that the filter improves the overall performance
of our framework. A detailed analysis on the precision and recall of the filter is out of
scope of this paper. However some True positive (TP), False positive(FP), True negative
(TN) and False negative (FN) examples regarding our current implementation of the
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intended type semantic filter are shown in Table 4. We analyse the top-10 results of
DWRank without intended type semantic filter and then with the filter. For each query
if there are TN, FN, FP examples we selected them or otherwise a random TP example.

Table 4. Intended Type Semantic Filter Performance in Relationship-based top-k Concept
Retrieval Framework

Query term Label of concept Human |Intended Filter
Judgement| Judgement

person personal communication model X X
name gene name X X
event academic event v v
title spectrum title X X
location hematopoiesis location trait X X
address E45_ address v X
music sound and music computing X X
organization|3D structural organization datrum X X
author author list v X
time time series observation X v

6 Related Work

The Linked Open Vocabularies (LOV) search engine’, initiated in March 2011, is to
the best of our knowledge, the only purpose-built ontology search engine available on
the Web. It uses a ranking algorithm based on the term popularity in Linked Open
Data (LOD) and in the LOV ecosystem [18].

" http://lov.okfn.org



There are also some ontology libraries available that facilitate the locating and re-
trieving of potentially relevant ontology resources [13]. Some of these libraries are
domain-specific such as the Open Biological and Biomedical Ontologies library® or the
BioPortal [14], whereas others are more general such as OntoSearch [16] or the TONES
Ontology Repository”. However, as discussed by Noy & d’Aquin [13] only few libraries
support a keyword search, only one (Cupboard [4]) supports a ranking of ontologies
based on a user query using an information retrieval algorithm (i.e. tf-idf), and none
support the ranking of resources within these ontologies.

Semantic Search engines such as Swoogle [6] (which was initially developed to rank
ontologies only), Sindice.com [17], Watson [5], or Yars2 [10] do allow a search of ontol-
ogy resources through a user query. The ranking in these search engines follows tradi-
tional link-based ranking methods [12], in particular adapted versions of the PageRank
algorithm [15], where links from one source of information to another are regarded as a
‘positive vote’ from the former to the latter. Often, these ranking schemes also take the
provenance graph of the data into account [11]. AKTiveRank [1], ranks ontologies based
on how well they cover specified search terms. Falcon [3] is a popularity-based scheme
to rank concepts and ontologies. Other strategies, mainly based on methods proposed
in the information retrieval community, are employed in Semantic Search [8], but what
all these methods have in common is that they are targeted to rank instances, but do
not work well for ranking concepts and properties in ontologies [7, 1]. Another related
approach is presented in [19] identifies the most important concepts and relationships
from a given ontology, however the approach does not support ranking concept that
belongs to multiple ontologies.

7 Conclusion and Future Work

In this paper we have presented a relationship-based top-k concept retrieval and ranking
framework for ontology search. The ranking model is comprised of two phases, an offline
ranking and index construction phase and an online query and evaluation phase. In
the offline ranking phase our DWRank algorithm computes a rank for a concept based
on two features, the centrality of the concept in the ontology, and the authority of the
ontology that defines the concept. The online ranking phase filters the top-k ranked
list of concepts by removing redundant results and by determining the intended type of
the query term and removing concept types that are not closely related to the intended
query type. We evaluated our DWRank algorithm without the online query processing
filters against state-of-the-art ranking models on a benchmark ontology collection and
also evaluated the added performance of the proposed filters. The evaluation shows
that DWRank outperforms the best performing ranking algorithm for most queries
while exhibiting a much stabler performance (i.e. MAP@10 of 0.84) than the average
of the best performing ranking models of the benchmark (i.e. MAP@10 of 0.63 ). The
filters proposed in the online ranking phase further increased the average APQ@Q10 by
12%. Although our algorithm shows significantly improved performance compared to
the state-of-the-art in ontology ranking models, we believe further improvements are
possible through learning the weights in computing the authority and the hub score
using linear classification model. Also, in the online query processing phase we could
pre-compute indices for the diverse result semantics and intended type semantics to
increase the performance of the online query.

8 http://www.obofoundry.org/
9 http://owl.cs.manchester.ac.uk/repository/
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