
Roadmapping and Navigating in the Ontology
Visualization Landscape

Marek Dudáš, Ondřej Zamazal, and Vojtěch Svátek

Department of Information and Knowledge Engineering,
University of Economics, W. Churchill Sq.4, 130 67 Prague 3, Czech Republic,

{marek.dudas|ondrej.zamazal|svatek}@vse.cz

Abstract. Proper visualization is essential for ontology development,
sharing and usage; various use cases however pose specific requirements
on visualization features. We analyzed several visualization tools from the
perspective of use case categories as well as low-level functional features
and OWL expressiveness. A rule-based recommender was subsequently
developed to help the user choose a suitable visualizer. Both the analysis
results and the recommender were evaluated via a questionnaire.

1 Introduction

Numerous visualization methods have been proposed for OWL ontologies and
many software tools implementing them appeared in the past decade, ranging
from semantic-web-specific approaches to proposals of UML1 profiles [4, 14, 16]
leveraging on the similarity with software engineering models. However, so far
no visualization method has been accepted by the majority of the semantic web
community as de facto standard. One reason clearly is that different use cases
require different ontology visualization methods.

The goal of this paper is, first, to survey existing software tools from the use
case perspective (‘roadmapping’ aspect of the paper), and, second, to build a
prototype ontology visualization tools recommender based on our insights (‘nav-
igation’ aspect of the paper). We believe that such a recommendation tool could
find a broad audience of ontology/vocabulary users within the semantic web and
linked data realms.

Section 2 provides a classification of ontology visualization use cases based
on existing literature. Section 3 surveys existing visualization tools and eval-
uates them with respect to use case categories. Section 4 briefly presents our
recommender, both structurally and in use. Section 5 overviews the outcomes
of a questionnaire survey over both the findings from our analysis and the rec-
ommender. Section 6 summarizes related work. Finally, Section 7 wraps up the
paper with conclusions and future work.

1 http://www.omg.org/spec/UML/2.4.1/

Fig. 1. Ontology visualization use case categories

2 Visualization Use Case Categories and Tool Features

Based on ad hoc analyses of literature and own experience, we collected nine pos-
sible use cases of ontology visualization: making screenshots of selected parts of
an ontology (uc1) or of its overall structure (uc2); structural error detection
(uc3); checking the model adequacy (how well the ontology covers its domain)
(uc4); building a new ontology (uc5); adapting an existing ontology, e.g., adding
entities or transforming the style, to fit specific usage (uc6); analyzing an on-
tology in order to annotate data with (or create instances of) its entities (uc7);
deciding about the ontology suitability for a specific use case (uc8); analyzing an
ontology in view of mapping its entities to those from another ontology (uc9).

We then aggregated the use cases to four categories, named Editing, In-
spection, Learning and Sharing, positioned in a 2-dimensional space. The first
dimension distinguishes whether the user actively ‘develops’ the ontology or just
‘uses’ it. The second dimension is the required level of detail, i.e. whether an
overview (e.g., class hierarchy) is enough or a detailed view (e.g., axioms related
to a class) is needed. The categorization, incl. use cases,2 is shown in Fig. 1.
Editing is a ‘development’ category that needs both a general and detailed view,
while Inspection focuses on a detailed view. Within visualization for ‘usage’,
Learning tends to use the general overview and Sharing tends to use the de-
tailed view. The categories are not completely disjoint: Inspection overlaps with
Editing, since the user usually needs to inspect the impact of her/his edits.

Inspired by categorization of tasks that should be supported by an infor-
mation visualization application as defined in [19] (and adapted in [13]) and
evaluation criteria classes described in [7], we further identified seventeen rele-
vant features implemented in ontology visualization tools:

F1 Zoom-Out Overview : zooming out to get a summary view of the ontology.
F2 Radar View : displaying a small ‘minimap’ of the displayed ontology.
F3 Graphical Zoom: enlarging the displayed graphical elements.

2 The positions of use cases are merely w.r.t. their categories and not in terms of
quantitative coordinates. E.g., uc3 may not need a more detailed view than uc4.

F4 Focus on Selected Entity : centering the view on a selected entity and its
surroundings and hiding other parts of the ontology.

F5 History : keeping the history of navigation steps performed by the user, thus
allowing for undo/redo actions.

F6 Pop-Up Window : displaying details on a chosen entity in a separate window.
F7 Incremental Exploration: starting by a small part of the ontology and grad-

ually expanding the nodes selected by the user (as detailed in [9]).
F8 Search: text-based search leading to highlighting the matched entities.
F9 Hide Selected Entity : hiding parts of the ontology the user is currently not

interested in, thus avoiding a cluttered view.
F10 Filter Specific Entity Type: e.g., hiding all object properties at once.
F11 Fisheye Distortion: zooming in for a part of the graph and zooming out

for the rest; focuses on a detail but keeps the context, see, e.g., [18].
F12 Edge Bundles: grouping edges with similar paths, thus alleviating the clut-

ter; implemented, e.g., in GLOW [10].
F13 Drag&Drop Navigation: moving a graph that is bigger than the screen

around by dragging it with the mouse.
F14 Drag&Drop User Layout : allowing to move the individual nodes around.
F15 Clustering : ‘intelligent’ grouping of nodes or displaying a subset of ‘impor-

tant’ nodes, as in KC-Viz [15].
F16 Integration with Editing : the user can select a visualized node or edge and

edit its properties in, e.g., a pop-up window.
F17 Graphical Editing : the tool supports creating new entities by, e.g., drawing

edges between the displayed nodes.

Referring to [7], F1–F5 are associated with a criteria class called Help and User
Orientation, F6–F8 with Navigation and Browsing, F9–F10 with Dataset Re-
duction, F11–F14 with Spatial Organization, and F15 with Information Coding.
F16 and F17 have no corresponding class in [7]. In each use case category most
of the 17 features should ideally be supported; however, their importance varies.
The alignment between the categories and tool features is, mostly, intuitive:

Editing ranges from developing a new ontology to merely changing a property
value. Usually, the purpose of visualization is to find the entity to be changed
or to become parent of a new entity. Important features are Pop-Up Window
(to see detailed properties of a selected entity), Search (to easily find entities
to be edited) and obviously Integration with Editing and Graphical Editing.

Inspection needs a detailed view of the ontology to see errors or deficiencies. It
is often implied by Editing, as the user needs to see the state of the ontology
before and after an edit. Pop-Up Window and Search are thus important
here as well (while Integration with Editing and Graphical Editing not so).
Additionally, Hide Selected Entity, Filter Specific Entity Type and Focus
on Selected Entity are useful, as it is easier to spot errors after hiding the
previously checked elements and/or focusing on the unchecked ones.

Learning means gaining knowledge about the domain the ontology covers or
learning about the ontology itself so as to use it. The view need not be

as detailed as for discovering errors (in Inspection). The user often only
needs to see the available classes and properties, their hierarchy and their
domain/range relationships; especially non-technical users who only want
to learn the domain are unlikely to understand complex axioms anyway.
Important features are thus Zoom-Out Overview, Radar View (to see an
overview of the ontology) and Incremental Exploration (for user-friendly
exploration of the ontology in more – but not too much – detail).

Sharing is similar to Learning, except for one more actor to whom the ontology
is to be explained and shared with. The visualization should thus support
displaying a part of the ontology; e.g., a picture of it can be made for an arti-
cle describing the ontology. Hide Selected Entity is important for displaying
the desired part only, and Drag&Drop User Layout is useful for achieving
an appropriate layout, e.g., placing important entities into the center.

3 Multi-Aspect Analysis of Visualization Tools

3.1 Analysis Overview

Initially we identified 21 visualization tools. For the 11 we considered as ‘usable’,
we then characterized their supported features and language constructs. In Ta-
ble 1, the “Plugin for” column specifies if the tool is a plugin for an ontology
development environment (otherwise it is a standalone application). “Editor”
is ticked if the tool supports editing of the visualized ontology. “Method” lists
available visualization methods as defined in [13].3 “Supports” contains “RDFS”
if the tool only visualizes RDFS constructs and “OWL” if it visualizes at least
some constructs from OWL. Finally and most important, in “State” we specify
if we consider, by our hands-on experience, the tool as stable enough to be used
in real use cases (“Usable”), still in early state of development (“Devel.”) or not
publicly available for download (”N/A”). The eleven ‘usable’ tools have been
both evaluated in detail and included into the knowledge base of our recom-
mender. The detailed analysis aimed to find out what features the tools imple-
ment (and how well), what language constructs they visualize and how they deal
with larger ontologies. To test the last aspect we applied them on SUMO4 (with
several thousands of classes) and Biochemistry5 (with several hundred classes).

3.2 Analysis of Selected Tools: Summaries

Table 2 shows the features (from Section 2) we found as supported in each tool.
The number indicates the support level as evaluated by us: “1” means “only
implemented partially and/or in a rather user-unfriendly way”; “2” means “fully
implemented”; empty cell means “not implemented”. The reasons for evaluating
some of the features for certain tools with “1” are discussed in Section 3.3. Table 3

3 Due to space we omit a mapping of these methods to our list of tool features.
4 http://www.ontologyportal.org/
5 http://ontology.dumontierlab.com/biochemistry-complex

Table 1. Ontology visualization tools overview.

Tool Plugin for Editor Method Supports State

CmapTools x Concept maps OWL N/A
CropCircles SWOOP Euler diagrams RDFS N/A

Entity Browser Protégé 3/4 x Indented list RDFS Usable
GLOW Protégé 4.x Node-link RDFS Devel.

Jambalaya Protégé 3.x x Node-link, Space-filling OWL Usable
KC-Viz Neon-Toolkit Node-link RDFS Usable

Knoocks x Space-filling, Node-link RDFS Devel.
Navigowl Protégé 4.x Node-link RDFS Devel.
Ontograf Protégé 4.x Node-link OWL Usable

Ont. Visualizer Neon-Toolkit Node-link RDFS Usable
Ontoself 3D Node-link RDFS N/A

Ontosphere 3D Node-link RDFS Devel.
Ontoviewer 2.5D Node-link RDFS N/A

Ontoviz Protégé 3.x UML RDFS Usable
OWL VisMod x Space-filling, Node-link RDFS N/A
OWLeasyViz x Euler diagrams RDFS N/A

OWLGrEd x UML OWL Usable
OWLViz Protégé 3.x UML RDFS Usable

SOVA Protégé 4.x Node-link OWL Usable
TGVizTab Protégé 3.x Node-link RDFS Usable
TopBraid x Node-link OWL Usable

shows the language-level expressiveness of the tools, i.e. which OWL constructs
can be visualized in it. Finally, Table 4 (left part) shows the ‘suitability scores’
(ss) of each tool for each of the use case categories. The scores are calculated
from the values in Table 2 using the following simple formula:

ss =
∑

ImportantFeatureScores · α+
∑

OtherFeatureScores · β

Important features for each use case category are specified in Section 2. ‘Other
features’ are all features which are not specified as important for the given use
case category, with the exception of Integration with Editing and Graphical Edit-
ing, which are only taken into account for Editing. The feature score is 0, 1 or 2
as shown in Table 2. The multiplication coefficients α and β were set to 3 and
0.5, respectively, since these values provided good discriminatory ability in our
initial test with the recommender system. The suitability scores are normalized
to interval <-3;3> in the recommender (Section 4) and used as weights for the
appropriate rules.

For the purposes of further evaluation using a questionnaire, we generalized
the findings from the analysis into Table 4 (right part). It shows the performance
of each tool in several aspects expressed on a scale of “very weak” (−−), “weak”
(−), “strong” (+) and “very strong” (++). The “OWL” aspect means how
complete the visualization is: whether the tool only displays classes or also object
properties, datatype properties etc. The “C. Classes” column shows how well the

Table 2. Features implemented in each tool.

Tool Z
o
o
m

-o
u
t

O
v
e
rv

ie
w

R
a
d
a
r

V
ie

w

G
ra

p
h
ic

a
l

Z
o
o
m

F
o
c
u
s

o
n

S
e
le

c
te

d
E

n
ti

ty

H
is

to
ry

(u
n
d
o
/
re

d
o
)

P
o
p
-u

p
W

in
d
o
w

/
T

o
o
lt

ip

In
c
re

m
e
n
ta

l
E

x
p
lo

ra
ti

o
n

S
e
a
rc

h

H
id

e
se

le
c
te

d
e
n
ti

ty

F
il
te

r
S
p

e
c
ifi

c
E

n
ti

ty
T

y
p

e

F
is

h
e
y
e

D
is

to
rt

io
n

E
d
g
e

B
u
n
d
le

s

D
ra

g
&

D
ro

p
N

a
v
ig

a
ti

o
n

D
ra

g
&

D
ro

p
U

se
r

L
a
y
o
u
t

C
lu

st
e
ri

n
g

In
te

g
ra

ti
o
n

w
it

h
E

d
it

in
g

G
ra

p
h
ic

a
l

E
d
it

in
g

Entity Browser 2 2 2 2 2
Jambalaya 1 1 1 2 1 2 2 2 1 2 2

KC-Viz 2 2 2 2 2 1 2 2 2 2 2
Ontograf 2 2 2 2 2 1 2 2 1

Ontology Visualizer 2 2 2 2 2 2 2
Ontoviz 2 2 2

OWLGrEd 1 2 1 2 2 1 2 2 2
OWLViz 2 1 2 2 2 1 2 2

SOVA 1 2 2 2 2 2
TGVizTab 1 1 2 2 2 2 2 1 2
TopBraid 2 1 2 2 2

Table 3. Types of language constructs visualized by each tool.

Tool C
la

ss
e
s

O
b

je
c
t

P
ro

p
.

D
a
ta

ty
p

e
P

ro
p
.

In
st

a
n
c
e
s

A
n
n
o
ta

ti
o
n
s

U
n
iv

./
E

x
is

t.
R

e
st

.

C
a
rd

in
a
li
ty

E
n
u
m

e
ra

ti
o
n

In
te

rs
e
c
ti

o
n

U
n
io

n

C
o
m

p
le

m
e
n
t

e
q
u
iv

a
le

n
tC

la
ss

d
is

jo
in

tW
it

h

su
b
C

la
ss

O
f

P
ro

p
e
rt

y
C

h
a
r.

Entity Browser x x x x
Jambalaya x x x x x x

KC-Viz x x x x x
Ontograf x x x x x x x x x x

Ontology Visualizer x x
Ontoviz x x x x x x x x x x x

OWLGrEd x x x x x x x x x x x x x x x
OWLViz x

SOVA x x x x x x x x x x x x x
TGVizTab x x x
TopBraid x x x x x x x x x x x x x x x

Table 4. Suitability scores and generalized performance of each tool in various aspects.

Suitability Scores Strong/weak aspects

Tool E
d
it

in
g

In
sp

e
c
ti

o
n

L
e
a
rn

in
g

S
h
a
ri

n
g

O
W

L

C
.

C
la

ss
e
s

In
sp

e
c
ti

o
n

E
d
it

in
g

L
e
a
rn

in
g

S
h
a
ri

n
g

Entity Browser 20,0 14,0 14,0 4,0 − −− − + + −−
Jambalaya 23,5 30,0 12,5 17,5 − − ++ ++ − ++

KC-Viz 18,0 28,0 20,5 20,5 − − ++ − ++ ++
Ontograf 20,5 25,0 12,5 12,5 + + ++ + − +

Ontology Vizualizer 12,0 17,0 17,0 12,0 −− −− − −− + +
Ontoviz 3,0 8,0 3,0 8,0 + ++ −− −− −− −−

OwlGrEd 22,5 10,5 13,0 10,5 ++ ++ −− ++ − −
OWLViz 19,5 23,5 16,0 11,0 −− −− ++ + + −

SOVA 10,5 15,5 8,0 10,5 ++ ++ − −− −− −
TGVizTab 12,5 27,5 15,0 12,5 −− −− ++ − + +
TopBraid 9,5 8,5 8,5 13,5 ++ ++ −− −− −− +

tool displays complex classes. The remaining columns show the performance of
the tool in each category (based on the suitability scores and our experience
with the tools). The performance of the tools regarding large ontologies is only
discussed verbally in the next subsection.

3.3 Analysis of Selected Tools: Details

Jambalaya [21] can load and display large ontologies thanks to the treemap
view. It can perform Zoom-Out Overview, but too many edges crossing other
edges and nodes, as well as node overlap in the node-link view and hard-to-read
labels in the treemap view makes it less useful in comparison with other tools.
To use Graphical Zoom, the user has to first switch to ‘zooming mode’ – intuitive
zooming with mousewheel is not supported. Nodes can be retracted/expanded,
but Jambalaya displays the whole ontology by default – incremental exploration
cannot be started from a selected node. Fisheye-distortion is applied only on the
selected node and does not include its surroundings.

The strong feature of KC-Viz is the automated selection of ‘most important
classes’ called ‘key concepts’. This makes it very suitable for large ontologies. It
offers a large number of well implemented features which makes it suitable for
most of the use case categories.

Ontograf6 can only be used for smaller ontologies and is limited to RDFS
expressiveness.

6 http://protegewiki.stanford.edu/wiki/OntoGraf

Although Ontology Visualizer7 only displays the class hierarchy and its
range of features is limited, it is quite suitable for Learning thanks to its imple-
mentation of incremental exploration, and it can deal with larger ontologies.

Ontoviz8 displays the most detailed view by default and it is incapable of
displaying an overview of the whole ontology. It can visualize a larger ontology
if the user wants to see only a small part of it at once: the user can select exactly
what part of the ontology should be displayed.

The main advantage of OWLGrEd [2] is its large coverage of OWL con-
structs. Its use for Editing is supported, e.g., by the possibility to directly draw
relationships as edges between the nodes. The Zoom-out Overview is possible
but not very usable: the labels are hard to read and the view is cluttered. It
implements some sort of edge bundles but not as well as, e.g., GLOW [11]. As
in the case of Ontograf, larger ontologies are not supported well: OWLGrEd
was not capable to load SUMO, and for Biochemistry the ontology was loaded
correctly but the result was an extremely cluttered visualization without any
chance to determine which nodes the edges are connecting.

As OWLViz9 was able to load the SUMO ontology, it can be considered for
visualizing large ontologies. However, it displays only classes and their hierarchy.

Protégé10 contains the indented list ontology visualization, Entity Browser,
as an integral part of its GUI. As the Neon-Toolkit11 and TopBraid Composer12

offer almost identical implementations of indented-list-based entity browsers, we
rather provide a generic analysis of this method that applies to all three. It offers
a sort of Zoom-Out Overview by default (the simple list of entities), while the
features related to node-link visualization are obviously unsupported. Editing is
inherent, and even very large ontologies can be visualized without problems.

SOVA is the only tool in this survey that displays all OWL constructs (but
datatype properties) as graphical elements in one view. Large ontologies can be
displayed in a simplified alternative view similar to OWLViz (classes-only).

TGVizTab [1] offers a few advanced, but imperfectly implemented, features
like fisheye-distortion. Its main disadvantage is that it is available only as a
plugin for the older Protégé 3.

The node-link visualization of TopBraid Composer13 shows all types of
entities as nodes and properties as edges connecting them. The visualization is
rather provided at the RDF level, so even owl:Class is shown as a separate
node and every class is connected to it through an rdf:type edge. While good
for learning the OWL language, this feature does not contribute to clearness of
the visualization. Even if such redundant elements are hidden, the visualization
gets cluttered quite quickly and thus it is not suitable for large ontologies.

7 http://neon-toolkit.org/wiki/Main_Page
8 http://protegewiki.stanford.edu/wiki/OntoViz
9 http://www.co-ode.org/downloads/owlviz/

10 http://protege.stanford.edu
11 http://neon-toolkit.org
12 Discussed below with respect to its node-link method.
13 http://www.topquadrant.com/products/TB_Composer.html

Fig. 2. Abstracted inference network for the recommendation knowledge base.

4 Ontology Visualization Tools Recommender

The recommender14 is built as a knowledge base (KB) for the NEST expert
system shell [3]. NEST covers the functionality of compositional rule-based ex-
pert systems (with uncertainty handling), non-compositional (Prolog-like) ex-
pert systems, and case-based reasoning systems. NEST employs a combination
of backward and forward chaining and it processes uncertainty according to the
algebraic theory of Hajek [8]. In order to capture (task-specific) domain knowl-
edge for rule-based reasoning, we employed the following apparatus of NEST:

– Attributes and propositions. Attributes are used to describe the features of
the consulted case, and propositions are derived from the values of attributes.
There are four types of attributes: binary, single nominal, multiple nominal,
and numeric. Fuzzy intervals, for a numeric attribute, allow to express vague
information such as high body temperature.

– Rules having a condition (disjunction of literal15 conjunctions) and conclu-
sion (list of literals) component. There are three types of rules. A composi-
tional rule has its conclusion equipped with a weight expressing the degree
of uncertainty of the conclusion if the condition holds with certainty. Fur-
thermore, to evaluate the ultimate weight of a proposition, all contributions
having this proposition in its conclusion are evaluated and combined. An
apriori rule is a compositional rule without condition. Finally, a logical rule
is a non-compositional rule without weights.

Our KB contains 8 attributes, 36 propositions, 32 compositional rules and 1
apriori rule. An abstraction of its inference network is in Fig. 2. Directed edges
indicate groups of compositional rules connecting the attributes (shown as texts);
the grouping is based on the corresponding propositions.16 The KB consists of

14 The recommender is available at http://owl.vse.cz:8080/OVTR/.
15 ‘Literal’ is not meant here in the RDF sense but as ‘attribute-value pair’.
16 The full inference network is at http://owl.vse.cz:8080/OntoVisualTool/.

three layers. The top layer only contains one node, representing the recommenda-
tion of visualization tool. The middle layer contains two nodes, which aggregate
the relevant answers from the user: Use case category (editing, inspection, learn-
ing and sharing) and OWL (the importance of particular OWL features). The
bottom layer represents possible user answers to questions:

– Complex classes: importance of anonymous classes based on various OWL
constructs such as union, complement, intersection etc.

– Intended usage: the nine use cases from Section 2.
– Ontology size: fuzzy intervals for ‘small’, ‘medium’ and ‘large’ ontologies.
– OWL features: importance of particular OWL features (object properties,

interclass relationships, datatype properties and property characteristics),
aiming to infer the overall importance of OWL support in the visualization.

– Favorite ontology editor : the user’s preference for some (freely available)
ontology editor: Protégé 3, Protégé 4 or Neon Toolkit.

This KB thus encompasses the main insights we gained from ‘roadmapping the
ontology visualization landscape’ as presented in the first part of the paper.

4.1 Recommender Usage Example

We include an example of usage of the recommender. The particular source
case refers to paper [17], where Ontoviz is used to show (as screenshots) parts
of the ontology that is being described in the paper. We tried to emulate the
hypothetical entering of information about the ontology into the recommender by
the paper authors. Technically, this consisted in answering the above mentioned
questions with Likert-scale answers (represented by numbers from the interval
<-3;3> where 3 means “Certainly yes” and -3 means “Certainly no”), or with
exact numbers for numeric questions, as follows: Complex classes: 3; Intended
usage: Screenshots: 3; Ontology size: 91; OWL features: Object Properties: 1,
Interclass Relationships: 3, Datatype Properties: 1, Property Characteristics:
-1;17 Favorite ontology editor : Protégé 3: 3,18 Protégé 4: -2, Neon Toolkit: -3.

The recommendation is in Fig. 3 (a). The tool indeed recommends Ontoviz
with the weight of 1.671 (of the maximum of 3). The next most suitable tool is
TopBraid. Least suitable, in turn, are Ontology Visualizer and OWLViz.

The final weight of the proposition supporting Ontoviz has been inferred as
indicated in Fig. 3 (b), where the rule hierarchy is shown. Rules marked as green
by the explanation component19 of NEST (and annotated with a circled-plus sign
for the sake of B/W readability, in the screenshot only) positively contribute to
the weight of their superordinate rule; rules marked as red (circled-minus sign
in the screenshot) contribute negatively; rules in grey are indifferent in this

17 The questions regarding OWL properties have been answered with lower weights
since there are only 7 properties in the ontology. Property Characteristics are not
mentioned in the paper, so we consider them as unimportant.

18 Protégé 3 is mentioned in the paper as the tool used for the ontology development.
19 Currently only in the desktop version, http://sorry.vse.cz/~berka/NEST/.

Fig. 3. (a) The recommendation results. (b) The inference explanation.

particular inference. Ontoviz scores high in this case since it visualizes all the
required types of OWL entities including complex classes and it is a plugin for
Protégé 3, which is used (i.e. preferred) by the authors of the paper. The score is
lowered by the “SharingR” rule, as Ontoviz is not very suitable for the Sharing
use case category, by the “MediumR” rule, as Ontoviz can only clearly display
a small number of entities, and by the two rules at the bottom of the list, which
are built-in rules slightly lowering the score of Protégé 3 plugins, as it has been
meanwhile replaced by the newer version (4) and is not supported anymore.

5 Evaluation

As the evaluation of both the overall analysis and the recommender requires
human expertise,20 we prepared a web-based anonymous questionnaire,21 sent
invitations to participate in it to several relevant mailing lists, and also asked
several people from the area of ontology engineering, including authors of the
surveyed visualization tools, directly. The respondents were asked about their
level of expertise in ontologies and their experience with ontology visualization
tools: which they used, in what use case (out of the 9 use cases described in Sec-
tion 2) and whether they were satisfied with it. Then, they were asked whether
they agree with the categorization of their use case, with the weak and strong
aspects of the visualization tool as inferred from our analysis and with our catego-
rization system itself. Finally, a consultation with the recommender was offered

20 Yet, we also made a literature-based evaluation, available at http://bit.ly/1phLBdm
along with additional details about the evaluation described in this section.

21 Available at http://owl.vse.cz:8080/OVQuestionnaire/

Fig. 4. Counts of respondent opinions to each use case → category mapping.

and if they ran through it, they were asked to express their satisfaction with
the resulting recommendation. During the consultation, the respondents could
describe either a real visualization scenario or a hypothetical one. We gathered
answers from 32 respondents, out of which 3 skipped the consultation.

Agreement with the Categorization System. When introduced to a brief descrip-
tion of the use case categories (as described in Section 2), 13 respondents an-
swered that the categorization makes “perfect sense”, the same number of re-
spondents stated that it makes “more or less sense”, 5 replied that it “does not
make much sense”, and no one chose “does not make sense at all”; 1 respondent
did not answer this question. To sum up, about 84% of respondents partly or
fully agreed with the categorization.

Agreement with the Categorizations of Use Cases. Figure 4 shows the counts of
respondent opinions about specific use case mappings to category (partial and
full disagreement counts are shown as negative values). Each respondent could
describe up to three different use cases. We gathered 40 opinions. Agreement
clearly prevailed, with the exception of uc6, Adapting an existing ontology, where
one respondent agreed and one disagreed with the mappings to both editing and
inspection.

Agreement with Strong/Weak Aspects of the Tools. When the respondent stated
s/he has experience about some visualization tool, s/he was asked about his/her
opinions about each of the strong/weak aspects of the tool as shown in the right
part of Table 4. We mapped the answers to numerical values as follows: “agree”
→ “1”, “partly agree” → “0.5”, “partly disagree” → “-0.5”, and “disagree” →
“-1”. The average of the numerical values of all 141 answers from 27 respondents
was approx. 0.34. If we look at the average agreement on each aspect of each
tool separately, only the weak and very weak aspects of SOVA and OwlGrEd
had averages below 0 (i.e. the respondents rather disagreed).

Satisfaction with the Consultation. 29 respondents ran the consultation, of which
14 (48%) were satisfied and 7 (24%) partly satisfied with the resulting recom-
mendation, i.e. 72% of respondents were partly or fully satisfied. In 23 (79%)
cases, KC-Viz was recommended as the most suitable tool. Such a high per-
centage of one tool was mainly caused by the fact that most of the respondents
(approx. 66%) entered an ontology size larger than 120 entities, which is con-
sidered by the recommender as ‘large’, and KC-Viz is considered as the most
suitable tool for large ontologies. These results suggest that we should reconsider
the rules in the KB related to the size of the ontology (the risk of clutter when
a larger ontology is visualized might be over-estimated for some tools).

6 Related Work

We are unaware of a recent analysis with as large coverage of visualization tools
as in this paper, nor of an implemented system for tool recommendation. Our
questionnaire was inspired by a survey [6] done several years ago aimed at dis-
covering which visualization tools are used by whom and for what tasks. The
options offered to the respondents regarding the usage of the tool partially agree
with our use case categories: “Check for inconsistencies or errors” is our In-
spection, “Present reports to others” is Sharing and “Help with understanding
new ontologies” is Learning. We consider the remaining three options either too
specific (“Show hidden relationships” and “Show areas of interest”) or too gen-
eral (“Assist with navigating information space”). [12] describes the results of
a comparative evaluation of (Protégé) Entity Browser, Jambalaya, TGViz and
Ontoviz done with a group of test users. Time needed to perform a set of sev-
eral predefined tasks in each tool by each user was measured and the users were
also asked to fill in a questionnaire after using the tools. The users achieved
the best performance with Entity Browser, which also received the best score
regarding questions about perceived effectiveness. The tasks were aimed at find-
ing specific information about instances, which would be classified as Learning.
Our results agree with those from [12] in that Entity Browser is slightly better
for Learning than Jambalaya and that Ontoviz is the worst of the four tools.
The difference is in the evaluation of TGVizTab, which performed worse than
Entity Browser in [12] but has a higher suitability score for Learning in our
study. However, [12] compares the tools using a single ontology and a specific
use case, while our analysis is aimed at comparing the tools regarding different
ontologies and use cases. A subsequent paper by the same group, [13], defines a
categorization of visualization methods and tasks, and includes a thorough (but
ageing) survey of ontology visualization tools. An approach similar to [12] has
been chosen in [22] for a comparative evaluation of Ontograf, OWL2Query and
DLQuery: a group of users was asked to perform a set of predefined tasks aimed
at finding information about instances and the time to complete each task was
measured. A review of Protégé Entity Browser, Ontoviz, OntoSphere, Jambalaya
and TGVizTab is available in [20]. The review includes a comparison of features
and types of OWL entities supported by each visualization tool similar to our

Table 2 and Table 3. While it is less detailed and lacks evaluation of the quality
of implementation of the features, it includes a review of support of ‘Animated
Transactions’,22 which we considered unimportant. Finally, [5] proposes rough
guidelines for visualization tool design.

7 Conclusions and Future Work

We overviewed and analyzed the current ontology visualization tools by tak-
ing into account newly formed (aggregated) use case categories, visualization
tool features, language constructs, and scalability with respect to ontology size.
For selecting a suitable visualizer we designed a simple recommender. We also
performed a questionnaire-based evaluation of the recommender and of our an-
alytical findings. The respondents generally agreed with the proposed use case
categorization and with the strong and weak aspects we identified for the tools,
and they were mostly satisfied with the recommender suggestions.

In the future we plan to improve the recommender according to the feed-
back from the questionnaire, in particular, the rules concerning the size of the
ontology to be visualized. Moreover, since our analysis of the ability of the tools
to display large ontologies is rather subjective, we plan to arrange for a more
exact assessment in this respect. We will also continuously monitor the visual-
ization ‘landscape’ so as to include new tools, such as VOWL23 and OLSViz,24

and reflect them in the KB. Furthermore, a next release of the KB will directly
consume input from automatic analysis of ontology structure.25 Finally, we are
aware that our treatment of visualization use cases is so far only based on ex-
perience in the semantic web area. Insights from the broader human-computer
interaction research, such as [23], should also be exploited.

The research is supported by VŠE IGA grant F4/34/2014. Ondřej Zamazal is supported

by the CSF grant 14-14076P, “COSOL – Categorization of Ontologies in Support of

Ontology Life Cycle”. We thank to Vladimı́r Laš for help with setting up our KB for

the web variant of NEST, and to the anonymous respondents of the survey.

References

1. Alani H.: TGVizTab: An ontology visualisation extension for Protege. In: K-CAP03
Workshop on Visualization Information in Knowledge Engineering, 2003.

2. Bardzins J. et al.: OWLGrEd: a UML Style Graphical Editor for OWL. In: Ontology
Repositories and Editors for the Semantic Web, Hersonissos, 2010.

3. Berka P.: NEST: A Compositional Approach to Rule-Based and Case-Based Rea-
soning. In: Advances in Artificial Intelligence, 2011, 15 pages. Online: http://www.
hindawi.com/journals/aai/2011/374250/.

22 Animation of the transition between different states of the visualization.
23 http://vowl.visualdataweb.org/
24 http://ols.wordvis.com/
25 A preliminary implementation of such an analysis is at http://owl.vse.cz:8080/

MetricsExploration/, but not yet integrated with the recommender.

4. Brockmans S. et al.: Visual modeling of OWL DL ontologies using UML. In: The
Semantic Web–ISWC 2004. Springer Berlin Heidelberg, 2004. p. 198-213.

5. Da Silva I. C. S., Freitas C. M. D. S., Santucci G.: An integrated approach for
evaluating the visualization of intensional and extensional levels of ontologies. In:
Proceedings of the 2012 BELIV Workshop: Beyond Time and Errors-Novel Evalu-
ation Methods for Visualization. ACM, 2012. p. 2.

6. Ernst N. A., Storey M.-A.: A Preliminary Analysis of Visualization Requirements
in Knowledge Engineering Tools. University of Victoria. 2003.

7. Freitas C. M. D. S. et al.: On evaluating information visualization techniques. In:
Proceedings of the working conference on Advanced Visual Interfaces. ACM, 2002.
p. 373-374.

8. Hajek P.: Combining functions for certainty degrees in consulting systems. In: In-
ternational Journal of Man-Machine Studies. 22(1), pp. 5976, 1985.

9. Herman I., Melanon G., Marshal M. S.: Graph visualization and navigation in infor-
mation visualization: A survey. Visualization and Computer Graphics, IEEE Trans-
actions on, 6(1), 24-43. 2000.

10. Hop W. et al.: Using Hierarchical Edge Bundles to visualize complex ontologies in
GLOW. In: Proceedings of the 27th Annual ACM Symposium on Applied Comput-
ing. ACM, 2012. p. 304-311.

11. Howse J. et al.: Visualizing ontologies: A case study. In: The Semantic Web: ISWC
2011. Springer Berlin Heidelberg, 2011. pp. 257-272.

12. Katifori A. et al.: A comparative study of four ontology visualization techniques
in protege: Experiment setup and preliminary results. In: Information Visualization
2006. IEEE, 2006. p. 417-423.

13. Katifori A. et al.: Ontology visualization methods - a survey. In: ACM Computing
Surveys (CSUR). 39(4), 10 pages, 2007, ACM.

14. Kendall E. F., Bell R., Burkhart R., Dutra M., Wallace E. K.: Towards a Graphical
Notation for OWL 2. In: OWLED 2009.

15. Motta E. et al.: A novel approach to visualizing and navigating ontologies. In: The
Semantic Web: ISWC 2011. Springer Berlin Heidelberg, 2011. pp. 470-486.

16. Parreiras F. S., Walter T., Gröner G.: Visualizing ontologies with UML-like nota-
tion. In: Ontology-Driven Software Engineering. ACM, 2010.

17. Rene Robin C. R., Uma G. V.: Development of educational ontology for software
risk analysis. In: ICCCS’11 Proceedings of the 2011 International Conference on
Communication, Computing & Security. ACM, 2011. pp. 610-615.

18. Sarkar M., Brown M. H.: Graphical fisheye views of graphs. In Proceedings of
the SIGCHI conference on Human factors in computing systems (pp. 83-91). ACM.
June 1992.

19. Shneiderman B.: The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In: Visual Languages, 1996. Proceedings., IEEE Symposium on.
IEEE, 1996. p. 336-343.

20. Sivakumar R., Arivoli P. V.: Ontology Visualization Protege Tools: A Review.
In: International Journal of Advanced Information Technology. 1(4), 2011. Online:
http://airccse.org/journal/IJAIT/papers/0811ijait01.pdf

21. Storey M. et al.: Jambalaya: Interactive visualization to enhance ontology author-
ing and knowledge acquisition in Protégé. In: Workshop on Interactive Tools for
Knowledge Capture (K-CAP-2001). 2001.

22. Swaminathan V., Sivakumar R.: A Comparative Study of Recent Ontology Visu-
alization Tools With a Case of Diabetes Data. In: International Journal of Research
in Computer Science. 2(3), 2012. p. 31.

23. Weidong H. (ed.): Handbook of Human Centric Visualization. Springer, 2014.

