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Abstract. Web Ontology Language (OWL) based models and triple stores hold great potential for access to structured infor-
mation. Not only are OWL-based ontologies extremely versatile and extendable, but triple stores are robust against changes to
ontologies and data. The biomedical field illustrates this value insomuch as it employs vast amounts of information distributed
across different models and repositories. This paper presents a case study that sought to demonstrate the real-world value of
linking disease, symptom, and anatomical models with wearable devices and physical property models and repositories. Integrat-
ing these models is both necessary and problematic; necessary to provide undifferentiated access to health care professionals,
problematic because although the biomedical ontologies and repositories exist, they aren’t semantically aligned and their designs
make alignment difficult. This case study demonstrated that manually linking multiple biomedically-related models can produce
a useful tool. It also demonstrated specific issues with aligning curated ontologies, specifically the need for compatible ontology
design methodologies to ease the alignment. Although this study used manual ontology mapping, it is believed that systems can
be developed that can work in tandem with subject matter experts to reduce mapping effort to verification and validity checking.
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1. Introduction

Consider a physician that has a patient diagnosed
with Type II Diabetes. How might this physician lo-
cate wearable devices that could aid in tracking the pa-
tient’s condition? Currently they would have to enu-
merate the symptoms associated with Diabetes, asso-
ciate those with the kinds of measurements needed
to qualify/quantify the symptom, and then search for
wearable devices capable of measuring that quantity.
Using a semantic integration it would be possible to do
all this in a single application.

Achieving the promise of semantic technology in-
volves a mixture of upper and domain ontologies, se-
mantic repositories, and integration (linking and map-
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ping) across ontologies. For ontologies such as QUDT
(quantities, units, dimensions, and datatypes) [4] the
related ontologies and repositories are fully integrated,
meaning that they act as a single model. The vast ma-
jority of curated ontologies/repositories, however, re-
main stand alone. For example, the biomedical field
has produced many ontologies; for diseases, biochem-
istry, symptoms, anatomy, pathology, etc. For the most
part these ontologies are not integrated and thus the
information they model cannot be shared across with
each other.

This case study sought to demonstrate the value of
semantic integration by showing how medical profes-
sionals could benefit by having integrated access to
biomedical models/repositories that also integrate with
wearable devices and the properties they measure. In
the process of integrating the information sources that
would allow the above example to be realized, both
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ontology and data mapping issues were encountered.
This paper describes the mechanisms used to achieve
this integration, manually, using a subset of five on-
tologies. The conclusion borne out by this study sug-
gests that ontology mapping can be made easier with
the use of computational techniques but still requires
subject matter experts for validation and verification.

2. Goals

There were 4 primary goals in this study, all associ-
ated with the desire to show that integration of struc-
tured information sources would be useful for medical
professionals:

– Demonstrate the integration of standardized and
externally-curated models

– Demonstrate that linked biomedical models pro-
vide value through single-point access

– Demonstrate integration through the use of quan-
tity/unit/value models

– Demonstrate the ability to associate wearable de-
vice models with biomedical models

The first goal saves us from having to take the time
and energy to create models from scratch, but ulti-
mately causes two problems inherent in any integra-
tion project; (1) mismatched design or implementa-
tion approaches, and (2) incomplete data. The remain-
ing goals are illustrative of the functionality this study
hoped to demonstrate; namely to bring together a set
of ontologies that would connect wearable sensors and
medical professionals.

The information types this study sought to connect
are shown in Figure 1:

Fig. 1. Targeted integration of 5 information types

Figure 1 shows five information types. First, it
was desirable to integrate biomedical information that
would be useful in helping medical professionals eval-
uate/select wearable devices for patients: (1) human
diseases, (2) disease symptoms, and (3) human gross

anatomy. For the physician, being able to diagnose a
patient, and relate the associated disease or symptoms
with associated anatomy, would allow multiple access
points to integrate with wearable devices.

Second, symptoms are associated with physical
properties (e.g., cardiac disease and blood pressure),
so integrating symptom models with properties that a
wearable device might measure is necessary.

Finally, to integrate the wearable device to the
biomedical models, both the anatomical parts where
the device is worn and the properties that it measures
are needed.

2.1. Choice of Ontologies

The choice of ontologies used in this study was
based on the goal of demonstrating an integrated
value. Three ontologies from the Open Biological and
Biomedical Ontologies (OBO) Foundry ontologies
were selected due to the content they modeled as well
as the fact that they had unique identifiers that allowed
them to be cross referenced. Disease information was
represented using the OBO Disease Ontology (DOID)
[12], symptom information was represented using the
OBO Symptoms Ontology (SYMP) [13], and anatom-
ical information was represented using the OBO Foun-
dation Model of Anatomy (FMA) ontology [9]1 were
used.

The QUDT[4] models were used because they rep-
resent an integrated approach to quantities, units,
dimensions, and datatypes, but other models exist
that might have been used, such as the Model Li-
brary for Quantities, Units, Dimensions, and Values
(QUDV) [10], the Library for Quantity Kinds and
Units (QU)[15]. QUDT was deemed to be more com-
prehensive set of models, and had representations for
biomedical quantities needed to model wearable de-
vices.

The Semantic Sensor Network (SSN) [7] ontol-
ogy is an emerging standard for device modeling and
seemed a good integration point for the project.

3. Approach

From a functional point of view the study would be
successful if all 5 semantic models can be integrated
into effectively a single model and searched from mul-

1All available through the Open Biological and Biomedical On-
tologies Foundry

http://www.obofoundry.org
http://www.obofoundry.org
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tiple entry points in a single interface. The integration
required minimally 5 property alignments (and associ-
ated mappings) between the ontologies:

– Diseases (DOID) → symptoms (SYMP)
– Symptoms (SYMP) → anatomy (FMA)
– Symptoms (SYMP) → properties (QUDT)
– Wearable devices (SSN) → quantities (QUDT)
– Wearable devices (SSN) → anatomy (FMA)

These alignments are based on functional dependen-
cies between the models. For example, there would
be no need to align wearable devices with diseases
or symptoms because there is no functional relation-
ship between them. On the other hand, an alignment
could be modeled between diseases and anatomy, but
since there is a direct relationship between disease and
symptom, and between symptom and anatomy, the re-
lationship between disease and anatomy can be in-
ferred and need not be explicitly modeled.

The ontological integrations used to support seman-
tic search in this study are shown in Figure 2:

Fig. 2. Integration of 5 ontologies and sample graph traversal

Figure 2 illustrates the ontological alignments used
in this study along with some values for a particular
search task (in this case, Type II Diabetes). The large
dotted line shows one path (disease → symptom →
property → device) a search might take through these
models to relate Type II Diabetes to a wearable device
capable of measuring heart rate/blood pressure for the
symptom abnormal weight gain. Solid lines between
the repositories represent the ontological alignments.
The data sets are depicted as repositories to illustrate
the integrative/federated nature of the study. Square
boxes represent items in the repositories along the de-
picted inference path.

3.1. Alignment Problems

There are three aspects to the model integration
problem encountered in this study. First, the semantic

structure aligning the models must exist. That is, there
must be classes and class properties that support the
alignment. Second, the data allowing for an integration
must exist. Finally, given the requisite semantic align-
ment, a mapping of the data between the models must
be exist or be constructed.

3.1.1. Semantic Structural Alignment
Model integration requires that appropriate classes

and properties exist between the models or that new
mapping models be created. In the models used in this
study there were a number of semantic structural align-
ment issues. In each case, since the original models are
curated by separate entities, new mapping models (aka
semantic bridge ontologies [8,5] were created and then
merged with the originals:

– DOID → SYMP: Semantic bridge and mapping
required

– SYMP → FMA: Semantic bridge required
– SYMP → QUDT: Semantic bridge required
– Wearable Device: Subclass SSN SensingDevice
– SSN → QUDT: Semantic bridge required
– SSN → FMA: Semantic bridge required

The simplest scenario was between DOID and
SYMP. The DOID ontology provided a property
doid:has_symptom that might have been used to map
the two ontologies, but it wasn’t being used (no data
mappings). The OWL version of the model also had no
root Disease class so a new semantic bridge ontology
was created with a Disease class. The original disease
classes were subclassed to Disease, see Figure 3:

Fig. 3. A simple semantic bridge between DOID, SYMP, and FMA

The involvesSymptom (involvesBodyPart), etc. prop-
erties were then created that link the Disease and
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Symptom (and BodyPart, respectively) classes. Fig-
ure 3 shows the DOID→SYMP semantic bridge ontol-
ogy highlighted in grey, with the property links asso-
ciated with the bridge darkened.

Similar problems were evidenced in the SYMP and
FMA ontologies. Though symptoms are generally as-
sociated with one or more anatomical entities (e.g.,
cardiac disease with heart), there was no alignment
between these ontologies. Semantic bridges were also
used to link the SYMP and FMA ontologies by cre-
ating the Symptom and BodyPart classes and related
properties (also shown in Figure 3.

In the case of SSN, the sensing device model was
very general so it was subclassed to support wearable
devices using another semantic bridge, as shown in
Figure 4.

Fig. 4. WearableSensingDevice subclass from ssn:SensingDevice

The subclassing to WearableSensingDevice allowed
a mapping from a device to the QUDT QuantityKind
using the SSN sensorMeasurement property. Proper-
ties were added to support wear location, company,
etc. Data was acquired for sample wearable devices by
scraping the Vandrico [14] web site.

3.1.2. Model Data Mapping
With model-level alignment it becomes possible to

map between model data sets. When the data sets are
complete, semantic tools exist to perform the align-
ment/mapping. However, when the data is incomplete,
the mapping is complicated, requiring some form of
web content mining for unstructured text [3](semi-
automated methods exist to mine structured content).

The complexity of unstructured text data mining is
illustrated with the relationship between diseases mod-
eled in DOID and symptoms modeled in SYMP. Seven

steps had to be taken to manually map diseases in
DOID to symptom data in SYMP. Similar steps would
be required to map any two ontologies:

– Identify each disease in DOID (e.g., label)
– Search web data sources for the disease
– Search the found data sources for symptom refer-

ences
– Isolate and normalize the symptoms found
– Compare symptoms to those in SYMP
– Disambiguate possible matches
– Construct new graph relationships in DOID and

SYMP

The first and last steps in this list can be satisfied
with SPARQL queries against the models. The inter-
mediate steps required search, compare, and disam-
biguation capabilities, (some) subject matter expertise,
as well as language and reasoning abilities.

For example, in performing a manual mapping, we
can perform a web search for "Type II Diabetes symp-
toms". Each result may provide text blocks that de-
scribe symptoms. For example,

Type 2 diabetes develops when the body becomes
resistant to insulin or when the pancreas stops pro-
ducing enough insulin. Exactly why this happens
is unknown, although genetics and environmental
factors, such as excess weight and inactivity, seem
to be contributing factors.2

As natural language readers/understanders, and with
enough knowledge about the source and target do-
mains (i.e., human diseases and disease symptoms),
we can decide which content to use and which to
ignore, how much of the content selected is appro-
priate, etc. Ultimately we must boil the information
in a symptomatic description to labels that can be
compared with the SYMP ontology. For example, we
might be able to get:

– insulin resistance
– excess weight
– inactivity

from the provided quotation. If lucky, one might find
something easier to parse, such as:

– Excessive thirst and appetite
– Increased urination (sometimes as often as every

hour)

2See: http://www.mayoclinic.org/diseases-conditions/type-2-
diabetes/basics/causes/con-20031902

http://www.mayoclinic.org/diseases-conditions/type-2-diabetes/basics/causes/con-20031902
http://www.mayoclinic.org/diseases-conditions/type-2-diabetes/basics/causes/con-20031902
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– Unusual weight loss or gain
– Fatigue
– Nausea, perhaps vomiting
– Blurred vision
– Dry mouth
– Slow-healing sores or cuts
– Itching skin
3

Applying this approach across multiple sites, we
can complete a manual map. For the current study
data mappings were made for only four diseases. It
was deemed an acceptable number to demonstrate the
ability to disambiguate between diseases, symptoms,
anatomy, properties, and devices.

4. Related Work

Maedche et al [8] used the notion of a semantic
bridge to map ontologies. This same approach was
used in the current study to link the DOID, SYMP,
FMA, QUDT, and SSN ontologies without impacting
the original ontologies or their repositories. Bozic, et
al [1], demonstrated the use of semantic bridges with
aspects of SSN and time-series climate change data.

Manual ontology data mapping requires sophisti-
cated language understanding skills and subject mat-
ter expertise. Rance, et al [11] demonstrated an semi-
automated approach could be used for data mapping.
They sought to show a mapping between two special-
ized data sources for rare diseases (i.e., the Office of
Rare Diseases Research - ORDR, and Orphanet), us-
ing the Unified Medical Language System (UMLS) as
the mapping pivot. They used the online Mendelian In-
heritance in Man (OMIM) as the reference. They used
syntactic filters to normalize the data source results to
match against the UMLS and OMIM data. Although
Rance, et al, demonstrated an automatic mapping in
79%-95% of the cases (ORDR vs. Orphanet, respec-
tively) it is clear that an automated approach can be
used to reduce the amount of work needed by, but can-
not entirely replace, the subject matter expert.

5. Conclusions

The case study described focused on integrating
5 currated ontologies for the purpose of demon-

3See: http://www.webmd.com/diabetes/understanding-diabetes-
symptoms

strating semantic search for health care profession-
als in a real-world scenario between wearable de-
vices, physical properties, human anatomy, symp-
toms and diseases. Ontology choices were limited to
those that used unique identifiers. Ontology align-
ment was achieved using single-property semantic
bridge ontologies (DOID→SYMP, SYMP→FMA,
SYMP→QUDT, SSN→QUDT, and SSN→FMA, and
is an effective approach for aligning currated ontolo-
gies. Manual unstructured text data mining was used to
populate the bridge ontologies. Only four of the 9,000
diseases in DOID, twelve of the 1,000 symptoms in
SYMP, thirty of the roughly 240,000 anatomical en-
tries in FMA, and twenty of the 1,400 quantities in
QUDT were used in this study. Considering the size of
these models, manual data mapping would be imprac-
tical to build out or maintain complete mappings so a
combination of automatic candidate construction with
human validation and verification would be appropri-
ate.

6. Future Work

The production of a full-fledged demonstrator for
wearable devices in professional health care requires
that the mappings performed manually, in this study,
for a few diseases, symptoms, etc. be fleshed out to
the full ontologies. The approach would be to identify
those properties that can be measured by wearable de-
vices, map to the symptoms that can be associated with
those properties, and then map to the anatomical parts
and diseases that those symptoms are associated with.
It would be appropriate to use semi-automated tools
to achieve these mappings. For example, the content
mining of unstructured text can be generalized to three
steps that can be automated to varying degrees:

– Search for target information from first model’s
data

– Parse and disambiguate search results
– Normalize search results to second model’s data

The search for target information can be imple-
mented with a web crawler, bot, etc. Next, the re-
sulting pages can be mined with existing parsing ap-
proaches. Third, the results can be normalized and
compared to the target model’s labels using staged syn-
tactic filters such as those used by Rance, et al [11].
In some applications the acquisition, parsing, and nor-
malization phases can be performed by a single or
tiered approach. It is possible that systems such as

http://www.webmd.com/diabetes/understanding-diabetes-symptoms
http://www.webmd.com/diabetes/understanding-diabetes-symptoms
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IBM’s Watson[6], which is designed to perform tar-
geted search on the web and parse/normalize the re-
sults, could be used in this capacity.

References

[1] B. Bozic and J. Peters-Anders and G. Schimak, Ontology Map-
ping in Semantic Time Series Processing and Climate Change
Prediction, In International Environmental Modelling and Soft-
ware Society (iEMSs), 7th Intl. Congress on Env. Modelling and
Software, San Diego, CA, D. Ames and N. Quinn and A. Rizzoli
eds, 2014.

[2] N. Choi and I. Song and H. Han, A Survey on Ontology Map-
ping, In SIGMOD Record, Vol. 35, No. 3, Sept. 2008.

[3] A. Herrouz and C. Khentout and M. Djoudi, Overview of Web
Content Mining Tools, In The International Journal of Engineer-
ing and Science (IJES), Volume 2, Issue 6, 2013.

[4] Ralph Hodgson, Quantities, Units, Dimensions, and Datatypes
Ontologies, 2012.

[5] Y. Kalfoglou and M. Schorlemmer, Ontology mapping: the state
of the art, 2003.

[6] A. Kalyanpur and B.K. Boguraev and S. Patwardhan and J.W.
Murdock and A. Lally and C. Welty and J.M. Prager and B.
Coppola and A. Fokoue-Nkoutche and L. Zhang and Y. Pan and
Z.M. Qiu, Structured data and inference in DeepQA, 2012.

[7] L. Lefort and C. Henson and K. Taylor , Semantic Sensor Net-
work XG Final Report, 2011.

[8] A. Maedche and B. Motik and N. Silva and R. Volz, MAFRA - A
MApping FRAmework for Distributed Ontologies in the Seman-
tic W, In EKAW 2002, LNAI 2473, A. Gomez-Perez and V.R.
Benjamins eds, Springer-Verlag pubs, pp. 235-250, 2002.

[9] Onard Mejino, Foundational Model of Anatomy, 2012.
[10] OMG, Model Library for Quanties, Units, Dimensions and

Values (QUDV), Version 1.2, In: OMG Document ptc/2009-08-
16, OMG Systems Modeling Language (OMG SysML), 2009.

[11] B. Rance and M. Snyder and J. Lewis and O. Bodenrei-
der, Leveraging Terminological Resources for Mapping between
Rare Disease Information Sources, In: Medinfo, C.U. Lehmann
et al eds., IMIA and IOS Press, 2013, pp. 529-533.

[12] Lynn Schriml, DOID: The Human Disease Ontology, 2012.
[13] Lynn Schriml, SYMP: The Symptom Ontology, 2012.
[14] Vandrico, The Wearables Database, 2014.
[15] W3C, Library for Quantity Kinds and Units: schema, based on

QUDV model OMG SysML, Version 1.2, 2005.

http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_2.pdf
http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_2.pdf
http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_2.pdf
http://www.sigmod.org/publications/sigmod-record/0609/p34-article-song.pdf
http://www.sigmod.org/publications/sigmod-record/0609/p34-article-song.pdf
http://arxiv.org/ftp/arxiv/papers/1307/1307.1024.pdf
http://arxiv.org/ftp/arxiv/papers/1307/1307.1024.pdf
http://qudt.org
http://qudt.org
http://eprints.soton.ac.uk/260519/1/ker02-ontomap.pdf
http://eprints.soton.ac.uk/260519/1/ker02-ontomap.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6177725&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6177717%29
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://se-pubs.dbs.uni-leipzig.de/files/Silva2002MAFRAAMappingFrameworkfor.pdf
http://se-pubs.dbs.uni-leipzig.de/files/Silva2002MAFRAAMappingFrameworkfor.pdf
http://se-pubs.dbs.uni-leipzig.de/files/Silva2002MAFRAAMappingFrameworkfor.pdf
http://obofoundry.org/cgi-bin/detail.cgi?id=fma_lite
http://www.omgwiki.org/OMGSysML/lib/exe/fetch.php?id=sysml-qudv%3Aquantities_units_dimensions_values_qudv&cache=cache&media=sysml-qudv:annex_c.5_2009-08-26.pdf
http://www.omgwiki.org/OMGSysML/lib/exe/fetch.php?id=sysml-qudv%3Aquantities_units_dimensions_values_qudv&cache=cache&media=sysml-qudv:annex_c.5_2009-08-26.pdf
http://morc1.nlm.nih.gov/pubs/pdf/2013-medinfo-br.pdf
http://morc1.nlm.nih.gov/pubs/pdf/2013-medinfo-br.pdf
http://obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology
http://obofoundry.org/cgi-bin/detail.cgi?id=gemina_symptom
http://www.vandrico.com
http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu
http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu

