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Abstract. The Web of Data is currently undergoing an unprecedented level of growth thanks to the Linked Open Data effort.
One escalated issue is the increasing level of heterogeneity in the published resources. This seriously hampers interoperability
of Semantic Web applications. A decade of effort in the research of Ontology Alignment has contributed to a rich literature
dedicated to such problems. However, existing methods can be still limited when applied to the domain of Linked Open Data,
where the widely adopted assumption of ‘well-formed’ ontologies breaks due to the larger degree of incompleteness, noise and
inconsistency both found in the schemata and in the data described by them. Such problems become even more noticeable in
the problem of aligning relations, which is very important but insufficiently addressed. This article makes contribution to this
particular problem by introducing EQUATER, a domain- and language-independent and completely unsupervised method to
align equivalent relations across schemata based on their shared instances. Included by EQUATER are a novel similarity measure
able to cope with unbalanced population of schema elements, an unsupervised technique to automatically decide similarity cutoff
thresholds to assert equivalence, and an unsupervised clustering process to discover groups of equivalent relations across different
schemata. The current version of EQUATER is particularly suited for a more specific yet realistic case: addressing alignment
within a single large Linked Dataset, the problem that is becoming increasingly prominent as collaborative authoring is adopted
by many large-scale knowledge bases. Using three datasets created based on DBpedia (the largest of which is based on a real
problem currently concerning the DBpedia community), we show encouraging results from a thorough evaluation involving four
baseline similarity measures and over 15 comparative models by replacing EQUATER components with their alternatives: the
proposed EQUATER makes significant improvement over baseline models in terms of F1 measure (mostly between 7% and
40%). It always scores the highest precision and is also among the top performers in terms of recall. Together with the released
dataset to encourage comparative studies, this work contributes valuable resources to the related area of research.
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1. Introduction

The Web of Data is currently seeing remarkable
growth under the Linked Open Data (LOD) commu-

*Corresponding author. E-mail: ziqi.zhang@sheffield.ac.uk.

nity effort. The LOD cloud currently contains over 870
datasets and more than 62 billion triples1. It is be-
coming a gigantic, constantly growing and extremely

1http://stats.lod2.eu/, visited on 01-11-2013
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valuable knowledge source useful to many applica-
tions [30,15]. Following the rapid growth of the Web
of Data is the increasingly pressing issue of hetero-
geneity, the phenomenon that multiple vocabularies
exist to describe overlapped or even the same domains,
and the same objects are labeled with different iden-
tifiers. The former is usually referred to schema-level
heterogeneity and the latter as data or instance-level
heterogeneity. It is widely recognized that currently
LOD datasets are characterized by dense links at data-
level but very sparse links at schema-level [40,24,14].
This may hamper the usability of data over large scale
and decreases interoperability between Semantic Web
applications built on LOD datasets. This work ex-
plores this issue and particularly studies linking rela-
tions across different schemata in the LOD domain, a
problem that is currently under-represented in the lit-
erature.

Research in the area of Ontology Alignment [13,41]
has contributed to a plethora of methods towards solv-
ing heterogeneity on the Semantic Web. The main-
stream work [36,28,37,21,25,29,43,8,6,38] is archived
under the Ontology Alignment Evaluation Initiative
(OAEI) [16]. However, it has been criticized that these
methods are tailored to cope with nicely structured
and well defined ontologies [17], which are different
from LOD ontologies characterized by noise and in-
completeness [39,40,47,14,17,51]

Despite such rich literature, we notice that aligning
heterogeneous relations is not yet well-addressed, es-
pecially in the LOD context. Recent research has found
that this problem is considered to be harder than, e.g.,
aligning classes or concepts [18,14,5]. Relation names
are more diverse than concept names [5], and the syn-
onymy and polysemy problems are also more typical
[14,5]. This makes aligning relations in the LOD do-
main more challenging. Structural information of rela-
tions is particularly lacking [14,51], and the inconsis-
tency between intended meaning of schemata and their
usage in data is more wide-spread [18,14,17].

Further, a common limitation to nearly all exist-
ing methods is the need for setting a cutoff thresh-
old of computed similarity scores in order to assert
correspondences. It is known that the performance
of different methods are very sensitive to thresholds
[37,29,46,19,5], while finding optimal thresholds re-
quires expensive tuning and availability of annota-
tions; unfortunately, the thresholds are often context-
dependent and requires re-tuning for different tasks
[22,42].

This work focuses specifically on linking hetero-
geneous relations in the LOD domain. We introduce
EQUATER (EQUivalent relATion findER), a com-
pletely unsupervised method for discovering equiva-
lent relations for specific concepts, using only data-
level evidence without any schema-level information.
EQUATER has three components: (1) a similarity
measure that computes pair-wise similarity between
relations, designed to cope with the unbalanced (and
particularly sparse) population of schemata in LOD
datasets; (2) an unsupervised method of detecting cut-
off thresholds based on patterns discovered in the data;
(3) and an unsupervised clustering process that groups
equivalent relations, potentially discovering relation
alignments among multiple schemata. The principle of
EQUATER is studying the shared instances between
two relations, a feature that makes it particularly suited
for aligning relations found in a single, large Linked
Dataset, such as DBpedia. Although Ontology Align-
ment is usually concerned about linking schemata and
data instances across different datasets, usage of het-
erogeneous resources is also common in single dataset,
and is becoming an increasingly prominent problem
as the practice of collaborative authoring encourages
integration with existing large LOD datasets by vari-
ous parties, who often fail to conform to a universal
schema. As a realistic scenario, the DBpedia mappings
portal2 is a community effort dedicated to such a prob-
lem. Nevertheless, we also discuss how EQUATER
can be improved to address cross-dataset alignment.

To thoroughly evaluate EQUATER, we use a num-
ber of datasets collected in a controlled manner, in-
cluding one based on the practical problem faced by
the DBpedia mapping portal. We create a large number
of comparative models to assess EQUATER along the
following dimensions: its similarity measure, capabil-
ity of coping with dataset featuring unbalanced usage
of schemata, automatic threshold detection, and clus-
tering. We report encouraging results from these ex-
periments. EQUATER successfully discovers equiva-
lent relations across multiple schemata, and the simi-
larity measure of EQUATER is shown to significantly
outperform all baselines in terms of F1 (maximum im-
provement of 0.47, or 47%). It also handles unbalanced
populations of schema elements and shows stability
against several alternative models. Meanwhile, the au-
tomatic threshold detection method is shown to be very

2http://mappings.dbpedia.org/index.php/Mapping_en, visited
on 01 August 2014
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competitive - it even outperforms the supervised mod-
els on one dataset in terms of F1. Overall we believe
that EQUATER provides an effective solution to prac-
tical problems in the LOD domain.

In the remainder of this paper, Section 2 discusses
related work; Section 3 introduces the method; Section
4 describes a series of designed experiments and 5 dis-
cusses results, followed by conclusion in Section 6.

2. Related Work

2.1. Scope and terminology

An alignment between a pair of ontologies is a set
of correspondences between entities across the on-
tologies [13,41]. Ontology entities are usually: classes
defining the concepts within the ontology; individu-
als denoting the instances of these classes; literals rep-
resenting concrete data values; datatypes defining the
types that these values can have; and properties com-
prising the definitions of possible associations between
individuals, called object properties, or between one
individual and a literal, called datatype properties [25].
Properties connect other entities to form statements,
which are called triples each consisting of a subject,
a predicate (i.e., a property) and an object3. A corre-
spondence asserts certain relation holds between two
ontological entities, and the most frequently studied
relations are equivalence and subsumption. Ontology
alignment is often discussed at ‘schema’ or ‘instance’
level, where the former usually addresses alignment
for classes and properties, the latter addresses align-
ment for individuals. This work belongs to the domain
of schema level alignment.

As we shall discuss, in the LOD domains, data are
not necessarily described by formal ontologies, but
sometimes vocabularies that are simple renderings of
relational databases [40]. Therefore in the following,
wherever possible, we will use the more general term
schema or vocabulary instead of ontology, and relation
and concept instead of property and class. When we
use the terms class or property we mean strictly in the
formal ontology terms unless otherwise stated.

A fundamental operation in discovering ontology
alignment is matching pairs of individual entities. Such
methods are often called ‘matchers’ and are usually di-
vided into three categories depending on the type of

3To be clear, we will always use ‘object’ in the context of triples;
we will always use ‘individual’ to refer to object instances of classes.

data they work on [13,41]. Terminological matchers
work on textual strings such as URIs, labels, comments
and descriptions defined for different entities within an
ontology. The family of string similarity metrics has
been widely employed for this purpose [5]. Structural
matchers make use of the hierarchy and relations de-
fined between ontological entities. They are closely re-
lated to measures of semantic similarity, or relatedness
in more general sense [50]. Extensional matchers ex-
ploit data that constitute the actual population of an on-
tology or schema in the general sense, and therefore,
are often referred to as instance- or data-based meth-
ods. For a concept, ‘instances’ or ‘populated data’ are
individuals in formal ontology terms; for a relation,
these can depend on specific matchers, but are typi-
cally defined based on triples containing the relation.
Matchers compute a degree of similarity between enti-
ties in certain numerical range, and use cutoff thresh-
olds to assert correspondences.

We discuss state-of-the-art in three sub-sections in
the following: the mainstream work led under the an-
nual OAEI campaigns; work particularly addressing
ontology alignment in the LOD domain; and work
specifically looking at aligning relations across differ-
ent schemata.

2.2. OAEI and state-of-the-art

The OAEI maintains a number of well-known pub-
lic datasets for evaluating ontology alignment meth-
ods, and hosts annual campaigns to compare the
performance of different systems under a uniform
framework. Work under this paradigm has been well-
summarized in [13,41]. A predominant pattern shared
by these work [36,28,37,21,25,29,43,8,6,38,19] is the
strong preference of terminological and structural
matchers to extensional methods [41]. There is also
a trend of using a combination of different matchers
(either across or within categories), since it is argued
that the suitability of a matcher is dependent on differ-
ent scenarios and therefore combining several match-
ers could improve alignment quality [38]. However, an
associated problem is finding an optimal ‘configura-
tion’ in the combination such as tuning weights asso-
ciated with different matchers [36,37,29,43,38]. With-
out these, multi-matcher methods can even underper-
form single matchers [29]. Several studies have been
carried out in this direction, such as Hu et al. [21] and
Li et al. [29] that build on the notions of linguistic and
structural ‘comparability’ of two ontologies; Nagy et
al. [36,37] that uses the Dempster-Shafer [44] theory to
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combine different evidences given by different match-
ers to arrive at a coherent interpretation; and Ngo et
al. [38] that uses supervised learning to learn an op-
timal setting from training data. Most studies showed
that ontology alignment can benefit from the use of
background knowledge sources such as WordNet and
Wikipedia [36,28,37,25,8,19].

General limitations Despite their success at OAEI
compaigns, these methods suffer from several limita-
tions even without considering the complications due
to the LOD domain or relation heterogeneity. First,
it is well-known that terminological matchers easily
fail when the linguistic features of two entities differ
largely. While to certain degree structural matchers can
solve this issue, the problem is that both categories
are very ontology-specific. As shown by Jean-Marry
et al. [25] and Gruetze et al. [17], two ontologies con-
structed for the same domain using the same data re-
sources by different experts could be vastly dissimi-
lar in terms of taxonomy and terminological features
(e.g., both DBpedia4 and YAGO5 ontologies represent
knowledge extracted from Wikipedia).

On the other hand, even strong similarity between
entities measured at terminological or structural level
does not always imply strict equivalence, since onto-
logical schemata may be interpreted in different ways
by data publishers thus creating inconsistency between
their intended meanings and actual usage patterns in
data [39,17,51] (e.g., foaf6:Person may represent re-
searchers in a scientific publication dataset, but artists
in a music dataset).

Many state-of-the-art methods use a combination
of different matchers. This does not necessarily solve
the problems but can significantly increase complexity.
Similarity computation is typically quadratic; the more
matchers are combined, the larger the search space
grows and the more computation is required. Addi-
tional effort is also required to carefully combine out-
put from different matchers in a coherent way. As we
shall discuss in the next sections, tougher challenges
arise in the LOD domain or in the problem of align-
ing heterogeneous relations, as some of those problems
become even more typical.

4http://dbpedia.org/Ontology, visited on 01-11-2013.
5http://www.mpi-inf.mpg.de/yago-naga/yago/, visited on 01-

11-2013
6foaf:http://xmlns.com/foaf/0.1/

2.3. Ontology alignment in the LOD domain

Some characteristics of Linked Data require particu-
lar attention when adapting ontology alignment meth-
ods from the classic OAEI scenario to the LOD do-
main. First and foremost, vocabulary definitions are
often highly heterogeneous and incomplete [17]. Tex-
tual features such as labels and comments for concepts
and relations that are used by almost every method
documented by OAEI are non-existent in some large
ontologies. In particular, many vocabularies generated
from (semi-)automatically created large datasets are
based on simple rendering of relational databases and
are unlikely to contain such information. For instance,
Fu et al. [14] showed that the DBpedia ontology con-
tained little linguistic information about relations ex-
cept their names. The problem of inconsistency be-
tween the intended definitions and the actual usage
of concepts and relations discussed before, is particu-
larly prominent in the LOD domain [39,47,17], mak-
ing such kinds of information unreliable evidence even
if they are available. Empirically, Jain et al. [23] and
Cruz et al. [6] showed that the top-performing sys-
tems in ‘classic’ ontology alignment settings such as
the OAEI do not have clear advantage over others in
the LOD domain.

Another feature of the Linked Data environment is
the presence of large volumes of data and the avail-
ability of many interconnected information sources
[39,40,46,17]. Thus extensional matchers can be bet-
ter suited for the problem of ontology alignment in the
LOD domain as they provide valuable insights into the
contents and meaning of schema entities from the way
they are used in data [39,47].

The majority of state-of-the-art in the LOD domain
employed extensional matchers. Nikolov et al. [39]
proposed to recursively compute concept mappings
and entity mappings based on each other. Suchanek et
al. [46] built a holistic model starting with initializing
probabilities of correspondences based on instance (for
both concepts and relations) overlap, then iteratively
re-compute probabilities until convergence. However,
equivalence between relations are not addressed.

Parundekar et al. [40] discussed aligning ontologies
that are defined at different levels of granularity, which
is common in the LOD domain. As a concrete exam-
ple, they mapped the only class in the GeoNames7 on-
tology - geonames:Feature - with a well defined one,

7http://www.geonames.org/
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such as the DBpedia ontology, by using the notion of
‘restriction class’. Slabbekoorn et al. [45] explored a
similar problem: matching a domain-specific ontology
to a general purpose ontology.

Jain et al. [24] proposed BLOOMS+, the idea of
which is to build representations of concepts as sub-
trees from Wikipedia category hierarchy, then deter-
mine equivalence between concepts based on the over-
lap in their representations. Both structural and exten-
sional matcher are used and combined. Cruz et al. [7]
created a customization of the AgreementMaker sys-
tem [8] to address ontology alignment in the LOD con-
text, and achieved better average precision but worse
recall than BLOOMS+. Gruetze et al. [17] and Duan
et al. [12] also used extensional matchers in the LOD
context but focusing on improving computation effi-
ciency of the algorithms.

A review of these methods show that many have
strong preference towards using extensional matchers
for ontology alignment in the LOD domain, but they
typically focus on aligning concepts not relations. As
we shall discuss in the following, aligning relations in-
volves new challenges.

2.4. Matching relations

Compared to concepts, aligning relations is gener-
ally considered to be harder [18,14,5]. The challenges
concerning the LOD domain can become more notice-
able when dealing with relations. In terms of linguis-
tic features, relation names can be more diverse than
concept names, this is because they frequently involve
verbs that can appear in a wider variety of forms than
nouns, and contain more functional words such as ar-
ticles and prepositions [5]. The synonymy and poly-
semy problems are common. Verbs in relation names
are more generic than nouns in concept names and
therefore, they generally have more synonyms [14,5].

Same relation names are frequently found to bear
different meanings in different contexts [18], e.g., in
the DBpedia dataset ‘before’ is used to describe rela-
tionship between consecutive space missions, or con-
secutive Academy Award winners [14]. Such poly-
semy issue causes wide-spread inconsistency between
definitions of relations and their actual usage in data.
Indeed, Gruetze et al. [17] suggested definitions of re-
lations should be ignored when they are studied in the
LOD domain due to such issues.

In terms of structural features, Zhao et al. [51]
showed that relations may not have domain or range
defined in the LOD domain. Moreover, we carried

out a test on the ‘well-formed’ ontologies released
by the OAEI-2013 website, and found that among 21
downloadable8 ontologies 7 defined relation hierarchy
and the average depth is only 3. Fu et al. [14] also
showed hierarchical relations between DBpedia prop-
erties were very rare.

For these reasons, terminological and structural
matchers [53,25,29,38] can be seriously hampered if
applied to matching relations, particularly in the LOD
domain. Indeed, Cheatham et al. [5] compared a wide
selection of string similarity metrics in several tasks
and showed their performance on matching relations
to be inferior to matching concepts. Thus in line with
[39,12], we argue in favour of extensional matchers.

We notice only a few related work specifically fo-
cused on matching relations based on data-level evi-
dence. Fu et al. [14] studied mapping relations in the
DBpedia dataset. The method uses three types of fea-
tures: data level, terminological, and structural. Simi-
larity is computed using three types of matchers corre-
sponding to the features. Zhao et al. [52,51] first cre-
ated triple sets each corresponding to a specific subject
that is an individual, such as dbr:Berlin. Then initial
groups of equivalent relations are identified for each
specific subject: if, within the triple set containing the
subject, two lexically different relations have identi-
cal objects, they are considered equivalent. The initial
groups are then pruned by a large collection of termi-
nological and structural matchers, applied to relation
names and objects to discover fuzzy matches.

Many extensional matchers used for matching con-
cepts could be adapted to matching relations. One pop-
ular strategy is to compare the size of the overlap in
the instances of two relations against the size of their
total combined, such as the Jaccard and Dice metrics
(or similar) used in [22,12,14,17]. However, we argue
that in the LOD domain, usage of vocabularies can
be extremely unbalanced due to the collaborative na-
ture of LOD. Data publishers have limited knowledge
about available vocabularies to describe their data, and
in worst cases they simply do not bother [47]. As a re-
sult, concepts and relations defined from different vo-
cabularies bearing the same meaning can have differ-
ent population sizes. In such cases, the above strategy
is unlikely to succeed, as suggested in [39].

Another potential issue is that current work assumes
relation equivalence to be ‘global’, while it has been

8http://oaei.ontologymatching.org/2013/, visited on 01-11-
2013. Some datasets were unavailable at the time.
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suggested that, interpretation of relations should be
context-dependent, and argued that equivalence should
be studied at concept-specific context because essen-
tially relations are defined specifically with respect
to concepts [18,14]. Global equivalence cannot deal
with the polysemy issue such as the previously illus-
trated example of ‘before’ bearing different meanings
in different contexts. Further, to our knowledge, there
is currently no public dataset specifically for align-
ing relations in the LOD domain, and current meth-
ods [14,52,51] have been evaluated on smaller datasets
than those used in this study.

Additionally, it can be argued that aligning relations
is closely related to the extensive literature on map-
ping database schemata. To name a few, Madhavan
et al. [34] and Do and Rahm [10] studied methods
of combining a number of different matchers to align
database tables. Doan et al. [11] introduced a super-
vised model, using similar features used by extensional
and terminological matchers. Kang and Naughton [27]
suggested that attributes from two database tables
can be aligned based on pair-wise attribute correla-
tion detected within each individual table. This com-
plements the classical extensional and terminological
methods. Madhavan et al. [33] looked at using a cor-
pus of schema as additional evidence (to the concern-
ing schemata to be matched) for attribute mapping.
Apart from the intrinsic limitations of the highly sim-
ilar matching methods to those used in the ontology
community, the LOD domain introduces new problems
such as data sparsity and noise, which can invalidate
such methods or require adaptation.

2.5. The cutoff thresholds in matchers

To date, nearly all existing matchers require a cut-
off threshold to assert correspondence between enti-
ties. The performance of a matcher can be very sensi-
tive to thresholds and finding an optimal point is of-
ten necessary to warrant the effectiveness of a matcher
[37,29,46,19,5]. Such thresholds are typically decided
based on some annotated data (e.g., [29,43,18]), or
even arbitrarily in certain cases. In the first case, ex-
pensive effort must be spent on annotation and train-
ing. In both cases, the thresholds are often context-
dependent and requires re-tuning for different tasks
[22,43,42].

Another approach adopted in [12] and [14] is to sort
the matching results in a descending order of the sim-
ilarity score, and pick only the top-k results. This suf-
fers from the same problem as cutoff thresholds since

the value of k can be different in different contexts
(e.g., in [12] this varied from 1 to 86 in the ground
truth). To the best of our knowledge, our work is the
first that studies the problem of automatically deciding
thresholds based on data in ontology alignment.

2.6. Remark

To conclude this section of related work, we argue
that aligning relations across schemata in the LOD
domain is an important research problem that is cur-
rently under-represented in the literature of ontology
alignment. The characteristics of relations found in the
schemata from the LOD domain, i.e., incomplete (or
lack of) definitions, inconsistency between intended
meaning of schemata and their usage in data, and very
large amount data instances, advocate for a renewed in-
spection of existing ontology alignment methods. We
believe the solution rests in extensional methods that
provide insights into the meaning of relations based on
data, and unsupervised methods that alleviate the need
for threshold tuning.

Towards these directions we developed a prototype
[49] specifically to study aligning equivalent relations
in the LOD domain. We proposed a different exten-
sional matcher designed to reduce the impact of the un-
balanced populations , and a rule-based clustering that
employs a series of cutoff thresholds to assert equiv-
alence between relation pairs and discover groups of
equivalent relations specific to individual concepts.
The method showed very promising results in terms of
precision, and was later used in constructing knowl-
edge patterns based on data [2,48]. The work described
in this article is built on our prototype but largely
extends it in several dimensions: (1) the matcher is
largely revised and extended; (2) a method of auto-
matic threshold detection based on data; (3) an unsu-
pervised machine learning clustering approach to dis-
cover groups of equivalent relations; (4) augmented
and re-annotated datasets that we make available to
public; (5) extensive and thorough evaluation against a
large set of comparative models, together with an in-
depth analysis of the task of aligning relations in the
LOD domain.

We focus on equivalence only because firstly, it is
considered the major issue in ontology alignment as it
is the focus by the majority of related work; secondly,
hierarchical structures for relations are very rare, espe-
cially in the LOD domain.
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<x, r, y> <dbr9:Sydney_Opera_House,
dbo10:openningDate, ‘1973’>,
<dbr:Royal_Opera_House,
dbo:openningDate, ‘1732’>,
<dbr:Sydney_Opera_House,
dbpp11:yearsactive, ‘1973’>

r1 dbo:openningDate

r2 dbpp:yearsactive

arg(r1) (dbr:Sydney_Opera_House, ‘1973’),
(dbr:Royal_Opera_House, ‘1732’)

args(r1) dbr:Sydney_Opera_House,
dbr:Royal_Opera_House

argo(r1) ‘1973’,‘1732’
Table 1

Notations used in this paper and their meaning

3. The EQUATER Method

3.1. Task formalization

In this section we describe EQUATER - our domain-
and language-independent method for finding equiva-
lent relations from LOD datasets. EQUATER belongs
to the category of extensional matchers according to
[13,41], and only uses instances of relations as its ev-
idence to predict equivalence. In the following, we
write <x, r, y> to represent triples, where x, y and r
are variables representing subject, object and relation
respectively. We will call x, y the arguments of r, or
let arg(r) = (x, y) return pairs of x and y between
which r holds true. We call such argument pairs as in-
stances of r. We will also call x the subject of r, or
let args(r) = x return the subjects of any triples that
contain r. Likewise we call y the object of r or let
argo(r) = y return the objects of any triples that con-
tain r. Table 1 shows examples using these notations.

EQUATER takes as input a URI representing a spe-
cific concept C and a set of triples <x, r, y> whose
subjects are individuals of C, or formally type(x) =
C. In other words, we study the relations that link C
with everything else. The intuition is that such rela-
tions may carry meanings that are specific to the con-
cept (e.g., the example of the DBpedia relation ‘before’
in the context of different concepts).

Our task can be formalized as: given the set of triples
<x, r, y> such that x are instances of a particular con-
cept, i.e., type(x) = C, determine 1) for any pair of
(r1, r2) derived from <x, r, y> if r1 ≡ r2; and 2) cre-

9dbr:http://dbpedia.org/resource/
10dbo:http://dbpedia.org/ontolgy/
11dbpp:http://dbpedia.org/property/

ate clusters of relations that are mutually equivalent.
To approach the first goal, we firstly introduce a data-
driven similarity measure (Section 3.2). For a specific
concept we hypothesize there exists only a handful
of truly equivalent relation pairs (true positives) with
high similarity scores, however, there can be a large
number of pairs of relations with low similarity scores
(false positives) due to noise in the data caused by, e.g.,
misuse of schemata or purely coincidence. Therefore,
we propose to automatically detect concept-specific
thresholds based on patterns in the similarity scores of
relation pairs of the concept. Then pairs with scores
beyond the threshold are considered to be equivalent
(Section 3.3). For the second goal, we apply unsuper-
vised clustering to the set of equivalent pairs and cre-
ate clusters of mutually equivalent relations (Section
3.4). Clustering effectively discovers equivalence tran-
sitivity or invalidates pair-wise equivalence. This may
also discover alignments among multiple schemata at
the same time, while state-of-the-art alignment models
usually align pairs of schemata.

3.2. Measure of similarity

The goal of the measure is to assess the degree of
similarity between a pair of relations within a concept-
specific context, as illustrated in Figure 1. The measure
consists of three components, the first two of which are
previously introduced in our prototype [49].

Fig. 1. The similarity measure computes a numerical score for pairs
of relations. r3 and r5 has a score of 0.

3.2.1. Triple agreement
Triple agreement evaluates the degree of shared ar-

gument pairs of two relations in triples. Equation 1
firstly computes the overlap (intersection) of argument
pairs between two relations.

arg∩(r1, r2) = arg(r1) ∩ arg(r2) (1)

Then the triple agreement is a function that returns
a value between 0 and 1.0:
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ta(r1, r2) = max{ |arg∩(r1, r2)|
|arg(r1)|

,
|arg∩(r1, r2)|
|arg(r2)|

(2)

The intuition of triple agreement is that if two rela-
tions r1 and r2 have a large overlap of argument pairs
with respect to the size of either relation, they are likely
to have an identical meaning. We choose the max of
the two values in equation 2 rather than balancing the
two as this copes with the unbalanced usage of differ-
ent schemata in LOD datasets, the problem which we
discussed in Section 2.4. As an example, consider Fig-
ure 2. The size of argument pair overlap between r1
and r2 is 4 and it is relatively large to r1 but rather
insignificant to r2. ta chooses the maximum between
the two giving a strong indication of equivalence be-
tween the relations. We note that similar forms have
been used in [39] for discovering similar concepts and
in [40,46] for studying subsumption relations between
concepts. However we believe that this could be used
to find equivalent relations due to the largely unbal-
anced population for different vocabularies, as well as
the lack of hierarchical structures for relations as dis-
cussed before in Section 2.4. We confirm this empiri-
cally in experiments later in Section 5.

Fig. 2. Illustration of triple agreement.

3.2.2. Subject agreement
Subject agreement provides a complementary view

by looking at the degree to which two relations share
the same subjects. The motivation of having sa in ad-
dition to ta can be illustrated by Figure 3. The exam-
ple produces a low ta score due to the small overlap
in the argument pairs of r1 and r2. A closer look re-
veals that although r1 and r2 have 7 and 11 argument
pairs, they have only 3 and 4 different subjects respec-
tively and two are shared in common. This indicates
that both r1 and r2 are 1-to-many relations. Again due
to publisher preferences or lack of knowledge, triples
may describe the same subject (e.g., dbr:London) us-
ing heterogeneous relations (e.g., dbo:birthPlace Of,
dbpp:place OfOriginOf ) with different sets of objects
(e.g., {dbr:Marc_Quinn, dbr:David_Haye, dbr:Alan_

Keith} for dbo:birthPlaceOf and {dbr:Alan_Keith,
dbr:Adele_Dixon} for dbpp:placeOfOriginOf ). ta does
not discriminate such cases.

Fig. 3. Illustration of subject agreement.

Subject agreement captures this situation by hypoth-
esizing that two relations are likely to be equivalent
if (α) a large number of subjects are shared between
them and (β) a large number of such subjects also have
shared objects.

sub∩(r1, r2) = args(r1) ∩ args(r2) (3)

sub∪(r1, r2) = args(r1) ∪ args(r2) (4)

α(r1, r2) =
|sub∩(r1, r2)|
|sub∪(r1, r2)|

(5)

β(r1, r2) =

∑
x∈sub∩(r1,r2)

1 if ∃y : (x, y) ∈ arg∩(r1, r2)
0 otherwise

|sub∩(r1,r2)|

(6)

, both α and β return a value between 0 and 1.0, and
subject agreement combines both to also return a value
in the same range as

sa(r1, r1) = α(r1, r2) · β(r1, r2) (7)

Equation 5 evaluates the degree to which two re-
lations share subjects based on the intersection and
the union of the subjects of two relations. Equation 6
counts the number of shared subjects that have at least
one overlapping object. The higher the β, the more the
two relations ‘agree’ in terms of their shared subjects
sub∩. For each subject shared between r1 and r2 we
count 1 if they have at least 1 object in common and 0
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otherwise. Since both r1 and r2 can be 1-to-many re-
lations, few overlapping objects could mean that one
is densely populated while the other is not, which does
not mean they ‘disagree’. The agreement sa(r1, r2)
balances the two factors by taking the product. As a
result, relations that have high sa will share many sub-
jects (α), a large proportion of which will also share at
least one object (β). Following the example in Figure 3
it is easy to calculate α = 0.4, β = 1.0 and sa = 0.4.

3.2.3. Knowledge confidence modifier
Although ta and sa computes scores of similarity

from different dimensions, as argued by [22], in prac-
tice, datasets often have imperfections due to incor-
rectly annotated instances, data spareness and ambigu-
ity, so that basic statistical measures of co-occurrence
might be inappropriate if interpreted in a naive way.
Specifically in our case, the divisional equations of ta
and sa components can be considered as comparison
between two items - sets of elements in this case. From
the cognitive point of view, to make a meaningful com-
parison of two items we must possess adequate knowl-
edge about each such that we ‘know’ what we are com-
paring and can confidently identify their ‘difference’.
Thus we hypothesize that our confidence about the out-
come of comparison directly depends on the amount
of knowledge we possess about the compared items.
We can then solve the problem by solving two sub-
tasks: (1) quantifying knowledge and (2) defining ‘ad-
equacy’.

The quantification of knowledge can be built on the
principle of human inductive learning - learning by ex-
amples. The intuition is that given a task (e.g., learn-
ing to recognize horses) of which no a-priori knowl-
edge is given, humans are capable of generalizing ex-
amples and inducing knowledge about the task. Ex-
hausting examples is unnecessary and typically our
knowledge converges after seeing certain amount of
examples and we learn little from additional examples
- a situation that indicates the notion of ‘adequacy’.
Such a learning process can be modeled by ‘learning
curves’, which are designed to capture the relation be-
tween how much we experience (examples) and how
much we learn (knowledge). Therefore, we propose
to approximate the modeling of confidence by models
of learning curves. In the context of EQUATER, the
items we need knowledge of are pairs of relations to
be compared. Practically, each is represented as a set
of instances, i.e., examples. Thus our knowledge about
the relations can be modeled by learning curves cor-

responding to the number of examples (i.e., argument
pairs) in each set.

We propose to model this problem based on the the-
ory by Dewey [9], who suggests human learning fol-
lows an ‘S-shaped’ curve as shown in Figure 4. As
we begin to observe examples, our knowledge grows
slowly as we may not be able to generalize over lim-
ited cases. This is followed by a steep ascending phase
where, with enough experience and new re-assuring
evidence, we start ‘putting things together’ and gain-
ing knowledge at a faster phase. This rapid progress
continues until we reach convergence, an indication of
‘adequacy’ and beyond which the addition of examples
adds little to our knowledge.

Fig. 4. The logistic function modelling knowledge confidence

Empirically, we model such a curve using a logistic
function shown in Equation 8, where T denotes a set
of argument pairs of relations we want to understand,
kc is the shorthand for knowledge confidence (between
0.0 and 1.0) representing the amount of knowledge or
level of confidence corresponding to different amounts
of examples, and n denotes the number of examples by
which one gains adequate knowledge about the set and
becomes fully confident about comparisons involving
the set (hence the corresponding relation it represents)
.

kc(|T |) = lgt(|T |) = 1

1 + e
n
2 −|T | (8)

It could be argued that other learning curves (e.g.,
exponential) could be used as alternative; or we could
use simple heuristics instead (e.g., discard any rela-
tions that have fewer than n argument pairs). How-
ever, we believe that the logistic model better fits the
problem since the exponential model usually implies
rapid convergence, which is hardly the case in many
real learning situations; while the simplistic thresh-
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old based model may harm recall. We show empirical
comparison in Section 5.

Next we revise ta and sa as takc and sakc respec-
tively by integrating the kc measure in the equation:

takc(r1, r2) = max{ |arg∩(r1, r2)|
|arg(r1)|

· kc(|arg(r1)|),

|arg∩(r1, r2)|
|arg(r2)|

· kc(|arg(r1)|)}

(9)

sakc(r1, r1) =

α(r1, r2) · β(r1, r2) · kc(|arg∩(r1, r2)|)
(10)

, where the choice of the kc function can be either
lgt, or some alternative models to be detailed in Sec-
tion 4. The choice of the kc function does not break
the mathematical consistency of the formula. In Equa-
tion 9, our confidence about a ta score depends on our
knowledge of either arg(r1) or arg(r2) (i.e., the de-
nominators). Note that the denominator is always a su-
perset of the numerator, the knowledge of which we
do not need to quantify separately since intuitively, if
we know the denominator we should also know its el-
ements and its subsets. Likewise in Equation 10, our
confidence about an sa score depends on the knowl-
edge of the shared argument pairs between r1 and r2
as any other components in the equation are essentially
subsets of this set. Both Equations return a value be-
tween 0 and 1.0.

Finally, the similarity of r1 and r2 is:

e(r1, r2) =
takc(r1, r2) + sakc(r1, r2)

2
(11)

3.3. Determining thresholds

After computing similarity scores for relation pairs
of a specific concept, we need to interpret the scores
and be able to determine the minimum score that jus-
tifies equivalence between two relations (Figure 5).
This is also known as the mapping selection problem.
As discussed before, one typically derives a thresh-
old from training data or makes an arbitrary decision.
The solutions are non-generalizable and the supervised
method also requires expensive annotations.

Fig. 5. Deciding a threshold beyond which pairs of relations are con-
sidered to be truely equivalent.

We use an unsupervised method that determines
thresholds automatically based on observed patterns in
data. We hypothesize that a concept may have only
a handful of equivalent relation pairs whose similar-
ity scores should be significantly higher than the non-
equivalent noisy pairs that may happen to have non-
zero similarity scores due to imperfections in data such
as spelling errors, schema misuse, or merely coinci-
dence. For example, Figure 6 shows the scores (e) of
101 pairs of relations of the DBpedia concept Book
ranked by e(> 0) appear to form a long-tailed pattern
consisting of a small population with high similarity
and a very large population with low similarity.

Fig. 6. The long-tailed pattern in similarity scores between relations
computed using e. t could be the boundary threshold.

On this basis, we propose to separate the non-zero
scored relation pairs into two groups based on the prin-
ciple of maximizing the difference of similarity scores
between the groups. While a wide range of data classi-
fication and clustering methods can be applied for this
purpose, here we use an unsupervised method - Jenks
natural breaks [26].

Jenks natural breaks aims to minimize within-class
variance while maximizing between-class variance.
Given i the expected number of groups in the data,
the algorithm starts by dividing the data into arbi-
trary i groups, followed by an iterative process aimed
at optimizing the ‘goodness-of-variance-fit’ based on
two figures: the sum of squared deviations between
classes, and the sum of squared deviations from the ar-
ray mean. The resulting optimal classification is called
Jenks natural breaks.

Empirically, given a continuous variable (i.e., e) and
an array of data values (i.e., similarity scores of re-
lation pairs for a concept C), we apply Jenks natural
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breaks to the values with i = 2 to break them into two
sets. The boundary value t is the threshold used to sep-
arate relation pairs that we consider as equivalent from
those that we consider non-equivalent.

3.4. Clustering

So far Sections 3.2 and 3.3 described our method to
answer the first question set out in the beginning of this
section, i.e., predicting relation equivalence. The pro-
posed method studies each relation pair independently
from other pairs. This may not be sufficient for discov-
ering equivalent relations due to two reasons. First, two
relations may be equivalent even though no supporting
data are present. For example, in Figure 7 we can as-
sume r1 ≡ r3 based on transitivity although no data
directly supports a positive similarity score between
them. Second, a relation may be equivalent to multi-
ple relations (e.g., r2 ≡ r1 and r2 ≡ r3) from differ-
ent schemata, thus forming a cluster; and furthermore
some equivalence links may appear too weak to hold
when compared to the cluster context (e.g., e(r1, r4)
appears to be much lower compared to other links in
the cluster of r1, r2, and r3).

Fig. 7. Clustering discovers transitive equivalence and invalidates
weak links.

The second goal of EQUATER is to address such
issues by clustering mutually equivalent relations for
a concept. Essentially clustering brings in additional
context to decide pair-wise equivalence, which may
lead to discover transitive equivalence and invalidate
weak links. Potentially, this also allows creating align-
ments between multiple schemata at the same time.
Given {ri, rj : e(ri, rj) ≥ t} the set of equivalent re-
lation pairs discovered before, we identify the number
of distinct relations h and create an h×h distance ma-
trix M . The value of each cell mi,j , (0 ≤ i, j < h) is
defined as:

mi,j = maxE − e(ri, rj) (12)

where maxE is the maximum possible similarity
given by a measure (e.g., in Equation 11 maxE =

1.0). Then we use the group-average agglomerative
clustering algorithm [35] that takes M as input and
creates clusters of equivalent relations. To automati-
cally decide the optimal number of clusters, we use the
well-known Calinski and Harabasz [3] stopping rule.

4. Experiment Settings

Following the two goals described at the beginning
of Section 3, we design a series of experiments to thor-
oughly evaluate EQUATER in terms of its capability
of predicting equivalence of two relations of a con-
cept (pair equivalence) and grouping equivalent rela-
tions (clustering). Different settings are created along
three dimensions by selecting from several choices of
(1) similarity measure, (2) threshold detection methods
and (3) different models of kc.

4.1. Measures of similarity

We compare the proposed measure of similarity
against four baselines. Our criteria for the baseline
measures are: 1) to cover different types of match-
ers; 2) to focus on methods that have been practically
shown effective in the LOD context, and where pos-
sible, particularly for aligning relations; 3) to include
some best performing methods for this particular task.

The first is a string similarity measure, the Leven-
shtein distance metric (lev) that proves to be one of the
best performing terminological matcher for aligning
both relations and classes [5]. Specifically, we measure
the string similarity (or distance) between the URIs
of two relations, but we remove namespaces from re-
lation URIs before applying the metric. As a result,
dbpp:name and foaf:name will be both normalized
to name and thus receiving the maximum similarity
score.

The second is a semantic similarity measure by Lin
(lin) [31], which uses both WordNet’s hierarchy and
word distributional statistics as features to assess simi-
larity of two words. Thus two lexically different words
(e.g., ‘cat’ and ‘dog’ can also be similar). Since URIs
often contain strings that are concatenation of multiple
words (e.g., ‘birthPlace’), we use simple heuristics to
split them into multiple words when necessary (e.g.,
‘birth place’). Semantic similarity measures are also
popular techniques in ontology alignment.

The third is the extensional matcher proposed by
[14] (fu) to address particularly the problem of align-
ing relations in DBpedia:
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fu(r1, r2) =

|args(r1) ∩ args(r2)|
|args(r1) ∪ args(r2)|

· |argo(r1) ∩ argo(r2)|
|argo(r1) ∪ argo(r2)|

(13)

The fourth baseline is the ‘corrected’ Jaccard func-
tion proposed by Isaac et al. [22]. The original Jaccard
function has been used in a number of studies concern-
ing mapping concepts across ontologies [22,12,42].
Isaac et al. [22] showed that it is one of the best per-
forming measures in their experiment, however, they
also pointed out that one of the issue with Jaccard is
its inability to consider the absolute sizes of two com-
pared sets. As an example, Jaccard does not distinguish
the cases of 100

100 and 1
1 . In the latter case, there is lit-

tle evidence to support the score (both 1.0). To address
this, they introduced a ‘corrected’ Jaccard measure (jc)
as below:

jc(r1, r2) =√
|arg(r1) ∩ arg(r2)| · (|arg(r1) ∩ arg(r2)| − 0.8)

|arg(r1) ∪ arg(r2)|
(14)

4.2. Methods of detecting thresholds

We compare three different methods of threshold
detection. The first is Jenks Natural Breaks jk that
comprises part of EQUATER, discussed in Section 3.3.
For the second method we use the k-means cluster-
ing [32] algorithm (km) for unsupervised threshold de-
tection. K-means takes the same input of jk and cre-
ates two clusters such that each data value belongs to
the cluster with the nearest mean. The boundary value
that separates the two clusters are used as threshold.
Since both methods find boundaries based on data in
an unsupervised manner, we are able to define concept-
specific threshold that may fit better than an arbitrarily
determined global threshold.

Next, we also use a supervised method (denoted by
s) to derive a uniform threshold for all concepts based
on annotated data. To do so, suppose we have a set of
m concepts and for each concept, we create pairs of re-
lations found in data and ask humans to annotate each
pair (to be detailed in Section 4.5). This becomes the
training data that we use to derive a uniform thresh-
old. Then we choose a similarity measure to be eval-

uated, and use it to score each pair and rank results
by scores. Using the annotations, we can evaluate ac-
curacy at each rank and at certain rank the accuracy
should be maximized. We record the similarity score
at this rank, and use it as the optimal threshold for that
concept. Due to the difference in concept-specific data,
we expect to obtain different optimal thresholds for
each of the m concepts in the training data. However,
in reality, the thresholds for new data will be unknown
a-priori. Therefore we use the average of all thresholds
derived from the training data concepts as an approxi-
mation and use it for testing.

4.3. Models of kc

We compare EQUATER’s logistic model (lgt) of
kc against two alternative models. The first is a naive
threshold based model that discards any relations that
have fewer than n argument pairs. Intuitively, n can be
considered the minimum number of examples to en-
sure that a relation has ‘sufficient’ data evidence to ‘ex-
plain’ itself. Following this model, if either r1 or r2 in a
pair has fewer than n triples their ta and sa scores will
be 0, because there is insufficient evidence in the data
and hence we ‘know’ too little about them to evaluate
similarity. Such strategy is adopted in [22]. To denote
this alternative method we use −n.

The second is an exponential model, denoted by exp
and shown in Figure 8. We model such a curve using
an exponential function shown in Equation 15, where
k is a scalar that controls the speed of convergence and
|T | returns the number of observed examples in terms
of argument pairs.

kc(|T |) = exp(|T |) = 1− e−|T |·k (15)

Fig. 8. The exponential function modelling knowledge confidence

For each model we need to define a parameter. For
lgt, we need to define n, the number of examples
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above which we obtain adequate knowledge and there-
fore maximum confidence. Our decision is inspired by
the empirical experiences of bootstrapping learning, in
which machine learns a task starting from a handful of
examples. Carlson et al. [4] suggest that typically 10 to
15 examples are sufficient to bootstrap learning of re-
lations from free form Natural Language texts. In other
words, we consider 10 to 15 examples are required to
‘adequately’ explain the meaning of a relation. Based
on this intuition, we experiment with n = 10, 15, and
20. Likewise this also applies to the model −n, for
which we experiment with 10, 15 and 20 as thresholds.

We apply the same principle to the exp model. How-
ever, the scalar k is only indirectly related to the num-
ber of examples. As described before, it affects the
speed of convergence, thus by setting appropriate val-
ues the knowledge confidence score returned by the
function reaches its maximum at different numbers of
examples. We choose k = 0.55, 0.35 and 0.25 that are
equivalent to reaching the maximum kc of 1.0 at 10,
15 and 20 examples.

Additionally, we also compare against a version of
EQUATER’s similarity measure without kc, denoted
by kc, which simply combines ta and sa in their origi-
nal forms. Note that this can be considered as the pro-
totype similarity measure12 we developed in [49].

4.4. Creation of settings

By taking different choices from the three dimen-
sions above, we create different models for experi-
mentation. We will denote each setting in the form
of msrkcthd, where msr, kc, thd are variables each rep-
resenting one dimension (similarity measure, kc and
threshold detection respectively). Note that the vari-
able kc only applies to EQUATER’s similarity mea-
sure. Thus js means scoring relation pairs using the
Jaccard function, then find threshold based on training
data; while elgtjk is EQUATER in its original form, i.e.,
using EQUATER’s similarity measure (with the logis-
tic model of knowledge confidence), and Jenks Natu-
ral Breaks for automatic threshold detection. Figure 9
shows a contingency chart along msr and thd dimen-
sions, with the third dimension included as a variable
kc. The output from each setting is then clustered us-
ing the same algorithm.

12Readers may notice that we dropped the ‘cardinality ratio’
component from the prototype, since we discovered that component
may negatively affect performance.

Fig. 9. Different settings based on the choices of three dimensions.
kc is a variable whose value could be lgt (Equation 8), exp (Equation
15), or −n.

The Metrics we use for evaluating pair accuracy are
the standard Precision, Recall and F1; and the met-
rics for evaluating clustering are the standard purity,
inverse-purity and F1 [1].

4.5. Dataset preparation

The OAEI archives a fair number of datasets for
evaluating ontology alignment systems. However, we
do not use these because, as discussed before, they do
not represent the particular characteristics in the LOD
domain, also the number of aligned relations is very
small - less than 2‰(56) of mappings found in their
gold standard datasets are equivalent relations13. In-
stead, we study the problem of heterogeneous relations
on DBpedia. Although DBpedia is a single dataset, we
believe it as an adequate testbed of the problem for
several reasons. First and foremost, multiple vocabu-
laries are used in the dataset, including RDFS, Dublin
Core14, WGS84 Geo15, FOAF, SKOS16, the DBpedia
ontology, original Wikipedia templates and so on. In
particular, the DBpedia ontology is extremely rich in
relations: the current DBpedia ontology version 3.9
covers 529 concepts and 2,333 different relations17.
Previous researchers have already noted the prevailing
issue of relation heterogeneity in the DBpedia dataset
[18,14]. The majority is found between the DBpedia
ontology and other vocabularies, especially the origi-
nal Wikipedia templates, due to the enormous amount
of relations in both vocabularies. A Wikipedia tem-

13Based on the downloadable datasets as by 01-11-2013.
14dc=http://purl.org/dc/elements/1.1/
15geo=http://www.w3.org/2003/01/geo/wgs84_pos#
16skos=http://www.w3.org/2004/02/skos/core#
17http://dbpedia.org/Ontology



14 Zhang et al. / EQUATER - An Unsupervised Data-driven Method to Discover Equivalent Relations in Large Linked Datasets

plate usually defines a concept and its properties18.
When populated, they become infoboxes, which are
processed to extract triples that form the backbone
of the DBpedia dataset. Currently, data described by
relations in the DBpedia ontology and the original
Wikipedia template properties co-exist and account for
a very large population in the DBpedia dataset.

The disparity between the different vocabularies in
DBpedia is such a pressing issue that the team has ded-
icated particular effort to address it, which is known as
the DBpedia mappings portal. The DBpedia mappings
portal is a website that invites collaborative effort to
create mappings between certain structured content on
Wikipedia to the manually curated DBpedia ontology.
One task is mapping Wikipedia templates to concepts
in the DBpedia ontology, and then mapping proper-
ties in the templates to relations of mapped concepts.
Such mappings are useful for both tidying up existing
DBpedia dataset and future data publication on DBpe-
dia. On the one hand, they can improve information re-
trieval from DBpedia, as we already showed in [2,48].
On the other hand, the DBpedia Extraction Framework
can use such mappings in future to homogenize in-
formation extracted from Wikipedia before generating
structured information in RDF. It is known that manu-
ally creating such mappings requires significant work,
and as a result, as by November 2013, less than 55% of
mappings between Wikipedia template properties and
relations in the DBpedia ontology are complete19.

Further, DBpedia is the most representative LOD
dataset as it is predominantly used in research concern-
ing Linked Data. It is also currently the largest hub
connecting multiple datasets in the LOD domain, thus
a large majority of LOD datasets can benefit from re-
ducing heterogeneity on DBpedia. All these facts make
DBpedia an interesting and reasonable testbed of the
problem.

We collected three datasets for experiments. The
first dataset is created based on the mappings published
on the DBpedia mappings portal. We processed the
DBpedia mappings Webpages as by 30 Sep 2013 and
created a dataset containing 203 DBpedia concepts.
Each concept has a page that defines the mapping from
a Wikipedia template to a DBpedia concept, and lists a
number of mapping pairs from template properties to
the relations of the corresponding concept in the DB-

18Not in formal ontology terms, but rather a Wikipedia terminol-
ogy.

19http://mappings.dbpedia.org/server/statistics/en/, visited on
01-11-2013

pedia ontology. We extracted a total of 5388 mappings
and use them as gold standard (dbpm). However, there
are three issues with this dataset. First, the community
portal focuses on mapping the DBpedia ontology with
the original Wikipedia templates. Therefore, mappings
between the DBpedia ontology and other vocabularies
are rare. Second, due to the ongoing nature of the map-
ping task, the dataset is largely incomplete. Therefore,
we only use this dataset for evaluating recall. Third, it
has been noticed that the mappings created are not al-
ways strictly ‘equivalence’. Some infrequent mappings
such as ‘broader-than’ have also been included. Over-
all the dbpm dataset should not be considered a perfect
gold standard for the task.

For this reason, we manually created a dataset based
on 40 DBpedia (DBpedia ontology version 3.8) and
YAGO20 concepts. The choices of such concepts are
based on the QALD1 question answering dataset21 for
Linked Data. For each concept, we query the DBpedia
SPARQL endpoint using the following query template
to retrieve all triples related to the concept22.

SELECT * WHERE {
?s a <[Concept_URI]> .
?s ?p ?o .
}

Next, we build a set P containing unordered pairs of
predicates from these triples and consider them as can-
didate relation pairs for the concept. We also use a stop
list of relation URIs to filter meaningless relations that
usually describes Wikipedia meta-level information,
e.g., dbpp:wikiPageID, dbpp:wikiPageUsesTemplate.
Each of the measures listed in Section 4.1 is then ap-
plied to compute similarity of the pairs in this set and
may produce either a zero or non-zero score. We then
create a set cP concatenating the pairs with non-zero
scores by any of the measures, and ask human anno-
tators to annotate cP . Note that cP ⊂ P and may
not exclusively contain all true positives of the concept
since there can be equivalent pairs of relations obtain-
ing zero similarity score by all the measures. However,
we believe it is a reasonable approximation. Moreover

20http://www.mpi-inf.mpg.de/yago-naga/yago/
21http://greententacle.techfak.uni-bielefeld.de/˜cunger/qald1/

evaluation/dbpedia-test.xml
22Note that DBpedia by default returns a maximum of 50,000

triples per query. We did not incrementally build the exhaustive re-
sult set for each concept since we believe the data size is sufficient
for experiment purposes.
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it would be extremely expensive to annotate the set of
all pairs completely.

The data is annotated by four computer scientists
and the annotation took three weeks, where one week
was spent on creating guidelines. Annotators can also
query DBpedia for triples containing the relation to
assist their interpretation. However, a notable num-
ber of relations are still incomprehensible. These often
have peculiar names and are rarely used (e.g., dbpp:n,
dbpp:wikt). Pairs containing such relations cannot be
annotated and are ignored in evaluation. On average,
it takes 0.5 to 1 hour to annotate one concept. We
measured inter-annotator-agreement using a sample
dataset based on the method by [20], and the IAA is
0.8. The dataset is then randomly split into a develop-
ment set (dev) containing 10 concepts for developing
our measure and a test set (test) containing 30 concepts
for evaluation.

To encourage comparative studies in the future, we
publish all datasets and associated resources used in
this study23. The statistics of the three datasets are
shown in Table 2. Figure 10 shows the ranges of the
percentage of true positives in the dev and test datasets.
To our knowledge, this is by far the largest annotated
dataset for evaluating relation alignment in the LOD
domain.

4.6. General process

Given a concept from any of the three datasets, we
query the DBpedia SPARQL endpoint to obtain a triple
dataset and create candidate set of relation pairs fol-
lowing the same procedure described above. For each
setting created according to Section 4.4, we apply the
methods to the triple dataset to (1) compute similar-
ity score for each relation pair and determine if they
should be considered truly equivalent based on the
score, and (2) create clusters of equivalent relations for
the concept.

Fig. 10. % of true positives in dev and test. Diamonds indicate the
mean.

23http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/resources/
jws2014/data_release.zip. The cached DBpedia query results are
also released.

Dev Test dbpm
Concepts 10 30 203
Relation pairs (P.) 2316 6657 5388
True positive P. 473 868 -
P. with incomprehensible 316 549 -
relations (I.R.)
% of triples with I.R. 0.2% 0.2% -

Schemata in datasets
dbo, dbpp, rdfs, skos,

dc, geo, foaf
Table 2

Dataset statistics

The output from (1) is then evaluated against the
three gold standard datasets described above. To evalu-
ate clustering, we derived gold standard clusters using
the three pair-equivalence gold standards by assuming
equivalence transitivity, i.e., if r1 is equivalent to r2,
which is equivalent to r3 in the gold standard then the
three relations are grouped in a single cluster. We only
consider clusters of positive pairs as the larger amount
of negative pairs (which results in a large number of
single-element clusters) may bias the evaluation.

5. Results and discussion

5.1. Difficulty of the task

Annotating relation equivalence is a non-trivial task.
The annotation process costs many person-days with a
resulting average IAA of 0.8, while the lowest bound
is 0.68 and the highest is 0.87. It has been found
that LOD datasets are characterized by a notable de-
gree of noise. As Table 2 shows, about 8 to 14% of
pairs contain incomprehensible relations. Such rela-
tions have peculiar names (e.g., dbpp:v, dbpp:trW of
dbo:University) and ambiguous names (e.g., dbpp:law,
dbpp:bio of dbo:University). They are undocumented
and have little usage in data, which makes them diffi-
cult to interpret. Moreover, there is also a high degree
of inconsistent usage of relations. A typical example
is dbo:railwayPlatforms of dbo:Station. It is used to
represent the number of platforms in a station, but also
the types of platforms in a station. These findings are
in line with [14].

Table 2 and Figure 10 both show that the dataset is
overwhelmed by negative examples. On average, less
than 25% of non-zero similarity pairs are true positives
and in extreme cases this drops to less than 6% (e.g., 20
out of 370 relation pairs of yago:EuropeanCountries
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lev jc fu lin
t 0.43 0.07 0.1 0.65

min 0.06 0.01 6 ×10−6 0.14
max 0.77 0.17 0.31 1.0

Table 3
Optimal thresholds t for each baseline similarity measures derived
from dev

t min max

lgt, n=10 0.24 0.06 0.62
lgt, n=15 0.22 0.05 0.62
lgt, n=20 0.2 0.06 0.39

exp, k=0.55 0.32 0.06 0.62
exp, k=0.35 0.31 0.06 0.62
exp, k=0.25 0.33 0.11 0.62
−n, n=10 0.29 0.06 0.62
−n, n=15 0.28 0.07 0.59
−n, n=20 0.28 0.07 0.59

Table 4
Optimal thresholds (t) for different variants of the similarity measure
of EQUATER derived from dev

are true positive). These findings suggest that finding
equivalent relations on Linked Data is indeed a chal-
lenging task.

Table 3 shows the learned thresholds for each of the
baseline similarity measures based on the dev data,
and Table 4 shows the learned thresholds for differ-
ent variants of EQUATER by replacing its kc com-
ponent variables. In any case, the learned thresholds
span across a wide range, suggesting that the opti-
mal thresholds to decide equivalence are indeed data-
specific, and finding these values can be difficult.

5.2. EQUATER performance

In Table 5 we show the results of EQUATER on the
three datasets with varying n in the lgt knowledge con-
fidence function. All figures are averages over all con-
cepts in a dataset. Figure 11 shows the ranges of per-
formance scores for different concepts in each dataset.
Table 6 shows example clusters of equivalent rela-
tions discovered for different concepts. It shows that
EQUATER manages to discover alignment between
multiple schemata used in DBpedia.

On average, EQUATER obtains 0.65∼0.67 F1 in
predicting pair equivalence on dev and 0.59∼0.61 F1

n of lgt 10 15 20
Pair equivalence

dev, F1 0.67 0.66 0.65
test, F1 0.61 0.60 0.59
dbpm, R 0.68 0.66 0.66

Clustering
dev, F1 0.74 0.74 0.74
test, F1 0.70 0.70 0.70
dbpm, R 0.72 0.70 0.70

Table 5
Results of EQUATER on all datasets. R - Recall

Fig. 11. Performance ranges on a per-concept basis for dev, test
and dbpm. R - Recall, pe - pair equivalence, c - clustering

Concept Example cluster

dbo:Actor
dbpp:birthPlace, dbo:birthPlace,

dbpp:placeOfBirth

dbo:Book
dbpp:name, foaf:name,
dbpp:titleOrig, rdfs:label

dbo:Company
dbpp:website, foaf:website
dbpp:homepage, dbpp:url

Table 6
Examples clusters of equivalent relations.

on test. These translate to 0.74 and 0.70 clustering ac-
curacy on each dataset respectively. For dbpm, we ob-
tain a recall between 0.66 and 0.68 for pair equivalence
and 0.7 and 0.72 for clustering. It is interesting to note
that EQUATER appears to be insensitive to the varying
values of n. This stability is a desirable feature since it
may be unnecessary to tune the model and therefore,
the method is less prone to overfitting. This also con-
firms the hypothetical analogy between the amount of
seed data needed for bootstrap relation learning and
the amount of examples needed to obtain maximum
knowledge confidence in EQUATER.

Figure 11 shows that the performance of EQUATER
can vary depending on specific concepts. To under-
stand the errors, we randomly sampled 100 false pos-
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itive and 100 false negative examples from the test
dataset, and 200 false negative examples from the
dbpm dataset, then manually analyzed and divided
them into several types24. The prevalence of each type
is shown in Table 7.

5.2.1. False positives
The first main source of errors are due to high

degree of semantic similarity: e.g., dbpp:residence
and dbpp:birthPlace of dbo:TennisPlayer are highly
semantically similar but non-equivalent. The second
type of errors is due to low variability in the ob-
jects of a relation: semantically dissimilar relations
can have the same datatype and have many overlap-
ping values by coincidence. The overlap is caused by
some relations having a limited range of object values,
which is especially typical for relations with boolean
datatype because they only have two possible val-
ues. The third type of errors is entailment, e.g., for
dbo:EuropeanCountries dbpp:officialLanguage en-
tails dbo:language because official languages of a
country are a subset of languages spoken in a country.
These could be considered as cases of subsumption,
which accounts for less than 15%. Finally, some of the
errors are arguably due to imperfect gold standard,
as analysers sometimes disagree with the annotations
(see Table 8).

5.2.2. False negatives
The first type of common errors is due to repre-

sentation of objects. For instance, for dbo:American
FootballPlayer, dbo:team are associated with mostly
resource URIs (e.g., ‘dbr:Detroit_Lions’) while dbpp:
teams are mostly associated with lexicalization of
literal objects (e.g.,‘* Detroit Lions’) that are typ-
ically names of the resources. The second type is
due to different datatypes, e.g., for dbo:Building,
dbpp:startDate typically have literal objects indicating
years, while dbo:buildingStartDate usually has pre-
cisely literal date values as objects. Thirdly, the lex-
icalization of objects can be different. An example
for this category is dbpp:dialCode and dbo:areaCode
of dbo:Settlement, the objects of the two relations are
represented in three different ways, e.g. ‘0044’, ‘+44’,
‘44’. Many false negatives are due to sparsity: e.g.,
dbpp:oEnd and dbo:originalEndPoint of dbo:Canal
have in total only 2 triples. There are also noisy re-
lations, whose lexicalization appears to be inconsis-

24Analysis based on the DBpedia SPARQL service as by 31-
10-2013. Inconsistency should be anticipated if different versions of
datasets are used.

Error Type Prevalence
False Positives
Semantically similar 52.4
Low variability 29.1
Entailment 14.6
Arguable gold standard 3.88
False Negatives
Object representation 25.1
Different datatype 24.7
Noisy relation 19.4
Different lexicalisations 11.7
Sparsity 10.5
Limitation of method 5.67
Arguable gold standard 2.83

Table 7
Relative prevalence of error types.

tent with how it is used. Usually the lexicalization is
ambiguous, such as the dbo:railwayPlatforms exam-
ple discussed before. Some errors are simply due to the
limitation of our method, i.e., our method still fails
to identify equivalence even if sufficient, quality data
are available, possibly due to inappropriate automatic
threshold selection. And further, arguable gold stan-
dard also exist (e.g., dbpp:champions and dbo:teams
of dbo:SoccerLeague are mapped to each other in the
dbpm dataset.

We then also manually inspected some worst per-
forming concepts in the dbpm dataset, and noticed
that some of them are due to extremely small gold
standard. For example, dbo:SportsTeamMember and
dbo:Monument have only 3 true positives each in their
gold standard and as a result, EQUATER scored 0 in
recall. However, we believe that these gold standards
are largely incomplete. For example, we consider most
proposals by EQUATER in Table 8 to be correct.

Some of the error types mentioned above could be
rectified by modifying EQUATER. For example, we
could combine string similarity metrics, which may
help errors due to representation of objects and dif-
ferent lexicalization of objects. Regular expressions
could be used to parse values in order to match data
at semantic level, e.g., for dates, weights, and lengths.
These could be useful to solve errors due to different
datatypes. Other error groups are much harder to pre-
vent: even annotators often struggled to distinguish be-
tween semantically similar and equivalent relations or
to understand what a relation is supposed to mean.
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Pair equivalence
dev F1 test F1 dbpm R.

PPPPPPPmsr
thd

jk km s jk km s jk km s

lev 0.16∼18 0.16∼18 0.17∼19 0.12∼14 0.12∼14 0.13∼15 0.07∼08 0.08∼09 0.07∼08
f 0.18∼20 0.20∼22 0.09∼11 0.20∼21 0.22∼23 0.10∼11 0.21∼23 0.24∼26 0.03∼04
lin 0.27∼29 0.29∼31 0.28∼30 0.19∼21 0.19∼21 0.19∼21 0.39∼40 0.37∼38 0.38∼39
jc 0.09∼11 0.11∼12 0.01∼03 0.10∼11 0.12∼13 0.07∼08 0.09∼10 0.10∼12 -0.05∼-0.04

Clustering
dev F1 test F1 dbpm R.

PPPPPPPmsr
thd

jk km s jk km s jk km s

lev 0.35 0.36 0.36 0.40 0.41 0.39 0.02∼04 0.04∼06 0.03∼05
f 0.15∼16 0.17∼18 0.06∼07 0.23 0.25 0.11 0.21∼23 0.24∼26 0.01∼03
lin 0.45 0.47 0.47 0.41 0.42 0.42 0.37∼39 0.37∼39 0.39∼0.41
jc 0.06∼07 0.07∼08 0.00∼01 0.14∼15 0.17 0.06 0.08∼10 0.09∼11 -0.07∼-0.05

Table 9
Improvement of EQUATER over different baselines. The highest
improvements on each dataset are highlighted in bold. Negative im-
provements are highlighted in italic.

r1 r2 #x, y argument pairs
dbo:synonym dbp:otherName 6

rdfs:label foaf:name 10
rdfs:label dbp:name 10

rdfs:comment dbo:abstract 41
dbp:material dbo:material 10

dbp:city dbo:city 5
Table 8

The equivalent relations for dbo:Monument proposed by EQUATER
but considered false positive according to the gold standard.

5.3. EQUATER v.s. baseline

Next, in Table 9 we show the improvement of
EQUATER over different models that use a base-
line similarity measure. Since the performance of
EQUATER depends on the parameter n in the simi-
larity measure, we show the ranges between minimum
and maximum improvement due to the choice of n.

It is clear from Table 9 that EQUATER (unsuper-
vised) significantly outperforms most baseline mod-
els, either supervised or unsupervised. Exceptions are
noted against jcs in the clustering task on the dev
dataset, where EQUATER achieves comparable re-
sults; and on the dbpm dataset in both pair equivalence
and clustering tasks, where EQUATER underperforms

jcs in terms of recall. However, as discussed before the
dbpm gold standard has many issues; furthermore, we
are unable to evaluate precision on this dataset while
results on the dev and test sets suggest EQUATER has
more balanced performance. The relatively larger im-
provement over unsupervised baselines than over su-
pervised baselines may suggest that the scores pro-
duced by EQUATER may exhibit a more ‘separable’
pattern (e.g., like Figure 6) of distribution for unsuper-
vised threshold detection.

Figures 12a and 12b compares the balance between
precision and recall of EQUATER against baselines
on the dev and test datasets. For EQUATER we use
three different shapes to represent models with differ-
ent n values in lgt; for baseline models we use dif-
ferent shapes to represent different similarity measures
and different colours (black, white and grey) to repre-
sent different thd choices. It is clear that EQUATER
always outperforms any baselines in terms of preci-
sion, and also finds the best balance between precision
and recall thus resulting in the highest F1.

Interesting to note is the inconsistent performance
of string similarity baselines (levjk, levkm, levs) in
pair equivalence experiments and clustering experi-
ments. While in pair equivalence experiments they ob-
tain between 0.45 and 0.5 F1 (second best among base-
lines) on both dev and test with arguably balanced
precision and recall, in clustering experiments the fig-



Zhang et al. / EQUATER - An Unsupervised Data-driven Method to Discover Equivalent Relations in Large Linked Datasets 19

ures sharply drop to 0.3∼0.4 (second worst among
baselines) skewed towards very high recall and very
low precision. This suggests that the string similarity
scores are non-separable by clustering algorithms, cre-
ating larger clusters that favour recall but precision.

Very similar pattern is also noted for the semantic
similarity baselines (linjk, linkm, lins). In fact, se-
mantic similarity and string similarity baselines gen-
erally obtain much worse results than other baselines
that belong to extensional matchers, a strong indica-
tion that the latter are better fit for aligning relations
in the LOD domain. This can be partially attributed
to the fact that the relation URIs can be very noisy
and many do not comply with naming conventions and
rules (e.g., ‘birthplace’ instead of ‘birthPlace’).

Fig. 12a. Balance between precision and recall for EQUATER and
baselines on dev. pe - pair equivalence, c - clustering. The dotted
lines are F1 references.

5.4. Variations of EQUATER components

In this section, we compare EQUATER against sev-
eral alternative designs based on the alternative choices
of knowledge confidence (kc) functions and threshold
detection (thd) methods. We pair different kc models
described in Section 4.3 with different threshold detec-
tion methods described in Section 4.2 to create vari-
ants of EQUATER and compare them against the orig-
inal EQUATER method. In addition, we also create

Fig. 12b. Balance between precision and recall for EQUATER and
baselines on test.

the similarity measure ekc, which only takes ta and sa
without the knowledge confidence factor. Combined
with different choices of thd we obtain models that
represent our earlier prototype in [49]. Moreover, we
also select jc as the best performing baseline similarity
measure and use corresponding baseline settings (jcjk,
jckm, jcs) as comparative references.

5.4.1. Alternative kc models
Figure 13a compares variations of EQUATER by al-

ternating kc functions under each thd method. Since
each of the functions lgt, exp and −n requires a pa-
rameter to be set, we show the ranges of performance
gained with different settings of their parameter. These
are represented as black caps on top of each bar. The
bigger the cap, the wider the range between the min-
imum and the maximum performance obtainable by
tuning these parameters. Firstly, under the same cho-
sen threshold detection method, settings with kc out-
perform the best baseline in most cases. This suggests
that ta and sa are indeed more effective indicators
of relation equivalence than other metrics, and also
suggests that the issue of unbalanced populations of
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Fig. 13. Comparing variations of EQUATER by (a) alternating kc functions under each threshold detection method, and (b) alternating thd
methods under each knowledge confidence function (incl. without kc).

schemata in the LOD domain is very common. Sec-
ondly, we can see that the accuracy of EQUATER as
measured by F1 does benefit from the integration of
kc functions; the changes are also substantial on test

set. While combining results on the dbpm set, it seems
that kc functions may trade off recall for precision
to achieve overall higher F1. Thirdly, in terms of the
three kc functions, the performance given by the exp

and −n model appears to be volatile since changing
their parameters caused considerable variation of per-
formance in most cases. This also caused several vari-
ants of EQUATER to underperform the baseline with
the same thd setting.

By analyzing the precision and recall trade-off for
different kc functions, it shows that without kc, the
similarity measure of EQUATER tends to favour high-
recall but perhaps lose too much precision. Any kc
function thus has the effect of re-balancing towards
precision. Among the three, the exp function gener-
ally favours recall over precision, the threshold based
model favours precision over recall, while the lgt func-
tion finds the best balance. Details of this part of anal-
ysis can be found in A.

5.4.2. Alternative thd methods
Figure 13b is a re-arranged view of Figure 13a,

in the way that it compares variations of EQUATER
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by alternating the thd methods under each kc func-
tion. This gives a better view for comparing differ-
ent choices of thd. Generally it appears that regard-
less of the kc function, the jk method has slight ad-
vantage over km. The unsupervised jk variants of
EQUATER also obtain close performance to their su-
pervised counterparts in many cases; and even best the
performance on the test set (excluding kc). This sug-
gests Jenks Natural Breaks an effective method for au-
tomatic threshold detection for EQUATER.

5.4.3. Limitations of EQUATER
The current version of EQUATER is limited in a

number of ways. First and foremost, being an exten-
sional matcher, it requires relations to have shared in-
stances to work. This is usually a reasonable require-
ment for individual dataset, and hence experiments
based on DBpedia have shown it to be very effective.
However, in a cross-dataset context, concepts and in-
stances will have to be aligned first in order to apply
EQUATER. This is because often, different datasets
use different URIs to refer to the same entities; as a
result, counting overlap of a relation’s arguments will
have to go beyond syntactic level.

A basic and simplistic solution could be a pre-
process that maps concepts and instances from dif-
ferent datasets using existing ‘sameAs’ mappings, as
done by Parundekar et al. [40] and Zhao et al. [52].
Unfortunately, when such mappings are unavailable,
EQUATER may require other methods to firstly align
concepts and instances in order to work effectively for
cross-dataset settings. Therefore, we consider the sec-
ond major limitation of EQUATER as it being a par-
tial ontology alignment method addressing a specific
but practical issue - aligning relations only. Ideally,
EQUATER should be extended to iteratively align re-
lations based on aligned concepts and instances and
vice-versa.

Despite these limitations, we consider EQUATER
a valuable contribution to the literature as it targets
specifically at the gap in related work, and lessons
learned could be useful for future development.

6. Conclusions

This article explored the problem of aligning het-
erogeneous resources in LOD datasets. Heterogeneity
decreases the quality of the data and may eventually
hamper its usability over large scale. It is a major re-
search problem concerning the Semantic Web commu-

nity and significant effort has been made to address
this problem in the area of ontology alignment. While
most work studied mapping concepts and individuals,
relation heterogeneity in LOD datasets is becoming
an increasingly pressing issue but still remains much
less studied. The annotation practice undertaken in this
work has shown that the task is even challenging to
humans.

This article makes particular contribution to this
problem by introducing EQUATER - a domain- and
language-independent and unsupervised method to
align relations based on their shared instances. Cur-
rently, EQUATER fits best with aligning relations from
different schemata used in a single Linked Dataset, a
practical problem that has emerged with the increas-
ing collaborative effort in creating very large Linked
Datasets. It can potentially be used in cross-dataset
settings, provided that concepts and instances across
the datasets are aligned to ensure relations have shared
instances.

A series of experiments have been designed to
thoroughly evaluate EQUATER in two tasks: predict-
ing relation pair equivalence and discovering clus-
ters of equivalent relations. These experiments have
confirmed the advantage of EQUATER: compared to
baseline models including both supervised and un-
supervised versions, it makes significant improve-
ment in terms of F1 measure, and always scores the
highest precision. Compared to different variants of
EQUATER, the logistic model of knowledge confi-
dence achieves the best scores in most cases and is seen
to give stable performance regardless of its parame-
ter setting, while the alternatives suffer from higher
degree of volatility that occasionally causes them to
underperform baselines. The Jenks Natural Breaks
method for automatic threshold detection also proves
to have slight advantage than the k-means alternative,
and even outperformed the supervised method on the
test set. Although EQUATER does not achieve the
best recall on the dbpm dataset, we believe its results
are still encouraging and that it can achieve the most
balanced performance had we been able to evaluate
precision. Overall we believe that it may potentially
speed up the practical mapping task currently concern-
ing the DBpedia community.

As future work, we will explore methods to address
the previously discussed limitations of EQUATER.
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Appendix

A. Precision and recall obtained with different kc
functions

Figure 14 complements Figure 13a by comparing
the balance between precision and recall for different
variants of EQUATER using the dev and test sets. We
use different shapes to represent different kc functions
and different colours (black, white and grey) to repre-
sent different parameter settings for each kc function.
It is clear that without kc functions, the similarity mea-
sure of EQUATER tends to favour high-recall but per-
haps lose too much precision. All kc functions have
the effect to balance towards precision due to the con-
straints on the number of examples required to com-
pute similarity confidently. Among the three, the exp
model generally produces the highest recall with trade-
off of precision. To certain extent, this confirms our be-
lief that the knowledge confidence score under the ex-
ponential model may converge too fast: it may be over-
confident in small set of examples, causing EQUATER
to over-predict equivalence. On the other hand, the
threshold based model trades off recall for precision.
The variants with the lgt model generally find the best
balance - in fact, under unsupervised settings, achieve
best or close-to-best precision.

The lgt model also warrants more stability since
changing parameters caused little performance varia-
tion (note that the different coloured squares are gen-
erally cluttered, while the different coloured triangles
and diamonds are far away). Although occasionally
variants with the exp model may outperform those
based on lgt (e.g., when thd = km in the clustering
experiment on dev), the difference is small and their
performance is more dependent on the setting of the
parameter in these cases and can sometimes underper-
form baselines. Based on these observations, we argue
that the lgt model of knowledge confidence is better
than exp, −n, or kc.

B. Exploration during the development of
EQUATER’s similarity measure

In this section we present some earlier analysis
that helped us during the development of EQUATER.
These analysis helped us to identify useful features
for evaluating relation equivalence, as well as unsuc-
cessful features which we abandoned in EQUATER.
We analyzed EQUATER’s components ta and sa from

a different perspective to understand if they could be
useful indicators of equivalence B.1. We also explored
another dimension - the ranges of relations B.2. The
intuition is that ranges provide additional information
about relations. Unfortunately our analysis showed
that ranges derived for relations from data are highly
inconsistent and therefore, they are not discriminative
features for this task. As a result they were not used by
EQUATER. We carried out all analysis using the dev
dataset only.

B.1. ta and sa

We applied ta and sa separately to each relation pair
in the dev dataset, then studied the distribution of ta
and sa scores for true positives and true negatives. Fig-
ure 15 shows that both ta and sa create different dis-
tributional patterns of scores for positive and negative
examples in the data. Specifically, the majority of true
positives receive a ta score of 0.2 or higher and an sa
score of 0.1 or higher, the majority of true negatives
receive a ta < 0.15 and sa < 0.1. Based on such dis-
tinctive patterns we concluded that ta and sa could be
useful indicators in discovering equivalent relations.

Fig. 15. Distribution of ta and sa scores for true postive and true
negative examples in dev.

B.2. Ranges of relations

We also explored several ways of deriving ranges
of a relation to be considered in measuring similar-
ity. One simplistic method is to use ontological defini-
tions. For example, the range of dbo:birthPlace of the
concept dbo:Actor is defined as dbo:Place according
to the DBpedia ontology. However, this does not work
for relations that are not defined formally in ontolo-
gies, such as any predicates with the dbpp namespaces,
which are very common in the datasets.

Instead, we chose to define ranges of a relation
based on its objects r(y) in data. One approach is to
extract classes of their objects y : r(y) and expect a
dominant class for all objects of this relation. Thus we
started by querying the DBpedia SPARQL endpoint
with the following queries:
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Fig. 14. Balance between precision and recall for EQUATER and its variant forms. pe - pair equivalence, c - clustering. The dotted lines are F1
references.

SELECT ?o ?range WHERE {
?s [RDF Predicate URI] ?o .
?s a [Concept URI] .
OPTIONAL {?o a ?range .}
}

Next, we counted the frequency of each distinct
value for the variable ?range and calculated its frac-
tion with respect to all values. We found three issues
that make this approach unreliable. First, if a subject
s had an rdfs:type triple defining its type c, (e.g., s
rdfs:type c), it appears that DBpedia creates additional

rdfs:type triples for the subject with every superclass
of c. For example, there are 20 rdfs:type triples for
dbr:Los_Angeles_County,_California and the objects
of these triples include owl:Thing, yago:Object10000
2684 and gml:_Feature (gml: Geography Markup
Language). These triples will significantly skew the
data statistics, while incorporating ontology-specific
knowledge to resolve the hierarchies can be an ex-
pensive process due to the unknown number of on-
tologies involved in the data. Second, even if we are
able to choose always the most specific class ac-
cording to each involved ontology for each subject,
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we notice a high degree of inconsistency across dif-
ferent subjects in the data. For example, this gives
us 13 most specific classes as candidate ranges for
dbo:birthPlace of dbo:Actor, and the dominant class
is dbo:Country representing just 49% of triples con-
taining the relation. Other ranges include scg:Place,
dbo:City, yago:Location (scg: schema.org) etc. The
third problem is that for values of ?o that are literals,
no ranges will be extracted in this way (e.g., values of
?range extracted using the above SPARQL template
for relation dbpp:othername are empty when ?o values
are literals).

For these reasons, we abandoned the two methods
but proposed to use several simple heuristics to clas-
sify the objects of triples into several categories based
on their datatype and use them as ranges. Thus given
the set of argument pairs r(x, y) of a relation, we clas-
sified each object value into one of the six categories:
URI, number, boolean, date or time, descriptive texts
containing over ten tokens, and short string for every-
thing else. A similar scheme is used in [51]. Although
these range categories are very high-level, they should
cover all data and may provide limited but potentially
useful information for comparing relations.

We developed a measure called maximum range
agreement, to examine the degree to which both rela-
tions use the same range in their data. Let RGr1,r2 de-
note the set of shared ranges discovered for the relation
r1 and r2 following the above method, and frac(rgir1)
denote the fraction of triples containing the relation r1
whose range is the ith element in RGr1,r2 , we defined

maximum range agreement (mra) of a pair of relations
as:

mra(r1, r2) ={
0, if RGr1,r2 = ∅
max{frac(rgir1) + frac(rgir2)}, otherwise

(16)

The intuition is that if two relations are equivalent,
each of them should have a dominant range as seen
in their triple data (thus a high value of frac(rgir)
for both r1 and r2) and their dominant ranges should
be consistent. Unfortunately, as Figure 16 shows, mra
has little discriminating power in separating true pos-
itives from true negatives. As a result, we did not use
it in EQUATER. In the error analysis, the errors due
to incompatible datatypes may potentially benefit from

Fig. 16. Distribution of mra scores for true postive and true negative
examples in dev.

range information of relations. However, the proposed
six categories of ranges may have been too general to
be useful.


