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Abstract.
Using a pay-as-you-go strategy, we allow for a community of users to validate mappings obtained by an automatic ontology

matching system using consensus for each mapping. The ultimate objectives are effectiveness—improving the quality of the
obtained alignment (set of mappings) measured in terms of F-measure as a function of the number of user interactions—and
robustness—making the system as much as possible impervious to user validation errors. Our strategy consisting of two major
steps: candidate mapping selection, which ranks mappings based on their perceived quality, so as to present first to the users
those mappings with lowest quality, and feedback propagation, which seeks to validate or invalidate those mappings that are
perceived to be “similar” to the mappings already presented to the users. The purpose of these two strategies is twofold: achieve
greater improvements earlier and minimize overall user interaction. There are three important features of our approach. The first
is that we use a dynamic ranking mechanism to adapt to the new conditions after each user interaction, the second is that we may
need to present each mapping for validation more than once—revalidation—because of possible user errors, and the third is that
we propagate a user’s input on a mapping immediately without first achieving consensus for that mapping. We study extensively
the effectiveness and robustness of our approach as several of these parameters change, namely the error and revalidation rates, as
a function of the number of iterations, to provide conclusive guidelines for the design and implementation of multi-user feedback
ontology matching systems.

1. Introduction
The ontology matching problem consists of mapping
concepts in a source ontology to semantically related
concepts in a target ontology. The resulting set of map-
pings is called an alignment [9], which is a subset of
the set of all possible mappings, which we call the

*Corresponding author. E-mail:ifc@cs.uic.edu. This paper signif-
icantly extends the paper titled “Pay-As-You-Go Multi-User Feed-
back Model for Ontology Matching” accepted to EKAW 2014.

mapping space. As ontologies increase in size, auto-
matic matching methods, which we call matchers, be-
come necessary. The matching process also requires
feedback provided by users: in real-world scenarios,
and even in the systematic ontology matching bench-
marks of the Ontology Alignment Evaluation Initia-
tive (OAEI), alignments are neither correct nor ex-
haustive when compared against a gold standard, also
called reference alignment. An important considera-
tion is that domain experts such as those with whom
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we collaborated in the geospatial domain [6], require
the ability to verify the correctness of a subset of the
mappings. In this paper we propose a semi-automatic
ontology matching approach that supports feedback
provided by multiple domain experts to match two on-
tologies. Our approach first computes an alignment us-
ing automatic matching methods and then allows for
the domain experts to request a mapping to validate. In
the rest of the paper, the term users refers to the do-
main experts, not to casual users often called workers
in crowdsourcing terminology. The fact that our users
are domain experts will influence some of our assump-
tions.

When a user requests a mapping to validate a feed-
back loop is triggered. A mapping is selected among
the entire set of possible mappings using a candidate
selection strategy and is presented to the user, who can
validate the mapping by labelling it as correct or incor-
rect. A feedback propagation method is used to update
the similarity of the validated mapping as well as of
other for“similar” mappings, thus saving users’ effort.
In the last step of the loop, a new alignment is selected
that satisfies a desired cardinality. The matching pro-
cess continues iteratively by selecting new candidate
mappings and presenting them to users for validation,
with the alignment being updated at every iteration.

When different users are allowed to take part in the
interactive matching process, they may disagree upon
the label to assign to a mapping [1]. Our approach as-
sumes that mappings labeled as correct (resp. incor-
rect) by a majority of users are correct (resp. incor-
rect), thus allowing for mislabeling by users. The can-
didate selection strategy and the feedback propagation
method are designed to maximise the improvement of
the alignment while reducing the users’ effort. In such
a multi-user scenario, they have to be devised also
to mitigate the propagation of users’ errors and reach
consensus about the mappings in the alignment.

To this end, we define a model to dynamically es-
timate the quality of the mappings at each iteration,
which consists of five different measures. These mea-
sures, which consider the mapping similarity and the
feedback collected in previous iterations, are combined
into two candidate selection strategies to present to the
users the mappings that are estimated to have lower
quality first.

This approach allows for the system to quickly ad-
just and is devised to run in a pay-as-you-go fashion,
where we may stop the iterative process at any stage.
A proportion of mappings is presented to the users for
validation, which have been already validated in pre-

vious iterations. This proportion, called revalidation
rate, can be configured to tune the robustness of the ap-
proach against users’ errors. Our pay-as-you-go strat-
egy is in opposition to first collecting a pre-determined
number of validations n for each mapping, considering
the majority vote after that, and only then propagating
the user-provided feedback. During those n iterations,
we would only be progressing on a single mapping.
Following our approach, during n iterations we will be
making progress on as many as n mappings and prop-
agating the user-provided feedback at each iteration.

Previous approaches to ontology matching assume
that feedback is given by individual users or that users
always validate a mapping correctly [8,19,5]. Errors
are considered only in one approach [10]. However,
this approach does not consider the activity of different
users, which plays a crucial role in our work. There-
fore, we want to show that a high-quality alignment
can be attained by involving multiple users so as to re-
duce the effort required by each individual user while
allowing for user error.

To evaluate our approach we simulate the user feed-
back considering different error rates, which measure
the errors made by the users in a sequence of iterations.
We conduct experiments with the OAEI Benchmarks
track to evaluate the gain in quality (measured in terms
of F-measure) and the robustness (defined as the ratio
between the quality of the alignment for a given error
rate and the quality of the alignment when no errors
are made) as a function of the number of validations
for different error and revalidation rates. Our results
highlight complex trade-offs and point to the benefits
of adjusting the revalidation rate.

In Section 2, we describe the architecture of the
multi-user feedback ontology matching system and
give an overview of the combined automatic and man-
ual process. In Section 3, we describe the key ele-
ments of the proposed approach: a model for the evalu-
ation of the quality of the mappings, the ranking func-
tions used for candidate mapping selection, and the
method used for feedback propagation. In Section 4,
we present the results of our experiments conducted on
the OAEI Benchmarks track. In Section 5, we describe
related work. Finally, in Section 6, we draw some con-
clusions and describe future work.

2. Approach Overview
We assume that as members of a community, domain
users are committed to an ontology matching task and
are overall reliable. Therefore, we do not deal with
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problems such as the engagement of users or the as-
sessment of their reliability, which have been investi-
gated in crowdsourcing approaches [18]. Even if we
consider possible errors in validating mappings, thus
causing inconsistency among users, we assume con-
sistency for the same user, thus we do not present the
same mapping more than once to the same user. We
also do not distinguish among users although some
users may make fewer errors than others. Instead we
consider an overall error rate associated with a se-
quence of validated mappings. We assume that given
a group of users whose reliability is known (or can be
estimated), we can determine the corresponding error
rate.

The validation of a mapping m by a user assigns
a label l to that mapping. We define the homony-
mous function label, such that label(m) has value 1
or 0 depending on whether the user considers that m
is or is not part of the alignment, respectively. When
more than one user is involved, we use a consensus-
based approach to decide whether a mapping belongs
to an alignment. Consensus models include a simple
majority vote, a sophisticated weighted majority vote,
or more complex models such as tournament selec-
tion [2]. In this paper, we consider a simple majority
vote, where V is an odd number of validations consid-
ered sufficient to decide by majority (we do not require
that all the users vote on each mapping); thus, mini-
mum consensus, µ = b(V/2) + 1c, is the minimum
number of similar labels that is needed to make a cor-
rect decision on a mapping. For example, if V = 5 is
the number of validations considered sufficient to de-
cide by majority, a correct decision on a mapping can
be taken when µ = 3 similar labels are assigned to a
mapping by the users.

We restrict our focus to equivalence mappings. Dif-
ferently from other interactive techniques for ontology
matching [14], our approach is independent from the
cardinality of the alignment, because the desired car-
dinality can be set at the end of feedback loop.

The architecture of our multi-user ontology match-
ing strategy can be built around any ontology matching
system. In our case, we use AgreementMaker [4]. We
list the steps of the feedback loop workflow:
Step 1: Initial Matching. During the first iteration, be-
fore feedback is provided, all data structures are cre-
ated. A set of k matchers is run, each one creating a lo-
cal similarity matrix where the value of each element
(i, j) is the similarity score associated with mapping
mi,j of element i of the source ontology to element j
of the target ontology. For each mapping we can then

define a signature vector with the k similarity scores
computed for that mapping by the k individual match-
ers [5]. The results of the individual matchers are com-
bined into a global similarity matrix where the value
of each element represents the similarity between two
concepts, which is computed by aggregating the scores
of individual matchers into a final score [3]. An opti-
mization algorithm is run to select the final alignment
so as to maximize the overall similarity [4] and satisfy
the mapping cardinality.
Step 2: Validation Request. A user asks for a map-
ping to validate, triggering the feedback loop.
Step 3: Candidate Selection. For each user who re-
quests a mapping to validate, a mapping is chosen us-
ing two different candidate selection strategies com-
bined by one meta-strategy (explained in detail in Sec-
tion 3.2). Each strategy uses quality criteria to rank
the mappings. The highest ranked mappings are those
mappings that are estimated to have lowest quality, the
expectation being that they are the more likely to be
incorrect. The mapping quality is assessed at each iter-
ation. The first strategy ranks the mappings that have
not been validated by any user in previous iterations,
while the second strategy ranks the mappings that have
been previously validated at least once. When a user
requests a mapping for validation, the meta-strategy
selects one candidate selection strategy and presents
the highest-ranked mapping to the user. Our approach
is inspired by active learning methods and aims to
present to the users those mappings that are most in-
formative for the ontology matching problem. Map-
pings that are wrongly classified by the system at a
current iteration are considered to be informative, be-
cause the result can be improved as long as the error is
corrected [19,5].
Step 4: User Validation. The selected mapping is val-
idated by the user. The user can label a mapping as be-
ing correct or incorrect but can also skip that particu-
lar mapping when unsure of the label to assign to the
mapping.
Step 5: Feedback Aggregation. A feedback aggrega-
tion matrix keeps track of the feedback collected for
each mapping and of the users who provided that feed-
back. The data in this matrix are used to compute map-
ping quality measures in the candidate selection and
feedback propagation steps.
Step 6: Feedback Propagation. This method updates
the global similarity matrix by changing the similarity
score for the validated mapping and for the mappings
whose signature vector is close to the signature vector
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of the mapping that was just validated, according to a
distance measure.
Step 7: Alignment Selection. An optimization algo-
rithm [4] used in Step 1, is run on the updated similar-
ity matrix as input, and a refined alignment is selected.
At the end of this step, we loop through the same steps,
starting from Step 2.

3. Quality-Based Multi-User Feed-
back

In this section we describe the Candidate Selection and
Feedback Propagation steps, which play a major role
in our model. First, we explain the Mapping Quality
Model, which is used by both steps.

3.1. Mapping Quality Model
We use a mapping quality model to estimate the qual-
ity of the candidate mappings, which uses five differ-
ent mapping quality measures. The quality of a map-
ping estimated by a measure is represented by a score,
which is higher for the mappings that are considered
of higher quality. The score assigned to the mappings
is always normalized in the interval [0, 1], which has
two advantages. First, for every quality measureQ, we
can define a measure Q− in the same interval [0, 1],
where the score for a mapping m is obtained by sub-
tracting the quality score Q(m) from 1. While a qual-
ity measure Q is used to rank mappings in increasing
order of quality, a measure Q− is used to rank map-
pings in decreasing order of quality. Rankings defined
with a measure Q− are inverted compared to rankings
defined with a quality measure Q. Second, scores esti-
mated with different measures can be easily combined
with aggregate functions, e.g., maximum or average.

Automatic Matcher Agreement (AMA). It mea-
sures the agreement of the similarity scores assigned to
a mapping by different automatic matchers and is de-
fined as AMA(m) = 1 − DIS(m), where DIS(m) is the
Disagreement associated with mappingm. It is defined
as the variance of the similarity scores in the signature
vector and is normalized to the range [0, 1] [5]. Since
Disagreement plays an important role in our approach,
we will use the notation DIS instead of the superscript
notation that we use for other measures.

As an example, given a mapping m with a signa-
ture vector 〈1, 1, 0, 0〉, where each value represent a
similarity score returned by one automatic matcher,
AMA(m) = 0 indicates that there is no agreement
among the automatic matchers.

Cross Sum Quality (CSQ). Given a source ontol-
ogy with n concepts, a target ontology with p concepts,
and a matrix of the similarity scores between the two
ontologies, for each mapping mi,j the cross sum qual-
ity sums all the similarity scores σi,j in the same ith
row and jth column of the matrix. The sum is normal-
ized by the maximum sum of the scores per column
and row in the whole matrix, respectively denoted by
maxR and maxC , as defined in Equation 1.

CSQ(mi,j) = 1−
∑p
h=1 σi,h +

∑n
k=1 σk,j

maxR +maxC
(1)

This measure assigns a higher quality score to a
mapping that does not conflict with other mappings,
a conflict occurring when there exists another map-
ping for the same source or target concept. This mea-
sure takes into account the similarity score of the map-
pings, assigning a lower quality to mappings that con-
flict with mappings of higher similarity.

Table 1
An example of a similarity matrix. Empty cells have value 0.

H
HHi

j 0 1 2 3 4 5

0 0.45 0.70
1 0.30
2 0.60
3 0.50 0.90
4 0.80
5 0.40 0.10 0.90

Table 2
Examples for the Consensus (CON) and Feedback Stability (SF)
quality measures with µ = 3.

Mapping Tmi
Fmi

CON(mi) SF(mi)

m1 1 1 0.00 0.00
m2 1 0 0.33 0.33
m3 2 1 0.33 0.5

For the matrix of Table 1, the values of CSQ(m3,4)
and CSQ(m2,2) are:

CSQ(m3,4) = 1− 1.2 + 1.4

1.4 + 1.6
= 0.13

CSQ(m2,2) = 1− 0.6 + 0.7

1.4 + 1.6
= 0.57

Mapping m2,2 has higher quality than m3,4 because
m2,2 has only one conflict with m5,2 while m3,4 has
two conflicts, m1,4 and m3,1. Also, the conflicting
mapping m5,2 has lower similarity than the conflicting
mappings m1,4 and m3,1, further contributing to the
difference in quality between m3,4 and m2,2.
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Similarity Score Definiteness (SSD). This measure
ranks mappings in increasing order of quality. It eval-
uates how close the similarity σm associated with a
mappingm is to the similarity scores’ upper and lower
bounds (respectively 1.0 and 0.0) using Equation 2.

SSD(m) = |σm − 0.5| ∗ 2 (2)

SSD will assign higher quality to the mappings consid-
ered more definite in their similarity score. The least
definite similarity score is 0.5.

For the matrix of Table 1, the values of SSD(m0,0)
and SSD(m3,4) are:

SSD(m0,0) = |0.45− 0.5| ∗ 2 = 0.1

SSD(m3,4) = |0.9− 0.5| ∗ 2 = 0.8

Consensus (CON). This measure ranks mappings
in increasing order of quality. In the multi-user ontol-
ogy matching scenario, a candidate mapping may be
labeled as correct by some users and as incorrect by
others. In our approach we assume that the majority
of users are able to make the correct decision. The
consensus (CON) quality measure uses the concept of
minimum consensus µ, as defined in Section 2 to cap-
ture the user consensus gathered on a mapping at a
given iteration. Let Tm and Fm denote respectively the
number of times when a mapping has been labeled re-
spectively as correct and incorrect. Given a mapping
m, CON(m) is maximum when the mapping is labeled
at least µ times as correct, as defined in Equation 3.

CON(m) =

{
1 if Tm ≥ µ or Fm ≥ µ
Tm−Fm

µ otherwise
(3)

Three examples of CON quality evaluation are
shown in Table 2. According to the consensus gathered
among the users, the quality of mappings m2 and m3

is higher than the quality of mapping m1.
Feedback Stability (FS). Given the current set of

user validations received by the system at some iter-
ation, FS estimates the impact of future user valida-
tions on the similarity evaluation in the feedback prop-
agation step of the loop. Using the concept of mini-
mum consensus (µ), FS tries to identify the mappings
that are more stable in the system. Intuitively, map-
pings are more stable when minimum consensus has
been reached, or when they have been assigned one
label (correct or incorrect) a higher number of times
than the other. In addition, the number of similar la-

bels assigned to a mapping tells us how close the sys-
tem is to reaching minimum consensus on that map-
ping. Instead, the more unstable mappings are the ones
that have been assigned a label correct and incorrect an
equal number of times. For these mappings, a new vali-
dation will bring more information into the system. By
breaking a “tie” in user validations, the system come
closer to make a decision. Defining ∆Tm = µ − Tm
and ∆Fm = µ− Fm, then:

FS(m) =

{
1 if Tm = µ or Fm = µ

1− min(∆Tm,∆Fm)
max(∆Tm,∆Fm) otherwise

(4)

The fraction in Equation 4 measures the instability
of a mapping, defined as the ratio between the mini-
mum and the maximum distances from minimum con-
sensus of the number of similar labels assigned to a
mapping. For ∆Tm = ∆Fm this fraction is always
equal to 1, meaning that a mapping m will be assigned
a quality FS(m) = 0. We also observe that FS is al-
ways defined in the interval [0, 1], and that when mini-
mum consensus on a mappingm has not been reached,
FS−(m) = min(∆Tm,∆Fm)

max(∆Tm,∆Fm) .
Considering the examples in Table 2, mapping m1

has the lowest SF score because we are in a tie situ-
ation and new feedback on that mapping is required.
Mapping m3 has a high SF score because the number
of times it was labeled as correct is close to µ. Mapping
m2 has medium SF because, despite Tm2 − Fm2 =
Tm3
−Fm3

the number of times thatm2 has been vali-
dated as correct is more distant from µ. As can be seen
from the example in Table 2, the intuition captured by
SF is slightly different from the one captured by CON.
While CON(m2) = CON(m3) = 1/3, m2 and m3

have different SF scores.

3.2. Quality-Based Candidate Selection
We combine the proposed quality measures using well-
known aggregation functions to define two different
candidate selection strategies: Disagreement and In-
definiteness Average (DIA), which is used to select un-
labeled mappings (mappings that have not been vali-
dated by any user in previous iterations) and Revali-
dation (REV), which is used to select already labeled
mappings (mappings that have been validated in pre-
vious iterations). Both strategies use quality measures
that change over time and rank mappings at each iter-
ation.

The DIA strategy uses the function:
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DIA(m) = AVG(DIS(m), SSD−(m)) (5)

It favors mappings that are at the same time the most
disagreed upon by the automatic matchers and have
the most indefinite similarity values. The two mea-
sures CON and SF cannot be used in this strategy
because they consider previous validations. After an
experimental evaluation of different combinations of
the other quality measures, discussed in detail in Sec-
tion 4.2, we found that the combination of DIS and
SSD (without CSQ) is the best combination of mea-
sures to find those mappings that were misclassified by
the automatic matchers.

The second strategy, Revalidation (REV), ranks
mappings using the function:

REV(m) = AVG(CSQ−(m),CON−(m), SF−(m))

(6)

This strategy favors mappings with lower consensus
and that could have changed significantly, and harm-
fully, the quality of the current alignment. The analy-
sis of the users’ activity, which is explicitly captured
by CON and SF, is crucial to this strategy. In addition,
since several mappings might have similar CON and
SF in the first iterations, REV favors also mappings
with potential conflicts with other mappings leverag-
ing the CSQ measure. In this strategy, CSQ is pre-
ferred to DIS and DSS because: i) to rank already la-
beled mappings, disagreement among users, measured
with CON and SF, is more informative than disagree-
ment among automatic matchers, measured by DIS,
ii) labeled mappings will have very definite similarity
scores, and, therefore, very similar DSS scores, and iii)
more potential conflicts can emerge as more feedback
is collected.

The mapping that is presented to the user is selected
by a parametric meta-strategy, which picks the top
mapping from one of the DIA or REV rankings. This
meta-strategy uses two probabilities, pDIA and pREV,
such that pDIA + pREV = 1, which are associated re-
spectively to the DIA and REV strategies. The parame-
ter pREV is called revalidation rate and is used to spec-
ify the proportion of mappings presented to the users
for validation that have been already validated in pre-
vious iterations. We consider a constant revalidation
rate, because we do not have empirical data that shows
whether the users make more (or fewer) errors as the
matching process unfolds. If such evidence is found,
the revalidation rate can be changed accordingly. The

meta-strategy verifies also that the same mapping (cho-
sen from the REV list) is not presented for validation
to the same user more than once.

3.3. Quality-Based Feedback Propagation
When the selected mapping is validated by a user,
the feedback is propagated by updating a subset of
the Similarity Matrix. We experimentally evaluated
several feedback propagation methods, including a
method used in our previous work [5], a method based
on learning similarity scores with a multiple linear
regression model, and a method based on our qual-
ity measures. For our experiments, we use this last
method, which we call Quality Agreement (QA) Prop-
agation, because it achieves the best trade-off between
speed and robustness.

The method we used in previous work sets the sim-
ilarity of the cluster of mappings that have the signa-
ture vector equivalent to the vector of the mapping val-
idated by the user. The similarity of this cluster of map-
pings is set to 1 or 0 depending on the label given to
the validated mapping by the user. This method has
the disadvantage of propagating the user feedback on
a very limited number of mappings. The method based
on the multiple linear regression model learns the de-
pendency between the values in the signature vectors
of the mappings and the similarity values in the global
similarity matrix. We found that this method has the
disadvantage of requiring many user inputs before pro-
ducing meaningful predictions.

In QA Propagation, the similarity of the validated
mapping is set to 1 or 0 depending on the label as-
signed by the user. To propagate the similarity to
other mappings, we compute the Euclidean distance
between the signature vectors of the validated map-
ping, denoted by v, and the signature vectors of all the
mappings for which consensus has not been reached.
A distance threshold θ is used to identify the class
of mappings most similar to the mapping labeled by
the user. The mappings in this class have their simi-
larity increased if the validated mapping is labeled as
correct, and decreased otherwise. The change is pro-
portional to: 1) the quality of the labeled mapping v
and of the mappings m in the similarity class, mea-
sured respectively by two quality measures Q and Q′,
and 2) a propagation gain defined by a constant g
such that 0 ≤ g ≤ 1, which regulates the magni-
tude of the update. This constant will determine how
much the quality of the labeled mapping will affect
the quality of the mappings in the similarity class. Let
δ = Q(v) ∗Q′(m) ∗ g be this change factor. After the
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propagation of a validation label(v), the similarity σtm
of a mapping m in the similarity class of v at an itera-
tion t is defined by:

σtm =

{
σt−1
m +min

(
δ, 1− σt−1

m

)
if label(v) = 1

σt−1
m −min

(
δ, σt−1

m

)
if label(v) = 0

(7)

We adopt a conservative approach to propagation
to make the system more robust to erroneous feed-
back. We define Q(v) = CON(v) and Q′(m) =
AVG(AMA(m), SSD(m)). Thus, the similarity of the
mappings in this class is increased/decreased propor-
tionally to: i) the consensus on the labeled mapping,
and ii) the quality of the mappings in the similarity
class. For example, for CON(mv) = 0, the similarity
of other mappings in the class is not updated. In ad-
dition, when g = 0, the propagation function changes
the similarity of the validated mapping but not the sim-
ilarity of other mappings in the class.

4. Experiments
We conduct several experiments to evaluate our multi-
user feedback loop model. In a first set of experiments
we evaluate the performance of the proposed pay-as-
you-go method by analyzing the performance of dif-
ferent system configurations under various error rates
and comparing it to the performance of a baseline ap-
proach. In a second set of experiments, we compare
the performance of our mapping quality measures to
the performance of other quality measures proposed in
related work.

Table 3
AUGC for ontologies 101-303.

ER 0.0 0.05 0.1 0.15 0.2 0.25
RR=0.0 NoGain 6.6 5.6 4.5 3.9 2.8 1.6
RR=0.0 Gain 6.8 6.0 4.9 4.3 2.9 2.1
RR=0.1 NoGain 6.0 5.3 4.4 3.6 3.0 2.5
RR=0.1 Gain 6.2 5.7 4.7 4.0 3.4 2.4
RR=0.2 NoGain 5.5 5.1 4.3 3.6 3.3 2.5
RR=0.2 Gain 5.7 5.0 4.7 3.8 2.9 2.9
RR=0.3 NoGain 5.2 4.9 4.4 4.2 3.8 3.4
RR=0.3 Gain 5.3 4.7 4.6 4.1 3.9 3.0
RR=0.4 NoGain 4.6 4.3 4.1 3.8 3.5 3.3
RR=0.4 Gain 4.7 4.4 4.2 3.8 3.7 3.0
RR=0.5 NoGain 4.1 3.9 3.7 3.6 3.6 3.2
RR=0.5 Gain 4.1 4.1 3.7 3.6 3.5 3.4

4.1. Performance under Different Error Rates
4.1.1. Experimental Setup

Our experiments are conducted using four matching
tasks in the Benchmarks track of OAEI 2010, which
consist of real-world bibliographic reference ontolo-

Fig. 2. Parallel coordinates of AUGC for ontologies 101-303.

gies that include BibTeX/MIT, BibTeX/UMBC, Karl-
sruhe and INRIA, and their reference alignments. We
chose these ontologies because they have been used in
related studies [8,19,5,18].

In the evaluation we use two measures based on F-
Measure:
Gain at iteration t, ∆F-Measure(t), is the difference
between the F-Measure at iteration t as evaluated after
the Candidate Selection Step and the F-Measure at the
Initial Matching Step (see Section 2).
Robustness at iteration t, Robustness(t), is the ratio at
iteration t of the F-Measure obtained under error rate
er, FMER=er(t), and the F-Measure obtained with zero
error rate, FMER=0(t), for the same configuration. A
robustness of 1.0 means that the system is impervious
to error.

The above measures characterize the behavior of the
system in time. We need to consider two additional
measures to represent this behavior with a single ag-
gregate value, so as to ease the comparison among
different configurations. The Area Under the Curve
(AUC) can be used to describe a variable measured at
different points in time, e.g., gain at iteration t, with
an aggregate value. This value is defined by the area of
the curve obtained by plotting the variable over time.
The two aggregate measures based on AUC used in our
experiments are defined as follows.
Area Under the Gain Curve, AUGC, is a measure that
provides an aggregate representation of the gain in F-
Measure until a fixed iteration n:

AUGC =

n∑
t=1

∆F-Measure(t) (8)
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Fig. 1. Each chart presents ∆F-Measure(t) obtained for ontologies 101-303 with a different error rate (ER): (a) ER = 0.0; (b) ER = 0.05; (c) ER
= 0.1; (d) ER = 0.15; (e) ER = 0.2; (f) ER = 0.25. The dashed lines represent a propagation gain equal to zero.

This measure is similar to Area Under the Learning
Curve (AULC), which has been recently proposed to
evaluate interactive ontology matching systems [17].
In AULC, absolute F-Measure is used instead of gain
in F-Measure and the iteration axis uses a logarithmic

scale to reward a quicker increase of F-Measure. We

use gain in F-Measure to better emphasize the differ-

ence from the initial F-Measure. We also do not adopt

a logarithmic scale because this would not adequately

penalize a decrease in F-Measure after a certain num-
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ber of iterations, which can happen when user errors
are considered.
Area Under the Robustness Curve, AURC, is a mea-
sure that provides an aggregate representation of the
Robustness until iteration n:

AURC =

n∑
t=1

Robustness(t) (9)

We conduct our experiments by simulating the feed-
back provided by the users. Our focus is on the evalu-
ation of the methods minimize the users’ overall effort
and make the system robust against users’ errors. This
kind of simulation is needed to comparatively assess
the effectiveness of different candidate selection and
propagation methods before performing experiments
with real users, where presentation issues play a major
role. We consider a community of 10 users, and sim-
ulate their validation at each iteration using the refer-
ence alignment. We note that we have made two as-
sumptions that can be revised as they do not alter the
substance of the method. The first reflects the fact that
we do not distinguish among users as mentioned in
Section 2 and therefore consider a constant error rate
for each sequence of validated mappings. A Constant
error rate has been applied to other interactive ontol-
ogy matching approaches [10]. The study of a com-
munity of users might uncover an appropriate prob-
ability distribution function for the error (e.g., Gaus-
sian). The second assumption is related to the choice
of the number of validations V considered sufficient to
decide by majority, which we set to 5, and therefore
µ = 3. Studying the users could lead to setting V so as
to guarantee a desired upper bound for the error rate.
Without this knowledge, we considered several error
rates while keeping V constant.

In the Initial Matching Step we use a configuration
of AgreementMaker that runs five lexical matchers in
parallel. The LWC matcher [4] is used to combine
the results of five lexical matchers, and two structural
matchers are used to propagate the similarity scores.
The similarity scores returned by these matchers are
used to compute the signature vectors. In our experi-
ments we compute the gain and robustness at every it-
eration t from 1 to 100, with six different error rates
(ER) (0.05, 0.1, 0.15, 0.2, 0.25) and twelve different
system configurations. The configurations stem from
the six different revalidation rates (RR) (0.0, 0.1, 0.2,
0.3, 0.4, 0.5) used in candidate selection strategy, and

two different feedback propagation gains, g = 0 and
g = 0.5. When g = 0, the propagation step affects
only the mapping validated by the user, that is, it does
not change the similarity of other mappings. We set
the threshold used for cluster selection θ = 0.03. This
value is half the average Euclidean distance between
the signature vectors of the first 100 validated map-
pings and the remaining mappings with a non-zero sig-
nature vector. Remarkably, this value was found to be
approximately the same for all matching tasks, thus be-
ing a good choice. In the Alignment Selection Step we
set the cardinality of the alignment to 1:1. The eval-
uation randomly simulates the labels assigned by the
users according to different error rates. Every exper-
iment is therefore repeated twenty times to eliminate
the bias intrinsic in the randomization of error gener-
ation. In the analysis of the results we will report the
average of the values obtained in each run of the ex-
periments.

We also want to compare the results obtained with
our model, which propagates the user feedback at each
iteration in a pay-as-you-go fashion, with a model that
adopts an Optimally Robust Feedback Loop (ORFL)
workflow, inspired by CrowdMap, a crowdsourcing
approach to ontology matching [18]. In their approach,
similarity is updated only when consensus is reached
on a mapping, which happens after five iterations when
V = 5. To simulate their approach we modify our
feedback loop in such a way that a correct validation
is generated every five iterations (it is our assumption
that the majority decision is correct). CrowdMap does
not use a candidate selection strategy because all the
mappings are sent in parallel to the users. We therefore
use our candidate selection strategy with RR = 0 to
define the priority with which mappings are validated
and do not propagate the similarity to other mappings.

4.1.2. Result Analysis
We ran our first experiment on two of the OAEI

Benchmarks ontologies, 101 and 303. We chose these
ontologies because their matching produced the low-
est initial F-Measure (0.73) when compared with the
results for the other matching tasks 101-301 (0.92),
101-302 (0.86) and 101-304 (0.93). Thus we expect
to see a higher gain for 101-303 than for the others.
Table 4 shows for each matching task the number of
correct mappings, false positives, false negatives, and
F-Measure after the initial matching step.

Figure 1 shows the gain in F-Measure after several
iterations using different configurations of our model
and the ORFL approach. Each chart presents results
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Fig. 3. Each chart presents Robustness(t) obtained for ontologies 101-303 with a different error rate (ER): (a) ER = 0.0; (b) ER = 0.05; (c) ER =
0.1; (d) ER = 0.15; (e) ER = 0.2; (f) ER = 0.25. Dashed lines represent a propagation gain equal to zero.

Table 4
Results after the initial matching step.

Matching Task # Correct Mappings # False Positives # False Negatives F-Measure
101-301 50 6 2 92.31
101-302 36 5 5 86.11
101-303 40 23 4 72.73
101-304 74 9 2 92.90

for a specific error rate (ER). Solid lines represent
configurations with propagation gain g = 0.5, while
dashed lines represent configurations with zero propa-
gation gain. Different colors are associated with differ-

ent revalidation rates (RR). The dotted line represent
the results obtained with the ORFL approach. In the
charts, the steeper a curve segment between two itera-
tions, the faster the F-measure gain between those iter-
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Table 5
AURC for ontologies 101-303.

ER 0.0 0.05 0.1 0.15 0.2 0.25
RR=0.0 NoGain 50.0 48.8 47.4 46.8 45.4 44.3
RR=0.0 Gain 50.0 49.0 47.7 46.9 45.5 44.7
RR=0.1 NoGain 50.0 48.9 47.9 47.1 46.3 45.9
RR=0.1 Gain 50.0 49.1 48.2 47.3 46.6 45.5
RR=0.2 NoGain 50.0 49.3 48.4 47.8 47.4 46.4
RR=0.2 Gain 50.0 48.9 48.6 47.7 46.7 46.7
RR=0.3 NoGain 50.0 49.4 49.0 48.5 48.3 47.7
RR=0.3 Gain 50.0 49.3 48.9 48.5 48.1 47.1
RR=0.4 NoGain 50.0 49.5 49.1 48.9 48.4 48.4
RR=0.4 Gain 50.0 49.6 49.1 49.0 48.7 48.0
RR=0.5 NoGain 50.0 49.5 49.5 49.4 49.3 48.8
RR=0.5 Gain 50.0 49.6 49.5 49.2 49.2 48.8

Fig. 4. Parallel coordinates of AURC for ontologies 101-303.

ations. It can be observed that our approach is capable
of improving the quality of the alignment over time.
However, it is also the case that as time increases the
quality can decrease especially for higher error rates,
that is, primarily for charts (d), (e), (f) of Figure 1.
We can see that lower revalidation rates obtain better
∆F-Measure(t) with lower error rates. However, as er-
ror rate increases, e.g., for ER=0.2 and ER=0.25, bet-
ter results are obtained with higher revalidation rates.
Therefore, we infer that our REV strategy is effective
in counteracting high error rates. Moreover, our ap-
proach is performing better than ORFL in all situations
except the one with highest error rate and lowest reval-
idation rate.

Table 3 shows AUGC for the charts presented in Fig-
ure 1. AUGC is also plotted using parallel coordinates
in Figure 2, where each parallel line represents a dif-
ferent error rate. It is evident from Table 3 that propa-
gation always helps to obtain the maximum AUGC for
every error rate. However, for some revalidation rates
and some error rates, AUGC is higher when the feed-

back is not propagated, remarkably for RR=0.2 and
ER=0.2, RR=0.3 and ER=0.25, RR=0.4 and ER=0.25.
Propagation is more frequently effective for lower er-
ror rates, e.g., for an error rate up to 0.1, which can
be explained by the higher probability of error propa-
gation when the error rate increases. Finally, it can be
seen from Figure 1 that AUGC decreases monotoni-
cally for every configuration as the error rate increases,
but this decrease is less prominent for higher revalida-
tion rates (represented by gentler AUGC curves). This
observation indicates that our REV strategy helps to
make the feedback loop more tolerant to user errors.

Figure 3 shows the robustness of different config-
urations evaluated at different iterations, varying both
the error and the revalidation rates. Each chart presents
results for a specific error rate (ER). Solid lines rep-
resent configurations with propagation gain g = 0.5,
while dashed lines represent configurations with zero
propagation gain. Different colors represent results ob-
tained with different revalidation rates. Robustness de-
creases as time increases and revalidation rate de-
creases, more noticeably for high error rates. However,
robustness decreases at a much lower rate with high
revalidation rate, as shown by the gentler curves in Fig-
ure 3.

Table 5 shows AURC for the charts presented in
Figure 3. AURC is also plotted using parallel coordi-
nates in Figure 4. As error rates increase, we see a
sharp monotonic decrease in robustness. However, as
the revalidation rates increase, robustness always in-
creases, except in one case for RR=0.2 and ER=0.05.
This observation indicates that with high revalida-
tion rates the system becomes less sensitive to the er-
ror rate. Moreover, it can be seen from Table 5 that
configurations with propagation gain are more robust
than configurations with zero propagation gain for low
revalidation and error rates. When error rate increases
and a high revalidation rate is used, configurations with
zero propagation gain are more robust than configura-
tions with propagation gain.

We ran further experiments with three other match-
ing tasks of the OAEI 2010 Benchmarks track. Ta-
ble 6 contains the results for the three other tasks (101-
301, 101-302, 101-304) and shows ∆F-Measure(t) at
different iterations under two different error rates (0.0
and 0.1), two different revalidation rates (0.2 and 0.3),
in different configurations with or without gain (Gain
or NoGain), for our pay-as-you-go workflow, together
with a comparison with ORFL. We discuss the results
for an error rate up to 0.1 because the initial F-Measure
in these matching tasks is high (0.92, 0.86, and 0.93,
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Table 6
∆F-Measure(t) for the matching tasks with higher initial F-
Measure.

ER RR CONF 101-301(0.92) 101-302(0.86) 101-304(0.92)
@10 @25 @50 @100 @10 @25 @50 @100 @10 @25 @50 @100

0.0 0.2 NoGain 0.03 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.2 Gain 0.03 0.04 0.04 0.05 0.03 0.06 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.3 NoGain 0.02 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.04 0.05 0.05
0.0 0.3 Gain 0.02 0.04 0.04 0.05 0.03 0.05 0.06 0.08 0.0 0.03 0.05 0.05
0.1 0.2 NoGain 0.03 0.04 0.01 -0.01 0.02 0.01 0.0 -0.02 0.0 0.03 0.03 0.00
0.1 0.2 Gain 0.03 0.03 0.01 0.0 0.02 0.03 0.01 0.01 0.0 0.03 0.03 0.00
0.1 0.3 NoGain 0.02 0.04 0.02 0.0 0.03 0.02 0.00 0.01 0.0 0.03 0.04 0.02
0.1 0.3 Gain 0.02 0.03 0.01 0.0 0.03 0.03 0.01 0.01 0.0 0.03 0.04 0.01
- 0.0 ORFL 0.0 0.02 0.04 0.05 0.01 0.03 0.05 0.05 0.0 0.0 0.0 0.05

respectively), therefore we do not expect that users will
make more errors than automatic matchers. In the ab-
sence of error, our model always improves the quality
of the alignment for the three tasks faster than ORFL
(except for iteration 100 of 101-304 where both meth-
ods have the same gain of 0.05). For an error rate of
0.1, our model performs better than ORFL for t = 10
for every matching task, and for t = 25 in two of them.
For t = 50 it performs worse than ORFL for two of
the tasks and better for one of the tasks. For t = 100,
ORFL always performs better.

4.2. Comparison with Quality Measures Pro-
posed in Related Work

We establish a comparison between our mapping qual-
ity model and the measures used in the candidate selec-
tion of the single user approach of Shi et al. [19]. We
want to determine which quality model performs bet-
ter in our feedback loop workflow. The candidate se-
lection strategy used by Shi et al. uses three measures,
Contention Point, Multi-Matcher Confidence, and Sim-
ilarity Distance, whose intent is close to that of our
quality measures CSC, DIS, and SSD.

We ran an experiment with all the four matching
tasks of the OAEI 2010 Benchmarks track (101-301,
101-302, 101-303, 101-304), in an error-free setting
(like the one considered by Shi et al.) with no prop-
agation gain. We consider the measures of our model
that are meaningful in an error-free setting, i.e., CSQ−,
DIS, and SSD−. We compare DIA (see Equation 6)
with several selection strategies defined using individ-
ual measures and significant combinations of them,
i.e., maximum, minimum and average. For the evalu-
ation we look at the list of top-100 ranked mappings
returned by each strategy and we measure: the number
of false positives and false negatives found in the list,
∆F-Measure(t) obtained after validating the mappings
in the list, and the Normalized Discounted Cumulative
Gain (NDCG) of the ranked list.

NDCG is a well known measure used to evaluate the
quality of a ranked list of results [12]. Discounted Cu-
mulative Gain measures the gain of an item in a list
based on its relevance and position. The gain is accu-
mulated from the top of a result list of n elements to
the bottom, with the gain of each result discounted at
lower ranks:

DCG = rel1 +

n∑
i=2

reli
log2 i

(10)

NDCG is defined by normalizing the cumulated gain
by the gain of an ideal ranking:

NDCG =
DCG
IDCG

(11)

In a list of mappings to present to the user for valida-
tion, a mapping will be validated at iteration t when
holds the position t in the list. A mapping is consid-
ered relevant if it is misclassified by the system, i.e.,
if it is either a false positive or a false negative. The
ideal ranking for a candidate selection is the ranking
in which all the misclassified mappings are ranked on
top of the mapping list. A candidate selection strategy
has higher quality measured by NDCG when it ranks a
high number of mappings in the first positions.

Table 7 shows the result of our experiments on
four matching tasks (101-301, 101-302, 101-303, 101-
304). We refer to the set of measures in Shi et al. as
SLTXL, using the first letters of the names of each
author. For each candidate selection strategy, Table 7
shows the number of misclassified mappings (#FP and
#FN), ∆F-Measure(t) and NDCG. The values of ∆F-
Measure(t) and NDCG for Candidate selection strate-
gies based on our mapping quality measures signifi-
cantly outperform the strategies based on the measure
proposed by Shi et al.. All the quality measures are
more effective in finding false positives than false neg-
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atives, but a limited number of false negatives is found
by our measures in every matching task. DIA is the
strategy that performs on average better, with an aver-
age ∆F-Measure(t) equal to 0.11.

4.3. Conclusions
From our experiments with four different matching
tasks characterized by different initial F-Measure val-
ues, we draw the following conclusions:

1. When users do not make errors, our method im-
proves the quality of the alignment much faster
in every matching task than an optimally robust
feedback loop (ORFL) method that labels a map-
ping only after having collected from the users
every validation needed to reach consensus.

2. An increasing error rate can be counteracted by an
increasing revalidation rate, still obtaining very
good results for an error rate as high as 0.25 and
a revalidation rate of 0.5.

3. In the presence of errors, our approach is par-
ticularly effective when the initial alignment has
lower quality and includes a higher number of
false positives (see Table 4). In the matching task
with lower initial F-Measure, every configuration
of our method improves the quality of the align-
ment much faster than the optimally robust feed-
back loop method, even when error rates are as
high as 0.25. Propagating the feedback to map-
pings other than the mapping labeled by the user
at the current iteration shows a higher gain in F-
Measure in several of the experiments.

4. In the presence of errors, the F-Measure gain de-
creases after a certain number of iterations, unless
a high revalidation rate is used. The number of
iterations after which the gain in F-Measure de-
creases, which is clearly correlated with the error
rate, appears to also be correlated with the qual-
ity of the initial alignment and, in particular, with
the number of false positives (see Table 4). For
example, using a revalidation rate of 0.3 and an
error rate of 0.1, the F-Measure gain starts to de-
crease after 25 iterations in matching tasks with
at most six false positives in the initial alignment
(101-301, 101-302), and does not decrease before
the 50th iteration in matching tasks where the ini-
tial alignment contains at least nine false positives
(101-303, 101-304).

5. When the error rate is unknown, a revalidation
rate equal to 0.3 achieves a good trade-off be-
tween F-measure gain and robustness because of
the “stability” of the results as displayed in the (d)

charts of Figures 1 and 3. We note that propaga-
tion leads to better results for the F-measure gain
than for robustness.

6. Propagation leads in general to better results (F-
measure gain and robustness) than no propagation
(See Table 3 and Table 5). There are however, a
few exceptions. The most notorious in Table 3 is
for ER=0.2 and RR=0.2. In this case, it appears
that errors get propagated, without being suffi-
ciently counteracted by revalidation. When reval-
idation rate increases to RR=0.3 then the results
with propagation wins. Another example is when
we have ER=0.25 and RR=0.3 in Table 5. The re-
sult without propagation is much more better than
with propagation. However, when the revalida-
tio rate increases, the results become better with
propagation. Finally, the RR=0.5 wins.

7. To avoid decreasing in the amount of robustness,
we have to use high revalidation rates without
considering the error rate according to figure 4.
However, we should consider the error rate when
we want to configure the system to avoid de-
creasing in FMeasure gain. Since figure 2 indi-
cates that lower revalidation rates provide better
results with lower error rates, and higher revalida-
tion rates provide better results with higher error
rates.

8. According to our results, the revalidation rate
should be changed over time, starting with a
lower revalidation rate and then switching to a
higher revalidation rate. The higher the error, the
sooner the switch should occur.

5. Related Work
Leveraging the contribution of multiple users has been
recognized as a fundamental step in making user feed-
back a first class-citizen in data integration systems,
such as those for schema and ontology matching [1,
18]. Ontology matching approaches relying on the
feedback provided by a single user are a precursor to
multi-user systems. They include the work of Shi et
al. [19], Duan et al. [8], Cruz et al. [5], Noy et al. [15],
To et al. [20], Jirkovsky et al. [11] and Jiménez-Ruiz et
al. [10]. We discuss the single user approaches in two
groups based on the content of their candidate selec-
tion method, and then we explain about the multi-user
approaches.

The first group of single user approaches includes
those systems which have a static candidate selec-
tion strategy. They provide the ranked list of candi-
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Table 7
Comparison of different quality measures and their combinations, showing retrieved false positives, retrieved false negatives, ∆F-Measure(t)
and NDCG at iteration 100.

301 302 303 304
#FP #FN ∆FM NDCG #FP #FN ∆FM NDCG #FP #FN ∆FM NDCG #FP #FN ∆FM NDCG

Contention Point 6 0 0.05 0.19 4 1 0.08 0.39 9 0 0.07 0.19 1 1 0.01 0.05
Multi Matcher Confidence 2 0 0.01 0.09 1 1 0.04 0.06 5 0 0.03 0.11 0 0 0.00 0.0

Similarity Distance 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
MAX(SLTXL) 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
MIN(SLTXL) 0 0 0.00 0.00 0 0 0.00 0.00 1 0 0.007 0.02 0 0 0.00 0.00
AVG(SLTXL) 4 0 0.03 0.14 3 1 0.06 0.29 7 0 0.05 0.18 0 0 0.00 0.00

CSQ− 6 1 0.05 0.46 5 1 0.08 0.56 20 3 0.20 0.79 9 1 0.06 0.53
DIS 6 1 0.05 0.18 4 2 0.06 0.27 18 3 0.20 0.65 8 1 0.05 0.79

SSD− 6 0 0.05 0.49 4 0 0.05 0.25 17 0 0.13 0.60 3 0 0.01 0.12
AVG(CSQ− ,DIS,SSD−) 6 1 0.05 0.45 4 0 0.03 0.31 20 1 0.18 0.65 8 0 0.04 0.38
MAX(CSQ− ,DIS,SSD−) 2 0 0.01 0.16 3 0 0.02 0.75 3 0 0.02 0.58 2 0 0.01 0.21
MIN(CSQ− ,DIS,SSD−) 0 0 0.00 0.00 0 0 0.00 0.00 1 0 0.007 0.02 0 0 0 0.00

DIA 6 1 0.06 0.69 5 3 0.11 0.60 23 3 0.26 0.80 9 1 0.06 0.45

date mappings at the beginning of their process, and
they do not change it during the iterations. These ap-
proaches do not consider error rate for the user except
LogMap 2. Shi et al. use an active learning approach
to determine an optimal threshold for mapping selec-
tion and propagate the user feedback using a graph-
based structural propagation algorithm. Duan et al.ũse
a supervised method to learn an optimal combination
of both lexical and structural similarity metrics [19].
Cruz et al. use signature vectors that identify the map-
pings for which the system is less confident and prop-
agate the validated mappings based on the similar-
ity of signature vectors; the overall goal is to reduce
the uncertainty of the mappings [5]. LogMap 2 is an-
other interactive ontology matching system that is pro-
posed by Jiménez-Ruiz et al. [10]. They try to find re-
liable and non-reliable mappings using some lexical,
structural and reasoning-based techniques. They dis-
card most of the non-reliable mappings, and request
feedback for the remaining ones. They reject all the
automatically obtained mappings if there is a conflict
with user provided feedback. This kind of “propaga-
tion” is therefore completely different from our own.
LogMap2 considers error rates in their evaluation, but
they do not obtain the consensus over the feedback.

The second group of single user approaches in-
cludes those systems which have a dynamic candi-
date selection. They update the ranked list of candidate
mappings at each iteration. None of them considers the
error rate for users. Noy et al. use an interactive com-
ponent in the PROMPT suite for ontology merging and
mapping [15]. They ask users for feedback based on
the structure of the ontologies, inconsistencies and po-
tential problems in the alignment. Their candidate se-
lection method is entirely different from ours because
we rank candidate mappings based on the combination

of quality measures, each with a particular emphasis.
To et al. propose an adaptive machine learning frame-
work for ontology matching using user feedback [20].
They use two kinds of user feedback in their approach:
pre-alignment and relevance feedback. Pre-alignment
is used at the beginning of the mapping process to train
the learner, and relevance feedback is used in a semi-
supervised method to iteratively improve the learner.
The semi-supervised method suggests candidate map-
pings to the users at each iteration. They do not have
a propagation method, but find actively the candidate
mappings. Jirkovsky et al. propose MAPSOM, an in-
teractive ontology matching approach [11]. They train
a classifier using a neural network to combine their ba-
sic similarity measures. Then they use user feedback to
improve their classifier and find the best configuration
for it. Their approach uses user feedback to aggregate
the initial matchers. However, our approach applies
user feedback after the combination of initial match-
ers. They have a candidate selection method, which is
based on their classifier boundary.

In multi-user scenarios, several opportunities arise,
such as the possibility of gathering consensus on map-
pings, as well as challenges, such as the need to deal
with noisy feedback [1,18]. Many multi-user scenar-
ios use crowdsourcing on a web platform: for ex-
ample, CrowdMap [18] for ontology matching and
ZenCrowd [7] for data linking. As in our multi-
user feedback approach, both CrowdMap and Zen-
Crowd engage multiple workers to solve a semantic-
based matching task and use revalidation. However,
CrowdMap does not integrate automatic matching
methods with user feedback and does not investigate
methods for candidate mapping selection nor feedback
propagation.
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Workers may not have specific skills nor a spe-
cific interest in the task that they perform other than
the monetary reward that they get. Therefore, strate-
gies are needed to assess their performance. For ex-
ample, McCann et al. [13] classify workers as trusted
or untrusted. Another example is provided by Osorno-
Gutierrez et al. [16], who investigate the use of
crowdsourcing for mapping database tuples. They ad-
dress the workers’ reliability, identifying both workers
whose answers may contradict their own or others’.
Meilicke et al. [14] propose a reasoning approach to
identify the inconsistencies after manual mapping re-
vision by human experts. One of their strategies is to
remove some mappings from the search space based
on the cardinality of the alignment (e.g., using the 1:1
cardinality assumption). Our feedback model works
prominently on the similarity matrix: a desired cardi-
nality constraint can be specified by configuring the
alignment selection algorithm (Step 7).

Similarly to some single-user feedback strategies,
the recent crowdsourcing approach of Zhang et al.,
aims to reduce the uncertainty of database schema
matching [21] measured in terms of the entropy com-
puted using the probabilities associated with sets of tu-
ple correspondences, called matchings. They proposed
two algorithms that generate questions to the crowd.
Best candidates are those that can obtain highest cer-
tainty with lowest cost. In comparison with our ap-
proach, they do not obtain consensus on a mapping and
each mapping is only validated once.

6. Conclusions and Future Work
A multi-user approach needs to manage inconsis-
tent user validations dynamically and continuously
throughout the matching task, while aiming to reduce
the number of mapping validations so as to minimize
user effort. In this paper, we presented a mapping
model that uses quality measures in the two main steps
of the system: the Candidate Mapping Selection and
the Feedback Propagation steps. In the first step, a dy-
namic mechanism ranks the candidate mappings ac-
cording to those quality measures so that the mappings
with lower quality are the first to be presented for vali-
dation, thus accelerating the gain in quality. In the sec-
ond step similarity among mappings is used to validate
mappings automatically without direct user feedback,
so as to cover the mapping space faster.

Our experiments brought clarity on the trade-offs
among error and revalidation rates required to mini-
mize time and maximize robustness and F-measure.

Our strategies show under which circumstances we can
afford to be “aggressive” by propagating results from
the very first iterations, instead of waiting for a con-
sensus to be built.

Future work may consider user profiling, so that
there is a weight associated with the user validations
and how they are propagated depending on the feed-
back quality. In this paper, we tested different con-
stant error rates to model a variety of users’ behavior
as an aggregate. Other models may take into account
the possibility that users’ engagement decreases along
time due to the repetitiveness of the validation task,
thus leading to an increasing error rate, or that in cer-
tain situations users learn with experience and make
fewer errors, thus leading to a decreasing error rate.
We therefore plan to perform studies to determine the
impact of users’ behavior along time on the error dis-
tribution so as to change the candidate selection meta-
strategy accordingly. Our overall strategy could also be
modified to present one mapping together with several
mapping alternatives. In this case, the visualization of
the context for those alternatives could prove benefi-
cial. This visualization can be included in a visual an-
alytics strategy for ontology matching [5] modified for
multiple users.
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