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Abstract. Social media is a rich source of up-to-date information about events such as incidents. The sheer amount of available
information makes machine learning approaches a necessity to process this information further. This learning problem is often
concerned with regionally restricted datasets such as data from only one city. Because social media data such as tweets varies
considerably across different cities, the training of efficient models requires labeling data from each city of interest, which is
costly and time consuming.

To avoid such an expensive labeling procedure, a generalizable model can be trained on data from one city and then applied
to data from different cities. In this paper, we present Semantic Abstraction to improve generalization of tweet classification. In
particular, we derive features from Linked Open Data and include location and temporal mentions. A comprehensive evaluation
on twenty datasets from ten different cities shows that Semantic Abstraction is indeed a valuable means for improving general-
ization. We show that this not only holds for a two-class problem where incident-related tweets are separated from non-related
ones but also for a four-class problem where three different incident types and a neutral class are distinguished.

To get a thorough understanding of the generalization problem itself, we closely examined rule-based models from our evalu-
ation. We conclude that on the one hand, the quality of the model strongly depends on the class distribution. On the other hand,
the rules learned on cities with an equal class distribution are in most cases much more intuitive than those induced from skewed
distributions. We also found that most of the learned rules rely on the novel semantically abstracted features.
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1. Introduction

Social media platforms such as Twitter are widely
used for sharing information about incidents. Different
stakeholders, including emergency management and
city administration, can highly benefit from using this
up-to-date information. The large amount of new data
created every day makes automatic filtering unavoid-
able in order to process this data further. Many ap-
proaches classify the type of an incident mentioned in

social media by means of machine learning [1], [34].
However, to build high-quality classifiers, labeled data
is required. Given the large quantity of data in this con-
text, creating such annotations is time-consuming and
therefore costly. Additionally, datasets are often natu-
rally restricted to a certain context, i.e., labeling data
from one particular city only allows training of effi-
cient learning algorithms for exactly this city.

This is the case because the text in tweets from a
particular city has special properties compared to other
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structured textual information. The expectation is that
a model learned on one city consequently works well
on that city as similar words are used, but not neces-
sarily on data from a different city. These tokens are
likely to be related to the location where the text was
created or contain certain topics. Thus, when the clas-
sifier relies on tokens such as named entities that are
unique to the given city, e.g., street names and local
sites, it is less suited for other cities where these do not
occur. These aspects complicate the task of generaliz-
ing a classification model to other cities in the domain
of social media texts. As an example, consider the fol-
lowing two tweets:

“RT: @People 0noe friday afternoon in heavy
traffic, car crash on I-90, right lane closed”

“Road blocked due to traffic collision on I-495”

Both tweets comprise entities that might refer to the
same thing with different wording, either on a seman-
tically low (”accident” and ”car collision”) or more ab-
stract level (’I90” and ”I-495”). With simple syntac-
tical text similarity approaches using standard bag of
words features, it is not easily possible to make use of
this semantic similarity, even though it is highly valu-
able for classifying both tweets.

In this paper, we introduce Semantic Abstraction
to create a generalized model and tackle this prob-
lem. We use training information in form of Twitter
tweets that were collected in different cities. In con-
trast to traditional Feature Augmentation [9], our ap-
proach does not discard features prior to model cre-
ation, but makes them abstract and city-independent.
In detail, we use automatic named entity and temporal
expression recognition to abstract location and tempo-
ral mentions. Furthermore, we incorporate background
information provided by Linked Open Data1 (LOD)
to obtain new features that are universally applicable.
This is done by scanning our dataset for named entities
and enhancing the feature space with the direct types
and categories of the entities at hand.

In a quantitative evaluation on twenty datasets from
ten different cities, we show that Semantic Abstraction
improves classification results significantly whenever
a model is trained on one city and applied on data of
a different one. This is the case both for a two-class-
and for a four-class classification problem. In the latter
case, three different incident types are differentiated
instead of only one incident type class. Furthermore,

1http://linkeddata.org/

we conducted an in-depth analysis of trained models
and show that (1) features generated by Semantic Ab-
straction are frequently used and that (2) the class dis-
tribution of the training dataset affects the quality of
the generalized models.

In Section 2, we present out Semantic Abstraction
approach for social media data, followed by a descrip-
tion of our datasets in Section 3. In the following Sec-
tion 4, we outline our evaluation, and present the re-
sults from two experiments: These first involve train-
ing and testing our models on data from the same
cities, followed by training and testing on data from
different cities. The results are then interpreted via an
in-depth inspection of the learned rules. After the eval-
uation, we give an overview of related work in Sec-
tion 5. We close with our conclusion and future work
in Section 6.

2. Named Entity and Temporal Expression
Recognition on Unstructured Texts

Our Semantic Abstraction approach requires to
identify named entities and expressions by means of
Named Entity Recognition (NER). There is no com-
mon agreement on the definition of a named entity in
the research community, and we use the following def-
initions throughout this paper:

An entity is a physical or non-physical thing that
can be identified by its properties (e.g., United
Kingdom, Seattle, my university).

A named entity is an entity that has been as-
signed a name (”Technische Universität Darm-
stadt”). Thus, the mention of a named entity in a
text is defined as named entity mention.

We further distinguish named entities of locations:

A location mention (also called toponym) is a
named entity mention of a location.

A proper location mention requires a proper
name (represented by a noun or noun phrase) that
is given to a location. In contrast, the term com-
mon location mentions refers to location men-
tions for which no indication of the name is given.

In natural language, names are not necessarily
unique, e.g., there are 23 cities in the USA named
”Paris”, and therefore have to be disambiguated. This
means that named entities may only be unique within
the appropriate context. Nevertheless, in short texts

http://linkeddata.org/
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this contextual information is often missing [28]. How-
ever, we were able to show in prior work on tweet ge-
olocalization [32] that the combination of different in-
formation sources helps coping with the disambigua-
tion problem. In this paper, we demonstrate that the
combination of different features is valuable, too.

Temporal expressions are another important part of
short texts and therefore should be used as features. In
this paper, we differentiate them from named entities
in the sense as they were defined before. Thus, beside
NER we apply Temporal Expression Recognition and
Normalization (TERN). TERN copes with detecting
and interpreting temporal expressions to allow further
processing. We adopt the definition of [2]:

Temporal expressions are tokens or phrases in
text that serve to identify time intervals.

Examples for temporal expressions include ”yester-
day”, ”last Monday”, ”05.03.2013” and ”2 hours”. We
apply different methods for identifying and classifying
named entities and temporal expressions in tweets, and
will outline them in the following subsections. Linked
Open Data (LOD) is used as a source of interlinked in-
formation about various types of entities such as per-
sons, organizations, or locations. Additionally, we ap-
ply a different NER approach for extracting location
mentions and finally, we adapted a framework for the
identification of temporal expressions.

2.1. Named Entity Recognition and Replacement
using Linked Open Data

As a first approach, we use LOD as a source of in-
terlinked information about entities to generate new
features. For instance, different named entity mentions
in social media texts are used synonymously to re-
fer to the same entity, e.g., ”NYC”, ”New York City”,
and ”The Big Apple”. With simple text similarity mea-
sures, this relationship is not directly visible. How-
ever, as all mentions relate to the same URI in DBpe-
dia, this background knowledge about an entity may
be used as a feature. On a semantically more abstract
level, the proper location mentions ”Interstate-90” and
”Interstate-495” can be abstracted to the common DB-
pedia type ”dbpedia-owl:Road”. Both examples illus-
trate that semantic similarity between named entity
mentions, or more precisely the relationship between
entities, can be identified using LOD.

Listing 1 highlights two shared relations between
our prior sample tweets. However, the extraction of
this information is not easily achieved: First, named

entity mentions have to be extracted. Second, they have
to be mapped to the corresponding URIs, which makes
disambiguation a necessity. Third, the valuable rela-
tions have to be identified and stored. We use DBpedia
Spotlight [21] for the first two steps in this feature gen-
eration process. In Section 3.2, we show how features
are generated based on these URIs.

Listing 1: Extracted DBPedia properties for two tweets
showing semantic similarity.

RT: @People 0noe friday afternoon in

heavy traffic, car crash on

I90 , right lane closed

Category:Accidents

dbpedia-owl:Road

road blocked due to

traffic collision on I-495

2.2. Location Mention Extraction and Replacement

Location mentions as another type of named enti-
ties can be valuable as additional features for text clas-
sification. Linked Open Data is less useful here, be-
cause location mentions are hard to extract with DB-
pedia Spotlight and URIs for these entities are often
missing in DBpedia. We therefore focus on the dif-
ferent approach of extracting proper location mentions
as well as common location mentions. We found that
especially the latter ones are used rather frequently
in incident-related tweets, e.g., the geospatial entities
”lane”, ”highway”, or ”school”.

For instance, ”I-90” is contained in the example
tweet in Listing 1, which is a proper location mention.
It also contains ”right lane”, which is a common loca-
tion mention. With our approach, we recognize these
location mentions, including different named entities
such as streets, highways, landmarks, or blocks. In our
approach, both common and proper location mentions
are detected and replaced with the general annotation
”LOC”.

For location mention extraction and replacement,
we use the Stanford Named Entity Recognizer2. The

2http://nlp.stanford.edu/software/CRF-NER.
shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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model was retrained based on 800 manually labeled
tweets containing location mentions drawn from our
datasets collected from Seattle, Washington and Mem-
phis, Tennessee (see Section 3), providing more than
90% precision. The resulting model was applied to de-
tect location mentions in both datasets for feature gen-
eration. Compared to the LOD approach, which makes
use of a generic source of background information, our
approach for location mention extraction is explicitly
trained for our datasets and thus considerably less gen-
eralizable but much more precise.

2.3. Temporal Expression Recognition and
Replacement

Finally, we extract temporal expressions from
tweets. For example, the tweet shown in Figure 1 con-
tains the temporal expression ”friday afternoon” that
refers to the day when an accident occurred.

For identifying temporal expressions in tweets, we
adapted the HeidelTime [36] framework. The Heidel-
Time framework mainly relies on regular expressions
to detect temporal expressions in texts. As the system
was developed for large text documents with formal
English language, it is unable to detect some of the
rather informal temporal expressions in the unstruc-
tured texts. Hence, as a first step, we use a dictionary
for resolving commonly used abbreviations and slang
(see Section 3). As a second step, we use an extension
of the standard HeidelTime tagging functionality to de-
tect temporal expressions such as dates and times. The
detected expressions are then replaced with the two an-
notations ”DATE” and ”TIME”.

3. Generation and Statistics of the Data

In the following, we describe how our data was col-
lected, preprocessed, and how the features were gener-
ated. To foster a better understanding of the data, we
then analyze the differences between our datasets in
terms of tokens and generated LOD features.

3.1. Data Collection

We decided to focus on tweets as a suitable exam-
ple for unstructured textual information shared in so-
cial media. Furthermore, we perform classification of
incident-related tweets, as this type of event is highly
relevant, common for all cities and not bound to a cer-
tain place. We focus both on a two-class classification

problem, differentiating new tweets into "incident re-
lated" and "not incident related", and a four-class clas-
sification problem, where new tweets can be assigned
to the classes "crash", "fire", "shooting", and a neutral
class "not incident related".

As ground truth data, we collected several city-
specific datasets using the Twitter Search API3. These
datasets were collected in a 15 km radius around the
city centers of:

– Boston (USA)
– Brisbane (AUS)
– Chicago (USA)
– Dublin (IRE)
– London (UK)
– Memphis (USA)
– New York City (USA)
– San Francisco (USA)
– Seattle (USA)
– Sydney (AUS)

We selected these cities as they have a huge re-
gional distance, which allows us to evaluate our ap-
proaches with respect to geographical variations. Also,
for all cities, sufficiently many English tweets can be
retrieved. We chose 15 km as radius to collect a rep-
resentative data sample even from cities with large
metropolitan areas. Despite the limitations of the Twit-
ter Search API with respect to the number of geo-
tagged tweets, we assume that our sample is, although
by definition incomplete, highly relevant to our exper-
iments.

We collected all available Tweets during certain
time periods, resulting in three initial sets of tweets:

– SET_CITY_1: 7.5M tweets collected from
November, 2012 to February, 2013 for Memphis
and Seattle.

– SET_CITY_2: 2.5M tweets collected from Jan-
uary, 2014 to March, 2014 for New York City,
Chicago, and San Francisco.

– SET_CITY_3: 5M tweets collected from July,
2014 to August, 2014 for Boston, Brisbane,
Dublin, London, and Sydney.

As manual labeling is expensive and we needed
high-quality labels for our evaluation, we had to se-
lect only a small subset of these tweets. In the selec-
tion process, we first identified and gathered incident-
related keywords present in our tweets. This process

3https://dev.twitter.com/docs/api/1.1/get/
search/tweets

https://dev.twitter.com/docs/api/1.1/get/search/tweets
https://dev.twitter.com/docs/api/1.1/get/search/tweets
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Table 1
Class distributions for all cities and the two classification problems.

Two Classes Four Classes
YES NO Crash Fire Shooting No

Boston 604 2216 347 188 28 2257
Sydney 852 1991 587 189 39 2208
Brisbane 689 1898 497 164 12 1915
Chicago 214 1270 129 81 4 1270
Dublin 199 2616 131 33 21 2630
London 552 2444 283 95 29 2475
Memphis 361 721 23 30 27 721
NYC 413 1446 129 239 45 1446
SF 304 1176 161 82 61 1176
Seattle 800 1404 204 153 139 390

is described in more detail in [34]. Following this, we
filtered our datasets by means of these incident-related
keywords. We then removed all redundant tweets and
tweets with no textual content from the resulting sets.
In the next step, the tweets were manually labeled
by five annotators using the CrowdFlower4 platform.
We retrieved the manual labels and selected those for
which all coders agreed to at least 75%. In the case of
disagreement, the tweets were removed. This resulted
in twenty datasets for our evaluation, split in ten for
each classification problem.

Table 1 lists the detailed class distribution, and Fig-
ures 1 and 3 illustrate them in a bar chart. The distri-
butions vary considerably, allowing us to evaluate our
approach with typical city-specific samples. Also, the
”crash” class seems to be the most prominent incident
type, whereas ”shootings” are less frequent. One rea-
son for this is that ”shootings” do not occur as frequent
as other incidents. Another might be that people tend
report more about specific incident types and that there
is not necessarily a correlation between the real-world
incidents and the incidents mentioned in tweets.

For all datasets, the class where no incident hap-
pened is the largest one. However, this reflects the typi-
cal situation where usually no incident occurs and only
in rare cases something happens.

3.2. Preprocessing and Feature Generation

To use our datasets for feature generation, i.e., for
deriving different feature groups that are use for train-
ing a classification model, we had to convert the texts
into a structured representation. In the following we

4http://www.crowdflower.com/
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Fig. 1. Histogram of the class distributions for all cities and the two–
class classification problem.

give an overview of all steps conducted for training our
classification models (see Figure 2 for an overview).

Preprocessing As a first step, the text was converted
to Unicode as some tweets contain non-Unicode char-
acters. Second, commonly used abbreviations were
identified by means of a custom-made dictionary based
on the Internet Slang Dictionary & Translator5. We
replaced these abbreviations with the corresponding
word from formal English. Third, URLs were replaced
with a common token ”URL”, and digits were re-
placed with a common token ”D”. We then removed
stopwords and conducted tokenization on the resulting
text. In this process, the text was divided into discrete
words (tokens) based on different delimiters such as
white spaces. Every token was then analyzed and non-
alphanumeric characters were removed or replaced. Fi-
nally, we applied lemmatization to normalize all to-
kens.

Baseline Approach After this preprocessing, we ex-
tracted several features from the tweets for training.
The general pipeline consists of the following steps:
First, we represented tweets as a set of words, more
precisely as unigrams and bigrams. As features, we
used a vector with the frequency of each n-gram. Sec-
ond, we calculated the TF-IDF scores for each token
[20]. Third, we added syntactic features such as the

5http://www.noslang.com/

http://www.crowdflower.com/
http://www.noslang.com/
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Social Media
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Fig. 2. Semantic abstraction and feature generation steps for training a classification model for incident type classification.

number of explanation marks, questions marks, and
the number of upper case characters. In the following
evaluation, we treat these features as the baseline ap-
proach.

The resulting feature set was then further enhanced
with our three Semantic Abstraction approaches. The
approaches were used for (1) replacing already present
tokens with a more general token and of (2) intro-
ducing a set of additional features derived from back-
ground knowledge about the text at hand. In contrast
to the baseline approach, these approaches were per-
formed on the original tweet, not the preprocessed one,
as identifying named entities on lemmatized text is not
suitable.

Semantic Abstraction using Linked Open Data As
a first approach, we applied Named Entity Recog-
nition and Replacement using Linked Open Data.
To conduct this, we used the RapidMiner Linked
Open Data extension [24] (the LOD feature group).
The extension proceeds by recognizing entities based
on DBPedia Spotlight [22] to get likely URIs of
the detected named entities. Then, these URIs are
used to extract the types and categories of an entity.
E.g., for the location mention ”I-90”, a type would
be dbpedia-owl:ArchitecturalStructure and a category
category:Interstate_Highway_System. In contrast to
previous works, we do not treat the extracted features
as binary, but use them as numeric features for our
evaluation, i.e., we count how often the same feature
appears in a tweet. Finally, for each tweet, the feature
encodes the number of words with the same URI. A
feature selection was not conducted at this point of
time, as we only have a small number of features com-
pared to the huge number of text features in the origi-
nal dataset.
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Fig. 3. Histogram of the class distributions for all cities and the four–
class classification problem.

Semantic Abstraction using Location Mentions and
Temporal Expressions As a second approach, we
used our location mention extraction approach and
replaced location mentions in the unprocessed tweet
texts. Based on this, the preprocessing was applied.
Thus, location mentions were represented as TF-
IDF features and as word n-grams. Furthermore, we
counted the number of location mentions in a tweet.
In combination, this results in a group of features for
location mentions (+LOC feature group).

Third, the same mechanism was applied to the tem-
poral mentions, resulting in additional TF-IDF fea-
tures, word-n-grams, as well as the number of tempo-
ral mentions in a tweet (+TIME feature group).

As we do not know which Semantic Abstraction ap-
proach performs best, we also provide the +ALL fea-
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Table 2
Percentages of overlapping tokens for two-class datasets.

Brisbane Boston Chicago Dublin London Memphis NYC SF Seattle

Boston 19.06%
Chicago 18.20% 18.86%
Dublin 18.70% 19.00% 17.41%
London 17.82% 19.52% 16.38% 19.64%

Memphis 17.43% 17.87% 20.50% 15.28% 14.43%
NYC 18.53% 20.12% 19.80% 18.05% 17.42% 19.03%

San Francisco 18.48% 19.68% 19.88% 17.79% 16.95% 19.33% 19.02%
Seattle 20.90% 22.17% 22.22% 19.69% 18.81% 23.54% 22.02% 22.26%
Sydney 21.52% 20.42% 18.28% 20.00% 19.68% 16.83% 19.12% 18.47% 21.29%

ture group in the following evaluations. This feature
group is the combination of the +LOD, +LOC, and
+TIME feature groups.

3.3. Analysis of Datasets

To foster a better understanding of the data, we ana-
lyzed the differences between our datasets in terms of
tokens and generated LOD features.

Tokens One of the key questions that motivates our
work is how much the used words vary in each city.
We thus analyzed how similar all datasets are. Table 2
shows the percentages of overlapping unique tokens
after preprocessing for the two-class datasets. The re-
sults indicate that after preprocessing, between 14%
and 23% tokens are shared between the datasets. We
do not assume that every unique token is a city-specific
token, but the large number of tweets in our evalua-
tions gives a first indication that there is a diversity that
supports the initial hypothesis that using plain n-grams
as features is not sufficient for the training of efficient
models. Later on we will show that Semantic Abstrac-
tion can improve the training of acceptable models.

LOD Features We also analyzed the twenty most
representative LOD features for the classes in all
datasets. For calculating the representativeness, we
counted the number of LOD features of a specific Type
and Category in all two-class datasets. In Table 3 the
most representative Types and Categories for the two-
class datasets are shown. On the one hand, the re-
sults indicate that mostly types related to location men-
tions are relevant for incident-related tweets. On the
other hand, for both Types and Categories a large num-
ber of features is representative for the incident-related
and the not incident-related tweets. However, also very
discriminative features such as the Types ...yago/Dis-
ease114070360 (915) and ...yago/Accidents (851) as

well as the Categories .../Category:Accidents (1405)
and .../Category:Fire (828) are primarily present in
incident-related tweets.

Consequently, we expect that these features will also
be prominent in the models. We will pick this up in our
later interpretation of the rule-based models from our
experiments (cf. Section 4.3).

We observed the same effects for the four-class
datasets. Some of the most representative features are
shared among tweets of all four classes. However,
there are also very discriminative categories for all
cases such as .../Category:Road_accidents (825) for
the crash class, .../Category:Firefighting (203) for the
fire class, and .../Category:Murder (69) for the shoot-
ing class. Also in this case, mostly types related to lo-
cation mentions are present for all classes. This could
be an indicator that these are not discriminative for the
three incident classes.

In this analysis of the datasets we showed that all
datasets contain a large number of unique tokens,
which underlines our hypothesis that Semantic Ab-
straction could be useful for training a generalized
model. Furthermore, the analysis also showed that
LOD features only partly differentiate classes, which
could be a first indication that these might not work
well. In the following, we conduct an evaluation of our
approaches.

4. Evaluation

We evaluated our Semantic Abstraction approaches
in two critical scenarios: In the first, training and test-
ing was performed on data from the same city. In the
second, testing was performed on datasets from dif-
ferent cities than the ones used for training. For each
scenario, we investigated both the two- and four-class
problem. In order to eliminate effects arising from
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Table 3
Top-N incident-related (IR) types and categories with frequencies in all two-class datasets.

Types Categories
Name Frequency Not IR Name Frequency Not IR

...yago/YagoPermanentlyLocatedEntity 4043 x .../Category:Article_Feedback_5_Additional_Articles 2316 x
...yago/PhysicalEntity100001930 3949 x .../Category:HTTP 2017 x

...yago/Object100002684 3906 x .../Category:World_Wide_Web 1993 x
...yago/YagoLegalActorGeo 3643 x .../Category:Open_formats 1992 x

...yago/YagoGeoEntity 3464 x .../Category:World_Wide_Web_Consortium_standards 1992 x
...ontology/Place 3374 x .../Category:Application_layer_protocols 1992 x

...yago/Abstraction100002137 3308 x .../Category:Web_browsers 1992 x
...ontology/PopulatedPlace 3183 x .../Category:Road_transport 1519

...yago/Location100027167 3126 x .../Category:Accidents 1405
...yago/Region108630985 3019 x .../Category:Causes_of_death 972
...yago/District108552138 2861 .../Category:Car_safety 892

...ontology/Agent 2655 x .../Category:Road_accidents 892
...yago/AdministrativeDistrict108491826 2603 .../Category:Motorcycle_safety 851

...yago/Whole100003553 2504 .../Category:Fire 828
...ontology/Settlement 2423 .../Category:Road_traffic_management 810

...ontology/MusicGenre 2143 x .../Category:Road_safety 784
...ontology/TopicalConcept 2143 x .../Category:Traffic_law 780

...ontology/Genre 2143 x .../Category:Wheeled_vehicles 678 x

the combination of particular classifier algorithms and
the different approaches for Semantic Abstraction, we
evaluated each approach with five different classifiers.

The first subsection describes the methodology
common to all evaluated scenarios. The sampling pro-
cedure for each scenario is described in detail in indi-
vidual subsections. This is followed by both a descrip-
tive and inferential analysis of the performances.

4.1. Method

In the following, we describe which Semantic Ab-
straction approaches were evaluated on which perfor-
mance measure, which classifiers we used, and which
statistical tests we applied.

Semantic Abstraction Approaches We evaluated nine
feature groups that emerge from the Semantic Abstrac-
tion approaches and their combinations. These feature
groups extend a baseline and were described in Sec-
tion 3.2. In the following sections, we reference the
different combinations with their respective abbrevia-
tions: +ALL, +LOC, +TIME, +LOD, +LOC+TIME,
+LOC+LOD, +TYPES, +TIME+LOD, and +CAT.

Classifiers In our experiments, we evaluated each
feature group on a number of different classifiers. As
each classifier needs to be trained several times (either
in a cross validation or on data from different cities),
we had to restrict their number to keep the experimen-
tal setup feasible. For training and testing, we relied on

the learning algorithm implementations in the WEKA
framework [12].

To ensure a fair selection, we decided to include
some statistical methods such as an SVM (LibLinear)
as well as symbolic ones. As often the decision trees
and rule sets of tree and rule learners are quite differ-
ent also in terms of performance, both JRip as well as
J48 were included. Additionally, for later experiments
(cf. Section 4.3), where the primary interest is how the
learned models look like, it is important to have inter-
pretable models that statistical methods are not provid-
ing.

NaiveBayes shows good performance in text clas-
sification tasks [26], which was the reason to include
this algorithm. Also, the RandomForest algorithm was
used as a representative of ensemble learners. We re-
lied on the LibLinear implementation of an SVM be-
cause it has been shown that for a large number of fea-
tures and a low number of instances, a linear kernel is
comparable to a non-linear one [15]. As for SVMs pa-
rameter tuning is inevitable, we evaluated the best set-
tings for the slack variable c whenever an SVM was
used. In summary, we selected five classifiers, namely
J48 [25], JRip [7], LibLinear [11], NaiveBayes [17],
and Random Forest [4].

Ideally, the evaluation results should be compared
and reported separately for each classifiers. However,
as the main goal is to show that semantic abstraction
improves performance independently of the classifier,
we decided to combine the results of a selection of
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different classifiers by means of their average perfor-
mance. Nevertheless, we performed tests on the results
of each individual classifier and use it to support our
findings.

In summary, we have included five different classi-
fiers that stem from the most prominent types of ma-
chine learning algorithms such as statistical or ensem-
ble learning methods. In doing so, we are confident
that the results of the proposed Semantic Abstraction
are valid in general and not dependent on a certain type
of learning algorithm.

Performance Measure We used the F1-Measure for
assessing performance, because it is well-established
in text classification and allows to measure the overall
performance of the approaches with an emphasis on
the individual classes [16]. In Section 3.3, we demon-
strated that the proportion of data representing individ-
ual classes varies strongly. We therefore weighted the
F1-measure by this ratio and report the micro-averaged
results.

Statistical Tests Our goal was to determine differ-
ences in the effect of different feature groups, deter-
mined by the Semantic Abstraction approaches, on
classification performance. Our samples generally do
not fulfill the assumptions of normality and sphericity
required by parametric tests for comparing more than
two groups. It was empirically shown that under the
violation of these assumptions, non-parametric tests
have more power and are less prone to outliers [10].
We therefore relied exclusively on the non-parametric
tests suggested in literature: Friedman’s test was used
as non-parametric alternative to a repeated-measures
one-way ANOVA, and Nemenyi’s test was used post-
hoc as a replacement for Tukey’s test. Although it is
conservative and has relatively little power, we prefer
Nemenyi’s test over alternatives (cf. [13]) because it
is widely accepted in the machine learning commu-
nity. When comparing only two groups, the Wilcoxon
Signed Rank Test was used.

Unfortunately, the Friedman, Nemenyi tests only ac-
cept a single independent variable. We therefore com-
pared the performance of individual classifiers using
different feature groups, but had to average the classi-
fier performance over the different classification algo-
rithms as explained before to eliminate one variable.
We regard this approach as legitimate because (a) the
same classifiers are used for each group and (b) be-
cause our goal is to show the contribution of the Se-
mantic Abstraction approaches to general classifica-
tion independent of the respective algorithm. For our

Table 4
Descriptive statistics for the aggregated samples from 10-fold cross-validation with two classes.

Feature Group Min Max Median IQR

Baseline 0.855 0.956 0.907 0.027
+ALL 0.855 0.953 0.905 0.025
+LOC 0.859 0.952 0.906 0.020
+TIME 0.855 0.953 0.907 0.026
+LOD 0.851 0.953 0.905 0.023
+LOC+TIME 0.858 0.952 0.907 0.020
+LOC+LOD 0.852 0.952 0.904 0.028
+TIME+LOD 0.856 0.952 0.904 0.024
+CAT 0.857 0.952 0.906 0.027
+TYPES 0.850 0.953 0.904 0.022

analysis, the feature groups used thus represent the
independent variable that affects (aggregated) model
performance. P-values in tables will be annotated if
they are significant. While * indicates low significance
(0.05 < p ≤ 0.1), the annotations ** and *** repre-
sent medium (0.01 < p ≤ 0.05) and high significance
(p ≤ 0.01).

4.2. Experiment 1: Same City

In this experiment, we assessed the impact of dif-
ferent Semantic Abstraction approaches on the perfor-
mance of classifiers that are both trained and tested on
data from the same city. We therefore evaluated if Se-
mantic Abstraction can support classification even if
variation in tokens is low.

We performed a 10-fold cross-validation on the 20
datasets from Boston, Brisbane, Chicago, Dublin, Lon-
don, Memphis, NYC, San Francisco, Seattle, and Syd-
ney. We used stratification to ensure an equal dis-
tribution of the different classes in each fold [16].
The cross-validation was performed for every feature
group and classifier algorithm, resulting in 500 raw
F1-measure samples. These were then reduced to 100
samples by averaging over the classifiers.

Figure 6 in the appendix shows a Box-Whisker di-
agram of the sample distributions for the two-class
problem. We also retrieved the minimum and maxi-
mum performance per sample set, as well as the me-
dian and interquartile range (IQR) as non-parametric
measures for the average value and dispersion. These
descriptive statistics are listed in Table 4. Similarly,
Figure 4 in the appendix and Table 4 describe the sam-
ple distributions for the four class case.

For the two class problem, the average performance
varies only slightly for different feature groups, as does
the persistently low dispersion. The average perfor-
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Table 5

Descriptive statistics for the aggregated samples from 10-fold cross
validation with four classes.

Feature Group Min Max Median IQR

Baseline 0.812 0.955 0.908 0.035
+ALL 0.788 0.954 0.904 0.031
+LOC 0.809 0.952 0.905 0.031
+TIME 0.807 0.955 0.907 0.036
+LOD 0.787 0.953 0.905 0.029
+LOC+TIME 0.817 0.953 0.906 0.031
+LOC+LOD 0.789 0.953 0.905 0.030
+TIME+LOD 0.789 0.953 0.903 0.029
+CAT 0.796 0.954 0.907 0.032
+TYPES 0.792 0.953 0.904 0.030

mance values are not much different for the four class
problem, but their dispersion is a little higher. We per-
formed a Friedman test on both sample sets. The p-
values indicate weak significant differences between
the performance values of the feature groups for both
the two class (χ2

r(9) = 15.62, p = 0.075) and four
class problem (χ2

r(9) = 16.67, p = 0.054). The Ne-
menyi test however did not show any significant pair-
wise differences.

Although we dominantly reported the results for
the aggregated performance, we will add a few re-
sults from the tests for individual classifiers to sup-
port the discussion. A comparison of the baseline re-
sults with the +ALL feature group using the Wilcoxon
Signed-Rank test showed medium and strong signifi-
cant differences in performance for the two-class case
and JRip (V = 7, p = 0.037) and Random Forest
(V = 54, p < 0.01). For the four-class case, we only
found medium significant differences for Random For-
est (V = 47, p = 0.049). Most notably, we also found
that individual classifiers gain additional advantage by
certain abstraction approaches. However, we will leave
this investigation open for future work.

Discussion We did not discover any significant dif-
ferences in the case of the 10-fold cross validation on
a single dataset, as was suggested by the descriptive
statistics. Nevertheless, the low power of the Nemenyi
test and the fact that ordinary k-fold cross validations
fosters type-I error inflation [10] might have compli-
cated this investigation additionally.

The results for the two-class case indicate that Se-
mantic Abstraction is mostly not beneficial compared
to the well-performing baseline. However, using the
+LOC+TIME feature group shows a small increase for
most cases. Using the +ALL feature group is only ben-

eficial for the Memphis and Seattle datasets. The re-
sults for the four-class case are similar to the effects
shown in the two-class case; the increase in perfor-
mance whenever Semantic Abstraction is used is ne-
glectable. Solely, the +LOC feature group provides in-
creases of up to 1% in F-Measure.

Though Semantic Abstraction did not show as valu-
able when evaluating aggregated performance from
training and testing on data from one city, we found
that specific classifiers with the +ALL feature group
significantly outperformed the equivalents that only
used the baseline features. Surprisingly, +LOD as the
combination of the +TYPES and +CAT approaches
provides significantly better results than the baseline
approach. It is likely that the combination of ap-
proaches helped here in selecting more appropriate
features for the classification problem. These individ-
ual comparisons show that although Semantic Abstrac-
tion does not increase general classification perfor-
mance, it can be valuable for specific classifiers when-
ever they are trained and tested on data from the same
city.

4.3. Experiment 2: Different Cities

In the second experiment, we trained and tested our
feature groups on datasets from different cities in order
to see how Semantic Abstraction is able to contribute
to classification performance if the tokens in the data
vary strongly. We sampled performance by means of a
holdout strategy, i.e., one dataset was picked for train-
ing and the remaining nine datasets were used for test-
ing. This was repeated ten times until all datasets were
used once for testing, resulting in 4500 raw- and 900
aggregated samples or 90 samples per feature group,
respectively. We first present the results for the two-
class case followed by the results for the four-class
case.

The descriptive statistics for the two-class problem
are listed in Table 6, and the sample distribution is
illustrated in the Box-Whisker diagram in Figure 8
in the appendix. The average performance is consis-
tently lower than in the previous scenario, and the dis-
persion is considerably higher. Additionally, there are
larger differences between the performances. A Fried-
man test showed that these differences are highly sig-
nificant (χ2

r(9) = 190.49, p < 0.01). We performed
the Nemenyi test post-hoc to determine which feature
groups differed in performance. Table 10 in the ap-
pendix shows the p-values for the pairwise compar-
isons.
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Table 6

Descriptive statistics for the aggregated samples from holdout sam-
pling with two classes.

Feature Group Min Max Median IQR

Baseline 0.603 0.943 0.790 0.102
+ALL 0.653 0.937 0.817 0.073
+LOC 0.642 0.944 0.817 0.078
+TIME 0.577 0.942 0.788 0.097
+LOD 0.629 0.937 0.807 0.077
+LOC+TIME 0.649 0.946 0.816 0.087
+LOC+LOD 0.630 0.940 0.809 0.078
+TIME+LOD 0.640 0.937 0.816 0.069
+CAT 0.613 0.944 0.804 0.081
+TYPES 0.621 0.937 0.803 0.083

Table 7

Descriptive statistics for the aggregated samples from holdout sam-
pling with four classes.

Feature Group Min Max Median IQR

+ALL 0.390 0.941 0.793 0.098
Baseline 0.359 0.941 0.775 0.108
+CAT 0.367 0.945 0.783 0.114
+LOC 0.378 0.944 0.790 0.103
+LOC+LOD 0.394 0.943 0.787 0.097
+LOC+TIME 0.413 0.944 0.790 0.107
+LOD 0.387 0.945 0.789 0.095
+TIME 0.342 0.942 0.774 0.114
+TIME+LOD 0.389 0.944 0.793 0.097
+TYPES 0.371 0.942 0.786 0.095

We illustrated the ranks and significant differences
between the feature groups by means of the critical dis-
tance (CD) diagram in Figure 4. Introduced by Demsar
[10], this diagram lists the feature groups ordered by
their rank, where lower rank numbers indicate higher
performance. Two feature groups are connected if they
are not significantly different. The CD diagram shows
that +ALL, +TIME+LOD, +LOC, +LOC+TIME, and
+LOC+LOD do not differ significantly. However, as
shown by the Nemenyi test, these approaches differ
significantly from the baseline approach. No statistical
difference could be found for the +TIME, +TYPES,
and +CAT approaches, which do not statistically out-
perform the baseline. +LOD as the combination of the
+TYPES and +CAT approaches provides significantly
better results than the baseline approach.

Table 7 shows the descriptive statistics for the four-
class problem, and Figure 9 in the appendix illustrates
the sample distributions. The average performance is
in many cases lower than for the two-class problem,

CD

10 9 8 7 6 5 4 3 2 1

3.7889 +ALL
4.0167 +TIME+LOD
4.2222 +LOC
4.3722 +LOC+TIME

5.2 +LOC+LOD5.7222+LOD

6.0167+CAT

6.0444+TYPES

7.6111Baseline

8.0056+TIME

Fig. 4. Critical distance (CD) diagram showing a comparison of all
feature groups against each other based on the holdout sampling
with two classes. Feature groups that are not significantly different
at p = 0.01 are connected.

CD

10 9 8 7 6 5 4 3 2 1

3.9611 +ALL
3.9889 +TIME+LOD
4.5556 +LOD
5.0278 +LOC
5.1167 +LOC+TIME5.3278+LOC+LOD

5.3667+TYPES

6.0556+CAT

7.6778Baseline

7.9222+TIME

Fig. 5. Critical distance (CD) diagram showing a comparison of all
feature groups against each other based on the holdout sampling
with four classes. Feature groups that are not significantly different
at p = 0.01 are connected.

and the dispersion is a bit higher for most feature
groups. The Friedman test again shows strong signifi-
cant differences between the performances of the fea-
ture groups (χ2

r(9) = 165.02, p < 0.01). The Nemenyi
test indicates strong significant pairwise differences
and the p-values are listed in Table 11 (appendix).

We again use a critical distance diagram (see Fig-
ure 5) to highlight the significant pairwise differences.
It shows that +ALL, +TIME+LOD, +LOD, +LOC,
+LOC+TIME, +LOC+LOD, and +TYPES do not dif-
fer significantly with respect to their performance, but
outperform the baseline. As in the two-class case,
+TIME and +CAT do not outperform the baseline.

As in the first experiment, we want to support these
findings with comparisons of the baseline against the
+ALL feature group for individual classifiers. For the
2-class problem, the Wilcoxon Signed-Rank test in-
dicated medium and strong significant differences for
all classifiers, in detail for J48 (V = 1477, p =
0.022), JRip (V = 1235, p < 0.01), LibLinear (V =
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1330, p < 0.01), Naive Bayes (V = 350.5, p < 0.01)
and Random Forest (V = 538, p < 0.01). For the
four-class case, low significant differences were found
for J48 (V = 1588, p = 0.065), and strong signif-
icance for JRip (V = 1388, p < 0.01), LibLinear
(V = 1183, p < 0.01), Naive Bayes (V = 248.5, p <
0.01), and Random Forest (V = 821, p < 0.01). These
results show that all individual classifiers can indeed
benefit from our Semantic Abstraction.

Discussion The results support our hypothesis that
Semantic Abstraction can contribute significantly to
classification performance when training and testing is
not performed on data from the same city.

As we wanted to get a better understanding of the ef-
fects caused by Semantic Abstraction, we investigated
two crucial questions regarding the properties the dif-
ferent datasets:

1. How well does a model that was trained on
datasets of other cities perform on the dataset of
the city at hand?

2. What makes a good training set, i.e., how well
does the dataset of a particular city at hand serve
as a training set to build a classifier for datasets
from other cities?

For answering these questions, we investigated the
individual classification performance for datasets from
each city. Also, to backup our findings, we examined
the rules learned by the JRip rule learner in more de-
tail. The effects of Semantic Abstraction on the models
can best be grasped by considering the rule sets with a
focus on the semantic features +LOC, +TIME, and the
+LOD.

Individual Classification Performance We first ex-
amine the average F1-measure for datasets from each
city in more detail. Table 8 lists the detailed perfor-
mance values whenever the +ALL feature groups are
used for all cities for the two-class problem. Table 9
shows the results for the four-class case. We selected
the +ALL model as it showed the best performance
(cf. Figures 4 and 5). In the two-class problem, the
datasets for the two cities Dublin and Chicago (de-
picted in bold in Table 8 at the left hand side) have
shown the best classification performance (about 2-3%
F1-Measure less than the single-city model). However,
the datasets for Seattle and Sydney performed poorly
with up to 15% less. As we show, the reason for the
good performance of the Dublin and Chicago datasets
is strongly related to the class distribution. For the
Dublin dataset, the baseline F1-Measure is the highest

while the Chicago dataset ranks at the second place6.
Interestingly, the same holds for the datasets of the two
cities that are rather hard to classify. These two are
ranked at the bottom in terms of baseline F1-Measure
(Seattle being the worst and Sydney the third worst).

To support this observation, we computed the Spear-
man Rank Correlation between two rankings: first, we
calculated the differences in F1-Measure between the
cross validation result using the baseline approach, i.e.,
the baseline single-city model, and the average of all
train/test splits using the +ALL approach. The train-
ing datasets were then ranked according to the differ-
ences. Second, we determined the majority class of
each dataset to have a representation of the actual class
distribution and also ranked the datasets accordingly.

The analysis of the rankings using Spearman’s rho
for the two-class problem indicates that the ranking
of the differences and the majority classes are signifi-
cantly positively correlated (ρ(10) = 0.758, p < 0.05,
two-tailed test). We thus can conclude that classifica-
tion performance is related to the class distribution,
i.e., better classification performance is correlated with
a larger majority class. Please keep in mind that we
trained on several datasets with different distributions,
thus, this observation is not trivial and not comparable
to a single-city case.

Interestingly, the situation appears to be similar
when four classes have to be predicted (cf. Table 9).
Also, the Dublin dataset works best with only 3%
less F1-Measure but the Chicago dataset was ranked
third as the Memphis dataset showed to be very well
classified. The Seattle dataset performed worst with a
crude 34% lower F1-Measure, followed by the Syd-
ney dataset as in the two-class problem (both shown
in italics in Table 9). The analysis of these rankings
using Spearman’s rho indicates that the ranking of the
differences and the majority classes are strong signifi-
cantly positively correlated (ρ(10) = 0.988, p < 0.01,
two-tailed test). We thus can also conclude that a better
classification performance for the four-class problem
is correlated with a larger majority class.

Thus, datasets of cities with a skewed class distribu-
tion can better be classified compared to more equally
distributed classes. This holds true for both the two-
class problem and the four-class one. However, for the
latter the distribution is even more important as the
dataset with the worst performance showed a 33% per-

6The baseline F1-Measure is computed by utilizing a classifier
that predicts the majority class for all instances.
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Table 8

Two-class problem: F1-Measure for training on data of one city
(header) using the +ALL feature groups and applying on a differ-
ent city (first column). Also, the datasets of the cities that were best
(bold) and worst (emphasis) to classify (in first column) and best
(bold) and worst (emphasis) to train on (header) are shown.

Boston Brisbane Chicago Dublin London Memphis NYC SF Seattle Sydney Average
F1-

Measure

Difference to
Single-city

Model

Majority
Class

Boston 86.00% 83.99% 79.73% 84.81% 81.75% 84.50% 84.56% 83.41% 87.15% 83.99% -7.56% 78.58%
Brisbane 86.60% 82.75% 77.49% 79.90% 77.22% 80.61% 82.42% 84.16% 84.32% 81.72% -11.05% 73.37%
Chicago 91.40% 89.26% 86.51% 88.35% 87.08% 88.72% 89.27% 87.80% 89.28% 88.63% -3.43% 85.58%
Dublin 93.29% 92.78% 93.17% 93.67% 91.05% 92.54% 92.96% 92.06% 93.00% 92.72% -2.74% 92.93%
London 81.06% 79.58% 77.95% 80.87% 78.31% 78.89% 79.50% 79.74% 81.10% 79.67% -10.85% 81.58%

Memphis 80.92% 80.71% 77.22% 68.58% 74.57% 75.77% 80.02% 84.12% 75.76% 77.52% -8.56% 66.63%
NYC 85.52% 82.56% 80.17% 75.21% 79.11% 78.50% 81.28% 78.52% 80.65% 80.17% -9.6% 77.78%

San Francisco 86.29% 84.73% 83.42% 80.49% 82.17% 81.98% 83.10% 82.91% 83.63% 83.19% -6.97% 79.45%
Seattle 74.48% 75.57% 69.28% 65.26% 71.65% 73.48% 71.77% 71.51% 74.46% 71.94% -13.54% 63.70%
Sydney 82.68% 83.48% 74.04% 72.30% 79.53% 72.97% 75.08% 77.70% 80.50% 77.59% -15.61% 70.03%

Avg. F1-Measure 84.69% 83.58% 79.75% 75.84% 81.12% 80.07% 80.81% 81.83% 83.73% 82.77%

formance drop compared to the model learned just us-
ing data of that city.

Quality of Training Set In the following, we cope
with the second question, i.e., which datasets serve
well to create a training set on. Answering this ques-
tion could contribute to a better selection of cities to
train models for other cities on. Also, the models them-
selves are of interest as on the one hand the improve-
ment Semantic Abstraction brings can be implicitly
shown and on the other hand valuable features for
the classifier can be identified. For this investigation
it is crucial to understand the models that have been
trained, thus, we rely on the rules learned by the JRip
algorithm. Please note that different feature groups
might be used for different classifiers.

For the two-class classification problem, the two
datasets for Boston and Seattle yielded the highest per-
formance with about 85% and 84% (depicted in bold
in the header of Table 8). The datasets of Chicago and
Dublin showed the worst results with only about 76%
and 80%. Surprisingly, Dublin and Chicago were best
to classify but now are worst to learn a model from.
This emphasizes the need for a good class distribution.
Also, the rules learned on data from these two cities
showed to be suboptimal.

incident← dbpedia.org/Category:Accidents

≥ 1, dbpedia.org/ontology/MusicGenre ≥ 1
(1)

For instance, the first rule learned on the dataset of
Dublin (cf. Equation 1) tests for the category accidents
and for the music genre, which clearly is a bad choice.

incident← dbpedia.org/Category:Trucks ≥ 1,

url ≥ 1
(2)

Another rule test for the category trucks combined
with a check for the presence of a URL (cf. Equation 2.
The first condition might be plausible for the dataset at
hand, but in general trucks are not involved more often
in incidents than other vehicles. Thus, this rule seems
to be valid for Dublin only and yields suboptimal clas-
sification results in other cities.

incident← dbpedia.org/Category:Accidents ≥ 1 (3)

In Chicago, the first rule checks for the category
accidents which seems to be a good choice (the rule
covers 82 positives and 28 negatives and is shown in
Equation 3). But already the third rule tests if the word
“woman” is present, which is not a good indicator for
an incident related tweet (see Equation 4. Despite, it
covers 22 positive examples and 5 negative ones which
means that the rule works well in Chicago. Neverthe-
less, in other cities, “women” are usually not directly
related to incidents.

incident← woman ≥ 1 (4)
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Table 9

Four-class problem: F1-Measure for training on data of one city (header) using the +ALL feature groups and applying on a different city (first
column). Also, the datasets of the cities that were best (bold) and worst (emphasis) to classify (in first column) and best (bold) and worst
(emphasis) to train on (header) are shown.

Boston Brisbane Chicago Dublin London Memphis NYC SF Seattle Sydney Average
F1-

Measure

Difference to
Single-city

Model

Majority
Class

Boston 85.29% 83.93% 79.64% 84.26% 73.11% 83.35% 83.67% 81.17% 86.76% 82.35% -9.68% 80.03%
Brisbane 84.81% 81.97% 74.91% 80.12% 68.06% 76.84% 81.99% 78.17% 84.92% 79.09% -13.6% 73.99%
Chicago 90.37% 88.93% 84.97% 87.83% 79.70% 87.45% 87.53% 83.39% 88.51% 86.52% -5.63% 85.58%
Dublin 93.66% 93.25% 93.28% 94.12% 89.04% 93.09% 93.42% 88.79% 93.77% 92.49% -2.98% 93.43%
London 89.69% 89.32% 88.13% 89.09% 78.66% 87.68% 88.07% 83.10% 90.14% 87.1% -6.34% 85.88%

Memphis 86.54% 85.89% 85.87% 85.56% 86.02% 86.34% 86.24% 86.49% 85.10% 86.01% -3.28% 90.00%
NYC 79.85% 79.20% 78.56% 73.28% 77.05% 68.89% 78.25% 77.36% 78.58% 76.78% -12.15% 77.78%

San Francisco 84.19% 81.80% 81.37% 78.36% 81.01% 72.32% 79.41% 80.14% 81.08% 79.97% -9.93% 79.45%
Seattle 51.79% 51.01% 42.70% 39.05% 45.00% 49.27% 45.16% 50.48% 53.21% 47.52% -33.68% 44.01%
Sydney 81.11% 80.36% 74.42% 74.46% 76.38% 62.69% 72.26% 75.38% 75.70% 74.75% -18.27% 73.04%

Avg. F1-Measure 82.45% 81.22% 78.29% 74.96% 78.44% 71.08% 78.53% 80.17% 81.64% 81.91%

The other way around, the rules for the datasets of
Boston and Seattle show good generalization capabil-
ities. For example, the first rule for the Boston dataset
checks the category accidents and if at least six letters
are upper case (shown in equation 5. Usually, upper
case letters are an indicator that people want to empha-
size the content of a tweet, e.g., during incidents.

incident← dbpedia.org/Category:Accidents,

UPPER_CASE ≥ 6
(5)

The second one tests for the word “fire” in conjunc-
tion with the +LOD feature city (Equation 6 and the
third rule simply considers the word “accident” (Equa-
tion 7. In the Seattle dataset, the first six rules all con-
tain abstracted location mentions in their body in cin-
junction with different other features. The first one ad-
ditionally checks for the word “lane”, the second the
TF-IDF of the word “unit” and the third the TF-IDF for
“crash”. All of these rules appear to be also universally
valid.

incident← fire ≥ 1, dbpedia.org/ontology/City (6)

incident← accident ≥ 1 (7)

For the four-class problem, the datasets of Boston
and Sydney worked best to train a model on while
the datasets of Dublin and Memphis performed worst
when used for training. Again, these two showed
the best performance in classification. About 30% of
the rules for the Boston dataset had +LOD features

in their body where some were plausible (such as
category:Security (class “shooting”), category:Fire
(class “fire”), category:Accidents for the class “crash”)
but, however, there were also some rather unin-
tuitive ones such as specific geographic places or
Early_American_
Industrial_Centers (class “fire”). In the
Sydney dataset, more exotic categories
like Wildland_Fire_Suppression or For-
mer_Member_States_Of_The_United_Nations are
present for the class “fire”. However, also here some
rather unintuitive features were included in the rules.

In summary, the class distribution to a high extent
affects the quality of the models. This is not only re-
flected by the correlation between the difference of the
models of datasets from other cities to that induced
on datasets of the same city, but also by the inspected
rule sets. Here, it could be shown that in many cases
the rules found on datasets of the cities that are bet-
ter suited to train a classifier on are also more intuitive
than those of the cities where no high-quality model
could be learned. Also, we could show that Seman-
tic Abstraction indeed is valuable to build high-quality
models as most often the novel semantically abstracted
features were used in the rules.

5. Related Work

In the domain of machine learning, there already ex-
ists related work covering the use of external knowl-
edge sources as well as information about named en-
tities [24], [14]. In this section, we will describe the
methods related to our Semantic Abstraction approach
in more detail. However, our approach is also related
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to the field of domain adaptation, which is discussed
afterwards. Finally, we present related approaches in
the domain of incident type classification.

Saif et al. [30] showed that adding the semantic con-
cept for a named entity is valuable for sentiment anal-
ysis on tweets. The authors used the concept tagging
component of the AlchemyAPI to extract one concept
for each named entity in a tweet, and then used it
as a feature. For instance, the concept ”President” is
derived from ”Barack Obama”. This approach works
well for very large datasets with a multitude of topics,
but not on small datasets. Compared to their work, our
approach makes use of multiple types and categories
extracted for a named entity, providing us with a much
richer set of background information.

Cano et al. [5] proposed a framework for topic
classification, which uses Linked Data for extract-
ing semantic features. They compared the approach
to a baseline comprising TF-IDF scores for word-
unigrams, concepts extracted using the OpenCalais
API, and Part-of-Speech features and showed in com-
parison with this baseline that semantic features can in-
deed support topic classification. Song et al. [35] also
proposed an approach that makes use of concepts de-
rived from tweets using external knowledge databases
for topic clustering. They performed a k-means clus-
tering on tweets and demonstrated that using concep-
tualized features, it is possible to outperform a plain
bag-of-words approach. Xu and Oarg [37] followed a
similar approach for topic clustering by using infor-
mation from Wikipedia as additional features to iden-
tify topics for tweets. They were also able to show that
this information improves clustering. Muñoz et al. [23]
successfully used DBpedia resources for topic detec-
tion. Their approach is based on Part-of-Speech tag-
ging for detecting nouns that are then linked to DBpe-
dia resources using the Sem4Tags tagger.

Domain adaptation [8] also is related to our ap-
proach. However, where in domain adaptation the
domains are to a large extent different, in our set-
ting the domain, i.e., incident type classification of
tweets, remains the same, the input data is subject to
change. This means, that certain features, i.e., words,
are changing from city to city. Therefore, feature aug-
mentation [9] is related to our approach. However,
where domain-specific features are simply discarded
in regular feature augmentation, our method abstracts
them in advance and then they are used in union with
domain-independent features. Another way of adapt-
ing domains is structural correspondence learning [3]
where shared features are identified, augmented and

used to build classifiers that are applicable in both do-
mains. The main difference is that the shared features
that are then used have to be present. However, we
instead create these shared features based on existing
ones by the proposed semantic abstraction methods.

Several prior work focused on the classification
of incident-related user-generated content. The works
of [31], [6], [29], and [18] were designed for inci-
dent type classification. However, the models were
trained on traditional features such as word-n-grams.
Also, Twitter-specific features such as hashtags and @-
mentions have been used. In contrast to these works,
several works tried to incorporate information about
named entities present in tweets, which is somehow
related to our Semantic Abstraction approach. Agar-
wal et al. [1] proposed an approach for classifying
tweets related to a fire in a factory. As features, they
use the number of occurrences of certain named en-
tities such as locations, organizations, or persons that
are extracted using the Stanford NER toolkit. Further-
more, the occurrence of numbers and URLs is used as
a feature. Also, word occurrences remaining after stop-
word filtering are used. Also, Li et al. [19] built a clas-
sifier using text features and Twitter-specific features,
such as hashtags, @-mentions, URLs, and the num-
ber of spatial and temporal mentions for incident type
classification. Nevertheless, the authors do not specifi-
cally try to generalize the tokens at hand, but only in-
troduce a set of features based on identified named en-
tities. Also, none of the prior works focus on datasets
of different cities as we did in our evaluation.

6. Conclusion and Future Work

In this paper, we introduced Semantic Abstraction to
foster the generalization of classification models in the
domain of social media text classification. Using Twit-
ter data collected from ten different cities, we were
able to show that our approach is indeed very useful.

We first demonstrated that Semantic Abstraction can
also improve the classification of datasets derived from
only one city. Nevertheless, we discovered that the suc-
cess of our approach in this scenario depends on the
choice of the classifier. Second, we found that Seman-
tic Abstraction is most valuable when training and test-
ing is done on datasets from different cities, i.e., with
a diverse range of tokens. However, we also found
that not all feature groups and abstracted features con-
tribute to a high-quality model. Especially features de-
rived using the temporal expression recognition ap-
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proach and features based on LOD seem to need fur-
ther rework. Third, an in-depth analysis of the train/test
case showed that the class distribution to a high extent
affects the quality of the models. This is an important
finding, as it might help to create datasets that general-
ize better.

For future work, a first goal is to experiment with
feature selection on the LOD features. Because first
experiments using the information gain did not indi-
cate better results [33], more sophisticated approaches
such as the one presented by Ristoski and Paulheim
[27] will be needed. A second goal is to include ad-
ditional approaches for Semantic Abstraction such as
the concept level abstraction used by Saif et al. [30].
We also plan to intensify our analysis of the LOD fea-
tures. For instance, the relation of location mentions
and incident-related tweets could be shown and was
also visible in form of LOD features, however, cur-
rently we lack appropriate instruments to make use of
this information.
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Fig. 6. Box-Whisker diagram for the aggregated samples from 10-fold cross-validation with two classes. The mean is indicated by a cross.
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Fig. 7. Box-Whisker diagram for the aggregated samples from 10-fold cross-validation with four classes. The mean is indicated by a cross.
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Fig. 8. Box-Whisker diagram for the aggregated samples from holdout sampling with two classes. The mean is indicated by a cross.
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Fig. 9. Box-Whisker diagram for the aggregated samples from the holdout sampling with four classes. The mean is indicated by a cross.
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Table 10
P-values from the Nemenyi test for the aggregated samples from holdout sampling with two classes.

Baseline +ALL +LOC +TIME +LOD +LOC+TIME +LOC+LOD +TIME+LOD +TYPES

+ALL < 0.01***
+LOC < 0.01*** 0.994
+TIME 0.998 < 0.01*** < 0.01***
+LOD < 0.01*** < 0.01*** 0.034** < 0.01***
+LOC+TIME < 0.01*** 0.953 1.000 < 0.01*** 0.094*
+LOC+LOD < 0.01*** 0.052* 0.463 < 0.01*** 0.985 0.705
+TIME+LOD < 0.01*** 1.000 1.000 < 0.01*** 0.007*** 0.998 0.191
+TYPES 0.018** < 0.01*** 0.002*** < 0.01*** 0.999 0.009*** 0.713 < 0.01***
+CAT 0.019** < 0.01*** 0.002*** < 0.01*** 0.999 0.008*** 0.705 < 0.01*** 1.000

Table 11
P-values from the Nemenyi test for the aggregated samples from holdout sampling with four classes.

Baseline +ALL +LOC +TIME +LOD +LOC+TIME +LOC+LOD +TIME+LOD +TYPES

+ALL < 0.01***
+LOC < 0.01*** 0.348
+TIME 1.000 < 0.01*** < 0.01***
+LOD < 0.01*** 0.953 0.988 < 0.01***
+LOC+TIME < 0.01*** 0.225 1.000 < 0.01*** 0.958
+LOC+LOD < 0.01*** 0.085* 1.000 < 0.01*** 0.810 1.000
+TIME+LOD < 0.01*** 1.000 0.380 < 0.01*** 0.963 0.249 0.097*
+TYPES < 0.01*** 0.060* 0.999 < 0.01*** 0.737 1.000 1.000 0.069*
+CAT 0.014** < 0.01*** 0.412 0.001*** 0.030** 0.568 0.824 < 0.01*** 0.882


