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Abstract. Over the last years, time-efficient approaches for the discovery of links between knowledge bases have been regarded
as a key requirement towards implementing the idea of a Data Web. Thus, efficient and effective measures for comparing the
labels of resources are central to facilitate the discovery of links between datasets on the Web of Data as well as their integration
and fusion. We present a novel time-efficient implementation of filters that allow for the efficient execution of bounded Jaro-
Winkler measures. We evaluate our approach on several datasets derived from DBpedia 3.9 and LinkedGeoData and containing
up to 106 strings and show that it scales linearly with the size of the data for large thresholds. Moreover, we also show that our
approach can be easily implemented in parallel. We also evaluate our approach against SILK and show that we outperform it
even on small datasets.
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1. Introduction

The Linked Open Data Cloud (LOD Cloud) has de-
veloped to a compendium of more than 2000 datasets
over the last few years.1 For example, data sets per-
taining to more than 14 million persons have already
been made available on the Linked Data Web.2 While
this number is impressive on its own, it is well known
that the population of the planet has surpassed 7 bil-
lion people. Hence, the Web of Data contains infor-
mation on less than 1% of the overall population of
the planet (counting both the living and the dead).
The output of open-government movements3, scien-
tific conferences4, health data5 and similar endeavours
yet promises to make massive amounts of data pertain-
ing to persons available in the near future. Dealing with
this upcoming increase of the number of resources on
the Web of data requires providing means to integrate

1See http://stats.lod2.eu for an overview of the current
state of the Cloud. Last access: July 11th, 2014.

2Data collected from http://stats.lod2.eu. Last access:
July 11th, 2014.

3See for example http://data.gov.uk/.
4See for example http://data.semanticweb.org/
5http://aksw.org/Projects/GHO

these datasets with the aim to facilitate statistical anal-
ysis, data mining, personalization, etc. However, while
the number of datasets on the Linked Data Web grows
drastically, the number of links between datasets still
stagnates.6 Addressing this lack of links requires solv-
ing two main problems: the quadratic time complexity
of link discovery (efficiency) and the automatic sup-
port of the detection of link specifications (effective-
ness). In this paper, we address the efficiency of the
execution of bounded Jaro-Winkler measures,7 which
are known to be effective when comparing person
names [10]. To this end, we derive equations that allow
discarding a large number of computations while ex-
ecuting bounded Jaro-Winkler comparisons with high
thresholds.

The contributions of this paper are as follows:

1. We derive length- and range-based filters that al-
low reducing the Frequency t that are compared
with a string s .

6http://linklion.org
7We use bounded measures in the same sense as [15], i.e., to mean

that we are only interested in pairs of strings whose similarity is
greater than or equal to a given lower bound.
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2. We present a character-based filter that allows
detecting whether two strings s and t share
enough resemblance to be similar according to
the Jaro-Winkler measure.

3. We evaluate our approach w.r.t. to its runtime and
its scalability with several threshold settings and
dataset sizes.

The rest of this paper is structured as follows: In
Section 2, we present the problem we tackled as well
as the formal notation necessary to understand this
work. In the subsequent Section 3, we present the three
approaches we developed to reduce the runtime of
bounded Jaro-Winkler computations. We then evaluate
our approach in Section 4. Related work is presented
in Section 5, where we focus on approaches that aim
to improve the time-efficiency of link discovery. We
conclude in Section 6. The approach presented herein
is now an integral part of LIMES.8 This paper is an
extended version of [11].

2. Preliminaries

In the following, we present some of the symbols
and terms used within this work.

2.1. Link Discovery

In this work, we use link discovery as a hypernym
for deduplication, record linkage, entity resolution and
similar terms used across literature. The formal speci-
fication of link discovery adopted herein is tantamount
to the definition proposed in [18]: Given a set S of
source resources, a set T of target resources and a re-
lationR, our goal is to find the setM ⊆ S×T of pairs
(s, t) such thatR(s, t). IfR is owl:sameAs, then we
are faced with a deduplication task. Given that the ex-
plicit computation of M is usually a very complex en-
deavour, M is most commonly approximated by a set
M ′ = {(s, t, δ(s, t)) ∈ S × T × R+ : σ(s, t) ≥ θ},
where σ is a (potentially complex) similarity function
and θ ∈ [0, 1] is a similarity threshold. Given that this
problem is in O(n2), using naïve algorithms to com-
pare large S and T is most commonly impracticable.
Thus, time-efficient approaches for the computation of
bounded measures have been developed over the last
years for measures such as the Levenshtein distance,
Minkowski distances, trigrams and many more [17].

8http://limes.sf.net

In this paper, we thus study the following problem:
Given a threshold θ ∈ [0, 1] and two sets of strings
S and T , compute the set M ′ = {(s, t, δ(s, t)) ∈
S × T × R+ : σ(s, t) ≥ θ}. Two categories of ap-
proaches can be considered to improve the runtime of
measures: Lossy approaches return a subset M ′′ of
M ′ which can be calculated efficiently but for which
there are no guarantees that M ′′ = M ′. Lossless ap-
proaches on the other hand ensure that their result
set M ′′ is exactly the same as M ′. In this paper, we
present a lossless approach. To the best of our knowl-
edge, only one other link discovery framework imple-
ments a lossless approach that has been designed to
exploit the bound defined by the threshold θ to en-
sure a more efficient computation of the Jaro-Winkler
distance, i.e., the SILK framework with the approach
MultiBlock [9]. We thus compare our approach with
SILK 2.6.0 in the evaluation section of this paper.

2.2. The Jaro-Winkler Similarity

Let Σ∗ be the set of all possible strings over Σ. The
Jaro measure dj : Σ∗×Σ∗ → [0, 1] is a string similar-
ity measure approach which was developed originally
for name comparison in the U.S. Census. This measure
takes into account the number of character matches m
and the ratio of their transpositions t:

dj =

{
0 if m = 0
1
3

(
m
|s| + m

|t| + m−t
m

)
otherwise (1)

Here two characters are considered to be a match if and
only if (1) they are the same and (2) they are at most
at a distance w = bmax(|s|,|t|)

2 c from each other. For
example, for s = ”Spears” and t = ”Pears”, the
second s of s matches the s of t while the first s of s
does not match the s of t.

The Jaro-Winkler measure [29] is an extension of
the Jaro distance. This extension is based on Winkler’s
observation that typing errors occur most commonly in
the middle or at the end of a word, but very rarely in the
beginning. Hence, it is legitimate to put more empha-
sis on matching prefixes if the Jaro distance exceeds a
certain "boost threshold" bt, originally set to 0.7.

dw =

{
dj if dj < bt
dj + (`p (1− dj)) otherwise (2)

Here, ` denotes the length of the common prefix and p
is a weighting factor. Winkler uses p = 0.1 and ` ≤ 4.
Note that `p must not be greater than 1.

http://limes.sf.net
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3. Improving the Runtime of Bounded
Jaro-Winkler

The main principle behind reducing the runtime of
the computation of measures is to reduce their reduc-
tion ratio. Here, we use a sequence of filters that allow
discarding similarity computations while being sure
that they would have led to a similarity score which
would have been less than our threshold θ. To this end,
we regard the problem as that of finding filters that
return an upper bound estimation θe(s, t) ≥ dw(s, t)
for some properties of the input strings that can be
computed in constant time. For a given threshold θ, if
θe(s, t) ≤ θ, then we can safely ignore the input (s, t).

3.1. Length-based filters

In the following, we denoted the length of a string s
with |s|. Our first filter is based on the insight that large
length differences are a guarantee for poor similarity.
For example, the strings ”a” and ”alpha” cannot have
a Jaro-Winkler similarity of 1 by virtue of their length
difference. We can formalize this idea as follows: Let
s and t be strings with respective lengths |s| and |t|.
Without loss of generality, we will assume that |s| ≤
|t|. Moreover, let m be the number of matches across
s and t. Because m ≤ |s|, we can substitute m with
|s| and gain the following upper bound estimation for
dj(s, t):

dj =
1

3

(
m

|s|
+
m

|t|
+
m− t
m

)
≤ 1

3

(
1 +
|s|
|t|

+
|s| − t
|s|

) (3)

Now the lower bound for the number t of transposi-
tions is 0. Thus, we obtain the following equation.

dj ≤
1

3

(
1 +
|s|
|t|

+ 1

)
≤ 2

3
+
|s|
3|t|

(4)

The application of this approximation on Winkler’s
extension is trivial:

dw = dj + ` · p · (1− dj)

≤ 2

3
+
|s|
3|t|

+ ` · p ·
(

1

3
− |s|

3|t|

)
= θlengthe

(5)

Consider the pair s = ”bike” and t = ”bicycle”
and a threshold θ = 0.9. Applying the estimation for

Jaro we get dj ≤ 2
3 −

4
3·7 = 0.857. This exceeeds

the boost threshold, so we use equation 5 to compute
θlengthe (s, t) = 0.885. Now we do not have to actually
compute dw(s, t), since θlengthe (s, t) < θ.

By using this approach we can decide in O(1)9 if
a given pairs score is greater than a given threshold,
which saves us the much more expensive score com-
putation for a big number of pairs, provided that the
input strings sufficiently vary in length.

3.2. Filtering ranges by length

The approach described above can be reversed to
limit the number of pairs that we are going to be iter-
ating over. To this end, we can construct an index :
N→ Σ∗ which maps string lengths l ∈ N to all strings
s with |s| = l. With the help of this index, we can now
determine the set of strings t that should be compared
with the subset S(l) of S that only contains strings of
length l. We go about using this insight by computing
the upper and lower bound for the length of a string t
that should be compared with a string s. This is basi-
cally equivalent to asking what is the minimum length
difference ||s| − |t|| so that θ ≥ θlengthe (s, t) is satis-
fied. We transpose equation 5 to the following for our
lower bound:

|s| ≥
⌊

3|t|θ − `p
1− `p

− 2|t|
⌋

= ρmin (6)

Analogously, we can derive the following upper bound:

|s| ≤

⌈
|t|

3 θ−`p1−`p − 2

⌉
= ρmax (7)

For example, consider a list of strings S with equally
distributed string lengths (4, 7, 11, 18) and θ = 0.9 Us-
ing Equation 6 and Equation 7 we obtain Table 1. Tak-
ing into account the last column of the table, we will
save a total of 3

8 comparisons.
Note that for practical usage of this bounds, the thresh-
old must be chosen greater than τ = 2+`p

3 , because
ρmax has a pole at θ = τ and ρmin, ρmax are of nega-
tive value for θ < τ .

9In most programming languages, especially Java (which we used
for our implementation), the length of string is stored in a variable
and can thus be accessed in constant time.
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Table 1
Bounds for distinct string lengths (θ = 0.9)

|s| ρmin ρmax sizes in range

4 2 8 (4, 7)

7 3 14 (4, 7, 11)

11 5 22 (7, 11, 18)

18 9 36 (11, 18)

3.3. Filtering by character frequency

An even more fine-grained approach can be chosen
to filter out computations. Let e : Σ× Σ∗ → N be the
function which returns the number of occurrences of a
given character in a string. For the strings s and t, the
number of maximum possible matches mmax can be
expressed as

mmax =
∑

c∈s
min(e(s, c), e(t, c)) ≥ m (8)

Consequently, we can now substitute m for mmax in
the Jaro distance computation:

dj(s, t) =
1

3

(
mmax

|s|
+
mmax

|t|
+
mmax − t
mmax

)
≤ 1

3

(
mmax

|s|
+
mmax

|t|
+ 1

)
= θchare

(9)

We can thus derive that dj(s, t) ≥ θ iff

mmax ≥
(3θ − 1) |s||t|
|s|+ |t|

. (10)

For instance, let s ="astronaut", t ="astrochimp".
The retrieval of mmax ist shown in Table 2.

3.3.1. Naïve Implementation
The naive implementation of the character-based fil-

ter consists of implementation the e function for each
string using a map. As shown by our evaluation, the
character-based filter leads to a significant reduction
of the number of comparisons (see Figure 6) by more
than 2 orders of magnitude. However, the runtime im-
provement achieved using this implementation is not
substantial. This is simply due to the lookup into maps
being constant in time complexity but still a large
amount of time. Instead of regarding strings as mono-
lithic entities, we thus extended our implementation to
be more fine-grained and used a trie as explained in the
subsequent section.

Table 2
Calculation of mmax

c e(s, c) e(t, c) min(e(s, c), e(t, c)) mmax

a 2 1 1 1
c 0 1 0 1
h 0 1 0 1
i 0 1 0 1
m 0 1 0 1
n 1 0 0 1
o 1 1 1 2
p 0 1 0 2
r 1 1 1 3
s 1 1 1 4
t 2 1 1 5
u 1 0 0 5

3.3.2. Implementation with Tries
To overcome the need to perform character index

lookups for every pair of strings we use a trie pruning
technique. Therefore, we call this approach the trie fil-
ter below. We name the dataset with the longest string
Dl and the other Ds respectively. We define a func-
tion σ : Σ+ → Σ+

ordered, which maps a word onto an
ordered permutation of itself, e.g. σ(hello) = ehllo.
Let T be our trie. All strings si, sj ∈ Dl(i 6= j) with
σ(si) = σ(sj) are added to buckets Bσ(sx). All strings
tx ∈ Ds are inserted into buckets that are associated
with nodes at path σ(tx) of T , so strings with the same
σ representation also reside in the same bucket. From
the Jaro-Winkler version of the upper bound estima-
tion given in Equation 9 we obtain the following equa-
tion:

mmax ≥ mneeded(s, t)

=

⌈(
θ − `p− 1− `p

3

)
· 3|s||t|

(|s|+ |t|) (1− `p)

⌉
(11)

Where mneeded is the minimal number of matches
so that the filter will not apply, i.e. it is possible that
dw(s, t) ≥ θ. For every Bu, we traverse T depth-first
in pre-order. The tree traversal stack S initially con-
tains tuples in terms of 〈C,V,m〉 for every child of the
root node. Herein, C is called the character stack and
initially contains u, V is a reference to the current node
and m is the number of matches up to this node. Since
every path v in T is an ordered character sequence we
can compute the maximum possible matches mmax

between u and the current traversal path in every iter-
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Algorithm 1 Trie filter
1: procedure TRIEFILTER(Dl,Ds, θ)
2: T ← CONSTRUCTTRIE(Ds)
3: B ← CONSTRUCTCONTAINERMAP(Dl)
4: for all Bu ∈ B do
5: TRIETRAVERSE(T ,Bu, u, θ)
6: end for
7: end procedure

8: function dmaxw (l1, l2,m)
9: p← 4

10: `← 0.1
11: return 1−`p

3

(
m
l1

+ m
l2

+ 1
)

+ `p

12: end function

13: procedure TRIETRAVERSE(T ,Bx, u, θ)
14: vmin ← shortest path length to leaf in T
15: vmax ← longest path length to leaf in T
16: S ← new Stack()
17: ADDROOTCHILDS(T ,S, u)
18: while S 6= ∅ do
19: 〈C,V,m〉 ← S.pop()
20: mmax ← min(|C|, vmax−|V|+1)+m

. |V| denotes the level of V

21: if mmax ≥ mneeded(|u|, vmin) then
22: if V.key() ≤ C.top() then
23: if V.key() = C.top() then
24: C.pop()
25: m← m+ 1
26: α1 ← V.hasBucket()
27: α2 ← dmaxw (|V|, |u|,m) ≥ θ
28: if α1 ∧ α2 then
29: A ← V.bucket()
30: M←M∪ 〈A,Bx〉
31: end if
32: end if
33: for all x ∈ V.children() do
34: S.push(〈C, x,m〉)
35: end for
36: else
37: C.pop()
38: S.push(〈C,V,m〉)
39: end if
40: end if
41: end while
42: end procedure

ation. If mmax < mneeded we skip the current node,
effectively pruning its subtree from T . If the topmost
character of C, called C.top(), and the character of the
current trie node vc are of equal order, we increment
m and add its children to S.
Else, if C.top() > vc, we just add the children. Finally,
when C.top() < vc, we just pop C and push the current
tuple back onto S. Match candidates are inserted into
a set M if the current node has an associated bucket
and dmaxw (l1, l2,m) ≥ θ. The detailed logic of the tree
traversal is given in Algorithm 1.
For instance, let θ = 0.95, Dl = {nines} and Ds =
{mices, nices, niche, niece, since}. We
compute σ(nines) = einns, which leads us to
the container map with exactly one entry: Beinns =
{nines}. Furthermore, we obtain the following trie:

c e0

i0
m s1
n0 s0

h i1 n1

e1 i2 n2

Fig. 1. Example Trie T

In the given trie we have 4 buckets, to be specific
s0 has {nices,since}, s1 has {mices}, n1 has
{niche} and finally n2 has {niece}.
Through use of Equation 11, we determine parameter
mneeded(|u|, vmin) = mneeded(4, 4) = 4. The tree
traversal stack S is initially populated with {([einns], ∗c, 0)}.
In the first iteration, mmax = 4 ≥ mneeded and
C.top() is greater than vc, hence we get S = {([einns], ∗e0, 0)}.
In the second iteration we get a character match, yield-
ing S = {([inns], ∗i0, 1), ([inns], ∗h, 1), ([inns], ∗e1, 1)}.
Using the algorithm described above, we eventually
cut off subtrees at i1, i2 and m. Only the pairs (nines,
nices) and (nines, since) are forwarded to actual Jaro-
Winkler distance calculations.
Note that using the range filter prior to the trie filter
is a key requirement towards its efficiency, that is, the
more equally distributed the string lengths are, the bet-
ter we get in terms of reduction ratio and runtime im-
provement. The worst case scenario is a big dataset
with very large strings over a little alphabet and little
to none variation in string lengths.
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Fig. 2. Flowchart of parallel trie filter stack
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Fig. 3. Runtimes on sample of DBpedia rdf:labels with size 1000

3.4. Parallel Implementation

While our results suggest that the approach pre-
sented above scales well on one processor, we wanted
to measure how well the partitioning induced by
the upper and lower length bounds given in Equa-
tions 6 and 7 can be used to implementation our ap-
proach in parallel. Let Ti,j = {t ∈ T : i ≤ |t| ≤ j}
be set of strings whose length is larger or equal to i
and less or equal to j. Moreover, let Sk = {s ∈ S :
k = |s|} be the subset of S which contains strings of
length k. Finally, let L(S) be the set of distinct string
lengths of elements of S. We distribute a subset S× T
into sets M ′′′x = Sx × Tρmin(x),ρmax(x)∀x ∈ L(S).
Note that due to the bounds in Equations 6 and 7, we
are sure that all elements of T which abide by the sim-
ilarity condition σ(s, t) ≥ θ for s ∈ Sx can be found
in the subset Tρmin(x),ρmax(x). Moreover, not all ele-
ments of S × T are in the set M ′′′x . In particular, pairs
of strings that do not abide by the range restrictions are
not considered as they are known not to be matches.

Now given the sets M ′′′x , we can parallelize our im-
plementation by simply using a thread-pool-based ap-

proach. We initialize a user-given number of threads
and assign each thread one of the sets M ′′′x randomly.
Once a thread has completed its computations, it is
simply assigned a further set M ′′′x . Note that we do
not implement any load balancing as we were primar-
ily interested in how well the range filter allows parti-
tioning data. Figure 2 gives an overview of our parallel
pipeline.

4. Evaluation

4.1. Experimental Setup

The aim of our evaluation was to study how well
our approach performs on real data. We chose DBpe-
dia 3.9 as a source of data for our experiments as it
contains data pertaining to 1.1 million persons and thus
allows for both fine-grained evaluations and scalability
evaluations. As a second data source we chose Linked-
GeoData to evaluate how well we perform on strings
that have no relation to person names. We chose these
datasets because (1) they ave been widely used in ex-
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periments pertaining to link discovery and (2) the dis-
tributions of string sizes in these datasets are signifi-
cantly different (see Figures 7 and 8). All experiments
where deduplication experiments, i.e., S = T . We con-
sidered the list of all rdfs:label in DBpedia in
our runtime evaluation and added all rdfs:labels
of the Places dataset from LinkedGeoData for scala-
bility experiments. We also computed the number of
actual Jaro-Winkler calculations carried out for 1000
strings from DBpedia. All runtime and scalability ex-
periments were performed on a 2.5 GHz Intel Core
i5 machine with 16GB RAM running OS X 10.9.3.
The speedup of the parallel trie-based filter stack was
measured on a Microsoft Azure VM instance with 16
CPUs and 112GB RAM.

4.2. Runtime Evaluation

In our first series of experiments, we evaluated the
runtime of all filter combinations against the naïve ap-

proach on a small dataset containing 1000 labels from
DBpedia. The results of our evaluation are shown in
Figure 3. This evaluation suggests that all filter setups
except those containing f2 outperform the naïve ap-
proach. Moreover, the combination of all filters leads
to the best overall runtime in most cases on this small
sample. Overall, the results on this dataset already
shows that we outperform the naïve approach by more
than an order of magnitude when θ > 0.9. Interest-
ingly, the break-even point for f1 and f2 is reached
when θ > 0.99 on this small dataset. This is clearly
due to the overhead necessary to create the trie over-
shadowing the runtime advantage engendered by using
the trie to search for matches.

The runtimes on a larger sample of size 104 show an
even better improvement (see Figure 4). This suggests
that the relative improvement of our approach im-
proves with the size of the problem. The most interest-
ing results come from filter setups r+f2 and r+l+f2.
They are slower than the naïve approach on low θ but
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after an break-even point around 0.89 ≤ θ ≤ 0.91 they
outperforms the second best setup r+l by an order of
magnitude.

4.3. Scalability Evaluation

The aim of the scalability evaluation was to mea-
sure how well our approach scales. In our first set
of experiments, we looked at the growth of the run-
time of our approach on datasets of growing sizes (see
Figures 9 and 10). Our results show very clearly that
r+l+f2 is the best filter combination for datasets of
large sizes. This result holds on both DBpedia and
LinkedGeoData. r+l+f2 is thus the default imple-
mentation of the Jaro-Winkler measure in LIMES. In
addition, our results suggest that our approach grows
linearly with the number of labels contained in S and
T . This is one of our most important results as it makes
clear that we can employ r+l+f2 on large datasets
and expect acceptable runtimes. Moreover, the behav-
ior of the runtime of our default setup can be easily pre-
dicted for large datasets, which is of importance when
asking users to wait for the results of the computation.

The second series of scalability experiments looked
at the runtime behaviour of our approach on a large
dataset with 105 labels (see Figure 5). Our results sug-
gest that the runtime of our approach falls superlin-
early with an increase of the threshold θ. This be-
haviour suggest that our approach is especially useful
on clean datasets, where high thresholds can be used
for link discovery.

In the third series of experiments we looked at the
speedup we gain by parallelizing r+l+f2 on the DB-
pedia dataset with input sizes of 105 and 106 (see Fig-
ures 11 and 12). Here, our results show that the cur-
rent implementation scales up in a satisfactory man-
ner on up to 4 processors. Running the parallel imple-
mentation on 8 and 12 processors does not bring about

any considerable increase in speedup. The reason for
this behavior is simply that we did not implement any
load balancing. Hence, there is commonly one thread
that is assigned a single large M ′′′x , leading to all other
threads having completed their tasks but having to wait
for this particular thread to terminate. Adding load bal-
ancing to the approach as well as splitting large M ′′′x
into smaller chunks should lead to an improvement of
the scalability of our parallel implementation. These
extensions will be implemented in future work.

4.4. Comparison with existing approaches

We compared our approach with SILK2.6.0. To this
end, we retrieved all rdfs:label of instances of
subclasses of Person. We only compared with SILK
on small datasets (i.e., on classes with small numbers
of instances) as the results on these small datasets al-
ready showed that we outperform SILK consistently.10

Our results are shown in Table 3. They suggest that the
absolute difference in runtime grows with the size of
the datasets. Thus, we did not consider testing larger
datasets against SILK as in the best case, we were al-
ready 4.7 times faster than SILK (Architect dataset,
θ = 0.95).

5. Related Work

The work presented herein is related to record
linkage, deduplication, link discovery and the effi-
cient computation of Hausdorff distances. An exten-
sive amount of literature has been published by the
database community on record linkage (see [12,6] for
surveys). With regard to time complexity, time-efficient
deduplication algorithms such as PPJoin+ [31], ED-

10We ran SILK with -Dthreads = 1 for the sake of fairness.
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Fig. 12. Speedup of parallel algorithm (DBPedia, 106)

Table 3
Runtimes (in seconds) of our approach (OA) and SILK 2.6.0

DBpedia Class Size OA(0.8) OA(0.9) OA(0.95) SILK(0.8) SILK(0.9) SILK(0.95)

Actors 9509 15.07 10.13 6.38 27 25 25
Architect 3544 5.58 5.48 2.32 11 11 11
Criminal 5291 11.54 7.77 4.52 18 18 18

Join [30], PassJoin [13] and TrieJoin [28] were devel-
oped over the last years. Several of these were then
integrated into the hybrid link discovery framework
LIMES [18]. Moreover, dedicated time-efficient ap-
proaches were developed for LD. For example, RDF-
AI [26] implements a five-step approach that com-
prises the preprocessing, matching, fusion, interlink
and post-processing of data sets. [19] presents an
approach based on the Cauchy-Schwarz that allows
discarding a large number of unnecessary computa-
tions. The approaches HYPPO [16] and HR3 [17]
rely on space tiling in spaces with measures that can
be split into independent measures across the dimen-
sions of the problem at hand. Especially, HR3 was
shown to be the first approach that can achieve a rel-
ative reduction ratio r′ less or equal to any given rel-
ative reduction ratio r > 1. Standard blocking ap-
proaches were implemented in the first versions of

SILK and later replaced with MultiBlock [9], a lossless
multi-dimensional blocking technique. KnoFuss [22]
also implements blocking techniques to achieve ac-
ceptable runtimes. Further approaches can be found
in [27,4,23,24,7].

In addition to addressing the runtime of link discov-
ery, several machine-learning approaches have been
developed to learn link specifications (also called link-
age rules) for link discovery. For example, machine-
learning frameworks such as FEBRL [2] and MAR-
LIN [1] rely on models such as Support Vector Ma-
chines [3] and decision trees [25] to detect classifiers
for record linkage. RAVEN [20] relies on active learn-
ing to detect linear or Boolean classifiers. The EA-
GLE approach [21] combines active learning and ge-
netic programming to detect link specifications. Kno-
Fuss [22] goes a step further and presents an unsu-
pervised approach based on genetic programming for
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finding accurate link specifications. Other record dedu-
plication approaches based on active learning and ge-
netic programming are presented in [5,8].

6. Conclusion and Future Work

In this paper, we present a novel approach for the
efficient execution of bounded Jaro-Winkler compu-
tations. Our approach is based on three filters which
allow discarding a large number of comparisons. We
showed that our approach scales well with the amount
of data it is faced with. Moreover, we showed that
our approach can make effective use of large thresh-
olds by reducing the total runtime of the approach con-
siderably. We also compared our approach with the
state-of-the-art framework SILK 2.6.0 and showed that
we outperform it on all datasets. In future work, we
will test whether our approach improves the accuracy
of specification detection algorithms such as EAGLE.
Moreover, we will focus on improving the quality of
matches. To this end we will split input strings into to-
kens and use a hybrid approach as proposed by Monge
and Elkan [14], which adds to complexity of the al-
gorithm, hence allowing for further runtime improve-
ments. Furthermore, we will extend the parallel imple-
mentation with load balancing.
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