
Semantic Web 0 (0) 1 1
IOS Press

Hierarchical Visual Exploration and Analysis
on the Web of Data
Nikos Bikakis a,b, George Papastefanatos b, Melina Skourla a and Timos Sellis c

a National Technical University of Athens, Greece
b IMIS, ATHENA Research Center, Greece
c RMIT University, Australia

Abstract. The purpose of data visualization is to offer intuitive ways for information perception and manipulation, especially
for non-expert users. The Web of Data has realized the availability of a huge amount and variety of datasets; most of them
offer SPARQL endpoints for online access and analysis. However, most traditional visualization tools and methods operate on
an offline way without offering the ability for ad hoc visualization and analysis of large dynamic sets of data. In this work, we
present a model for building, visualizing, and interacting with hierarchically organized Linked Data (LD). Our model is build
on top of a lightweight tree-based structure which can be easily constructed on-the-fly for a given set of data. This tree structure
organizes input data objects into a hierarchical model based on the values of their properties that they exhibit. Additionally, we
define two versions of this structure, which adopts different data organization approaches, well-suited to visual exploration and
analysis context. Furthermore, statistical computations can be efficiently performed on-the-fly in the proposed structure. The
presented model is realized in a web-based prototype tool, called rdf:SynopsViz that offers hierarchical visual exploration and
analysis over LD datasets. Finally, we provide an evaluation of our approach employing LD datasets.

Keywords: Linked Data, Semantic Web, Visual analytics, Hierarchical exploration, RDF Data.

1. Introduction

The purpose of data visualization is to offer intu-
itive ways for information perception and manipula-
tion that essentially amplify, especially for non-expert
users, the overall cognitive performance of informa-
tion processing. This is of great importance in the Web
of Data, where the volume and heterogeneity of avail-
able information make it difficult for humans to man-
ually explore and analyse large datasets. Moreover, in-
formation visualization enables users to infer correla-
tions and causalities and supports sense-making activ-
ities [22] over data that are not always possible with
traditional data mining techniques.

Following the abundance of Linked Data (LD) on
the web, several recent efforts have offered tools and
techniques for information visualization and visual ex-
ploration of LD in many different domains, such as
statistical, biological, spatiotemporal [23,53]. They of-
fer different ways to consumers of LD to interact with

the data and perform visual operations, such as nav-
igation and browsing over resources, visual represen-
tation and analysis of resources and the relationships
between them, as well as visual querying and filter-
ing. These are further specialized to the requirements
of the specific domain; e.g., graph-based visualizations
are usually used for link-based analysis, maps are em-
ployed for spatial-enriched data, charts and timelines
focus on numerical and temporal data analysis, etc.

One of the major challenges in the LD visual ex-
ploration is related to the size that characterizes many
popular LD datasets. Considering the visual informa-
tion seeking mantra: ”overview first, zoom and filter,
then details on demand" [64], gaining overview is a
crucial task in the visual exploration scenario. How-
ever, offering an overview of a large dataset, is an
extremely challenged task. Additionally, information
overloading is a common issue in large datasets vi-
sualizations; a basic requirement for the proposed ap-

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

proaches is to offer mechanisms for information ab-
straction and summarization.

The above challenges can be overcome by adopting
hierarchical approaches [29]. Hierarchical approaches
allow the visual exploration of very large datasets, of-
fering a dataset overview, as well as an intuitive and
user-friendly way for finding specific parts within a
dataset. Particularly, in hierarchical approaches, the
user first obtains an overview of the dataset (both struc-
ture and a summary of its content) before proceed-
ing to data exploration operations, such as roll-up and
drill-down, filtering out a specific part of it and finally
retrieving details about the data. Therefore, hierarchi-
cal approaches directly support the visual information
seeking mantra. Also, hierarchical approaches can ef-
fectively address the problem of information overload-
ing as it provides information abstraction and summa-
rization.

A second challenge is related to the availability of
SPARQL endpoits for online data access and retrieval,
possessing the challenge of visualizing data that is dy-
namically retrieved by a remote site. In this respect, vi-
sualization techniques must offer scalability and effi-
cient processing for on-the-fly analysis and visualiza-
tion of dynamic datasets. Finally, the requirement for
online visualization must be coupled with the diver-
sity of preferences and requirements posed by different
users and tasks. Therefore, the proposed approaches
should provide the user with the ability to customize
the exploration experience, allowing users to organize
data into different ways according to the type of infor-
mation or the level of details she wishes to visualize.

Addressing the above challenges, in this work,
we present a generic model that combines user-
customized hierarchical exploration with online anal-
ysis of LD. At the core lies a lightweight hierarchical
model, constructed on-the-fly for a given set of data.
Particularly, the proposed model is a tree-based struc-
ture that aggregates LD resources (i.e., RDF triples)
into multiple levels of hierarchically related groups
based on the numeric and temporal values of one or
more properties. It also enriches groups with statistical
information regarding their contents, offering richer
overviews and insights on the detailed data. An addi-
tional feature is that it allows users to organize data ex-
ploration in different ways, by parametrizing the num-
ber of groups, the range and cardinality of their con-
tents, the number of hierarchy levels, etc. Finally, the
proposed model is realized in a web-based tool, called
rdf:SynopsViz that offers a variety of visualization
techniques, such as charts, timelines, and treemaps for

hierarchical visual exploration and analysis over LD
datasets.

Contributions. The main contributions of this paper
are summarized as follows.

− We introduce a model for building, visualizing,
and interacting with hierarchically organized nu-
meric and temporal LD.

− We implement our model as a lightweight, main
memory tree-based structure, which can be eas-
ily constructed on-the-fly.

− We propose two tree structure versions, which
adopt different approaches for the data organiza-
tion.

− We describe a simple method to estimate the tree
construction parameters, when no user prefer-
ences are available.

− We develop a prototype system which imple-
ments the presented model, offering hierarchical
visual exploration and analysis over LD.

− We conduct an experimental evaluation using LD
datasets.

Outline. The remaining of this paper is organized as
follows. Section 2 presents the hierarchical model de-
veloped in rdf:SynopsViz. Then, Section 3 presents the
rdf:SynopsViz system and demonstrate the basic func-
tionality. Section 4 reviews related work. The evalu-
ation of our system is presented in Section 16, while
Section 6 concludes this paper.

2. The HETree Model

In this section we present HETree (Hierarchical
Exploration Tree), our model for building, visualiz-
ing, and interacting with hierarchically organized LD.
HETree is defined in the context of hierarchical vi-
sual exploration and analysis over one-dimensional
numeric and temporal (i.e., datetime values) LD. The
proposed model can be adopted by various existing vi-
sualization techniques (e.g., charts, scatterplots, time-
line, etc.), offering scalable and multilevel visual rep-
resentations.

In what follows, we present some basic aspects
of our working scenario (i.e., visual exploration and
analysis scenario) and highlight the main assumptions
and requirements employed in the construction of our
model. First, the input data in our scenario can be re-
trieved directly from a triple store, but also produced
dynamically; i.e., either from a SPARQL query or from

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 3

data filtering (e.g., faceted browsing). Thus, we con-
sider that data visualization is performed online; i.e.,
we do not assume an offline preprocessing phase in the
construction of the visualization model. Second, users
can specify different requirements or preferences with
respect to the data organization. For example, a user
prefers to organize the data as a deep hierarchy for a
specific task, while for another task a flat hierarchi-
cal organization is more appropriate. Therefore, even
if the data is not dynamically produced, the data or-
ganization is dynamically adapted to the user prefer-
ences. The same also holds for any additional infor-
mation (e.g., statistical information) that is computed
for each group of objects. This information must be re-
computed when the groups of objects (i.e., data orga-
nization) are modified.

From the above, a basic requirement is that the
model must be constructed on-the-fly for any given
data and users preferences. Therefore, we implement
our model as a lightweight, main memory tree struc-
ture, which can be easily constructed on-the-fly. We
define two versions of this tree structure, following
data organization approaches well-suited to visual ex-
ploration and analysis context: the first version con-
siders fixed-range groups of data objects, whereas
the second considers fixed-size groups. Finally, our
structure allows efficient on-the-fly statistical compu-
tations, which are extremely valuable for the explo-
ration and analysis scenario.

The basic idea of our model is to hierarchically
group data objects based on values of one of their prop-
erties. Input data objects (i.e., RDF triples) are stored
at the leaves, while internal nodes aggregate their chil-
dren nodes. The root of the tree represents (i.e., ag-
gregates) the whole dataset. The basic concepts of our
model can be considered similar to a simplified ver-
sion of a static 1D R-Tree [34]. R-Tree is a disk-based
multi-dimensional indexing structure, which has been
proposed to efficiently handle spatial queries. In order
to provide efficient query processing in disk-based en-
vironment, R-Tree considers a large number of issues
(e.g., space coverage, nodes overlaps, fill guarantees,
etc.). On the other hand, we introduce a lightweight,
main memory structure that hierarchically organizes
1D data and is easily constructed on-the-fly. Also, the
proposed structure aims at organizing the data in a
practical manner for a (visual) exploration scenario,
rather than for indexing and querying efficiency.

Regarding the visual representation of the model
and data exploration, we consider that both data ob-
jects sets (leaf nodes) and entities representing groups

of objects (internal nodes) are visually represented en-
abling the user to explore the data in a hierarchical
manner. Starting either from the tree root or a leaf
node, the user visually interacts with organized data,
by traversing and rendering nodes of the tree. For ex-
ample, in a top-bottom traversal path, the user starts
from the root and, for each node, only its children are
rendered and are available for further exploration. In
the case that the current node is a leaf node, the actual
data objects (i.e., triples) are rendered. Note that our
tree structure organizes data in a hierarchical model
without setting any constraint at the way the user in-
teracts with these hierarchies. As such, it is possible
that different strategies can be adopted, regarding the
traversal policy, as well as the nodes of the tree that are
rendered in each visualization stage.

In the rest of this section, preliminaries are pre-
sented in Section 2.1. In Section 2.2, we introduce the
proposed tree structure. Sections 2.3 and 2.4 present
the two versions of the structure. Finally, Section 2.5
discusses the specification of the parameters required
for the tree construction, and Section 2.6 presents how
statistics computations can be performed over the tree.

p0 age 35 p5 age 35
p1 age 100 p6 age 45
p2 age 55 p7 age 80
p3 age 40 p8 age 20
p4 age 30 p9 age 50

Fig. 1. Running example input data (RDF triples)

2.1. Preliminaries

Given an RDF dataset R consisted of a set of RDF
triples. As input data, we assume a set of RDF triples
D, where D ⊆ R and triples in D have as objects ei-
ther numeric (e.g., xsd:int, xsd:decimal) or temporal
values (e.g., xsd:dateTime, xsd:date). In other words,
we consider triples that contain as predicates datatype
properties with either numeric or temporal ranges. Let
tr be an RDF triple, tr.s, tr.p and tr.o represent, re-
spectively, the subject, predicate and object of the RDF
triple tr.

Given input data D, S is an ordered set of RDF
triples, produced from D, where triples are sorted
based on objects’ values, in ascending order. As-
sume that S[i] denote to the i-th triple, with S[1] be
the first triple. Then, for each i < j, we have that
S[i].o ≤ S[j].o. Also, D = S, i.e., for each tr ∈ D iff
tr ∈ S.

4 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Figure 1 presents a set of 10 RDF triples, represent-
ing persons and their ages. For simplicity, the RDF
triples are presented in a simplified “abstract” form
(omitting namespaces and IRIs). Hence, in Figure 1,
we assume that the subjects p0-p9 are instances of a
class Person and the predicate age is a datatype prop-
erty with xsd:int range.

Example 1. From Figure 1 we assume the RDF
triple tr = p0 age 35, then we have that tr.s = p0,
tr.p = age and tr.o = 35. Additionally, considering
as input dataD, the set of all RDF triples in Figure 1,
the ordered set S is resulted by ordering the triples
D based on object values, in ascending order, i.e.,
S = {p8 age 20, p4 age 30, p0 age 35, p5 age 35,
p3 age 40, p6 age 45, p9 age 50, p2 age 55, p7 age 80,
p1 age 100}. In S we have that, S[1] = p8 age 20
and S[10] = p1 age 100. �

Assume an interval I = [a, b], where a, b ∈ R; then,
I = {k ∈ R | a ≤ k ≤ b}. Similarly, for I = [a, b),
we have that I = {k ∈ R | a ≤ k < b}. Let I− and
I+ denote the lower or upper bound of the interval I ,
respectively. That is, given I = [a, b], then I− = a
and I+ = b. The length of an interval I is defined as
|I+ − I−|.

In this work we assume rooted trees. The number of
the children of a node is its degree. Nodes with degree
0 (i.e., no children) are called leaf nodes. The level of
a node is defined by letting the root be at level zero. If
a node is at level l, then its children are at level l + 1.
The height of a tree is the maximum level of any node
in the tree. Any non-leaf node is called internal node.
The degree of a tree is the maximum degree of a node
in the tree. An ordered tree is a tree where the children
of each node are ordered. Balanced is a tree where the
level of each leaf node differs at most one from the
level of other leaves nodes. A tree is called an m-ary
tree if every internal node has no more than m chil-
dren. A full m-ary tree is a tree where every internal
node has exactly m children.

2.2. The HETree Structure

In this section, we present in more details the
HETree structure. HETree hierarchically organizes nu-
meric and temporal1 data into groups; intervals are

1Note that, our structure uniformly handles numeric and temporal
data. Also, other types of one-dimensional data may be supported,
with the requirement that a total order can be defined over the data.

used to represents these groups. HETree is defined by
the tree degree and the number of leaf nodes2. Es-
sentially, the number of leaf nodes corresponds to the
number of groups where input data objects are orga-
nized. The tree degree corresponds to the (maximum)
number of groups where a group is split in the lower
level.

Given a set of RDF triples D, a positive integer l
denoting the number of leaf nodes; and a positive inte-
ger d denoting the tree degree; a HETree (D, l, d) is an
ordered balanced d-ary tree, with the following basic
properties.

− The tree has exactly l number of leaf nodes.
− Each leaf node contains a set of RDF triples,

sorted in ascending order based on their objects’
values.

− Each internal node, has at most d children nodes.
Let n be an internal node, n.ci denote the i-th
child for the node n, with n.c1 be the leftmost
child.

− Each node corresponds to an interval. Given a
node n, n.I denote the interval for the node n.

− At each level, all nodes are sorted based on the
lower bounds of their intervals. That is, let n be
an internal node, for any i < j, we have that
n.ci.I

− ≤ n.cj .I−.
− For a leaf node, its interval is bound by the ob-

jects’ values of the triples included in this leaf
node. Let n be the leftmost leaf node; assume
that n contains x triples from D. Then, we have
that n.I− = S[1].o and n.I+ = S[x].o, where S
is the ordered RDF set resulted from D.

− For an internal node, its interval is bound by
the union of the intervals of its children. That
is, let n be an internal node, having k chil-
dren nodes; then, we have n.I− = n.c1.I

− and
n.I+ = n.ck.I

+.

Example 2. Given the set of RDF triples D from
Figure 1. Figure 2 presents a HETree with five leaf
nodes (i.e., l = 5) and degree equal to three (i.e.,
d = 3). Considering the leftmost leaf node d, we
can see that it contains two triples in the following
order p8 age 20, p4 age 30. As a result, the lower
bound for the its interval, is equal to the value of the
first triple object, i.e., d.I− = 20; the upper bound

2Note that, following a similar approach, the HETree can also be
defined by specifying the tree height instead of degree or number of
leaves.

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 5

is equal to the value of the last triple object, i.e.,
d.I+ = 30. For the internal node b, its interval is
bound by the intervals of its children nodes (d, e, f);
i.e., considering the lower bound of its leftmost child
(i.e., 20) and the upper bound of its rightmost child
(i.e., 45). �

[20, 100]

[20, 45] [50, 100]

[50, 55] [80, 100][37, 45][20, 30] [35, 35]
p7 age 80
p1 age 100

p8 age 20
p4 age 30

p0 age 35
p5 age 35

p3 age 37
p6 age 45

p9 age 50
p2 age 55

a

b c

d e f g h

Fig. 2. A Content-based HETree (HETree-C)

We, furthermore, present two different approaches
for organizing the data in the HETree. Assume the
scenario in which, a user wishes to (visually) explore
and analyse the historic events from DBpedia, per
decade. In this case, user orders historic events by their
dates and organizes them into groups of equal ranges
(i.e., decade). In a second scenario, assume that a user
wishes to analyse in the Eurostat dataset the gross do-
mestic product (GDP) organized into fixed groups of
countries. In this case, the user is interested in find-
ing information like: the range and the variance of the
GDP values over the top-10 countries with the highest
GDP factor. In this scenario, the user orders countries
by their GDP and organizes them into groups of equal
sizes (i.e., 10 countries per group).

In the first approach, we organize RDF triples into
groups, where the objects values of each group cov-
ers equal range of values. In the second approach, we
organize RDF triples into groups, where each group
contains the same number of triples. In the following
sections, we present in details the two approaches for
organizing the data in the HETree.

2.3. A Content-based HETree (HETree-C)

In this section we introduce a version of the HETree,
named HETree-C (Content-based HETree). This
HETree version organizes data into equally sized
groups. The basic property of the HETree-C is that
each leaf node contains approximately the same num-

ber of RDF triples and the content (i.e., triples) of a
leaf node specifies its interval. For the tree construc-
tion, the triples are first assigned to the leaves and then
the intervals are defined.

A HETree-C (D, l, d) is a HETree, with the fol-
lowing extra property. Each leaf node contains λ or
λ − 1 triples, where λ =

⌈
|D|
l

⌉
3. Particularly, the

l− (λ · l−|D|) leftmost leaves contain λ triples, while
the rest leaves contain λ − 1. We can equivalently de-
fine the HETree-C by providing the number of triples
per leaf λ, instead of the number of leaves l.

Example 3. Figure 2 presents an HETree-C con-
structed by considering the set of RDF triples D
from Figure 1, l = 5 and d = 3. As we can observe,
all the leaf nodes contain equal number of triples.
Particularly, we have that λ =

⌈
10
5

⌉
= 2. Also, we

have that the 5 − (2 · 5 − 10) = 5 leftmost leaves
(i.e., all leaves in this case), will contain λ triples.
As we can verify from Figure 2, all leaves (d, e, f ,
g, h) contain 2 triples. Note also that all nodes in
HETree-C define closed intervals. �

Algorithm 1. Create HETree-C (D, l, d)
Input: D: set of triples; l: number of leaf nodes;

d: tree degree
Output: r: root node of the HETree-C tree

1 S ← sort D based on objects values
2 L← ConstructLeaves-C(S, l)
3 r ← ConstructIntervalNodes(L, d)
4 return r

2.3.1. The HETree-C Construction
We construct the HETree-C in a bottom-up way.

Algorithm 1 describes the HETree-C construction. The
algorithm takes as input: (1) a set of RDF triples D;
(2) the number of leaf nodes l; and (3) the tree de-
gree d. Initially, the algorithm sort the RDF triples
set D in ascending order, based on triples objects
values (line 1). Then, the algorithm uses two main
procedures to construct the tree. The first procedure,
named ConstructLeaves-C, creates the leaf nodes
of the tree (line 2). The second procedure, named
ConstructInternalNodes, creates the internal nodes of
the tree (line 3). Finally, the root node of the con-
structed tree is returned (line 4).

3We assume here that, the number of triples is greater than the
number of leaves; i.e., |D| > l.

6 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Procedure 1: ConstructLeaves-C(S, l)
Input: S: ordered set of triples; l: number of leaf nodes
Output: L: ordered set of leaf nodes

1 λ←
⌈
|S|
l

⌉
2 k ← l − (λ ∗ l − |S|)
3 firstTriple← 1
4 for i← 1 to l do
5 create an empty leaf node n
6 if i ≤ k then
7 numOfTriples← λ
8 else
9 numOfTriples← λ− 1

10 lastTriple← firstTriple+ numOfTriples
11 for t← firstTriple to lastTriple do
12 insert triple S[t] into leaf node n

13 n.I− ← S[firstTriple].o
14 n.I+ ← S[lastTriple].o
15 L[i]← n
16 firstTriple← lastTriple+ 1

17 return L

Procedure 1 presents the pseudocode for the
ConstructLeaves-C procedure. First, the procedure
uses an ordered set of RDF triples S and creates l
leaf nodes containing the S triples. Then, the pro-
cedure computes the number of triples per leaf λ
(line 1), as well as the number of leaves that contain
λ triples (line 2). Then, l leaf nodes are constructed
(lines 4–16). For the first k leaves, λ triples are in-
serted, while for the rest leaves, λ − 1 triples are in-
serted (lines 6–9). The interval of each leaf is specified
by the objects values of the first and last triple inserted
in this leaf (lines 13–14). Finally, the set of created leaf
nodes is returned (line 17).

Procedure 2 describes the ConstructInternalNodes
procedure. This procedure builds the internal nodes in
a recursive manner. Particularly, the procedure takes as
input a set of nodesH , as well as the tree degree d. The
basic idea of this procedure is the following. For the
nodes H , their parents nodes P are created; then, the
procedure calls itself using as input the parent nodesP .
The recursion terminates when the number of created
parent nodes is equal to one; i.e., the root of the tree is
created.

In more details, the procedure computes the num-
ber of parents to be created (line 1), as well as the
degree for the last parent (line 2). Then, the pro-
cedure creates numOfParents nodes (lines 4–16), for
each parent node the appropriate children nodes are
assigned (lines 11–12). The interval of each parent

Procedure 2: ConstructIntervalNodes(H , d)
Input: H: ordered set of nodes; d: tree degree
Output: r: root node for H
Variables: P : ordered set of H’s parent nodes

1 numOfParents←
⌈
|H|
d

⌉
2 lastParentDegree← d− (numOfParents ∗ d− |H|)
3 firstChild← 1
4 for p← 1 to numOfParents do
5 create an empty internal node n
6 if p = numOfParents then
7 numOfChildren← lastParentDegree
8 else
9 numOfChildren← d

10 lastChild← firstChild+ numOfChildren
11 for j ← firstChild to lastChild do
12 n.cj ← H[j]

13 n.I− ← H[firstChild].I−

14 n.I+ ← H[lastChild].I+

15 P [p]← n
16 firstChild← lastChild+ 1

17 if numOfParents=1 then
18 r ← P
19 return r
20 else
21 return ConstructIntervalNodes(P, d)

node is specified by the intervals of its children nodes
(lines 13–14). After the creation of the parent nodes
and based on their number, the procedure either returns
the created nodes (in case of one parent node) (line 19),
or call itself using as input the created parent nodes P
(line 21).

Computational Analysis. The computational cost for
the HETree-C construction algorithm (Algorithm 1)
is the sum of three parts. Assume that |D| = κ. The
first is sorting the input data, which can be done in
the worst case in O(κlogκ), employing a linearithmic
sorting algorithm; e.g., merge-sort. The second part
is the ConstructLeaves-C procedure, which requires
O(l · λ) = O(l ·

⌈
κ
l

⌉
) = O(κ). The third part is the

ConstructInternalNodes procedure, which requires
O(
⌈
l
d

⌉
·d+

⌈
l
d2

⌉
·d+

⌈
l
d3

⌉
·d+. . .) = O(

⌈
l
d

⌉
·d). Since

we have that κ > l, then in worst case O(
⌈
l
d

⌉
· d) =

O(
⌈
κ
d

⌉
· d) = O(κ). Therefore, the overall com-

putational cost for the HETree-C construction in the
worst case is O(κlogκ + κ + κ) = O(κlogκ) =

O(|D|log|D|).

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 7

2.4. A Range-based HETree (HETree-R)

The second version of the HETree is called
HETree-R (Range-based HETree). HETree-R orga-
nizes data into equally ranged groups. The basic prop-
erty of the HETree-R is that each leaf node covers
an equal range of values. Therefore, in HETree-R, the
data space defined by the objects values is equally
divided over the leaves. Opposite to HETree-C, in
HETree-R the interval of a leaf specifies its content.
Therefore, for the HETree-R construction, the inter-
vals of all leaves are first defined and then triples are
inserted.

A HETree-R (D, l, d) is a HETree, with the follow-
ing extra property. The interval of each leaf node has
the same length; i.e., covers equal range of values.
Formally, let S be the sorted RDF set resulted from
D, for each leaf node its interval has length ρ, where
ρ = |S[1].o−S[|S|].o|

l
4. Therefore, for a leaf node n, we

have that |n.I− − n.I+| = ρ. For example, for the
leftmost leaf, its interval is [S[1].o, S[1].o + ρ). The
HETree-R is equivalently defined by providing the in-
terval length ρ, instead of the number of leaves l.

[20, 100]

[20, 68) [68, 100]

[68, 84) [84, 100][52, 68)[20, 36) [36, 52)
p1 age 100p8 age 20

p4 age 30
p0 age 35
p5 age 35

p3 age 37
p6 age 45
p9 age 50

p2 age 55

a

b c

d e f g h

p7 age 80

Fig. 3. A Range-based HETree (HETree-R)

Example 4. Figure 3 presents a HETree-R tree con-
structed by considering the set of triples D (Fi-
grue 1), l = 5 and d = 3. As we can observe from
Figure 3, each leaf node covers equal range of val-
ues. Particularly, we have that the interval of each
leaf must have length ρ = |20−100|

5 = 16. Hence,
the leftmost leaf d has the interval [20, 20 + 16).
Based on the specified intervals, the d leaf node con-
tains four triples, the e leaf three triples, while the

4We assume here that, there is at least one triple in D with differ-
ent object value than the rest triples.

rest leaves contain one triple. Note that, all nodes in
HETree-R define closed-open intervals, except the
rightmost node in each level, which defines a closed
interval. �

Algorithm 2. Create HETree-R (D, l, d)
Input: D: set of triples; l: number of leaf nodes;

d: tree degree
Output: r: root node of the HETree-R tree

1 S ← sort D based on objects values
2 L← ConstructLeaves-R(S, l)
3 r ← ConstructIntervalNodes(L, d)
4 return r

2.4.1. The HETree-R Construction
This section studies the construction of the

HETree-R structure. The HETree-R is also constructed
in a button-up fashion.

Algorithm 2 presents the algorithm for the
HETree-R construction. The algorithm takes as input:
(1) a set of RDF triples D; (2) the number of leaf
nodes l; and (3) the tree degree d. Similarly to Al-
gorithm 1, after sorting the triples (line 1), the algo-
rithm uses two main procedures to build the tree. The
ConstructLeaves-R procedure creates the leaf nodes
of the HETree-R (line 2); the ConstructInternalNodes
procedure (line 3) is the same with that in the Al-
gorithm 1 and creates the internal nodes. Finally, the
HETree-R root node is returned (line 4).

Procedure 3 presents the ConstructLeaves-R proce-
dure. The procedure takes as input an ordered set of
RDF triples S, as well as the number of leaves nodes l.
First, the procedure computes the range ρ of the leaves
(line 1). Then, it constructs l leaf nodes (lines 2–9) and
assigns same intervals to all of them (lines 4–8). Af-
terwards, it traverse all RDF triples in S (lines 10–12)
and place them to the appropriate leaf node (line 12).
Finally, it removes empty leaf nodes (lines 13–15) and
the set of created leaves is returned (line 16).

Computational Analysis. The computational cost for
the HETree-R construction algorithm (Algorithm 2) is
again the sum of three parts. The first and the third
part are the same as in Algorithm 1. Assume again that
|D| = κ. The second part is the ConstructLeaves-R
procedure, which requires O(l + κ+ l). Since we
have that κ > l, then O(l + κ+ l) = O(κ). Using the
computational costs for the first and the third part from
Section 2.3.1, we have that in worst case, the overall

8 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Procedure 3: ConstructLeaves-R(S, l)
Input: S: ordered set of triples; l: number of leaf nodes
Output: L: ordered set of leaf nodes

1 ρ← |S[1].o−S[|S|].o|
l

2 for i← 1 to l do
3 create an empty leaf node n
4 if i = 1 then
5 n.I− ← S[1].o
6 else
7 n.I− ← L[i− 1].I+

8 n.I+ ← n.I− + ρ
9 L[i]← n

10 for t← 1 to |S| do
11 j ←

⌊
S[t].o−S[1].o

ρ

⌋
+ 1

12 insert triple S[t] into leaf node L[j]

13 for i← 1 to l do
14 if L[i] does not contain triples then
15 remove L[i];

16 return L

computational cost for the HETree-R construction is
O(κlogκ+ κ+ κ) = O(κlogκ) = O(|D|log|D|).

2.5. Setting the HETree Parameters

In our working scenario, the user specifies the pa-
rameters required for the HETree construction (e.g.,
number of leaves l). In this section, we describe our
approach for automatically calculating the HETree pa-
rameters based on the input data, when no user prefer-
ences are provided. Our goal is to derive the parame-
ters by the input data, such that the resulting HETree
can address some basic guidelines set by the visualiza-
tion environment. In what follows, we discuss in de-
tails the proposed approach.

An important parameter in hierarchical visualiza-
tions is the minimum and maximum number of objects
that can be effectively rendered in the most detailed
level5. In our case, the above numbers correspond to
the number of triples contained in the leaf nodes. The
proper calculation of these numbers is crucial such that
the resulted tree avoids overloaded and scattered visu-
alizations.

Therefore, in HETree construction, our approach
considers the minimum and the maximum number of
triples per leaf node, denoted as λmin and λmax, re-
spectively. Besides the number of objects rendered

5Similar bounds can also be defined for other tree levels.

Table 1
Number of leaf nodes for full balanced m-ary trees

Degree

Height 2 3 4 5 6

1 2 3 4 5 6
2 4 9 16 25 36
3 8 27 64 625 216
4 16 81 256 3125 1296
5 32 243 1024 15625 7776
6 64 729 4048 78125 46656

in the lowest level, our approach consider full m-ary
trees, such that a more “uniform” structure (i.e., all the
groups are divided into same number of groups) is re-
sulted. The following example illustrates our approach
to calculate the HETree parameters.

Example 5. Assume that, based on the adopted visu-
alization technique, the ideal number of data objects
to be rendered in the lowest level in the screen, is be-
tween 25 and 50. Hence, we have that λmin = 25
and λmax = 50.

Now, let’s assume that we want to visualize
the RDF triples set D1, using a HETree-C, where
|D1| = 500. Based on the number of triples and the
λ bounds, we can estimate the bounds for the num-
ber of leaves. Let lmin and lmax denote the mini-
mum and the upper bound for the number of leaves.

Therefore, we have that
|D1|
λmax

≤ l ≤ |D1|
λmin

⇔
500

50
≤ l ≤ 500

25
⇔ 10 ≤ l ≤ 20.

Hence, our HETree-C should have between
lmin = 10 and lmax = 20 leaf nodes. Since, we
are adopting full m-ary trees, from Table 1 we can
indicate the tree characteristics that conform with
the number of leaves guideline. The candidate set-
tings (i.e., leaf number and degree) are indicated
in Table 1, using dark-grey colour. The setting with
d = 2, is rejected since is considered an “extreme”
choice for a visualization scenario. Note that, in our
work, in any case we assume settings with d ≥ 3 and
height ≥ 2. Therefore, a HETree-C with l = 16 and
d = 4 is a suitable structure for our case.

Now, let’s assume that we want to visualize the
RDF triples set D2, where |D2| = 1000. Follow-
ing a similar approach, we have that 20 ≤ l ≤ 40.
The candidate settings are indicated in Table 1 using
light-grey colour. Also, here the setting with d = 2,
is rejected. Hence, we have the following settings

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 9

that satisfy the considered guideline: (1) l = 27,
d = 3; (2) l = 25, d = 5; and (3) l = 36, d = 6.

In case, where more than one settings satisfy the
considered guideline, we select the preferable one
according to following set of rules. From the can-
didate settings, we prefer the setting which results
in the highest tree (1st Criterion). In case that the
highest tree is constructed by more than one set-
tings, we consider the distance c, between l and
the centre of lmin and lmax (2nd Criterion); i.e.,
c = |l − lmin+lmax

2 |. The setting with the lowest c
value is selected. Note that, based on the visualiza-
tion context, different criteria and preferences may
be followed.

In our example, from the candidate settings, the
setting (1) is selected, since it will construct the
highest tree (height=3, Table 1). On the other hand,
the settings (2) and (3) will construct trees with
lower heights (height=2).

Now, assume a scenario where only the set-
tings (2) and (3) are candidates. In this case, since
both settings result to trees with equal heights, the
2nd Criterion is considered. Hence, for the (2) set-
ting we have c2 = |25 − 20+40

2 | = 5. Similarly, for
the (3) setting c3 = |36 − 20+40

2 | = 6. Therefore,
between the settings (2) and (3), the setting (2) is
preferable, since c2 < c3.

In case of HETree-R, a similar approach is fol-
lowed, assuming normal distribution over the values
of the triples objects. �

2.6. Statistics Computations over HETree

Data statistics is a crucial aspect in the context of
hierarchical visual exploration and analysis. Statistical
informations over groups of objects offer rich insights
on the underlying data. In this way, useful information
regarding different set of objects with common char-
acteristics is provided. Additionally, this information
may also guide the users through their navigation over
the hierarchy.

In this section, we present how statistics compu-
tation is performed over the nodes of the HETree.
Statistics computations exploit two main aspects of
the HETree structure: (1) the internal nodes cover (ag-
gregate) their children nodes; and (2) the tree is con-
structed in bottom-up fashion. Statistics computation
is performed during the tree construction; for the leaf
nodes, we gather statistics from the triples they con-

[20, 100]

[20, 45] [50, 100]

[50, 55] [80, 100][37, 45][20, 30] [35, 35]
p7 age 80
p1 age 100

p8 age 20
p4 age 30

p0 age 35
p5 age 35

p3 age 37
p6 age 45

p9 age 50
p2 age 55

a

b c

d e f g h

N = 2
 = 25
 2 = 25

N = 2
 = 35
 2 = 0

N = 2
 = 41
 2 = 16

N = 2
 = 52.5
 2 = 6.25

N = 2
 = 90
 2 = 100

N = 6
 = 33.7
 2 = 57.2

N = 4
 = 71.3
 2 = 404.7

N = 10
 = 48.7
 2 = 535.2

Fig. 4. Statistics computation over HETree

tain, whereas for the internal nodes we aggregate the
statistics of their children.

For simplicity, here, we assume that each node
contains the following extra fields, used for simple
statistics computations, although more complex or
RDF-related (e.g., most common subject, subject with
the minimum value, etc.) statistics can be computed.
Assume a node n, as n.N we denote the number of
RDF triples covered by n; as n.µ and n.σ2 we denote
the mean and the variance of the triples objects val-
ues covered by n, respectively. Additionally, we as-
sume the minimum and the maximum values, denoted
as n.min and n.max, respectively.

Statistics computations can be easily performed in
the construction algorithms (Algorithms 1 & 2) with-
out any modifications. The follow example illustrates
these computations.

Example 6. In this example we assume the
HETree-C presented in Figure 2. Figure 4 shows the
HETree-C with the computed statistics in each node.
When all the leaf nodes have been constructed, the
statistics for each leaf is computed. For instance, we
can see from Figure 4, that for the rightmost leaf
h we have: h.N = 2, h.µ = 80+100

2 = 90 and
h.σ2 = 1

2 · ((80− 90)2+(100− 90)2) = 100. Also,
we have h.min = 80 and h.max = 100. Note that,
in the HETree-C case, for each node, the min and
max correspond to its interval bounds. Following
the above process, we compute the statistics for all
leaf nodes.

Then, for each parent node we construct, we com-
pute its statistics using the computed statistics of
its children nodes. Considering the c internal node,
with the children nodes g and h, we have that
c.min = 50 and c.max = 100. Also, we have
that c.N = g.N + h.N = 2 + 2 = 4. Now

10 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

D
at

a
&

 S
ch

e
m

a

H
an

dl
er

V
is

u
al

iz
at

io
n

M

o
d

u
le

Input Data
RDF/S ‒ OWL

Faceted Search

Chart Timeline

MetadataTreemap

Statistics

Hierarchical Visual
Exploration

User Preferences

Facets
Generator

Statistics
Generator

Metadata
Extractor

 Data

H
ie

ra
rc

h
y

Sp
ec

if
ie

r

H
ie

ra
rc

h
ic

al

M
o

de
l M

od
ul

e

H
ie

ra
rc

h
y

C
on

st
ru

ct
or

St
at

is
ti

cs

P
ro

ce
ss

or

Fig. 5. System architecture

we will compute the mean value by combining the
children mean values: c.µ = g.N ·g.µ+h.N ·h.µ

g.N+h.N =
2·52.5+2·90

2+2 = 71.3. Similarly, for variance we have

c.σ2 = g.N ·g.σ2+h.N ·h.σ2+g.N ·(g.µ−c.µ)2+h.N ·(h.µ−c.µ)2
g.N+h.N =

2·6.25+2·100+2·(52.5−71.3)2+2·(90−71.3)2
2+2 = 404.7.

The similar approach is also followed for the case
of HETree-R. �

3. The rdf:SynopsViz Tool

Based on the proposed hierarchical model, we have
developed a web-based prototype called rdf:SynopsViz6.
The key features of rdf:SynopsViz are summarized
as follows: (1) It supports the aforementioned hier-
archical model for RDF data visualization, brows-
ing and analysis. (2) It offers automatic on-the-fly hi-
erarchy construction, as well as user-defined hierar-
chy construction based on user’s preferences. (3) Pro-
vides faceted browsing and filtering over classes and
properties. (4) Integrates statistics with visualization;
visualizations have been enriched with useful statis-
tics and data information. (5) Offers several visual-
izations techniques (e.g., timeline, chart, treemap). (6)
Provides a large number of dataset’s statistics regard-
ing the: data-level (e.g., number of sameAs triples),
schema-level (e.g., most common classes/properties),
and structure level (e.g., entities with the larger in-
degree). (7) Provides numerous metadata related to
the dataset: licensing, provenance, linking, availability,
undesirability, etc. The latter can be considered useful
for assessing data quality [75].

In the rest of this section, Section 3.1 describes the
system architecture, Section 3.2 demonstrates the basic
functionality of the rdf:SynopsViz. Finally, Section 3.3
provides technical information about the implementa-
tion.

6synopsviz.imis.athena-innovation.gr

3.1. System Architecture

The architecture of rdf:SynopsViz is presented in
Figure 5. Our scenario involves three main parts: the
Client GUI, the rdf:SynopsViz, and the Input data. The
Client part, corresponds to the system’s front-end of-
fering several functionalities to the end-users. For ex-
ample, hierarchical visual exploration, facet search,
etc. (see Section 3.2 for more details). rdf:SynopsViz
consumes RDF data as Input data; optionally, OWL-
RDF/S vocabularies/ontologies describing the input
data can be loaded. Next, we describe the basic com-
ponents of the rdf:SynopsViz.

In the preprocessing phase, the Data and Schema
Handler parses the input data and inferes schema in-
formation (e.g., properties domain(s)/range(s), class/
property hierarchy, type of instances, type of proper-
ties, etc.). Facets Generator generates class and prop-
erty facets over input data. Statistics Generator com-
putes several statistics regarding the schema, instances
and graph structure of the input dataset. Metadata Ex-
tractor collects dataset metadata. Note that, the model
construction does not require any preprocessing, it is
performed online, according to user interaction.

During runtime the following components are in-
volved. Hierarchy Specifier is responsible for man-
aging the configuration parameters of our hierarchy
model, e.g., the number of hierarchy levels, the num-
ber of nodes per level, and providing this informa-
tion to the Hierarchy Constructor. Hierarchy Construc-
tor implements our tree structure. Based on the se-
lected facets, and the hierarchy configuration, it de-
termines the hierarchy of groups and the contained
triples. Statistics Processor computes statistics about
the groups included in the hierarchy. Visualization
Module allows the interaction between the user and
the back-end, allowing several operations (e.g., navi-
gation, filtering, hierarchy specification) over the vi-
sualized data. Finally, the Hierarchical Model Module
maintains the in-memory tree structure for our model
and communicates with the Hierarchy Constructor for

http://synopsviz.imis.athena-innovation.gr

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 11

Fig. 6. Web user interface

the model construction, the Hierarchy Specifier for the
model customization, the Statistics Processor for the
statistics computations, and the Visualization Module
for the visual representation of the model.

3.2. rdf:SynopsViz In-Use

In this section we outline the basic functionality of
rdf:SynopsViz prototype. Figure 6 presents the web
user interface of the main window. rdf:SynopsViz UI
consists of the following main panels: Facets panel:
presents and manages facets on classes and properties;
Input data control panel: enables the user to import
and manage input datasets; Visualization panel: is the
main area where interactive charts and statistics are
presented; Configuration panel: handles visualization
settings.

Initially, users are able to select a dataset from a
number of offered real-word LD datasets (e.g., DBpe-
dia, Eurostat) or upload their own. Then, for the se-
lected dataset, the users are able to examine several of
the dataset’s metadata, and explore several datasets’s
statistics.

Using the facets panel, users are able to navigate and
filter data based on classes, numeric and date proper-
ties. In addition, through facets panel several informa-
tion about the classes and properties (e.g., number of

instances, domain(s), range(s), IRI, etc.) are provided
to the users through the UI.

Users are able to visually explore data by consid-
ering properties’ values. Particularly, area charts and
timeline-based area charts are used to visualize the
resources considering the user’s selected properties.
Classes’ facets can also be used to filter the visual-
ized data. Initially, the top level of the hierarchy is pre-
sented providing an overview of the data, organized
into top-level groups; the user can interactively drill-
down (i.e., zoom-in) and roll-up (i.e., zoom-out) over
the group of interest, up to the actual values of the
raw input data (i.e., RDF triples). At the same time,
statistical information concerning the hierarchy groups
as well as their contents (e.g., mean value, variance,
sample data, range) are presented through the UI (Fig-
ure 6). Regarding the most detailed level (i.e., RDF
triples), several visualization types are offered; e.g.,
area, column, line, spline, areaspline, etc. (Figure 7).

In addition, users are able to visually explore data,
through class hierarchy. Selecting one or more classes,
users can interactively navigate over the class hier-
archy using treemaps. Properties’ facets can also be
used to filter the visualized data. In rdf:SynopsViz
the treemap visualization has been enriched with
schema and statistical information. For each class,
schema metadata (e.g., number of instances, sub-

12 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Fig. 7. RDF data object (i.e., most detailed level) visualization ex-
ample

classes, datatype/object properties) and statistical in-
formation (e.g., the cardinality of each property, min,
max value for datatype properties) are provided (Fig-
ure 8).

Finally, users can interactively modify the hierarchy
specifications. Particularly, they are able to increase or
decrease the level of abstraction/detail presented, by
modifying both the number of hierarchy levels, and
number of nodes per level.

A video presenting the basic functionality of our
prototype is available at youtu.be/n2ctdH5PKA0.
Finally, a demonstration of rdf:SynopsViz tool is pre-
sented in [14].

3.3. Implementation

rdf:SynopsViz is implemented on top of several
open source tools and libraries. The back-end of our
system is developed in Java, Jena framework7 is used
for RDF data handing and Jena TDB is used for disk-
based RDF storing. The front-end prototype, is devel-
oped using HTML and Javascript. Regarding visual-
ization libraries, we use Highcharts8, for the area, col-

7jena.apache.org
8www.highcharts.com

Fig. 8. Treemap enriched with schema & statistical information

umn, line, spline, areaspline and timeline-based charts
and Google Charts9 for treemap and pie charts.

4. Related Work

This section reviews related work on LD visualiza-
tion and exploration (Section 4.1), LD statistical anal-
ysis (Section 4.2) and finally hierarchical visualization
techniques (Section 4.3).

4.1. Linked Data Visualization & Exploration

A large number of works studying issues related
to LD visual exploration and analysis have been pro-
posed in the literature [23,53]. In what follows, we
classify these works into six categories: (1) Browsers,
(2) Generic visualization tools, (3) Domain, vocab-
ulary & environment-specific visualization tools, (4)
Graph-based visualization tools, (5) Ontology visual-
ization tools, and (6) Visualization libraries.

Browsers. LD browsers have been the first tools de-
veloped for LD utilization and analysis. Similarly to
the traditional ones, LD browsers provide the func-
tionality for link navigation and user-friendly repre-
sentation of LD resources and their properties; thus
enabling browsing and exploration of LD in a most
intuitive way. LD browsers mainly use tabular views
and links to provide navigation over the LD resources.
In this category we can mention the following LD
browsers, VisiNav [36], LESS [7], Explorator [3], Tab-
ulator [13], Noadster [59], Haystack [57], Dipper10,
Disco11, graphite12, Information Workbench13, mar-

9developers.google.com/chart
10api.talis.com/stores/iand-dev1/items/dipper.html
11www4.wiwiss.fu-berlin.de/bizer/ng4j/disco
12graphite.ecs.soton.ac.uk/browser
13iwb.fluidops.com

http://youtu.be/n2ctdH5PKA0
http://jena.apache.org
http://www.highcharts.com
https://developers.google.com/chart
http://api.talis.com/stores/iand-dev1/items/dipper.html
http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco
http://graphite.ecs.soton.ac.uk/browser/
http://iwb.fluidops.com

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 13

bles14, OpenLink Data Explorer15, URI Burner16 and
Zitgist17.

Generic Visualization Tools. In the context of LD vi-
sual exploration, there is a large number of generic vi-
sualization frameworks, that offer a wide range of vi-
sualization types and operations. In what follows we
outline the most widely known tools in this category.

Rhizomer [19] provides LD exploration based on a
overview, zoom and filter workflow. Rhizomer offers
various types of visualizations such as map, timeline,
treemap and chart. Payola [45] is a generic framework
for LD visualization and analysis. The framework of-
fers a variety of domain-specific analysis and visual-
ization plugins (e.g., graphs, tables, etc.). In addition,
Payola offers collaborative features in which users can
create and share analyzers. Finally, in Payola the vi-
sualizations can be customized according to ontolo-
gies used in the resulting data. The Linked Data Visu-
alization Model (LDVM) [18] provides an abstract vi-
sualization process for LD datasets. LDVM allows to
connect different datasets with various kinds of visu-
alizations in a dynamic way. The visualization process
follows a four stages workflow: Source data, Analyt-
ical abstraction, Visualization abstraction, and View.
LDVM considers several visualizations techniques,
e.g., circle, sunburst, treemap, etc. Balloon Synopsis
[62] provides an easy-to-use LD visualizer based on
HTML and JavaScript. It adopts a node-centric visu-
alization approach in a modern tile design. Finally, it
supports automatic information enhancing, similarity
analysis and ontology templates. Vis Wizard [72] is a
Web-based visualization tool which exploits data se-
mantics to simplify process of setting up visualiza-
tions. In addition, Vis Wizard is able to analyse multi-
ple datasets using brushing and linking methods. Sim-
ilarly, Linked Data Visualization Wizard (LDVizWiz)
[4] provides a semi-automatic way for the production
of possible visualization for LD datasets. SemLens [39]
is a visual tool that combines scatter plots and seman-
tic lenses, offering visual discovery of correlations and
patterns in data. Objects are arranged in a scatter plot
and are analysed using user-defined semantic lenses.
Hide the stack [24] proposes an approach for visu-
alizing LD for mainstream end-users. Semantic Web
technologies (e.g., RDF, SPARQL) are utilized, but are

14mes.github.io/marbles
15lod.openlinksw.com/ode
16linkeddata.uriburner.com
17dataviewer.zitgist.com

“hidden” from the end-users. Particularly, a template-
based visualization approach is adopted, where the in-
formation for each resource is presented based on its
rdf:type.

Domain, Vocabulary & Environment-specific Visu-
alization Tools. Several tools have been developed
to provide domain-specific visualization operations.
For example, Map4rdf [50], Facete [68], SexTant [12]
and LinkedGeoData browser [67] focus on visualizing
geo-spatial data. Furthermore, VISU [2] consider uni-
versity data.

There are also some vocabulary-based visualization
tools, which are based on specific vocabularies, such
as the following works focusing on multidimensional
LD modelled in the DataCube vocabulary: CubeViz
[30], Payola Data Cube Vocabulary [40], OpenCube
[43], CSV2DataCube [60] and Linked Data Cubes Ex-
plorer18. Similarly, FOAF.vix19 and FoaF Explorer20

target the FOAF vocabulary.
Finally, there are efforts for tools that are designed

for specific environments. For example, Who’s Who
[21] and DBpedia Mobile [9] focus on mobile environ-
ments.

Graph-based Visualization Tools. A large number
of tools visualize LD datasets adopting a graph-
based (a.k.a., node-link) approach. In this category,
we can mention IsaViz [56], Fenfire [37], Lodlive [20],
RelFinder [38], LODWheel [70], Trisolda [26,27],
PGV [25], LODeX [11], Welkin21, RDF-Gravity22, Vi-
sualRDF23 and RDF graph visualizer [61].

Ontology Visualization Tools. The problem of on-
tology visualization and exploration have been exten-
sively studied for many years [32,28,35,49,44]. In ex-
isted works, several approaches have been adopted.
For example, KC-Viz [54], VOWL2 [51], GLOW [42],
SOVA [15], FlexViz [31] and GrOWL [47] follow the
node-link paradigm, CropCircles [74] uses geomet-
ric containment, Knoocks [46] combines containment-
based and node-link approaches and OntoTrix [8] uses
node-link and adjacency matrix representations.

Visualization Libraries. Finally, there is a variety
of Javascript libraries which allow LD visualiza-

18km.aifb.kit.edu/projects/ldcx
19foaf-visualizer.gnu.org.ua
20xml.mfd-consult.dk/foaf/explorer
21simile.mit.edu/welkin
22semweb.salzburgresearch.at/apps/rdf-gravity
23github.com/alangrafu/visualRDF

http://mes.github.io/marbles/
http://lod.openlinksw.com/ode
http://linkeddata.uriburner.com
http://dataviewer.zitgist.com
http://km.aifb.kit.edu/projects/ldcx
http://foaf-visualizer.gnu.org.ua
http://xml.mfd-consult.dk/foaf/explorer
http://simile.mit.edu/welkin
http://semweb.salzburgresearch.at/apps/rdf-gravity
https://github.com/alangrafu/visualRDF

14 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

tions to be embedded in Web pages. Sgvizler [66]
is a JavaScript wrapper for visualizing SPARQL re-
sults. Sgvizler allows users to specify SPARQL Select
queries directly into HTML elements. Sgvizler uses
Google Charts to generate the output, offering numer-
ous visualizations types such as chart, treemap, graph,
timeline, ect. Visualbox [33] provides an environment
where users can build and debug SPARQL queries in
order to retrieve LD; then, a set of visualization tem-
plates is provided to visualize results. Visualbox uses
several visualization libraries like Google Charts and
D3 [16], offering 14 visualization types.

In contrast to the aforementioned approaches, our
work does not focus solely on proposing techniques
for LD visualization. Instead, we introduce a model
for building, visualizing and interacting with hierarchi-
cally organized numeric and temporal LD. The pro-
posed model can be adopted by the existing visualiza-
tion techniques, in order to offer hierarchical visual-
izations. Additionally, we present a prototype system
that adopts the introduced hierarchical model, offering
hierarchical visual exploration over LD datasets.

4.2. Linked Data Statistical Analysis

Statistical information can be considered particu-
larly important in the data visual exploration and anal-
ysis context. In this respect, the following tools are
considered to provide statistical analysis features of
LD datasets. RDFStats [48] calculates statistical infor-
mation about RDF datasets. LODstats [6] is an exten-
sible framework, offering scalable statistical analysis
of LD datasets. RapidMiner LOD Extension [58,55]
is an extension of the data mining platform Rapid-
Miner24, offering sophisticated data analysis opera-
tions over LD. SparqlR25 is a package of the R26 sta-
tistical analysis platform. SparqlR executes SPARQL
queries over SPARQL endpoints and provides statis-
tical analysis and visualization over the SPARQL re-
sults.

In comparison with these tools, our work does not
focus on new techniques for LD statistics computation
and analysis. We are primarily interested on enhanc-
ing the visualization and user exploration functional-
ity by providing statistical properties of the visualized
datasets and objects, making use of existing computa-
tion techniques. Also, we demonstrate how in the pro-

24rapidminer.com
25cran.r-project.org/web/packages/SPARQL/index.html
26www.r-project.org

posed structure, computations can be performed on-
the-fly and enrich our hierarchical model.

4.3. Hierarchical Visualization Techniques

The wider area of data and information visualization
has provided a variety of approaches for hierarchical
analysis and presentation of large datasets. In this sec-
tion we present the most relevant to our approach.

Treemaps [63] visualize tree structures using a
space-filling layout algorithm based on recursive sub-
division of space. Rectangles are used to represent
tree nodes, the size of each node is proportional to
the cumulative size of its descendant nodes. Addition-
ally, several treemaps variations have been proposed.
For example, Cushion Treemaps [73] and Squarified
Treemaps [17] use shades in order to provide insight in
the hierarchical structure. Ordered Treemaps [65] en-
sures that items near each other in the given (i.e., input)
order, will be near each other in the treemap layout.
Finally, Quantum Treemaps [10] have been proposed
for laying out images within the generated rectangles.

Moreover, there is some graph-based (a.k.a. node-
link) hierarchical visualization techniques. These tech-
niques generate hierarchies over graphs by hierar-
chically aggregate graph’s nodes and/or edges. ASK-
GraphView [1] and Tulip [5] use clustering techniques
to cluster nodes into a visual aggregate hierarchy.
NodeTrix [41] combines graphs with adjacency matri-
ces. Subsets of a graph are clustered and rendered as
adjacency matrices connected to other matrices.

In the context of online analytical processing (OLAP),
there are some approaches that provide hierarchical vi-
sual exploration. [52] proposes a class of OLAP-aware
hierarchical visual layouts; similarly, [71] uses OLAP-
based hierarchical stacked bars. Polaris [69] offers
visual exploratory analysis of data warehouses with
rich hierarchical structure. Finally, as aforementioned,
some of the techniques proposed in the context of on-
tology visualization (Section 4.1) follow a hierarchy-
based model; e.g., CropCircles, Knoocks, etc.

In contrast to above approaches, our work does not
introduce a new hierarchical visualization technique,
instead it proposes a model that can be adopted by
the existing non-hierarchical visualization techniques,
in order to provide multilevel visualizations. Finally,
compared to the OLAP-based approaches, we propose
a generic model for the hierarchical organization of nu-
meric and temporal data in the LD context.

https://rapidminer.com
http://cran.r-project.org/web/packages/SPARQL/index.html
http://www.r-project.org

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 15

Table 2
Numeric Properties Characteristics

Property #Triples Range Type Min Max Mean Variance Dataset

areaWater 58 xsd:double 3000 1.2E+11 3.1E+09 2.3E+20 DBpedia Infobox
areaLand 66 xsd:double 3.8E+06 1.3E+12 8.2E+10 5.2E+22 DBpedia Infobox
length 72 xsd:double 1 3.7E+06 2.4E+05 3.8E+11 DBpedia Infobox
runtime 80 xsd:double 210 1.3E+04 5.4E+03 8.0E+06 DBpedia Infobox
elevation 114 xsd:double 1 4.1E+03 5.9E+02 8.8E+05 DBpedia Infobox
populationDensity 120 xsd:double 0 3.3E+06 3.1E+04 9.0E+10 DBpedia Infobox
populationTotal 183 xsd:integer 162 3.9E+09 2.8E+07 8.4E+16 DBpedia Infobox
squadNumber 198 xsd:integer 1 9.4E+01 2.3E+01 3.6E+02 DBpedia Infobox
areaTotal 249 xsd:double 2.0E+05 2.2E+13 2.0E+11 2.1E+24 DBpedia Infobox
obsValue 960 xsd:decimal 3 1.0E+02 4.8E+01 4.0E+02 Eurostat

Table 3
Temporal Properties Characteristics

Property #Triples Range Type Min Max Dataset

releaseDate 62 xsd:date 08/02/1922 28/12/2007 DBpedia Infobox
activeYearsStartDate 80 xsd:date 30/01/1648 25/09/1995 DBpedia Infobox
activeYearsEndDate 82 xsd:date 14/10/1768 03/01/2011 DBpedia Infobox
foundingDate 114 xsd:date 18/06/618 10/06/1999 DBpedia Infobox
deathDateI 519 xsd:date 04/03/306 29/02/2012 DBpedia Infobox
birthDateI 660 xsd:date 08/02/412 11/12/1981 DBpedia Infobox
timePeriod 960 xsd:date 01/01/2010 01/01/2010 Eurostat
deathdateP 3505 xsd:date 19/10/14 30/07/2012 DBpedia Persondata
birthDateP 4396 xsd:date 31/08/12 05/03/2002 DBpedia Persondata

5. Experimental Evaluation

In this section we present the results of the evalua-
tion we have conducted on our system. The goal is to
study the performance of the proposed model, as well
as the behaviour of our tool in terms of response time,
using LD datasets.

Section 5.1 describes evaluation setup and Sec-
tion 5.2 presents the datasets used. Then, Section 5.3
outlines the evaluation scenario, and finally Section 5.4
presents the evaluation results.

5.1. Setting

Our backend system is hosted on a quad-core server
with 4GB RAM, running Linux. We have used a 2GHz
CPU with 4G RAM client machine, running Linux,
Google Chrome and ADSL2+ internet connection, for
evaluating the tool response performance on the Web.

5.2. Datasets

In our experiments, we employ three real LD
datasets. Particularly, we use the following two datasets
from DBpedia 3.927: Infobox (Info) which contains in-

27wiki.dbpedia.org

formation that has been extracted from Wikipedia in-
foboxes; and Persondata (Person) which contains in-
formation about persons. Finally, we use one dataset
from Eurostat28 (Stat) which contains finance obser-
vations regarding business growth.

5.3. Scenario

In our evaluation scenario, the numeric and tempo-
ral properties induced in the employed datasets, are vi-
sualized using our hierarchical model. In order to study
the performance of our model, we measure the time
required for the tree construction, as well as the tool
response time. Note that, in the evaluation we consider
the properties that are contained in at least 50 triples.

We use ten numeric properties from the employed
datasets. Particularity, nine of the numeric properties
are included in the Info dataset, and one numeric prop-
erty is from Stat dataset. Table 2 summarize the ba-
sic characteristics of the numeric properties used in
the evaluation process, sorted by the number of triples.
The table contains: (1) the number of triples in which
the property is included (#Triples); (2) the data type
of the objects (i.e., property’s range) in these triples

28eurostat.linked-statistics.org

http://wiki.dbpedia.org
http://eurostat.linked-statistics.org

16 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Table 4
Numeric Properties Visualization using HETree Structures

Tree Characteristics HETree-C HETree-R

Property #Leaves Degree Height #Nodes
Construction
Time (msec)

Response
Time (msec)

#Nodes
Construction
Time (msec)

Response
Time (msec)

areaWater 9 3 2 13 8.7 336.5 13 8.2 343.2
areaLand 9 3 2 13 8.8 332.8 13 8.3 336.6
length 9 3 2 13 9.2 330.2 13 8.3 336.9
runtime 9 3 2 13 10.4 335.7 13 9.8 342.3
elevation 9 3 2 13 10.5 340.9 13 11.8 339.3
populationDensity 9 3 2 13 13.7 341.9 13 12.0 346.3
populationTotal 9 3 2 13 18.1 350.3 13 16.2 349.1
squadNumber 9 3 2 13 17.9 352.9 13 17.1 346.4
areaTotal 16 4 2 21 38.4 362.1 17 35.5 360.0
obsValue 81 3 4 121 69.5 404.3 110 69.6 400.6

Table 5
Temporal Properties Visualization using HETree Structures

Tree Characteristics HETree-C HETree-R

Property #Leaves Degree Height #Nodes
Construction
Time (msec)

Response
Time (msec)

#Nodes
Construction
Time (msec)

Response
Time (msec)

releaseDate 9 3 2 13 9.2 343.0 13 9.5 330.1
activeYearsStartDate 9 3 2 13 9.6 335.2 13 9.7 343.2
activeYearsEndDate 9 3 2 13 10.0 330.9 13 10.8 333.5
foundingDate 9 3 2 13 12.6 337.9 13 12.0 339.9
deathdateI 27 3 3 40 46.0 377.9 34 47.9 376.1
birthDateI 27 3 3 40 64.4 398.3 32 64.7 393.6
timePeriod 81 3 4 121 81.4 410.1 121 84.6 417.9
deathdateP 243 3 5 364 268.2 600.9 351 267.4 599.2
birthDateP 243 3 5 364 346.6 668.4 359 340.9 665.3

(Range Type); (3) the minimum object value (Min);
(4) the maximum object value (Max); (5) the mean of
the objects values (Mean); (6) the variance of the ob-
jects values (Variance); and (7) the dataset in which
the property is included (Dataset).

Additionally, we use nine temporal properties. Par-
ticularity, six of the temporal properties are included
in the Info dataset, two are included in the Person
dataset, and one in the Stat. Table 3 summarize the
main characteristics of the employed temporal proper-
ties, sorted by the number of triples. Since the birth-
Date and deadDate properties are included in both
Info and Person datasets, superscripts indicating the
dataset are used in properties names.

The above properties, are visualized by our proto-
type using both HETree-C and HETree-R structures.
In our experiment, we are measuring the following:

Construction Time: the time required to build the
HETree structure. This time includes (1) the time for
sorting the triples; (2) the time for building the tree;
and (3) the time for the statistics computations.

Response Time: the time required to render the
charts, starting from the time the client sends the re-
quest. This time includes (1) the Construction Time;
(2) the communication cost between the client and
server; and (3) the time required by Highchart library
to create and render the charts.

Note that through user interaction, the server sends
to the browser only the data required for rendering
the current visualization level. Hence, when a user re-
quests to generate a visualization we have the follow-
ing workflow. Initially, our system constructs the tree;
then, the data regarding the top-level groups (i.e., root
node children) are sent to the browser which renders
the result. Afterwards, based on user interactions (i.e.,
drill-down, roll-up), the server retrieves the required
data from the tree and sends it to the browser. As a re-
sult, the tree is constructed the first time a visualization
is requested for the given input dataset; for any further
user navigation over the hierarchy, the response time
includes only the communication cost and the render-
ing time.

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 17

In our experiments, as response time we measure the
time required by our tool to provide the first response
(i.e., render the top-level groups), which corresponds
to the slower response in our visual exploration sce-
nario.

The tree parameters (i.e., number of leaves, de-
gree and height) are automatically specified following
the approach described in Section 2.5. For all input
datasets, the lower and the upper bound for the objects
rendered in the most detailed level have been set to
λmin = 10 and λmax = 50, respectively. Note that,
differences in the tree parameters do not actually af-
fect the performance, as the major amount of runtime
is depends on sorting (in case of Construction Time)
and on communications (in case of Response Time).

5.4. Results

Table 4 and Table 5 present the evaluation results
regarding the numeric and the temporal properties,
respectively. Each table contains the characteristics
of the constructed HETree structure (i.e., number of
leaves, degree, and height). Additionally, for each
of HETree-C and HETree-R structure the number of
nodes, the construction time and the response time are
presented. Note that, the number of nodes between
the HETree-C and the HETree-R may differ (e.g., ob-
sValue), because in the latter case there were empty
leaf nodes that were removed during the tree construc-
tion. The presented time measurements are the average
values from 500 executions.

Regarding the time required for the construction of
the HETreee structure. As we can observe from Ta-
bles 4 & 5, the performance of both HETtree struc-
tures is almost similar for all examined properties. As
the number of input triples increases, the construction
time slightly increases, too. From Tables 4 & 5, we can
see that the areaWater property requires the minimum
construction time (8.7 msec), in HETree-R case; while
birdDateP requires the maximum time (346.6 msec).
Overall, the HETree structure takes reasonable time,
even for properties with 4396 triples, allowing real-
time user interaction.

Furthermore, from the Tables 4 & 5, we can observe
that the response time follows a similar trend as the
construction time. This is expected since the commu-
nication cost, as well as the time required for render-
ing are almost the same for all the cases. Particularly,
in our setting, the Highchart requires approximately 90
msec for creating and rendering the charts.

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000

T
im

e
(m

se
c)

Number of triples

Response-C
Response-R

Construction-C
Construction-R

Fig. 9. Construction & Response Time w.r.t. the number of triples

From the above it seems that the response time is
dominated by the communication cost. Particularly, for
the properties involving a small number of triples (i.e.,
areaWater, 58 triples), 71% of the response time is
due spent on communication cost, 27% on rendering
the chart, and 2% on constructing the HETree. Simi-
larly, for a property with a medium number of triples
(i.e., squadNumber, 198 triples), 65% of response time
is spent on communication cost, 25% on rendering,
and 5% on constructing. Finally, for the property with
the largest number of triples (i.e., birthDateP, 4396
triples), we have 35% for communications, 13% for
rendering and 52% for HETree construction. In aver-
age, considering all the properties, the 66% of the re-
sponse time is spent on communications, 25% for ren-
dering and only 9% for constructing the HETree.

Figure 9 summarizes the results from Tables 4 & 5,
presenting the construction and the response time from
both HETree structures w.r.t. the number of triples.
In Figure 9, Response-C and Construction-C denote
the response and construction time, respectively, when
a HETree-C is employed. Similarly, Response-R and
Construction-R stand for the HETree-R case. As we
can observe, the response and the construction time are
almost the same for both structures, in all cases. Ad-
ditionally, the difference between the response and the
construction time is almost stable for all cases. An im-
portant observation is that, in practice both the con-
struction and the response time, and thus the overall
performance of our tool grows linearly to the number
of triples.

Overall, our tool exhibits a very good time perfor-
mance, handling properties with more than 4K objects
in less than 0.7 sec. Thus, it can offer real-time capa-
bilities for visual exploration and analysis of large and
dynamic datasets that are retrieved online by remote
sites.

18 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

6. Conclusions

In this paper we have presented HETree, a generic
model that combines user-customized hierarchical ex-
ploration with online analysis of Linked Data (LD).
Our model is built on top of a lightweight tree-based
structure, which can be easily constructed on-the-
fly for a given set of data. We have presented two
variations for constructing our model: the HETree-C
structure organizes input data into fixed-size groups,
whereas the HETree-R structure organizes input data
into fixed-range groups. In that way the users can cus-
tomize the exploration experience, allowing them to
organize data into different ways, by parametrizing the
number of groups, the range and cardinality of their
contents, the number of hierarchy levels, etc. We have
also provided a way for efficiently computing statistics
over the tree, as well as a method for automatically de-
riving from the input dataset the best-fit parameters for
the construction of the model. To this end, we have de-
veloped rdf:SynopsViz, a web-based prototype system,
based on the introduced model, offering hierarchical
visual exploration and analysis over LD. Finally, we
have experimentally evaluated and demonstrated the
efficiency of the presented approach over LD datasets.

Some possible insights for future work include the
support of sophisticated methods for data organiza-
tion in our approach (e.g., organize data in a way,
so specific statistics properties hold for the resulted
groups). Additionally, the extension of our approach in
order to effectively handle multidimensional numeric
and temporal data, as well as offer “multidimensional-
based” visual exploration operations. Regarding the
rdf:SynopsViz tool, we are planning to extend the
graphical user interface, so our tool to be able to
use data resulted from SPARQL endpoints, as well as
to offer more sophisticated filtering techniques (e.g.,
SPARQL-enabled browsing over the data). Finally, we
are interested in including more visual techniques and
libraries.

References

[1] J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: A
large scale graph visualization system. IEEE Trans. Vis. Com-
put. Graph., 12(5), 2006.

[2] M. Alonen, T. Kauppinen, O. Suominen, and E. Hyvönen. Ex-
ploring the linked university data with visualization tools. In
Extended Semantic Web Conference (ESWC), 2013.

[3] S. F. C. Araújo, D. Schwabe, and S. D. J. Barbosa. Experiment-
ing with explorator: a direct manipulation generic rdf browser

and querying tool. In Visual Interfaces to the Social and the
Semantic Web, 2009.

[4] G. A. Atemezing and R. Troncy. Towards a linked-data based
visualization wizard. In Workshop on Consuming Linked Data,
2014.

[5] D. Auber. Tulip - a huge graph visualization framework.
In Graph Drawing Software, Mathematics and Visualization.
2004.

[6] S. Auer, J. Demter, M. Martin, and J. Lehmann. Lodstats -
an extensible framework for high-performance dataset analyt-
ics. In Knowledge Engineering and Knowledge Management,
2012.

[7] S. Auer, R. Doehring, and S. Dietzold. LESS – template-based
syndication and presentation of linked data. In Extended Se-
mantic Web Conference (ESWC), 2010.

[8] B. Bach, E. Pietriga, and I. Liccardi. Visualizing populated
ontologies with ontotrix. Int. J. Semantic Web Inf. Syst., 9(4),
2013.

[9] C. Becker and C. Bizer. Exploring the geospatial semantic web
with dbpedia mobile. J. Web Sem., 7(4), 2009.

[10] B. B. Bederson. Photomesa: a zoomable image browser using
quantum treemaps and bubblemaps. In ACM symposium on
User interface software and technology (UIST), 2001.

[11] F. Benedetti, L. Po, and S. Bergamaschi. A visual summary
for linked open data sources. In International Semantic Web
Conference (ISWC), 2014.

[12] K. Bereta, C. Nikolaou, M. Karpathiotakis, K. Kyzirakos, and
M. Koubarakis. Sextant: Visualizing time-evolving linked
geospatial data. In International Semantic Web Conference
(ISWC), 2013.

[13] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj,
J. Hollenbach, A. Lerer, and D. Sheets. Tabulator: Exploring
and analyzing linked data on the semantic web. In Interna-
tional Semantic Web User Interaction, 2006.

[14] N. Bikakis, M. Skourla, and G. Papastefanatos. rdf:synopsviz
- a framework for hierarchical linked data visual exploration
and analysis. In Extended Semantic Web Conference (ESWC)
(Demo), 2014.

[15] T. Boinski, A. Jaworska, R. Kleczkowski, and P. Kunowski.
Ontology visualization. In Conference on Information Tech-
nology (ICIT), 2010.

[16] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Trans. Vis. Comput. Graph., 17(12), 2011.

[17] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In
Joint Eurographics and IEEE TCVG Symposium on Visualiza-
tion, 1999.

[18] J. M. Brunetti, S. Auer, R. García, J. Klímek, and M. Necaský.
Formal linked data visualization model. In International Con-
ference on Information Integration and Web-based Applica-
tions & Services, (IIWAS), 2013.

[19] J. M. Brunetti, R. Gil, and R. García. Facets and pivoting for
flexible and usable linked data exploration. In Interacting with
Linked Data Workshop, 2012.

[20] D. V. Camarda, S. Mazzini, and A. Antonuccio. Lodlive, ex-
ploring the web of data. In Conference on Semantic Systems
(I-SEMANTICS), 2012.

[21] A. E. Cano, A. Dadzie, and M. Hartmann. Who’s Who - A
linked data visualisation tool for mobile environments. In Ex-
tended Semantic Web Conference (ESWC), 2011.

[22] A. Dadzie, V. Lanfranchi, and D. Petrelli. Seeing is believing:
Linking data with knowledge. Information Visualization, 8(3),

N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data 19

2009.
[23] A. Dadzie and M. Rowe. Approaches to visualising linked

data: A survey. Semantic Web, 2(2), 2011.
[24] A. Dadzie, M. Rowe, and D. Petrelli. Hide the Stack: to-

ward usable linked data. In Extended Semantic Web Confer-
ence (ESWC), 2011.

[25] L. Deligiannidis, K. Kochut, and A. P. Sheth. RDF data explo-
ration and visualization. In Workshop on CyberInfrastructure:
Information Management in eScience, 2007.

[26] J. Dokulil and J. Katreniaková. Visualization of large schema-
less rdf data. In Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, 2007.

[27] J. Dokulil and J. Katreniaková. Using clusters in rdf visualiza-
tion. In Advances in Semantic Processing, 2009.

[28] M. Dudás, O. Zamazal, and V. Svátek. Roadmapping and nav-
igating in the ontology visualization landscape. In Confer-
ence on Knowledge Engineering and Knowledge Management
EKAW, 2014.

[29] N. Elmqvist and J. Fekete. Hierarchical aggregation for infor-
mation visualization: Overview, techniques, and design guide-
lines. IEEE Trans. Vis. Comput. Graph., 16(3), 2010.

[30] I. Ermilov, M. Martin, J. Lehmann, and S. Auer. Linked open
data statistics: Collection and exploitation. In Knowledge En-
gineering and the Semantic Web, 2013.

[31] S. Falconer, C. Callendar, and M.-A. Storey. A visualization
service for the semantic web. In Knowledge Engineering and
Management by the Masses. 2010.

[32] B. Fu, N. F. Noy, and M.-A. Storey. Eye tracking the user ex-
perience - an evaluation of ontology visualization techniques.
Semantic Web Journal (to appear), 2014.

[33] A. Graves. Creation of visualizations based on linked data. In
Conference on Web Intelligence, Mining and Semantics, 2013.

[34] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In ACM Conference on Management of Data (SIG-
MOD), 1984.

[35] F. Haag, S. Lohmann, S. Negru, and T. Ertl. Ontovibe: An on-
tology visualization benchmark. In Workshop on Visualizations
and User Interfaces for Knowledge Engineering and Linked
Data Analytics, 2014.

[36] A. Harth. Visinav: A system for visual search and navigation
on web data. J. Web Sem., 8(4), 2010.

[37] T. Hastrup, R. Cyganiak, and U. Bojars. Browsing linked data
with fenfire. In World Wide Web Conference (WWW), 2008.

[38] P. Heim, S. Lohmann, and T. Stegemann. Interactive relation-
ship discovery via the semantic web. In Extended Semantic
Web Conference (ESWC), 2010.

[39] P. Heim, S. Lohmann, D. Tsendragchaa, and T. Ertl. Semlens:
visual analysis of semantic data with scatter plots and semantic
lenses. In Conference on Semantic Systems (I-SEMANTICS),
2011.

[40] J. Helmich, J. Klímek, and M. Necaský. Visualizing RDF data
cubes using the linked data visualization model. In Extended
Semantic Web Conference (ESWC), 2014.

[41] N. Henry, J. Fekete, and M. J. McGuffin. Nodetrix: a hybrid
visualization of social networks. IEEE Trans. Vis. Comput.
Graph., 13(6), 2007.

[42] W. Hop, S. de Ridder, F. Frasincar, and F. Hogenboom. Us-
ing hierarchical edge bundles to visualize complex ontologies
in GLOW. In ACM Symposium on Applied Computing, SAC,
2012.

[43] E. Kalampokis, A. Nikolov, P. Haase, R. Cyganiak,

A. Stasiewicz, A. Karamanou, M. Zotou, D. Zeginis, E. Tam-
bouris, and K. A. Tarabanis. Exploiting linked data cubes with
opencube toolkit. In International Semantic Web Conference
(ISWC), 2014.

[44] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. G.
Giannopoulou. Ontology visualization methods - a survey.
ACM Comput. Surv., 39(4), 2007.

[45] J. Klímek, J. Helmich, and M. Necaský. Payola: Collaborative
linked data analysis and visualization framework. In Extended
Semantic Web Conference (ESWC), 2013.

[46] S. Kriglstein and R. Motschnig-Pitrik. Knoocks: New visual-
ization approach for ontologies. In Conference on Information
Visualisation, 2008.

[47] S. Krivov, R. Williams, and F. Villa. Growl: A tool for visu-
alization and editing of OWL ontologies. J. Web Sem., 5(2),
2007.

[48] A. Langegger and W. Wöß. Rdfstats - an extensible RDF statis-
tics generator and library. In Database and Expert Systems
Applications, 2009.

[49] M. Lanzenberger, J. Sampson, and M. Rester. Visualization
in ontology tools. In International Conference on Complex,
Intelligent and Software Intensive Systems, CISIS, 2009.

[50] A. d. Leon, F. Wisniewki, B. Villazón-Terrazas, and O. Cor-
cho. Map4rdf- faceted browser for geospatial datasets. In Us-
ing Open Data: policy modeling, citizen empowerment, data
journalism, 2012.

[51] S. Lohmann, S. Negru, F. Haag, and T. Ertl. Vowl 2: User-
oriented visualization of ontologies. In Conference on Knowl-
edge Engineering and Knowledge Management (EKAW), 2014.

[52] S. Mansmann and M. H. Scholl. Exploring OLAP aggregates
with hierarchical visualization techniques. In ACM Symposium
on Applied Computing (SAC), 2007.

[53] N. Marie and F. L. Gandon. Survey of linked data based ex-
ploration systems. In Workshop on Intelligent Exploration of
Semantic Data (IESD), 2014.

[54] E. Motta, P. Mulholland, S. Peroni, M. d’Aquin, J. M. Gómez-
Pérez, V. Mendez, and F. Zablith. A novel approach to visu-
alizing and navigating ontologies. In International Semantic
Web Conference (ISWC), 2011.

[55] H. Paulheim. Generating possible interpretations for statistics
from linked open data. In Extended Semantic Web Conference
(ESWC), 2012.

[56] E. Pietriga. Isaviz: a visual environment for browsing and au-
thoring rdf models. In World Wide Web Conference (WWW),
2002.

[57] D. A. Quan and R. Karger. How to make a semantic web
browser. In World Wide Web Conference (WWW), 2004.

[58] P. Ristoski, C. Bizer, and H. Paulheim. Mining the web of
linked data with rapidminer. In International Semantic Web
Conference (ISWC), 2014.

[59] L. Rutledge, J. van Ossenbruggen, and L. Hardman. Mak-
ing RDF presentable: integrated global and local semantic web
browsing. In World Wide Web Conference (WWW), 2005.

[60] P. E. R. Salas, F. M. D. Mota, K. K. Breitman, M. A. Casanova,
M. Martin, and S. Auer. Publishing statistical data on the web.
Int. J. Semantic Computing, 6(4), 2012.

[61] C. Sayers. Node-centric rdf graph visualization, 2004. Techni-
cal Report HP Laboratories.

[62] K. Schlegel, T. Weißgerber, F. Stegmaier, C. Seifert, M. Gran-
itzer, and H. Kosch. Balloon synopsis: A modern node-centric
RDF viewer and browser for the web. In Extended Semantic

20 N. Bikakis et al. / Hierarchical Visual Exploration and Analysis on the Web of Data

Web Conference (ESWC), 2014.
[63] B. Shneiderman. Tree visualization with tree-maps: 2-d space-

filling approach. ACM Trans. Graph., 11(1), 1992.
[64] B. Shneiderman. The eyes have it: A task by data type tax-

onomy for information visualizations. In IEEE Symposium on
Visual Languages, 1996.

[65] B. Shneiderman and M. Wattenberg. Ordered treemap layouts.
In IEEE Symposium on Information Visualization (INFOVIS),
2001.

[66] M. G. Skjæveland. Sgvizler: A javascript wrapper for easy
visualization of sparql result sets. In Extended Semantic Web
Conference (ESWC), 2012.

[67] C. Stadler, J. Lehmann, K. Höffner, and S. Auer. Linkedgeo-
data: A core for a web of spatial open data. Semantic Web,
3(4), 2012.

[68] C. Stadler, M. Martin, and S. Auer. Exploring the web of spa-
tial data with facete. In World Wide Web Conference (WWW),
2014.

[69] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and vi-
sualization of hierarchically structured data using polaris. In
ACM Conference on Knowledge Discovery and Data Mining
(SIGKDD), 2002.

[70] M. Stuhr, D. Roman, and D. Norheim. Lodwheel - javascript-
based visualization of RDF data. In Workshop on Consuming
Linked Data, 2011.

[71] K. Techapichetvanich and A. Datta. Interactive visualization
for OLAP. In Computational Science and Its Applications
(ICCSA), 2005.

[72] G. Tschinkel, E. E. Veas, B. Mutlu, and V. Sabol. Using se-
mantics for interactive visual analysis of linked open data. In
International Semantic Web Conference (ISWC), 2014.

[73] J. J. van Wijk and H. van de Wetering. Cushion treemaps:
Visualization of hierarchical information. In IEEE Symposium
on Information Visualization (INFOVIS), 1999.

[74] T. D. Wang and B. Parsia. Cropcircles: Topology sensitive vi-
sualization of OWL class hierarchies. In International Seman-
tic Web Conference (ISWC), 2006.

[75] A. Zaveri, A. M. Anisa Rula, R. Pietrobon, J. Lehmann,
and S. Auer. Quality assessment methodologies for
linked open data. Semantic Web Journal (Under Review).
Available at: www.semantic-web-journal.net/content/quality-
assessment-methodologies-linked-open-data.

