Deriving Semantic Validation Rules from Industrial Standards: an OPC UA Study

Tracking #: 3184-4398

This paper is currently under review
Yashoda Saisree Bareedu
Thomas Frühwirth
Christoph Niedermeier
Marta Sabou
Gernot Steindl
Aparna Saisree Thuluva
Stefani Tsaneva
Nilay Tufek Ozkaya

Responsible editor: 
Guest Editors SW for Industrial Engineering 2022

Submission type: 
Full Paper
Industrial standards provide guidelines for data modeling to ensure interoperability between stakeholders of an industry branch (e.g., robotics). Most frequently, such guidelines are provided in an unstructured format (e.g., pdf documents) which hampers the automated validations of information objects (e.g., data models) that rely on such standards in terms of their compliance with the modeling constraints prescribed by the guidelines. This raises the risk of costly interoperability errors induced by the incorrect use of the standards. There is, therefore, an increased interest in automatic semantic validation of information objects based on industrial standards. In this paper we focus on an approach to semantic validation by formally representing the modeling constraints from unstructured documents as explicit, machine-actionable rules (to be then used for semantic validation) and (semi-)automatically extracting such rules from pdf documents. While our approach aims to be generically applicable, we exemplify an adaptation of the approach in the concrete context of the OPC UA industrial standard, given its large-scale adoption among important industrial stakeholders and the OPC UA internal efforts towards semantic validation. We conclude that (i) it is feasible to represent modeling constraints from the standard specifications as rules, which can be organized in a taxonomy and represented using Semantic Web technologies such as OWL and SPARQL; (ii) we could automatically identify modeling constraints in the specification documents by inspecting the tables (P=87%) and text of these documents (F1 up to 94%); (iii) the translation of the modeling constraints into formal rules could be fully automated when constraints were extracted from tables and required a Human-in-the-loop approach for constraints extracted from text.
Full PDF Version: 
Under Review