Enhancing Awareness of Industrial Robots in Collaborative Manufacturing

Tracking #: 3255-4469

This paper is currently under review
Authors: 
Alessandro Umbrico
Amedeo Cesta
Andrea Orlandini

Responsible editor: 
Guest Editors SW for Industrial Engineering 2022

Submission type: 
Full Paper
Abstract: 
The diffusion of Human-Robot Collaborative cells is prevented by several barriers. Classical control approaches seem not yet fully suitable for facing the variability conveyed by the presence of human operators beside robots. The capabilities of representing heterogeneous knowledge representation and performing abstract reasoning are crucial to enhance the flexibility of control solutions. To this aim, the ontology SOHO (Sharework Ontology for Human Robot Collaboration) has been specifically designed for representing Human-Robot Collaboration scenarios, following a context-based approach. This work brings several contributions. This paper proposes an extension of SOHO to better characterize behavioral constraints of collaborative tasks. Furthermore, this work shows a knowledge extraction procedure designed to automatize the synthesis of Artificial Intelligence plan-based controllers for realizing a flexible coordination of human and robot behaviors in collaborative tasks. The generality of the ontological model and the developed representation capabilities as well as the validity of the synthesized planning domains are evaluated on a number of realistic industrial scenarios where collaborative robots are actually deployed.
Full PDF Version: 
Tags: 
Under Review