Quantifiable Integrity for Linked Data on the Web

Tracking #: 3185-4399

This paper is currently under review
Authors: 
Christoph Braun
Tobias Kaefer

Responsible editor: 
Elena Demidova

Submission type: 
Full Paper
Abstract: 
We present an approach to publish Linked Data on the Web with quantifiable integrity using Web technologies, and in which rational agents are incentivised to contribute to the integrity of the link network. To this end, we introduce self-verifying resource representations, that include Linked Data Signatures whose signature value is used as a suffix in the resource's URI. Links among such representations, typically managed as web documents, contribute therefore to preserving the integrity of the resulting document graphs. To quantify how well a document's integrity can be relied on, we introduce the notion of trust scores and present an interpretation based on hubs and authorities. In addition, we present how specific agent behaviour may be induced by the choice of trust score regarding their optimisation, \eg, in general but also using a heuristic strategy called Additional Reach Strategy (ARS). We discuss our approach in a three-fold evaluation: First, we evaluate the effect of different graph metrics as trust scores on induced agent behaviour and resulting evolution of the document graph. We show that trust scores based on hubs and authorities induce agent behaviour that contributes to integrity preservation in the document graph. Next, we evaluate different heuristics for agents to optimise trust scores when general optimisation strategies are not applicable. We show that ARS outperforms other potential optimisation strategies. Last, we evaluate the whole approach by examining the resilience of integrity preservation in a document graph when resources are deleted. To this end, we propose a simulation system based on the Watts-Strogatz model for simulating a social network. We show that our approach produces a document graph that can recover from such attacks or failures in the document graph.
Full PDF Version: 
Tags: 
Under Review